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ABSTRACT

Knowing the geometrical and acoustical parameters of a room
may benefit applications such as audio augmented reality, speech
dereverberation or audio forensics. In this paper, we study the prob-
lem of jointly estimating the total surface area, the volume, as well
as the frequency-dependent reverberation time and mean surface ab-
sorption of a room in a blind fashion, based on two-channel noisy
speech recordings from multiple, unknown source-receiver posi-
tions. A novel convolutional neural network architecture leverag-
ing both single- and inter-channel cues is proposed and trained on a
large, realistic simulated dataset. Results on both simulated and real
data show that using multiple observations in one room significantly
reduces estimation errors and variances on all target quantities, and
that using two channels helps the estimation of surface and volume.
The proposed model outperforms a recently proposed blind volume
estimation method on the considered datasets.

1. INTRODUCTION

Audio augmented reality (AAR) has received increased interest in
the recent years [1]. A key task in AAR is to simulate virtual sound
sources that are consistent with the user’s environment via, e.g., a
hear-through headset. To achieve this in an immersive way, a major
hurdle is to estimate the relevant acoustical parameters of the room
the user evolves in. The notion of reverberation fingerprint (RF)
was introduced in [2] as a compact way to characterize rooms for
realistic binaural rendering on AAR headphones. The RF consists
of the room’s volume V in m3 and its reverberation time per octave
band RT60(b) in s, where b ∈ B = {125, 250, 500, 1k, 2k, 4k} Hz.
Under ideal diffuse sound field conditions, these parameters are re-
lated via Sabine’s well-known formula [3]

RT60(b) ≈ 0.16
V

ᾱ(b) · S (1)

where S =
∑K

i=1 Si is the total area of the room’sK surfaces in m2

and ᾱ(b) =
∑K

i=1 αi(b)Si/S is the area-weighted mean absorption
coefficient in octave band b ∈ B.

An attractive research direction to retrieve such parameters is
to estimate them solely from audio recordings of unknown sound
sources in the room, using microphones placed on the headset. In
[4], an algorithm to blindly estimate the RF based on the decay en-
velope of a single-channel clean speech signal was proposed and
showed encouraging results on simulated data. In the same year,
the authors of [5] trained a statistical model on a large dataset gen-
erated from simulated room impulse responses (RIRs) to blindly es-
timate the position of a broadband source and the mean absorption

coefficient of walls above 1 kHz using a binaural receiver and inter-
channel cues. Experiments were limited to a fixed room geometry,
a fixed receiver position, and simulated data. Later, [6] paved the
way for blind room volume estimation from single-channel noisy
speech using a convolutional neural network trained using both sim-
ulated and real RIRs. The reported results showed that this method
can estimate a broad range of volumes within a factor of 2 on real
data from the Acoustic Characterization of Environments (ACE)
challenge [7]. Following the ACE challenge, a number of neural-
network-based methods were proposed to blindly estimate rever-
beration times and direct-to-reverberant ratios from speech signals
[8, 9, 10, 11]. In particular, [11] proposes a method to generate
augmented training datasets from real RIRs. These works estimate
broadband values rather than frequency-dependent ones, which may
limit the rendering realism in the context of AAR. They also all use
single-channel signals. As an interesting alternative approach, [12]
proposes to learn a latent representation referred to as room em-
bedding, which is then used to condition a waveform-to-waveform
network that converts a signal recorded in one environment to an-
other. However, this approach cannot be straightforwardly applied
to spatial AAR, whereas explicitly knowing room parameters offers
more flexibility in binaural rendering. Moreover, explicit room pa-
rameters may be useful in themselves for other applications such as
speech dereverberation [13] or audio forensics [14].

In this paper, we push these recent research efforts further by
proposing a blind method to jointly estimate the total surface area
S, the volume V , the reverberation times RT60(b) and the mean
absorption coefficients ᾱ(b) in all octave bands b ∈ B. On top of
that, we investigate whether using multichannel input and/or fusing
estimates across multiple source-receiver positions inside the same
room help. To this end, we propose a new convolutional neural net-
work architecture that combines single- and inter-channel features
in a joint embedding layer, and uses a likelihood-based loss function
that yields adaptive variance estimates, which allow us to fuse mul-
tiple independent observations of the same room in a statistically
principled way. The model is trained on a carefully-crafted realistic
simulated dataset and tested on both simulated and real wet speech
recordings1.

2. SIMULATED DATASET

To train and validate our approach, a large dataset of noisy speech
signals annotated with target room acoustic parameters is created.
First, synthetic RIRs are generated using Roomsim [15]. Roomsim

1Our code to reproduce this paper is available at github.com/
prerak23/RoomParamEstim.
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Figure 1: Diagram of the proposed neural network architecture.

is a hybrid shoe-box room acoustic simulator combining the image-
source method [16] to simulate specular reflections that dominate
the early part of RIRs, and the diffuse-rain method [15] to model
scattered reflections using stochastic ray-tracing. Simulations are
run using a sampling frequency of 48 kHz, a reflection order of
10 for the image-source method and 2000 rays for the diffuse-rain
method. 20,000 rooms are simulated with length, width and height
drawn uniformly at random in [3, 10] m, [3, 10] m and [2.5, 4] m,
respectively, resulting in S ∈ [48, 360] m2 and V ∈ [18, 400] m3.
For each room, 5 RIRs corresponding to different source-receiver
positions are generated. Omnidirectional sources and receivers are
used and placed uniformly at random at least 30 cm from each sur-
face and from each other. The receiver is a two-microphone array
placed parallel to the floor with an aperture of 22.5 cm, that is a
typical head or headset width. For each room, a single scattering
coefficient drawn uniformly at random in [0.2, 1] is used on all sur-
faces and octave bands for the diffuse-rain method. The absorption
coefficients of the 6 surfaces in 6 octave bands are sampled using the
reflectivity-biased sampling strategy proposed in [17]. Each αi(b)
is drawn uniformly at random inside ranges based on measured
databases of commonly encountered surface materials, while giving
each surface a 50% probability of having a frequency-independent
reflective profile (αi(b) < 0.12). As showed in [17], this yields
more realistic and more diverse distributions of absorption and re-
verberation times (RT60(b) ∈ [0.2, 3.2] s and ᾱ(b) ∈ [0.02, 0.6] in
our dataset) than, e.g., by sampling each αi(b) uniformly in [0, 1].

The obtained RIRs are downsampled to 16 kHz and convolved
with random speech excerpts from the LibriSpeech [18] corpus. The
resulting 3 s two-channel reverberated signals are then corrupted
with both static microphone noise, i.e., independent additive white
Gaussian noise on each channel, and spatially-diffuse babble noise,
i.e., speech-shaped noise convolved with the late part (>50 ms) of
a random RIR in the room. For the noise levels to be realistic, sig-
nals from sources that are placed further away from the receiver
should exhibit lower signal-to-noise ratios (SNRs). To achieve this,
for each room, we first generate a reference signal using a random
speech source placed 1 meter in front of a receiver (not used in
the final dataset). Static and diffuse noise levels for this signal are
set to obtain SNRs drawn uniformly at random in [70, 90] dB and
[30, 60] dB, respectively (different levels for each source-receiver
position in the room are set). These noise levels are then kept fixed
for the final mixtures, irrespective of the distance from the speech
source to the receiver. This resulted in an overall SNR range of
[−10, 65] dB across the dataset.

The 5×20k = 100k two-channel noisy speech signals are di-
vided into training, validation and test sets of respective size 80k,

10k and 10k with no room or speech-signal overlap between them.
Each room is annotated with the 14 target parameters, namely, 6
mean absorption coefficients and 6 reverberation times in all octave
bands, the total surface area S and the volume V . For each room
and each octave band, a unique reverberation time is estimated by
taking the median value over the 5 source-receiver positions avail-
able. The values are obtained by linear regression over the -5 dB to
-25 dB decay of Schroeder curves [19].

3. NEURAL NETWORK MODEL

3.1. Proposed Architecture, Cost Function, and Fusion Method

The proposed neural network architecture is depicted in Fig. 1.
Single-channel (SC) and inter-channel (IC) features are extracted
from the time-domain two-channel input signal x in the form of
spectrograms. We use the short-time Fourier transform (STFT)
with 96 ms Hann windows and 50% overlap to obtain a complex
spectrogram {Xi(f, t)}F,T

f,t=1 for each channel i, with F = 769
positive frequency bins and T = 63 time frames for a 3 s in-
put signal (our architecture works on arbitrary input length). This
choice performed best among 32, 64, 96 and 128 ms windows in
our preliminary experiments. Then, SC features are computed as
|X1(f, t)|, which performed better than |X1(f, t)|2, |X1(f, t)|1/2,
or log |X1(f, t)|. IC features are obtained by concatenating inter-
channel level differences (ILD) and phase differences (IPD):

ILD(f, t) = log |X1(f, t)| − log |X2(f, t)|, (2)

IPD(f, t) =

[
Re, Im

(
X1(f, t)X∗

2 (f, t)

|X1(f, t)X∗
2 (f, t)|

)]
. (3)

These features are then processed through 1D convolutional blocks
(1D-Conv), which were recently proposed in the Conv-TasNet ar-
chitecture in the context of speech separation [20]. These blocks
consist of separable convolutions (depth-wise and point-wise) inter-
twined with rectified linear unit (ReLU) activations and followed by
layer normalization [21]. The latter proved to be crucial in our ex-
periments, as it creates scale-invariant representations. For SC fea-
tures, three 1D-Conv blocks with increasing dilation factors along
the frequency-axis and a kernel size of 11 are used, while only one
block is used on IC features, as this showed to give best results. The
obtained representations are concatenated along the frequency axis
and average-pooled along the time-axis to yield a time-independent,
1248-dimensional embedding vector. The embedding vector is fi-
nally passed through 3 fully-connected layers of respective dimen-
sions 96, 48 and 28 to obtain 2×D = 14 outputs consisting of the
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estimated room parameters µθ(x) ∈ RD and the estimated vari-
ances σ2

θ(x) ∈ RD (or uncertainties) on these parameters.

The network parameters θ are optimized by minimizing the fol-
lowing Gaussian negative log-likelihood loss function:

Lθ(x,y) = − log pθ(y|x) = − logN (y;µθ(x),σ2
θ(x))

c
=

1

2

D∑
d=1

log σ2
d,θ(x) +

(yd − µd,θ(x))2

σ2
d,θ(x)

(4)

where y ∈ RD denotes the ground truth room parameters. A bene-
fit of this approach is that it adaptively weights errors on individual
parameters. The estimated variances can also be used to fuse es-
timated obtained from J independent observations {xj}Jj=1 of the
same room using the following formula derived from Bayes’ rule:

pθ(yd|x̄ = [x1, . . . ,xJ ]) = N (yd; µ̄d,θ(x̄), 1/γ̄2
d,θ(x̄)) (5)

with µ̄d,θ(x̄) =

J∑
j=1

γ2
d,θ(xj)

γ̄2
d,θ(x̄)

µd,θ(xj), γ̄
2
d,θ(x̄) =

J∑
j=1

γ2
d,θ(xj)

where γ2
d,θ(xj) = 1/σ2

d,θ(xj) is the estimated precision for obser-
vation xj and µ̄d,θ(x̄) is the fused estimate.

To avoid issues due to scale differences, the ground truth pa-
rameters are normalized at training time by dividing them by their
standard deviations over the training set, which are saved and mul-
tiplied with the network output at test time. The network is trained
using the ADAM optimizer [22] with a learning rate of 10−4 and a
batch size of 120. A dropout rate of 0.2 and 0.4 was used in conv-
blocks and in fully connected layers to avoid over-fitting. We used
a patience of 15 epochs on the validation set for early stopping. Our
models generally converged in 100–150 epochs.

3.2. Other Tried Architectures

In addition to 1D-Conv blocks, Conv-TasNet introduced the idea of
learnable input filters [20]. We tried replacing the STFT by such
learnable filters to estimate our SC features, but this yielded worse
performance. We also tried an architecture inspired by x-vectors,
a state-of-the-art model for speaker recognition [23], but this did
not perform well on our data. We experimented with replacing the
proposed maximum-likelihood loss (4) by a simple mean squared
error loss. This yielded significantly higher errors while losing the
benefit of easily fusing multiple observations in one room. Estimat-
ing log(V ) and log(S) instead of V and S as suggested in [6] did
not improve results on our data, most likely because the ranges we
consider for these quantities are smaller. Finally, instead of estimat-
ing ᾱ,RT60, V and S jointly in a multi-task fashion, we trained the
same architecture to estimate each of these quantities individually.
The obtained results were identical, while increasing the number of
model parameters and training time by a factor of 4, which suggests
that our proposed network achieves efficient weight sharing.

4. EXPERIMENTS AND RESULTS

4.1. Simulated Data

We first evaluate the proposed approach on the 2,000 unseen rooms
of the simulated test set (see Section 2), using between 1 and 5 two-
channel 3-s noisy speech recordings at different source-receiver po-
sitions per room, based on the fusion method in (5). Two variants of
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Figure 2: Mean absolute error achieved on simulated data by [6]
vs. the proposed model with one- or two-channel inputs, as a func-
tion of the number of source-receiver positions fused in each room.
Shaded areas indicate 95% confidence intervals.

Input Feature ᾱ RT60 (s) S (m2) V (m3)
1mic, 1sig SC 0.055 0.225 55.0 68.8
1mic, 2sig SC 0.058 0.222 55.4 69.7
2mic, 1sig SC 0.057 0.221 54.0 67.7
2mic, 1sig SC+IC 0.055 0.236 49.9 63.7

Table 1: Mean absolute error achieved on simulated data for one
source-receiver position using different inputs and features. Bold
numbers indicate the best statistically significant result per column
based on 95% confidence intervals, when there is one.

our model are compared: the full two-channel architecture depicted
in Fig. 1, and the same architecture without the upper inter-channel
processing part of the network, i.e., using only one channel. These
variants are compared to our implementation of the single-channel,
single-position blind room volume estimation method of [6] trained
on the same data. We could not find competing methods for blind
total surface estimation or blind frequency-dependent reverberation
time and mean absorption coefficient estimation in the literature.
The metric used is the mean absolute error on each room parameter.

As can be seen in Fig. 2, increasing the number of fused obser-
vations per room significantly reduces errors on all parameters. Us-
ing five positions and two channels, mean absolute errors of 0.052
for ᾱ (training range [0.02, 0.6]), 0.18 s for RT60 (training range
[0.2, 3.2]), 42 m2 for S (training range [48, 360]) and 54 m3 for V
(training range [18, 400]) are obtained. The proposed model signif-
icantly outperforms the one in [6] for volume estimation, reducing
the error by 13% using one channel and one observation, and by
31% using two channels and five observations. Interestingly, we
observe that using two channels instead of one significantly reduces
surface and volume estimation error without significantly impact-
ing mean absorption and reverberation time estimation, according
to 95% confidence intervals. This may be interpreted by the fact that
the latter mostly govern the late, spatially-diffuse regime of RIRs,
and hence should have limited correlation with inter-channel cues
that mostly capture spatial characteristics. Conversely, S and V are
inherently spatial quantities as they relate to the room’s geometry
and hence early echoes, which do correlate with IC cues [24, 25].

We hence carry an additional experiment to study whether the
improvement observed when using two channels is truly explained
by concatenating SC and IC representations at the embedding layer
(see Fig. 1), or is only due to doubling the number of signal sam-
ples in a given source-receiver position, which mitigates noise. Four
different embeddings are compared, namely (i) the SC representa-
tion of one speech signal (1mic, 1sig), (ii) the average of the SC
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Octave bands 1 position 5 positions
ᾱ RT60 (s) ᾱ RT60 (s)

125 Hz 0.056 0.392 0.051 0.320
250 Hz 0.060 0.305 0.055 0.249
500 Hz 0.057 0.228 0.051 0.170
1 kHz 0.053 0.188 0.050 0.146
2 kHz 0.054 0.165 0.051 0.122
4 kHz 0.052 0.139 0.049 0.106

Table 2: Mean absolute errors on ᾱ(b) and RT60(b) in the 6 octave
bands achieved by the proposed model with two channels and 1 or
5 source-receiver positions per room on simulated data.

representations of two speech signals (1mic, 2sig), (iii) the concate-
nation of the SC representations of the two individual channels of
one speech signal (2mic, 1sig) and (iv) the proposed concatenation
of SC and IC representations. Speech signals are always 3-s long.
As can be seen in Table 1, the only model which significantly im-
proves surface and volume estimation is the one using IC features,
despite the fact that the 2nd and 4th models also benefit from the
same number of input signal samples.

So far, the reported errors on ᾱ and RT60 were averaged over
all 6 octave bands. Table 2 reports detailed errors per octave band.
As can be seen, the mean absorption is well estimated in all octave
bands, while reverberation-time errors steadily decrease by a factor
of 3 from 125 Hz to 4 kHz. This could be explained by the fact that
less information is available in the narrower, lower octave bands.

4.2. Real Data

To check how well our method generalizes to real data, we use the
recently released dEchorate dataset [25], which contains wet speech
recordings made inside the acoustic lab at Bar-Ilan University. The
lab is a shoe-box room of size 5.7 × 6 × 2.4 m (S = 125 m2,
V = 82 m2) where each of the walls, floor and ceiling can be set
either to either a reflective mode or an absorbent mode. 5 arrays of
6 omnidirectional microphones and 6 directional loudspeakers are
placed inside the room, yielding 5 × 6 = 30 multi-channel speech
recordings per room configuration. For each room, ground truth ᾱ
and RT60 values are provided for the four octave bands from 500 Hz
to 4 kHz. Hence, results in lower octave bands are omitted here. In
our experiments, we use 3× 30 = 90 3-s speech recordings corre-
sponding to the 2-channel sub-arrays with aperture 22.5 cm and to
the 3 room configurations involving 3 or more reflective surfaces, as
these most closely match the considered scenario. For these rooms,
ᾱ(b) ranges from 0.16 to 0.35 and RT60(b) from 0.25 to 0.66 s.

Table 3 reports mean absolute errors using the proposed ap-
proach with or without IC features. We report results using either
1 or 5 source positions and a fixed receiver. For the latter, we ex-
clude one out of the 6 available source positions for each test, so
that there are 90 tests in each case. The mean absolute volume
estimation error using the single-channel, single-position approach
of [6] is reported as well. Encouragingly, errors obtained with our
approach are of comparable orders to those obtained on simulated
data. In the single-channel, single-position case, volume estimation
errors obtained with our model are comparable to [6]. For RT60,
S and V , we are able to reproduce the observation that increasing
the number of source-receiver positions significantly decreases er-
rors, at least using IC features. We also observe again that using IC

Method Features # pos ᾱ RT60 S V
[6] SC 1 - - - 137.8

Ours SC 1 0.061 0.134 129.6 154.5
Ours SC 5 0.060 0.097 125.8 149.1
Ours SC+IC 1 0.084 0.101 89.4 107.6
Ours SC+IC 5 0.094 0.062 50.2 68.8

Table 3: Mean absolute error achieved over 3 rooms from the real
dEchorate dataset. Bold numbers indicate the best statistically sig-
nificant result per column, based on 95% confidence intervals.

Method Features # pos ᾱ RT60 S V
[6] SC 1 - - - 10.0

Ours SC 1 0.030 0.161 27.2 31.8
Ours SC 5 0.024 0.090 19.6 23.0
Ours SC+IC 1 0.031 0.100 34.7 39.7
Ours SC+IC 5 0.015 0.054 16.5 18.9

Table 4: Standard deviation of parameter estimates for room
”011100” of the real dEchorate dataset.

features significantly improves the estimation of S and V . The er-
rors obtained on ᾱ are less consistent than those on simulated data,
which may be due to the difficulty of reliably annotating mean ab-
sorption coefficients in real rooms.

Finally, Table 4 shows the standard deviations of estimated val-
ues by the same methods over the 30 recordings from the room with
3 reflective surfaces. Encouragingly, the relatively low standard de-
viations reveal the ability of the models to provide parameter esti-
mates that are stable within a room, and do not depend much on the
source-receiver position. Moreover, it can be seen that, as expected,
using five observations in a room instead of one systematically de-
creases the standard deviation of estimates.

5. CONCLUSION

This study revealed that using inter-channel cues can significantly
improve the blind estimation of a room’s volume and surface from
noisy speech, while for estimating reverberation and absorption pa-
rameters, a single channel is sufficient. It also highlights that fus-
ing multiple measurements reduces estimation errors and variances
on all parameters. Finally, we showed that a system trained on a
carefully simulated training set offers reasonable generalization ca-
pabilities to real data. Future work will include the use of data-
augmentation and domain adaptation techniques to improve real
data results, extensions to binaural or ambisonic receivers, and the
joint estimation of local parameters such as the positions and prop-
erties of the source and individual surfaces in the room, with the
help of early acoustic echoes.
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