
HAL Id: hal-03304653
https://hal.science/hal-03304653

Submitted on 28 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unifying Decidable Entailments in Separation Logic
with Inductive Definitions

Mnacho Echenim, Radu Iosif, Nicolas Peltier

To cite this version:
Mnacho Echenim, Radu Iosif, Nicolas Peltier. Unifying Decidable Entailments in Separation Logic
with Inductive Definitions. CADE 28, 2021, Pittsburgh (virtual), United States. pp.183-199,
�10.1007/978-3-030-79876-5_11�. �hal-03304653�

https://hal.science/hal-03304653
https://hal.archives-ouvertes.fr

Unifying Decidable Entailments in Separation Logic
with Inductive Definitions

Mnacho Echenim1[0000−0001−5765−0758], Radu Iosif2[0000−0003−3204−3294], and Nicolas
Peltier1[0000−0002−8943−7000]

1 Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble France
2 Univ. Grenoble Alpes, CNRS, VERIMAG, F-38000 Grenoble France

Abstract. The entailment problem ϕ |= ψ in Separation Logic [12,15], between
separated conjunctions of equational (x≈ y and x 6≈ y), spatial (x 7→ (y1, . . . ,yκ))
and predicate (p(x1, . . . ,xn)) atoms, interpreted by a finite set of inductive rules,
is undecidable in general. Certain restrictions on the set of inductive definitions
lead to decidable classes of entailment problems. Currently, there are two such
decidable classes, based on two restrictions, called establishment [10,13,14] and
restrictedness [8], respectively. Both classes are shown to be in 2EXPTIME by
the independent proofs from [14] and [8], respectively, and a many-one reduction
of established to restricted entailment problems has been given [8]. In this paper,
we strictly generalize the restricted class, by distinguishing the conditions that ap-
ply only to the left- (ϕ) and the right- (ψ) hand side of entailments, respectively.
We provide a many-one reduction of this generalized class, called safe, to the es-
tablished class. Together with the reduction of established to restricted entailment
problems, this new reduction closes the loop and shows that the three classes of
entailment problems (respectively established, restricted and safe) form a single,
unified, 2EXPTIME-complete class.

1 Introduction

Separation Logic [12,15] (SL) was primarily introduced for writing concise Hoare logic
proofs of programs that handle pointer-linked recursive data structures (lists, trees, etc).
Over time, SL has evolved into a powerful logical framework, that constitutes the basis
of several industrial-scale static program analyzers [3,2,5], that perform scalable com-
positional analyses, based on the principle of local reasoning: describing the behavior
of a program statement with respect only to the small (local) set of memory locations
that are changed by that statement, with no concern for the rest of the program’s state.

Given a set of memory locations (e.g., addresses), SL formulæ describe heaps, that
are finite partial functions mapping finitely many locations to records of locations. A
location ` is allocated if it occurs in the domain of the heap. An atom x 7→ (y1, . . . ,yκ)
states that there is only one allocated location, associated with x, that moreover refers
to the tuple of locations associated with (y1, . . . ,yκ), respectively. The separating con-
junction φ ∗ψ states that the heap can split into two parts, with disjoint domains, that
make φ and ψ true, respectively. The separating conjunction is instrumental in support-
ing local reasoning, because the disjointness between the (domains of the) models of its
arguments ensures that no update of one heap can actually affect the other.

Reasoning about recursive data structures of unbounded sizes (lists, trees, etc.) is
possible via the use of predicate symbols, whose interpretation is specified by a user-
provided set of inductive definitions (SID) of the form p(x1, . . . ,xn)⇐ π, where p is
a predicate symbol of arity n and the free variables of the formula π are among the
parameters x1, . . . ,xn of the rule. Here the separating conjunction ensures that each un-
folding of the rules, which substitute some predicate atom p(y1, . . . ,yn) by a formula
π[x1/y1, . . . ,xn/yn], corresponds to a way of building the recursive data structure. For
instance, a list is either empty, in which case its head equals its tail pointer, or is built
by first allocating the head, followed by all elements up to but not including the tail, as
stated by the inductive definitions ls(x,y)⇐ x≈ y and ls(x,y)⇐∃z . x 7→ (z)∗ ls(z,y).

An important problem in program verification, arising during the construction of
Hoare-style correctness proofs of programs, is the discharge of verification conditions
of the form φ |= ψ, where φ and ψ are SL formulæ, asking whether every model of φ is
also a model of ψ. These problems, called entailments, are, in general, undecidable in
the presence of inductively defined predicates [11,1].

A first decidable class of entailments, described in [10], involves three restrictions
on the SID rules: progress, connectivity and establishment. Intuitively, the progress (P)
condition states that every rule allocates exactly one location, the connectivity (C) con-
dition states that the set of allocated locations has a tree-shaped structure, and the es-
tablishment (E) condition states that every existentially quantified variable from a rule
defining a predicate is (eventually) allocated in every unfolding of that predicate. A
2EXPTIME algorithm was proposed for testing the validity of PCE entailments [13,14]
and a matching 2EXPTIME-hardness lower bound was provided shortly after [6].

Later work relaxes the establishment condition, necessary for decidability [7], by
proving that the entailment problem is still in 2EXPTIME if the establishment condition
is replaced by the restrictedness (R) condition, which requires that every disequality
(x 6≈ y) involves at least one free variable from the left-hand side of the entailment,
propagated through the unfoldings of the inductive system [8]. Interestingly, the rules of
a progressive, connected and restricted (PCR) entailment may generate data structures
with “dangling” (i.e. existentially quantified but not allocated) pointers, which was not
possible with PCE entailments.

In this paper, we generalize PCR entailments further, by showing that the connec-
tivity and restrictedness conditions are needed only on the right-hand side of the en-
tailment, whereas the only condition required on the left-hand side is progress (which
can usually be enforced by folding or unfolding definitions). Our results thus allow for
“asymetric” entailments, i.e., one can test whether the structures described by induc-
tive rules that are (almost) arbitrary fulfill some restricted formula. Although the class
of data structures that can be described is much larger, we show that this new class of
entailments, called safe, is also 2EXPTIME-complete, by a many-one reduction of the
validity of safe entailments to the validity of PCE entailments. A second contribution
of the paper is the cross-certification of the two independent proofs of the 2EXPTIME
upper bounds, for the PCE [6,14,8] and PCR [8] classes of entailments, respectively,
by closing the loop. Namely, the reduction given in this paper enables the translation
of any of the three entailment problems into an equivalent problem in any other class,
while preserving the 2EXPTIME upper bound. This is because all the reductions are

polynomial in the overall size of the SID and singly-exponential in the maximum size
of the rules in the SID. The theoretical interest of the reduction is that it makes the proof
of decidability and of the complexity class much shorter and clearer. It also has some
practical advantages, since it allows one to re-use existing implementations designed
for established systems instead of having to develop entirely new automated reasoning
systems. Due to space restrictions, some of the proofs are omitted. All proofs can be
found in [9].

2 Definitions

For a (partial) function f : A→ B, we denote by dom(f) and rng(f) its domain and
range, respectively. For a relation R⊆A×A, we denote by R∗ the reflexive and transitive
closure of R.

Let κ be a fixed natural number throughout this paper and let P be a countably
infinite set of predicate symbols. Each predicate symbol p ∈ P is associated a unique
arity, denoted ar(p). Let V be a countably infinite set of variables. For technical con-
venience, we also consider a special constant ⊥, which will be used to denote “empty”
record fields. Formulæ are built inductively, according to the following syntax:

φ := x 6≈ x′ | x≈ x′ | x 7→ (y1, . . . ,yκ) | p(x1, . . . ,xn) | φ1 ∗φ2 | φ1∨φ2 | ∃x . φ1

where p ∈ P is a predicate symbol of arity n = ar(p), x,x′,x1, . . . ,xn ∈ V are variables
and y1, . . . ,yκ ∈ V∪{⊥} are terms, i.e. either variables or ⊥.

The set of variables freely occurring in a formula φ is denoted by fv(φ), we assume
by α-equivalence that the same variable cannot occur both free and bound in the same
formula φ, and that distinct quantifiers bind distinct variables. The size |φ| of a formula
φ is the number of occurrences of symbols in φ. A formula x ≈ x′ or x 6≈ x′ is an equa-
tional atom, x 7→ (y1, . . . ,yκ) is a points-to atom, whereas p(x1, . . . ,xn) is a predicate
atom. Note that ⊥ cannot occur in an equational or in a predicate atom. A formula is
predicate-less if no predicate atom occurs in it. A symbolic heap is a formula of the form
∃xxx .∗m

j=1αi, where each αi is an atom and xxx is a possibly empty vector of variables.

Definition 1. A variable x is allocated by a symbolic heap φ iff φ contains a sequence
of equalities x1 ≈ x2 ≈ . . .≈ xn−1 ≈ xn, for n≥ 1, such that x = x1 and xn 7→ (y1, . . . ,yκ)
occurs in φ, for some variables x1, . . . ,xn and some terms y1, . . . ,yκ ∈ V∪{⊥}.

A substitution is a partial function mapping variables to variables. If σ is a substitution
and φ is a formula, a variable or a tuple, then φσ denotes the formula, the variable or
the tuple obtained from φ by replacing every free occurrence of a variable x ∈ dom(σ)
by σ(x), respectively. We denote by {〈xi,yi〉 | i ∈ J1,nK} the substitution with domain
{x1, . . . ,xn} that maps xi to yi, for each i ∈ J1,nK.

A set of inductive definitions (SID) R is a finite set of implications (or rules) of the
form p(x1, . . . ,xn)⇐ π, where p∈P, n= ar(p), x1, . . . ,xn are pairwise distinct variables
and π is a quantifier-free symbolic heap. The predicate atom p(x1, . . . ,xn) is the head of
the rule and R (p) denotes the subset of R consisting of rules with head p(x1, . . . ,xn)
(the choice of x1, . . . ,xn is not important). The variables in fv(π)\{x1, . . . ,xn} are called

the existential variables of the rule. Note that, by definition, these variables are not
explicitly quantified inside π and that π is quantifier-free. For simplicity, we denote by
p(x1, . . . ,xn)⇐R π the fact that the rule p(x1, . . . ,xn)⇐ π belongs to R . The size of R is

defined as |R | def= ∑p(x1,...,xn)⇐R π |π|+n and its width as w(R)
def
= maxp(x1,...,xn)⇐R π |π|+

n.
We write p�R q, p,q∈ P iff R contains a rule of the form p(x1, . . . ,xn)⇐ π, and q

occurs in π. We say that p depends on q if p�∗R q. For a formula φ, we denote by P (φ)
the set of predicate symbols q, such that p�∗R q for some predicate p occurring in φ.

Given formulæ φ and ψ, we write φ⇐R ψ if ψ is obtained from φ by replacing an
atom p(u1, . . . ,un) by π{〈x1,u1〉, . . . ,〈xn,un〉}, where R contains a rule p(x1, . . . ,xn)⇐
π. We assume, by a renaming of existential variables, that the set (fv(π)\{x1, . . . ,xn})∩
fv(φ) is empty. We call ψ an unfolding of φ iff φ⇐∗R ψ.

We now define the semantics of SL. Let L be a countably infinite set of locations
containing, in particular, a special location ‚. A structure is a pair (s,h), where:

– s is a partial function from V∪{⊥} to L , called a store, such that ⊥ ∈ dom(s) and
s(x) =‚ ⇐⇒ x =⊥, for all x ∈ V∪{⊥}, and

– h : L → Lκ is a finite partial function, such that ‚ 6∈ dom(h).
If x1, . . . ,xn are pairwise distinct variables and `1, . . . , `n ∈L are locations, we denote by
s[xi← `i | 1≤ i≤ n] the store s′ defined by dom(s′) = dom(s)∪{x1, . . . ,xn}, s′(y) = `i
if y = xi for some i ∈ J1,nK, and s′(y) = s(x) otherwise. If x1, . . . ,xn 6∈ dom(s), then the
store s′ is called an extension of s to {x1, . . . ,xn}.

Given a heap h, we define ref(h) def
=

⋃
l∈dom(h){`i | h(`) = (`1, . . . , `κ), i∈ J1,κK} and

loc(h) def
= dom(h)∪ ref(h). Two heaps h1 and h2 are disjoint iff dom(h1)∩dom(h2) = /0,

in which case h1]h2 denotes the union of h1 and h2, undefined whenever h1 and h2 are
not disjoint.

Given an SID R , (s,h) |=R φ is the least relation between structures and formulæ
such that whenever (s,h) |=R φ, we have fv(φ)⊆ dom(s) and the following hold:

(s,h) |=R x≈ x′ if dom(h) = /0 and s(x) = s(x′)
(s,h) |=R x 6≈ x′ if dom(h) = /0 and s(x) 6= s(x′)
(s,h) |=R x 7→ (y1, . . . ,yκ) if dom(h) = {s(x)} and h(s(x)) = 〈s(y1), . . . ,s(yκ)〉
(s,h) |=R φ1 ∗φ2 if there exist disjoint heaps h1 and h2 such that

h= h1]h2 and (s,hi) |=R φi, for both i = 1,2
(s,h) |=R φ1∨φ2 if (s,h) |=R φi, for some i = 1,2
(s,h) |=R ∃x . φ if there exists ` ∈ L such that (s[x← `],h) |= φ

(s,h) |=R p(x1, . . . ,xn) if p(x1, . . . ,xn)⇐R φ, and there exists a store se
coinciding with s on {x1, . . . ,xn}, such that (se,h) |= φ

Given formulæ φ and ψ, we write φ |=R ψ whenever (s,h) |=R φ⇒ (s,h) |=R ψ,
for all structures (s,h) and φ ≡R ψ for (φ |=R ψ and ψ |=R φ). We omit the subscript
R whenever these relations hold for any SID. It is easy to check that, for all formulæ
φ1,φ2,ψ, it is the case that (φ1∨φ2)∗ψ≡ (φ1 ∗ψ)∨(φ2 ∗ψ) and (∃x.φ1)∗φ2 ≡∃x . φ1 ∗
φ2. Consequently, each formula can be transformed into an equivalent finite disjunction
of symbolic heaps.

Definition 2. An entailment problem is a triple P
def
= φ `R ψ, where φ is a quantifier-

free formula, ψ is a formula and R is an SID. The problem P is valid iff φ |=R ψ. The

size of the problem P is defined as |P| def= |φ|+ |ψ|+ |R | and its width is defined as
w(P)

def
= max(|φ|, |ψ|,w(R)).

Note that considering φ to be quantifier-free loses no generality, because ∃x.φ |=R
ψ ⇐⇒ φ |=R ψ.

3 Decidable Entailment Problems

The class of general entailment problems is undecidable, see Theorem 5 below for a
refinement of the initial undecidability proofs [11,1]. A first attempt to define a natural
decidable class of entailment problems is described in [10] and involves three restric-
tions on the SID rules, formally defined below:

Definition 3. A rule p(x1, . . . ,xn)⇐ π is:
1. progressing (P) iff π = x1 7→ (y1, . . . ,yκ)∗ρ and ρ contains no points-to atoms,
2. connected (C) iff it is progressing, π = x1 7→ (y1, . . . ,yκ) ∗ ρ and every predicate

atom in ρ is of the form q(yi,uuu), for some i ∈ J1,κK,
3. established (E) iff every existential variable x ∈ fv(π)\{x1, . . . ,xn} is allocated by

every predicate-less unfolding π⇐∗R φ.
An SID R is P (resp. C, E) for a formula φ iff every rule in

⋃
p∈P (φ) R (p) is P (resp.

C,E). An entailment problem φ `R ψ is left- (resp. right-) P (resp. C, E) iff R is P (resp.
C, E) for φ (resp. ψ). An entailment problem is P (resp. C, E) iff it is both left- and
right-P (resp. C, E).

The decidability of progressing, connected and left-established entailment problems is
an immediate consequence of the result of [10]. Moreover, an analysis of the proof
[10] leads to an elementary recursive complexity upper bound, which has been recently
tighten down to 2EXPTIME-complete [14,8,6]. In the following, we refer to Table 1
for a recap of the complexity results for the entailment problem. The last line is the
main result of the paper and corresponds to the most general (known) decidable class
of entailment problems (Definition 8).

Table 1. Decidability and Complexity Results for the Entailment Problem (X means that the
corresponding condition holds on the left- and right-hand side of the entailment)

Reference Progress Connected Established Restricted Complexity
Theorem 4 X X left - 2EXP-co.
Theorem 5 X left X - undec.

[7, Theorem 6] X X - - undec.
[8, Theorem 32] X X - X 2EXP-co.

Theorem 31 X right - right 2EXP-co.

The following theorem is an easy consequence of previous results [6].

Theorem 4. The progressing, connected and left-established entailment problem is
2EXPTIME-complete. Moreover, there exists a decision procedure that runs in time

22O(w(P)8 ·log |P|)
for every instance P of this problem.

A natural question arises in this context: which of the restrictions from the above
theorem can be relaxed and what is the price, in terms of computational complexity, of
relaxing (some of) them? In the light of Theorem 5 below, the connectivity restriction
cannot be completely dropped. Further, if we drop the establishment condition, the
problem becomes undecidable [7, Theorem 6], even if both the left/right progress and
connectivity conditions apply.

Theorem 5. The progressing, left-connected and established entailment problem is un-
decidable.

The second decidable class of entailment problems [8] relaxes the connectivity con-
dition and replaces the establishment with a syntactic condition (that can be checked
in polynomial time in the size of the SID), while remaining 2EXPTIME-complete. In-
formally, the definition forbids (dis)equations between existential variables in symbolic
heaps or rules: the only allowed (dis)equations are of the form x ./ y where x is a free
variable (viewed as a constant in [8]). The definition given below is essentially equiv-
alent to that of [8], but avoids any reference to constants; instead it uses a notion of
R -positional functions, which helps to identify existential variables that are always re-
placed by a free variable from the initial formula during unfolding.

An R -positional function maps every n-ary predicate symbol p occurring in R to a
subset of J1,nK. Given an R -positional function λ and a formula φ, we denote by Vλ(φ)
the set of variables xi such that φ contains a predicate atom p(x1, . . . ,xn) with i ∈ λ(p).
Note that Vλ is stable under substitutions, i.e. Vλ(φσ) = (Vλ(φ))σ, for each formula φ

and each substitution σ.

Definition 6. Let ψ be a formula and R be an SID. The fv-profile of the pair (ψ,R)
is the R -positional function λ such that the sets λ(p), for p ∈ P, are the maximal sets
satisfying the following conditions:

1. Vλ(ψ)⊆ fv(ψ).
2. For all predicate symbols p ∈ P (ψ), all rules p(x1, . . . ,xn)⇐ π in R , all predicate

atoms q(y1, . . . ,ym) in π and all i ∈ λ(q), there exists j ∈ λ(p) such that x j = yi.

The fv-profile of (ψ,R) is denoted by λ
ψ

R .

Intuitively, given a predicate p ∈ P, the set λ
ψ

R (p) denotes the formal parameters of p
that, in every unfolding of ψ, will always be substituted by variables occurring freely
in ψ. It is easy to check that λ

ψ

R can be computed in polynomial time w.r.t. |ψ|+ |R |,
using a straightforward greatest fixpoint algorithm. The algorithm starts with a function
mapping every predicate p of arity n to J1,nK and repeatedly removes elements from
the sets λ(p) to ensure that the above conditions hold. In the worst case, we may have
eventually λ(p) = /0 for all predicate symbols p.

Definition 7. Let λ be an R -positional function, and V be a set of variables. A formula
φ is λ-restricted (λ-R) w.r.t. V iff the following hold:

1. for every disequation y 6≈ z in φ, we have {y,z}∩V 6= /0, and
2. Vλ(φ)⊆V .

A rule p(x1, . . . ,xn)⇐ x 7→ (y1, . . . ,yκ)∗ρ is:
– λ-connected (λ-C) iff for every atom q(z1, . . . ,zm) occurring in ρ, we have z1 ∈
Vλ(p(x1, . . . ,xn))∪{y1, . . . ,yκ},

– λ-restricted (λ-R) iff ρ is λ-restricted w.r.t. Vλ(p(x1, . . . ,xn)).
An SID R is P (resp. λ-C, λ-R) for a formula φ iff every rule in

⋃
p∈P (φ) R (p) is P

(resp. λ-C, λ-R).
An SID R is λ-C (λ-R) for a formula φ iff every rule in

⋃
p∈P (φ) R (p) is λ-C (λ-R).

An entailment problem φ `R ψ is left- (right-) λ-C, (λ-R) iff R is λ-C (λ-R) for φ (ψ),
where λ is considered to be λ

φ

R (λψ

R). An entailment problem is λ-C (λ-R) iff it is both
left- and right-λ-C (λ-R).

The class of progressing, λ-connected and λ-restricted entailment problems has been
shown to be a generalization of the class of progressing, connected and left-established
problems, because the latter can be reduced to the former by a many-one reduction [8,
Theorem 13] that runs in time |P| · 2O(w(P)2) on input P (Figure 1) and preserves the
problem’s width asymptotically.

Fig. 1. Many-one Reductions between Decidable Entailment Problems

right λ-restricted

|P| ·2O(w(P)2)

|P
| ·2

O(
w(
P
) lo

gw(
P
))

⊇

progressing
connected

left established

progressing
λ-connected
λ-restricted

(safe)

progressing
right λ-connected

In the rest of this paper we close the loop by defining a syntactic extension of λ-
progressing, λ-connected and λ-restricted entailment problems and by showing that
this extension can be reduced to the class of progressing, connected and left-established
entailment problems by a many-one reduction. The new fragment is defined as follows:

Definition 8. An entailment problem φ `R ψ is safe if, for λ
def
= λ

ψ

R , the following hold:
1. every rule in R is progressing,
2. ψ is λ-restricted w.r.t. fv(φ),
3. all the rules from

⋃
p∈P (ψ) R (p) are λ-connected and λ-restricted.

Note that there is no condition on the formula φ, or on the rules defining the predicates
occurring only in φ, other than the progress condition. The conditions in Definition
8 ensure that all the disequations occurring in any unfolding of ψ involve at least one

variable that is free in φ. Further, the heaps of the model of ψ must be forests, i.e. unions
of trees, the roots of which are associated with the first argument of the predicate atoms
in ψ or to free variables from φ.

A typical yet very simple example of such an entailment is the so-called “reversed
list” problem that consists in checking that any list segment revls(z,y) defined in the
reverse direction (from the tail to the head) is a list segment ls(x,y) in the usual sense
(defined inductively from head to tail). This corresponds to the entailment problem
revls(z,y) `R ∃x.ls(x,y) where R contains the following rules:

ls(x,y)⇐ x 7→ (y) revls(z,y)⇐ z 7→ (y)
ls(x,y)⇐ x 7→ (z)∗ls(z,y) revls(z,y)⇐ z 7→ (y)∗revls(u,z)

This problem is considered as challenging for proof search-based automated reasoning
procedures (see, e.g., [4,16]). The antecedent does not fulfill the connectivity condition,
but the subsequent does, hence the entailment is safe. Similar, more complex examples
can be defined, for instance a list can be constructed by interleaving elements at odd or
even positions. Another example is the case of a data structure containing an unbounded
number of acylic lists (e.g., a list of acyclic lists). Such a data structure does not fulfill
the restricteness condition, since one needs to compare the pointers occurring along
each list to the point at the end. Checking, for instance, that the concatenation of two
lists of acyclic lists is again a list of (possibly cyclic) lists is a problem that fits into the
safe class and can thus be effectively checked by our algorithm.

We refer the reader to Figure 1 for a general picture of the entailment problems
considered so far and of the many-one reductions between them, where the reduction
corresponding to the dashed arrow is the concern of the next section. Importantly, since
all reductions are many-one, taking time polynomial in the size and exponential in the
width of the input problem, while preserving its width asymptotically, the three classes
from Figure 1 can be unified into a single (2EXPTIME-complete) class of entailments.

4 Reducing Safe to Established Entailments

In a model of a safe SID (Definition 8), the existential variables introduced by the
replacement of predicate atoms with corresponding rule bodies are not required to be
allocated. This is because safe SIDs are more liberal than established SIDs and allow
heap structures with an unbounded number of dangling pointers. As observed in [8],
checking the validity of an entailment (w.r.t a restricted SID) can be done by considering
only those structures in which the dangling pointers point to pairwise distinct locations.
The main idea of the hereby reduction of safe to established entailment problems is that
any such structure can be extended by allocating all dangling pointers separately and,
moreover, the extended structures can be defined by an established SID.

In what follows, we fix an arbitrary instance P = φ `R ψ of the safe entailment

problem (Definition 8) and denote by λ
def
= λ

ψ

R the fv-profile of (ψ,R) (Definition

6). Let www def
= (w1, . . . ,wν) be the vector of free variables from φ and ψ, where the or-

der of variables is not important and assume w.l.o.g. that ν > 0. Let Pl
def
= P (φ) and

Pr
def
= P (ψ) be the sets of predicate symbols that depend on the predicate symbols oc-

curring in the left- and right-hand side of the entailment, respectively. We assume that
φ and ψ contain no points-to atoms and that Pl ∩Pr = /0. Again, these assumptions lose
no generality, because a points-to atom u 7→ (v1, . . . ,vκ) can be replaced by a predi-
cate atom p(u,v1, . . . ,vκ), where p is a fresh predicate symbol associated with the rule
p(x,y1, . . . ,yκ)⇐ x 7→ (y1, . . . ,yκ). Moreover the condition Pl∩Pr 6= /0 may be enforced
by considering two copies of each predicate, for the left-hand side and for the right-hand
side, respectively. Finally, we assume that every rule contains exactly µ existential vari-
ables, for some fixed µ ∈ N; this condition can be enforced by adding dummy literals
x≈ x if needed.

We describe a reduction of P to an equivalent progressing, connected, and left-
established entailment problem. The reduction will extend heaps, by adding ν+µ record
fields. We shall therefore often consider heaps and points-to atoms having κ+ ν+ µ
record fields, where the formal definitions are similar to those given previously. Usu-
ally such formulæ and heaps will be written with a prime. These additional record fields
will be used to ensure that the constructed system is connected, by adding all the exis-
tential variables of a given rule (as well as the variables in w1, . . . ,wν) into the image of
the location allocated by the considered rule. Furthermore, the left-establishment condi-
tion will be enforced by adding predicates and rules in order to allocate all the locations
that correspond to existential quantifiers and that are not already allocated, making such
locations point to a dummy vector⊥⊥⊥ def

= (⊥, . . . ,⊥), of length κ+ν+µ, where ⊥ is the
special constant denoting empty heap entries. To this aim, we shall use a predicate sym-
bol ⊥⊥⊥ associated with the rule ⊥⊥⊥(x)⇐ x 7→ ⊥⊥⊥. Note that allocating all these locations
will entail (by definition of the separating conjunction) that they are distinct, thus the
addition of such predicates and rules will reduce the number of satisfiable unfoldings.
However, due to the restrictions on the use of disequations3, we shall see that this does
not change the status of the entailment problem.

Definition 9. For any total function γ : L → L and any tuple `̀̀ = 〈`1, . . . , `n〉 ∈ Ln, we
denote by γ(`̀̀) the tuple 〈γ(`1), . . . ,γ(`n)〉. If s is a store, then γ(s) denotes the store
with domain dom(s), such that γ(s)(x) def

= γ(s(x)), for all x ∈ dom(s). Consider a heap
h such that for all ` 6= `′ ∈ dom(h), we have γ(`) 6= γ(`′). Then γ(h) denotes the heap
with domain dom(γ(h)) = {γ(`) | ` ∈ dom(h)}, such that γ(h)(γ(`))

def
= γ(h(`)), for all

` ∈ dom(h).

The following lemma identifies conditions ensuring that the application of a map-
ping to a structure (Definition 9) preserves the truth value of a formula.

Lemma 10. Given a set of variables V , let α be a formula that is λ-restricted w.r.t.
V , such that P (α) ⊆ Pr and let (s,h) be an R -model of α. For every mapping γ :
L → L such that γ(`) = γ(`′) ⇒ ` = `′ holds whenever either {`,`′} ⊆ dom(h) or
{`,`′}∩ s(V) 6= /0, we have (γ(s),γ(h)) |=R α.

If γ is, moreover, injective, then the result of Lemma 10 holds for any formula:

Lemma 11. Let α be a formula and let (s,h) be an R -model of α. For every injective
mapping γ : L → L we have (γ(s),γ(h)) |=R α.

3 Point (1) of Definition 7 in conjunction with point (2) of Definition 8.

Fig. 2. Heap Expansion and Truncation

γ(`)

h main(h′)

aux(h′)

⊥

⊥

a1 aκ s(w1) s(wν)γ(a1) γ(aκ)

γ

⊥

.

b1

bµ

.

.

.

⊥.
.
.

.

.

.

κ+ν+µ

κ+ν+µ
`

4.1 Expansions and Truncations

We introduce a so-called expansion relation on structures, as well as a truncation op-
eration on heaps. Intuitively, the expansion of a structure is a structure with the same
store and whose heap is augmented with new allocated locations (each pointing to ~⊥)
and additional record fields, referring in particular to all the newly added allocated lo-
cations. These locations are introduced to accommodate all the existential variables
of the predicate-less unfolding of the left-hand side of the entailment (to ensure that
the obtained entailment is left-established). Conversely, the truncation of a heap is the
heap obtained by removing these extra locations. We also introduce the notion of a
γ-expansion which is a structure whose image by γ is an expansion.

We recall that, throughout this and the next sections, www = (w1, . . . ,wν) denotes the
vector of free variables occurring in the problem, which is assumed to be fixed through-
out this section and that {w1, . . . ,wν,⊥} ⊆ dom(s), for every store s considered here.
Moreover, we assume w.l.o.g. that w1, . . . ,wν do not occur in the considered SID R and
denote by µ the number of existential variables in each rule of R . We refer to Figure 2
for an illustration of the definition below:

Definition 12. Let γ : L → L be a total mapping. A structure (s,h′) is a γ-expansion
(or simply an expansion if γ = id) of some structure (s,h), denoted by (s,h′).γ (s,h), if
h : L → Lκ, h′ : L → Lκ+µ+ν and there exist two disjoint heaps, main(h′) and aux(h′),
such that h′ = main(h′)] aux(h′) and the following hold:
1. for all `1, `2 ∈ dom(main(h′)), if γ(`1) = γ(`2) then `1 = `2,
2. γ(dom(main(h′))) = dom(h),
3. for each ` ∈ dom(main(h′)), we have h′(`) = 〈aaa,s(www),b`1, . . . ,b`µ〉, for some loca-

tions b`1, . . . ,b
`
µ ∈ L and γ(aaa) = h(γ(`)),

4. for each ` ∈ dom(aux(h′)), we have h′(`) =‚‚‚ and there exists a location `′ ∈
dom(main(h′)) such that main(h′)(`′) is of the form 〈aaa, `̀̀,b`′1 , . . . ,b`

′
µ 〉 where ~̀ is

a tuple of locations and ` = b`
′

i , for some i ∈ J1,µK. The element `′ is called the
connection of ` in h′ and is denoted by Ch′(`).4

Let (s,h′) be a γ-expansion of (s,h) and let `∈ dom(main(h′)) be a location. Since ν> 0
and for all i ∈ J1,νK, s(wi) occurs in h′(`), and since we assume that s(wi) 6=‚= s(⊥)
for every i ∈ J1,νK, necessarily main(h′)(`) 6=‚‚‚. This entails that the decomposition

4 Note that `′ does not depend on γ, and if several such locations exist, then one is chosen
arbitrarily.

h′ = main(h′)] aux(h′) is unique: main(h′) and aux(h′) are the restrictions of h′ to the
locations ` in dom(h′) such that h′(`) 6=‚‚‚ and h′(`)=‚‚‚, respectively. In the following,
we shall thus freely use the notations aux(h′) and main(h′), for arbitrary heaps h′.

Definition 13. Given a heap h′, we denote by trunc(h′) the heap h defined as follows:
dom(h)

def
= dom(h′) \ {` ∈ dom(h′) | h′(`) = ‚‚‚} and for all ` ∈ dom(h), if h′(`) =

(`1, . . . , `κ+ν+µ), then h(`)
def
= (`1, . . . , `κ).

Note that, if h = trunc(h′) then h : L → Lκ and h′ : L → Lκ+µ+ν are heaps of differ-
ent out-degrees. In the following, we silently assume this fact, to avoid cluttering the
notation by explicitly specifying the out-degree of a heap.

Example 14. Assume that L = N, ν = µ = 1. Let s be a store such that s(w1) = 0. We
consider:

h
def
= {〈1,2〉,〈2,2〉},

h′1
def
= {〈1,(2,0,1)〉,〈2,(2,0,3)〉,〈3,(⊥,⊥,⊥)〉},

h′2
def
= {〈1,(3,0,1)〉,〈2,(4,0,3)〉,〈3,(⊥,⊥,⊥)〉}.

We have (s,h′1).id (s,h) and (s,h′2).γ (s,h), with γ
def
= {〈1,1〉,〈2,2〉,〈3,2〉,〈4,2〉}. Also,

trunc(h′1) = {〈1,2〉,〈2,2〉} = h and trunc(h′2) = {〈1,3〉,〈2,4〉}. Note that h has out-
degree κ = 1, whereas h′1 and h′2 have out-degree 3. �

Lemma 15. If (s,h′).γ (s,h) then h= γ(trunc(h′)), hence (s,h′).id (s, trunc(h′)).

The converse of Lemma 15 does not hold in general, but it holds under some addi-
tional conditions:

Lemma 16. Consider a store s, let h′ be a heap and let h def
= trunc(h′). Let D2

def
= {` ∈

dom(h′) | h′(`) =‚‚‚} and D1
def
= dom(h′)\D2. Assume that:

1. for every location ` ∈ D1, h(`) is of the form (`1, . . . , `κ) and h′(`) is of the form
(`1, . . . , `κ,s(www), `′1, . . . , `

′
µ);

2. every location ` ∈ D2 has a connection in h′.
Then (s,h′).id (s,h).

4.2 Transforming the Consequent

We first describe the transformation for the right-hand side of the entailment problem,
as this transformation is simpler.

Definition 17. We associate each n-ary predicate p∈Pr with a new predicate p̂ of arity
n+ν. We denote by α̂ the formula obtained from α by replacing every predicate atom
p(x1, . . . ,xn) by p̂(x1, . . . ,xn,www), where www = (w1, . . . ,wν).

Definition 18. We denote by R̂ the set of rules of the form:

p̂(x1, . . . ,xn,www)⇐ x1 7→ (y1, . . . ,yκ,www,z1, . . . ,zµ)σ∗ ρ̂σ∗ξI ∗χσ

where:

– p(x1, . . . ,xn)⇐ x1 7→ (y1, . . . ,yκ)∗ρ is a rule in R with p ∈ Pr,
– z1, . . . ,zµ are variables not occurring in fv(ρ)∪{x1, . . . ,xn,y1, . . . ,yκ,w1, . . . ,wν},
– σ is a substitution with dom(σ)⊆ fv(ρ)\{x1} and rng(σ)⊆ {w1, . . . ,wν},
– ξI

def
= ∗i∈I⊥⊥⊥(zi), with I ⊆ {1, . . . ,µ},

– χσ

def
= ∗x∈dom(σ)x≈ xσ.

We denote by Rr the set of rules in R̂ that are connected5.

Note that the free variables www are added as parameters in the rules above, instead of
some arbitrary tuple of fresh variables ωωω, of the same length as www. This is for the sake
of conciseness, since these parameters ωωω will be systematically mapped to www.

Example 19. Assume that ψ= ∃x . p(x,w1), with ν= 1, µ= 1 and λ(p) = {2}. Assume
also that p is associated with the rule: p(u1,u2)⇐ u1 7→ u1 ∗q(u2). Observe that the rule
is λ-connected, but not connected. Then dom(σ) ⊆ {u2}, rng(σ) ⊆ {w1} and I ⊆ {1},
so that R̂ contains the following rules:

(1) p(u1,u2,w1)⇐ u1 7→ (u1,w1,z1)∗q(u2)
(2) p(u1,u2,w1)⇐ u1 7→ (u1,w1,z1)∗q(u2)∗⊥⊥⊥(z1)
(3) p(u1,u2,w1)⇐ u1 7→ (u1,w1,z1)∗q(w1)∗u2 ≈ w1
(4) p(u1,u2,w1)⇐ u1 7→ (u1,w1,z1)∗q(w1)∗⊥⊥⊥(z1)∗u2 ≈ w1

Rules (1) and (2) are not connected, hence do not occur in Rr. Rules (3) and (4) are
connected, hence occur in Rr. Note that (4) is established, but (3) is not. �

We now relate the SIDs R and Rr by the following result:

Lemma 20. Let α be a formula that is λ-restricted w.r.t. {w1, . . . ,wν} and contains no
points-to atoms, with P (α) ⊆ Pr. Given a store s and two heaps h and h′, such that
(s,h′).id (s,h), we have (s,h′) |=Rr α̂ if and only if (s,h) |=R α.

4.3 Transforming the Antecedent

We now describe the transformation operating on the left-hand side of the entailment
problem. For technical convenience, we make the following assumption:

Assumption 21. We assume that, for every predicate p ∈ Pl , every rule of the form
p(x1, . . . ,xn)⇐ π in R and every atom q(x′1, . . . ,x

′
m) occurring in π, x′1 6∈ {x1, . . . ,xn}.

This is without loss of generality, because every variable x′1 ∈ {x1, . . . ,xn} can be re-
placed by a fresh variable z, while conjoining the equational atom z≈ x′1 to π. Note that
the obtained SID may no longer be connected, but this is not problematic, because the
left-hand side of the entailment is not required to be connected anyway.

Definition 22. We associate each pair (p,X), where p ∈ Pl , ar(p) = n and X ⊆ J1,nK,
with a fresh predicate symbol pX , such that ar(pX) = n+ν. A decoration of a formula α

containing no points-to atoms, such that P (α)⊆ Pl , is a formula obtained by replacing
each predicate atom β

def
= q(y1, . . . ,ym) in α by an atom of the form qXβ

(y1, . . . ,ym,www),
with Xβ ⊆ J1,mK. The set of decorations of a formula α is denoted by D(α).

5 Note that all the rules in R̂ are progressing.

The role of the set X in a predicate atom pX (x1, . . . ,xn,www) will be explained below. Note
that the set of decorations of an atom α is always finite.

Definition 23. We denote by D(R) the set of rules of the form

pX (x1, . . . ,xn,www)⇐ x1 7→ (y1, . . . ,yκ,www,z1, . . . ,zµ)σ∗ρ
′ ∗∗i∈I⊥⊥⊥(zi),

where:
– p(x1, . . . ,xn)⇐ x1 7→ (y1, . . . ,yκ)∗ρ is a rule in R and X ⊆ J1,nK;
– {z1, . . . ,zµ}= (fv(ρ)∪{y1, . . . ,yκ})\{x1, . . . ,xn},
– σ is a substitution, with dom(σ)⊆{z1, . . . ,zµ} and rng(σ)⊆{x1, . . . ,xn,w1, . . . ,wν,

z1, . . . ,zµ};
– ρ′ is a decoration of ρσ;
– I ⊆ {1, . . . ,µ} and zi 6∈ dom(σ), for all i ∈ I.

Lemma 24. Let α be a formula containing no points-to atom, with P (α)⊆ Pl , and let
α′ be a decoration of α. If (s,h′) |=D(R) α′ and (s,h′).id (s,h), then (s,h) |=R α.

At this point, the set X for predicate symbol pX is of little interest: atoms are simply
decorated with arbitrary sets. However, we shall restrict the considered rules in such
a way that for every model (s,h) of an atom pX (x1, . . . ,xn+ν), with n = ar(p), the set
X denotes a set of indices i ∈ J1,nK such that s(xi) ∈ dom(h). In other words, X will
denote a set of formal parameters of pX that are allocated in every model of pX .

Definition 25. Given a formula α, we define the set Alloc(α) as follows: x ∈ Alloc(α)
iff α contains either a points-to atom of the form x 7→ (y1, . . . ,yκ+µ+ν), or a predicate
atom qX (x′1, . . . ,x

′
m+ν) with x′i = x for some i ∈ X.

Note that, in contrast with Definition 1, we do not consider that x ∈ Alloc(α), for those
variables x related to a variable from Alloc(α) by equalities.

Definition 26. A rule pX (x1, . . . ,xn+ν)⇐ π in D(R) with n = ar(p) with ρ = x1 7→
(y1, . . . ,yk,www,z1, . . . ,zµ)∗ρ′ is well-defined if the following conditions hold:
1. {x1} ⊆ Alloc(pX (x1, . . . ,xn+ν))⊆ Alloc(π);
2. fv(π)⊆ Alloc(π)∪{x1, . . . ,xn+ν}.

We denote by Rl the set of well-defined rules in D(R).

We first state an important properties of Rl .

Lemma 27. Every rule in Rl is progressing, connected and established.

We now relate the systems R and Rl by the following result:

Definition 28. A store s is quasi-injective if, for all x,y ∈ dom(s), the implication
s(x) = s(y)⇒ x = y holds whenever {x,y} 6⊆ {w1, . . . ,wν}.

Lemma 29. Let L be an infinite subset of L . Consider a formula α containing no
points-to atom, with P (α) ⊆ Pl , and let (s,h) be an R -model of α, where s is quasi-
injective, and (rng(s)∪ loc(h))∩L = /0. There exists a decoration α′ of α, a heap h′ and
a mapping γ : L → L such that:

– (s,h′).γ (s,h),
– if ` 6∈ L then γ(`) = `,
– loc(h′)\ rng(s)⊆ L,
– dom(aux(h′))⊆ L and
– (s,h′) |=Rl α′.

Furthermore, if s(u) ∈ dom(h′)\{s(wi) | 1≤ i≤ ν} then u ∈ Alloc(α′).

4.4 Transforming Entailments

We define R̂ def
= Rl ∪Rr. We show that the instance φ `R ψ of the safe entailment prob-

lem can be solved by considering an entailment problem on R̂ involving the elements
of D(φ) (see Definition 22). Note that the rules from Rl are progressing, connected and
established, by Lemma 27, whereas the rules from Rr are progressing and connected,
by Definition 18. Hence, each entailment problem φ′ `R̂ ψ̂, where φ′ ∈ D(φ), is pro-
gressing, connected and left-established.

Lemma 30. φ |=R ψ if and only if
∨

φ′∈D(φ) φ′ |=R̂ ψ̂.

Proof. “⇒” Assume that φ |=R ψ and let φ′ ∈D(φ) be a formula, (s,h′) be an R̂ -model

of φ′ and h
def
= trunc(h′). By construction, (s,h′) is an Rl-model of φ′. By definition of

D(φ), φ′ is a decoration of φ. Let D2
def
= {` ∈ dom(h′) | h′(`) =‚‚‚}, D1

def
= dom(h′)\D2,

and consider a location ` ∈ dom(h′). By definition, ` must be allocated by some rule
in Rl . If ` is allocated by a rule of the form given in Definition 23, then necessarily
h′(`) is of the form (`1, . . . , `κ,s(w), `′1, . . . , `

′
µ) and ` ∈ D1. Otherwise, ` is allocated

by the predicate ⊥⊥⊥ and we must have ` ∈ D2 by definition of the only rule for ⊥⊥⊥.
Since this predicate must occur within a rule of the form given in Definition 23, `
necessarily occurs in the µ last components of the image of a location in D1, hence
admits a connection in h′. Consequently, by Lemma 16 (s,h′).id (s,h), and by Lemma
24, (s,h) |=R φ. Thus (s,h) |=R ψ, and by Lemma 20, (s,h′) |=Rr ψ̂, thus (s,h′) |=R̂ ψ̂.

“⇐” Assume that
∨

φ′∈D(φ) φ′ |=R̂ ψ̂ and let (s,h) be a R -model of φ. Since the
truth values of φ and ψ depend only on the variables in fv(φ)∪ fv(ψ), we may assume,
w.l.o.g., that s is quasi-injective. Consider an infinite set L ⊆ L such that (rng(s)∪
loc(h))∩ L = /0. By Lemma 29, there exist a heap h′, a mapping γ : L → L and a
decoration φ′ of φ such that γ(`) = ` for all ` /∈ L, (s,h′).γ (s,h) and (s,h′) |= φ′. Since
rng(s)∩ L = /0, we also have γ(s) = s. Then (s,h′) |= ψ̂. Let h1

def
= trunc(h′). Since

(s,h′).γ (s,h), by Lemma 15 we have (s,h′).id (s,h1), and by Lemma 20, (s,h1) |= ψ.
By Lemma 15 we have h= γ(h1). Since ψ is λ-restricted w.r.t. {w1, . . . ,wn}, we deduce
by Lemma 10 that (s,h) |= ψ. ut

This leads to the main result of this paper:

Theorem 31. The safe entailment problem is 2EXPTIME-complete.

Proof. The 2EXPTIME-hard lower bound follows from [8, Theorem 32], as the class
of progressing, λ-connected and λ-restricted entailment problems is a subset of the safe

entailment class. For the 2EXPTIME membership, Lemma 30 describes a many-one
reduction to the progressing, connected and established class, shown to be in 2EXP-
TIME, by Theorem 4. Considering an instance P = φ `R ψ of the safe class, Lemma
30 reduces this to checking the validity of |D(φ)| instances of the form φ′ `R̂ ψ̂, that are
all progressing, connected and established, by Lemma 27. Since a formula φ′ ∈ D(φ)
is obtained by replacing each predicate atom p(x1, . . . ,xn) of φ by pX (x1, . . . ,xn,www)
and there are at most 2n such predicate atoms, it follows that |D(φ)| = 2O(w(P)). To
obtain 2EXPTIME-membership of the problem, it is sufficient to show that each of
the progressing, connected and established instances φ′ `R̂ ψ̂ can be built in time

|P| ·2O(w(P)·logw(P)). First, for each φ′ ∈D(φ), by Definition 22, we have |φ′| ≤ |φ| ·(1+
ν)≤ |φ| · (1+w(P)) = |φ| ·2O(logw(P)). By Definition 17, we have |φ̂| ≤ |φ| · (1+ν) =
|φ| · 2O(logw(P)). By Definition 23, D(R) can be obtained by enumeration in time that
depends linearly of

|D(R)| ≤ |R | ·2µ · (n+ν+µ)ν ≤ |R | ·2w(P)+w(P)·logw(P) = |P| ·2O(w(P))

This is because the number of intervals I is bounded by 2µ and the number of substitu-
tions σ by (n+ν+ µ)ν, in Definition 23. By Definition 25, checking whether a rule is
well-defined can be done in polynomial time in the size of the rule, hence in 2O(w(P)),
so the construction of Rl takes time |P| · 2O(w(P) logw(P)). Similarly, by Definition 23,
the set R̂ is constructed in time

|R̂ | ≤ |R | ·2µ ·w(P)ν ≤ |R | ·2w(P) ·2w(P)·logw(P) = |P| ·2O(w(P))

Moreover, checking that a rule in R̂ is connected can be done in time polynomial in
the size of the rule, hence the construction of Rr takes time 2O(w(P) logw(P)). Then the
entire reduction takes time 2O(w(P) logw(P)), which proves the 2EXPTIME upper bound
for the safe class of entailments. ut

5 Conclusion and Future Work

Together with the results of [10,14,6,8], Theorem 31 draws a clear and complete picture
concerning the decidability and complexity of the entailment problem in Separation
Logic with inductive definitions. The room for improvement in this direction is probably
very limited, since Theorem 31 pushes the frontier quite far. Moreover, virtually any
further relaxation of the conditions leads to undecidability.

A possible line of future research which could be relevant for applications would be
to consider inductive rules constructing simultaneously several data structures, which
could be useful for instance to handle predicates comparing two structures, but it is
clear that very strong conditions would be required to ensure decidability. We are also
interested in defining effective, goal-directed, proof procedures (i.e., sequent or tableaux
calculi) for testing the validity of entailment problems. Thanks to the reduction devised
in the present paper, it is sufficient to focus on systems that are progressing, connected
and left-established. We are also trying to extend the results to entailments with formulæ
involving data with infinite domains, either by considering a theory of locations (e.g.,
arithmetic on addresses), or, more realistically, by considering additional sorts for data.

References

1. Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and Joël
Ouaknine. Foundations for decision problems in separation logic with general inductive
predicates. In Anca Muscholl, editor, FOSSACS 2014, ETAPS 2014, Proceedings, volume
8412 of Lecture Notes in Computer Science, pages 411–425, 2014.

2. Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory safety for systems-level
code. In Ganesh Gopalakrishnan andShaz Qadeer, editor, Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
volume 6806 of LNCS, pages 178–183. Springer, 2011.

3. Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Mar-
tino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez.
Moving fast with software verification. In Klaus Havelund, Gerard J. Holzmann, and Rajeev
Joshi, editors, NASA Formal Methods - 7th International Symposium, NFM 2015, Pasadena,
CA, USA, April 27-29, 2015, Proceedings, volume 9058 of LNCS, pages 3–11. Springer,
2015.

4. Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. Automatic induction proofs of data-
structures in imperative programs. In David Grove and Stephen M. Blackburn, editors,
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015, pages 457–466. ACM, 2015.
doi:10.1145/2737924.2737984.

5. Kamil Dudka, Petr Peringer, and Tomás Vojnar. Predator: A practical tool for checking
manipulation of dynamic data structures using separation logic. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of LNCS, pages
372–378. Springer, 2011.

6. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment checking in separation logic
with inductive definitions is 2-exptime hard. In LPAR 2020: 23rd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22-
27, 2020, volume 73 of EPiC Series in Computing, pages 191–211. EasyChair, 2020.

7. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment is Undecidable for Symbolic
Heap Separation Logic Formulae with Non-Established Inductive Rules. working paper or
preprint, September 2020. URL: https://hal.archives-ouvertes.fr/hal-02951630.

8. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Decidable entailments in separation logic
with inductive definitions: Beyond establishment. In CSL 2021: 29th International Confer-
ence on Computer Science Logic, EPiC Series in Computing. EasyChair, 2021.

9. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Unifying decidable entailments in sepa-
ration logic with inductive definitions, 2021. arXiv:2012.14361.

10. Radu Iosif, Adam Rogalewicz, and Jiri Simacek. The tree width of separation logic with
recursive definitions. In Proc. of CADE-24, volume 7898 of LNCS, 2013.

11. Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. Deciding entailments in inductive sepa-
ration logic with tree automata. In Franck Cassez and Jean-François Raskin, editors, ATVA
2014, Proceedings, volume 8837 of Lecture Notes in Computer Science, pages 201–218.
Springer, 2014.

12. Samin S Ishtiaq and Peter W O’Hearn. Bi as an assertion language for mutable data struc-
tures. In ACM SIGPLAN Notices, volume 36, pages 14–26, 2001.

13. Jens Katelaan, Christoph Matheja, and Florian Zuleger. Effective entailment checking for
separation logic with inductive definitions. In Tomás Vojnar and Lijun Zhang, editors, TACAS
2019, Proceedings, Part II, volume 11428 of Lecture Notes in Computer Science, pages 319–
336. Springer, 2019.

https://doi.org/10.1145/2737924.2737984
https://hal.archives-ouvertes.fr/hal-02951630
http://arxiv.org/abs/2012.14361

14. Jens Pagel and Florian Zuleger. Beyond symbolic heaps: Deciding separation logic with
inductive definitions. In LPAR-23, volume 73 of EPiC Series in Computing, pages 390–408.
EasyChair, 2020.

15. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02, 2002.

16. Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Automated lemma
synthesis in symbolic-heap separation logic. Proc. ACM Program. Lang., 2(POPL):9:1–9:29,
2018. doi:10.1145/3158097.

https://doi.org/10.1145/3158097

	Unifying Decidable Entailments in Separation Logic with Inductive Definitions

