
HAL Id: hal-03304542
https://hal.science/hal-03304542v1

Submitted on 28 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing a Business View of Enterprise Data: An
approach based on a Decentralised Enterprise

Knowledge Graph
Max Chevalier, Joan Marty, Franck Ravat, Bastien Vidé

To cite this version:
Max Chevalier, Joan Marty, Franck Ravat, Bastien Vidé. Designing a Business View of Enter-
prise Data: An approach based on a Decentralised Enterprise Knowledge Graph. 25th International
Database Engineering and Applications Symposium (IDEAS 2021), Concordia Univesity with the
cooperation of BytePress.org, Jul 2021, Montréal (virtual), Canada. �10.1145/3472163.3472276�. �hal-
03304542�

https://hal.science/hal-03304542v1
https://hal.archives-ouvertes.fr


HAL Id: hal-03304542
https://hal.archives-ouvertes.fr/hal-03304542

Submitted on 28 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing a Business View of Enterprise Data: An
approach based on a Decentralised Enterprise

Knowledge Graph
Max Chevalier, Joan Marty, Franck Ravat, Bastien Vidé

To cite this version:
Max Chevalier, Joan Marty, Franck Ravat, Bastien Vidé. Designing a Business View of Enterprise
Data: An approach based on a Decentralised Enterprise Knowledge Graph. IDEAS 2021, Jul 2021,
Montréal, Canada. �10.1145/3472163.3472276�. �hal-03304542�

https://hal.archives-ouvertes.fr/hal-03304542
https://hal.archives-ouvertes.fr


Designing a Business View of Enterprise Data
An approach based on a Decentralised Enterprise Knowledge Graph

Max Chevalier
Institut de la Recherche en Informatique de Toulouse

Toulouse, France
max.chevalier@irit.fr

Joan Marty
umlaut.

Blagnac, France
joan.marty@umlaut.com

Franck Ravat
Institut de la Recherche en Informatique de Toulouse

Toulouse, France
franck.ravat@irit.fr

Bastien Vidé
Institut de la Recherche en Informatique de Toulouse

Toulouse, France
umlaut

Blagnac, France
bastien.vide@irit.fr

bastien.vide@umlaut.com

ABSTRACT
Nowadays, companies manage a large volume of data usually or-
ganised in "silos". Each "data silo" contains data related to a specific
Business Unit, or a project. This scattering of data does not facili-
tate decision-making requiring the use and cross-checking of data
coming from different silos. So, a challenge remains: the construc-
tion of a Business View of all data in a company. In this paper, we
introduce the concepts of Enterprise Knowledge Graph (EKG) and
Decentralised EKG (DEKG). Our DEKG aims at generating a Busi-
ness View corresponding to a synthetic view of data sources. We
first define and model a DEKG with an original process to generate
a Business View before presenting the possible implementation of
a DEKG.

CCS CONCEPTS
• Information systems→Enterprise applications; Information
integration.

KEYWORDS
Business View, Enterprise Knowledge Graph, Schema Matching

ACM Reference Format:
Max Chevalier, Joan Marty, Franck Ravat, and Bastien Vidé. 2021. Designing
a Business View of Enterprise Data: An approach based on a Decentralised
Enterprise Knowledge Graph. In Proceedings of 25th International Database
Engineering & Applications Symposium (IDEAS 2021). ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3472163.3472276

1 INTRODUCTION
Today’s organisations have large volumes of production data and
documents scattered across multiple sources and heterogeneous
environments. One of the most popular ways to store this produc-
tion data is to organise it as "data silos". This type of storage allows
companies to organise data according to different criteria specific
to their activities (by project, by supplier, by customer, by Business
Unit, etc.). Each silo allows local data management with an adapted
storage system. However, the isolation of the data contained into
silos is a major drawback: this can lead to redundancy or even
strong inconsistencies between different silos. Also, the company
management staff does not have a Unified View of the data due to
the isolation of those silos. In addition, a lot of documents generated
in the companies are also not intensively used for decision-making.

Different Unified Views construction strategies currently ex-
ist, such as Data Warehouses, or Data Lakes. Data Warehouses
(DW) are Business Intelligence (BI) databases used to centralise
useful data for the decision-makers of an organisation [21]. Data
Warehouses contain only a part of production data, which is pre-
determined and modelled to match specific needs. The integration
of this data is named Extract, Transform, Load (ETL). On the other
hand, Data Lakes (DL) ingest raw data from multiple sources (struc-
tured or unstructured data) and store them in their native format
[26]. Also, an advantage of DL is that the data is prepared only
when they’re used by a user. As opposed to the DW, the Data Lake
ingest as much data as possible in the organisation. It also does
not require a modelled schema, and can be then used to a greater
number of users that are not decision-makers.

The Enterprise Knowledge Graph (EKG) is one of the newest
approach that also can be used as a solution to the “data silos
problem” in a company [18]. It is defined as a structure used to
"represent relationships between the datasets" [8] but also as a
"semantic network of concepts, properties, individuals and links
representing and referencing foundational and domain knowledge
relevant for an enterprise" [11]. An EKG particularly highlights the
relationships existing, for instance, between the currently existing
information in the company.
Unfortunately, organisations still have some difficulties to create
their own EKG and to integrate in a single schema the large amount

https://orcid.org/0002-9616-9040
https://doi.org/10.1145/3472163.3472276


IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Max Chevalier, Joan Marty, Franck Ravat, and Bastien Vidé

of heterogeneous data, information and documents available in the
numerous sources they own. Moreover, the obtained model do
not really abstract the data to concepts, making its exploitation by
decision-makers difficult.

In this paper, we propose an original process to generate a Busi-
ness View of multiple data sources within an Enterprise Knowledge
Graph. Thus, we first detail the different concepts related to our
proposal and then describe the generation of such a view through
different steps within a Decentralised Enterprise Knowledge Graph.

2 RELATEDWORK
Initially, the concept of Knowledge Graph (KG) is defined in the
Web Semantic domain. The goal of a KG inWeb Semantic is to build
an "Entity-centric view" of the data from multiple sources [13]. A
KG links multiple resources from different websites together. A
resource can be anything, from a webpage to an open data API
endpoint that represents an entity. Back in 2012, Google was able to
build a Knowledge Graph based on different sources, like Freebase
or Wikidata [29].

Outside the Web Semantic domain, a Knowledge Graph may be
defined as a graph of entities and relationships [24] or "a network
of all kind of things which are relevant to a specific domain or to
an organization [...]" [7]. Ehrlinger et al. definition is equivalent
to Blumauer’s one, except that the possible usage of inference in
a Knowledge Graph is added: "A knowledge graph acquires and
integrates information into an ontology and applies a reasoner to
derive new knowledge" [10]. Referring to these previous definitions,
a Knowledge Graph may have technical characteristics but it is
specific to a particular domain of research.

An Enterprise Knowledge Graph, a KG applied to an organisa-
tion, is a private Knowledge Graph containing private and domain-
specific knowledge. The EKG can be used as a Unified View that is
able to solve the "data silos problem" [18]. The goal of such an EKG is
to help the users to represent, manage, exploit the knowledge of an
organisation. It also allows machine-to-machine inter-operability
using the stored knowledge. The Data Source of the EKG is usually
centralized [32].

Some papers explain the implementation of Enterprise Knowl-
edge Graphs [11, 30, 33]. Additionally, some tools allow to integrate
database contents [1, 31] or documents [9, 14] into a Knowledge
Graph or even directly from texts through Named Entity Resolution
[12] and Thematic Scope Resolution [4, 12]. A few less researches
have been done around the querying side of Enterprise Knowledge
Graphs [30]. Based on the literature, the Enterprise Knowledge
Graph (EKG) seems to be a great support for a Unified View, as it
supports a lot of flexibility. Moreover, relationships may help to
understand how the data is related for decision-making processes,
and also help how to infer new knowledge from the existing one.
However, neither a clear definition of what an Enterprise Knowl-
edge Graph nor a global architecture are defined in the literature,
as far as we know. We also identify that no process to build an EKG
schema from the available data exists.

Intending to propose a new way of building Enterprise Knowl-
edge Graphs, we also studied the Schema Matching. The Schema
Matching is a a set of methods allowing to "determine which con-
cepts of one schema match those of another" [23] in distributed data

sources. Schema Matching has been well studied in the literature,
both Database Matching [16, 25] aiming at defining methodolo-
gies to match different relational databases, and Ontology Match-
ing [3] which aims more at matching web semantic ontologies.
New approaches based on similarity have been developed to al-
low schema matching on graph data structures [22], and improve
current Schema Matching techniques [20, 27].

In the next section, we detail our own definition of the Enterprise
Knowledge Graph as a Business View of company data. We also
define the concept of Decentralised EKG (DEKG). We propose a
process to build a DEKG Business View schema from existing data
using schema matching, before discussing its architecture and its
implementation.

3 ENTERPRISE KNOWLEDGE GRAPH
3.1 From EKG to DEKG
In our context, an Enterprise Knowledge Graph (EKG) represents
all the source data of interest for the company in order to offer
end users a Unified View of this data. Moreover, an EKG should
emphasise the relationships that exist between them. Such a Unified
View allows end-users to identify, locate and access and finally anal-
yse these data. An EKG also helps them in decision-making tasks
thanks to the knowledge they can extract from the Unified View.
Such Unified View mostly corresponds to the result of the integra-
tion of the different source’s schemata. An EKG should be easily
extensible in terms of data (i.e. should ingest new data sources)
and user needs (i.e. queries, exploration capabilities..), without the
need of human intervention.

In this paper we define an extension of such a concept that is
named a Decentralised Enterprise Knowledge Graph (DEKG). The
decentralised dimension of a DEKG aims at offering a better scala-
bility of the underlying system since data are not integrated in a
centralised system (i.e. only data source schemata are centralised).
We based our approach around a global-as-view approach [19].

Furthermore, in contrast with the above definition, a DEKG
proposes to non-technical end users a Business View that is a syn-
thetic view of source data through a unified schema. It is a schema
that corresponds to a "end-user view" of the global schema con-
tent. It "erases" the specific implementation particularities present
in the different data sources. Such a view allows the end-user to
understand what information is available, how it’s linked and in
which database/repository it is stored.
To obtain such a Business View, a DEKG implementation is based
on a 3-steps process (see Figure 1):

• the first step aims at generating data sources schemata from
the different data sources, one independently to others;

• the second step aims at generating a global schema that is
the result of the schemamatching of the different data source
schemata;

• the third step ismore original since it aims at synthesising the
global schema into a synthetic and understandable schema
that will be proposed as the Business View to the end-user.

Please note that the DEKG always keeps all the data sources while
generating all the different schemata in each step.
Since a DEKG should emphasise the relationships between data and
data schema, we propose in this paper to model a DEKG as a set of



Designing a Business View of Enterprise Data IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

Figure 1: Decentralised Enterprise Knowledge Graph workflow

graphs. These relationships present in the different DEKG schemata,
will help decision-making by showing the "context" of the available
data. These relationships also support graph exploration or new
knowledge discovery.

3.2 Our DEKG construction process
Our process generates different schemata. According to the Figure
1, we define the concepts of source schema, global schema and
Business View and explain how to generate them. Moreover, in
order to explain every schema generation, we propose an illustrative
example.
Example. Three data sources are available (one relational database
containing 2 tables and 2 CSV files). The content of each data source
is presented in the table 1.

3.2.1 General schema graph model. All the schemata generated
by the DEKG is modelled as an heterogeneous graph, based on
the Property Graphs [5, 17]. We define a graph g as follows: g
= (V,E); V = {ϑ1, ...,ϑv } is the set of nodes and E = {e1, ..., ee }
the set of edges, with E ⊆ V × V . Each node has a label τ that
belongs to T = {τ1, ...,τt }. The function w : ϑ → τ is used to
return the label τ of a node. Every edge also has a label µ belonging
to M = {µ1, ..., µu } and the function n : e → µ returns the label
µ of an edge. Node and edge labels can be characterised by a set
of attributes belonging to X = {χ1, ..., χx }. Those attributes, in
the context of an Enterprise Knowledge Graphs, are also called
properties. To simplify, we ignore in this definition all companion
functions (modifying an attribute, get the list of attribute of an edge
or a node...).

Thanks to these definitions, we define every DEKG schemata in
the next sections. Due to space limitation, we limit our discussion
to structured data sources only.

3.2.2 Source Schema - Step #1. The source schema is composed of
all the schemata of all sources handled by the DEKG. This schema
results from the extraction of the structure (e.g. list of attributes)
of every source independently from others. In order to facilitate
schema matching done at step #3 we decided to not store attributes
into nodes and choose an "Exploded" Graph. Thus, in the source
schema, any node ϑ in V corresponds to either an entity (e.g. the
name of a table in a relational database), either a relationship be-
tween two entities (e.g. a foreign key in a relational database), either
an attribute (property) characterising an entity. The set of node
types of V is defined as T = {REL,ENTITY , PROP} where "REL"
corresponds to a relationship, "ENTITY" to an entity and "PROP" to
a property.
In order to properly connect the different nodes, we define the
different types of any edge e in E as :M = {hasProp,hasRel} where
"hasProp" connects a node of type ENTITY or REL to a node of type
PROP and "hasRel" connects a node of type ENTITY to another
node of type ENTITY.
Moreover, to keep the location of data within the data source, ev-
ery node or edge are characterised by a minimal set of attributes
X = {NAME, ID,URIS} where NAME corresponds the the name
of the entity/property/relationship, ID corresponds the identifier
of the node/edge and URIS corresponds to a set of URIs. Every URI
corresponds to the data source URI where the data is located (enti-
ty/relationship).



IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Max Chevalier, Joan Marty, Franck Ravat, and Bastien Vidé

Table 1: Data Source structures and content

In the following sections and figures, we will represent Exploded
Graphs, such as Figure 2, as Properties Graph where our T types
(< entity >, < rel > and < prop >) are displayed as labels, and
the node attributes are stored as properties. for clarity sake, all the
properties, except the name, are not depicted on the figures.

schema-2.png

Figure 2: Data source schemata extraction result

So, as a result the Source schema contains all the data source
schemata that are not yet connected. The objective of the next step
is to construct the global schema. Figure 2 shows the Source schema
extracted from our example data sources (Table 1).

3.2.3 Global Schema - Step #2. The global schema corresponds
to the result of schema matching of the all data source schemata
available in the Source schema.

Inspired from previous work in schema matching, in this paper,
we define five additional edge types, meaning that the edge types
setM in the global schema are defined as:

M = {hasProp,hasRel , identical , similar ,

extends, includes,aддreдation}

To go deeper in every type, we defined them as following:

• identical Li : can be applied to an edge between two entities,
that highlights that they are textually identical and should
be treated as exactly the same entity;

• similar: can be applied to an edge between two entities, two
relationships or two properties, that highlights that they are
related and eventually could be treated as the same entity,
relationship or property;

• extends: can be applied to an edge between two entities, or
two relations, that shows that one entity/relationship is a
"superclass" of another entity/relationship. The superclass
ontologically represents a more broad entity/relationship;

• includes: can be applied to an edge between two properties
that highlights that values of a property class are included
in another property class at a certain rate p;

• aggregation: can be applied to an edge between three or
more properties that highlights that a property is a com-
bination of two or more other properties. Somehow, those
properties could be treated as similar in a low-granularity
view of the schema. Introducing aggregation inside a graph
schema makes it an n-uniform hypergraph, as we are linking
more than two nodes together.

To infer new edges of such types in the global schema, we also
define eight rules that exploit graph structure and data from data
sources to create new relationships. These rules and global schema
mapping algorithm are detailed in section 3.3.

3.2.4 Business View schema - Step #3. The Business View schema is
a schema that abstracts the schema matching process that was run
in the previous steps. At the step, the schema returns to a Property
Graph as defined in Section 3.2.1.

The way this Business View Schema is generated is detailed in
section 3.4.

3.3 Constructing the DEKG Global Schema
In our process, the main step is the definition of the global schema
since it is the result of schema matching of all the source schemata.

In order to connect nodes of the different graphs of source data
with new edges, we define ten rules that aim at creating edges
which ofM type.
Such rules will allow to consider multiple entities, properties, or



Designing a Business View of Enterprise Data IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

relationships and related data. This section details these rules and
the way they are applied through a specific algorithm.

3.3.1 Matching schemata rules. To facilitate decision-making on
a global view, it’s necessary to define new relationships between
components of graphs representing source schemata. In our ap-
proach, we propose a schema matching based on rules specifying
automatically new relationships and/or nodes. We based them on
both Database Matching [25] and Ontology Matching [3] ideas to
propose both a relational and a semantic approach. Those rules
cover multiple approaches of schema matching defined by Rahm et
al: Both schema-based and instance-based, and using linguistic and
constraints.

These rules are designed to be generic and automatically ran,
but they also can be completed by multiple sets of domain-specific
rules depending on the information the company wants to include
into the Business View.

• R1: We create an "identical" type edge between two entity
nodes if they have a strictly equal value for attribute NAME;

• R2: We create a "similar" type edge between two entity
nodes if their NAME are semantically close [15];

• R3: We create create a "similar" type edge between two
relationships A and B if A is linked by "hasRel" to an entity
C , B linked by "hasRel" to another distinct entity D, whereC
and D are linked by a "similar" edge. A and B must also be
linked to a third common entity E;

• R4: We create an "aggregation" type edge between a set of
properties from one entity A and one property of another
entity B if concatenated values of the properties of A equal
the values of the property of B;

• R5: We create an "includes"type edge from a property A to
a second one B if the values of the property A partly equal

Figure 3: Full matched Global Schema example

property B. We store the rate of equality in the "include"
edge;

• R6: We create an "hasProp" type edge between an entity
E linked to a property A by "hasProp", and a property B of
another entity if the property A entirely includes B;

• R7:We create an "extends" type edge from one entity (nodes
of type ENTITY)A to another B if all the properties (nodes of
type PROP) of A includes entirely or aggregates B property
classes;

• R8: We create a new REL node A, an "hasRel" edge between
A and an entity B, another "hasRel" edge between A and
a different entity C , if all properties of B are linked by an
"extends" or "aggregates" edge to the properties of C , and B
and C are not linked by any direct edges (extends, similar,
identical, ...).

Some of those rules can even create nodes in our Global Schema,
meaning that it is possible to create new Entity, Relationship and
Property (i.e. a node with one of these type). R8, for instance, is
creating a new relationship (node of type REL) between two entities
(two nodes of type ENTITY).

The rules are ordered to be executed from R1 to R8 and must
be re-executed each time one of the original data source schema
changes. The rules have to be executed once the source schema is
constructed to start schema matching. An algorithm to construct
the global schema is proposed in Algorithms 1, 2 and 3.

Example. After applying the proposed algorithms on Source
schema (see Figure 2) we obtain the Global Schema shown on the
Figure 3. With only four sources and a few properties per source,

Algorithm 1: Global Schema Construction: linguistic
schema rules
1 Input: S = s1, s2, ...sn #Set of all the data source schemata (=

Source Schema)
2 GS = ∅

3 for each data source schema s of S do
4 copy the data source schema s into the global schema

(GS);
5 for each couple of "ENTITY" nodes (e1, e2) in GS do
6 #R1
7 if e1.name = e2.name then
8 Create “identical” between e1 and e2 (name) in GS
9 #R2

10 if wordSimilarity(e1.name, e2.name) > simThreshold
then

11 Create “similar” if not exists between e1 and e2
(’name’, ’wordsim’, word-similarity(e1.name,
e2.name)) in GS

12 if thesaurusSynonym(e1.name, e2.name) > synThreshold
then

13 Create “similar” between e1 and e2 (’name’,
’thesaurus’, thesaurus.synonym(e1.name, e2.name))
in GS

14 return GS;



IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Max Chevalier, Joan Marty, Franck Ravat, and Bastien Vidé

we can observe that a lot of new edges (i.e. dashed edges) have
been created between nodes from different data source schemata.
For instance "red coloured" edges are new hasProp type edges,
"purple coloured" edges are new hasRel type edges, whereas as "blue
coloured" edges are similar or extends type edges. All those new
linkswill be exploitedwhen constructing the Business View Schema
(see section 3.4). The sources URIs of every source node, whatever
type they are (entity, prop or rel ), are stored as an attribute in the

Algorithm 2: Global Schema Construction: instance based
rules
1 Input: S = s1, s2, ...sn #Set of all the data source schemata (=

Source Schema)
2 GS = CurrentGlobalSchema #Result of the previous

Algorithm
3 for each couple of “REL” (r1, r2) nodes in GS do
4 #R3
5 # if r1 and r2 have a common entity through REL nodes
6 if hasRels(r1).some(hasRels(r2)) then
7 if

links(nodes(r1)).filter(links(nodes(r2))).containsType([’similar’,
’identical’]) then

8 Create “similar” between r1 and r2 in GS

9 for each set of 2 properties or more (p1, p2, . . . , pn) of the
same entity and a property p0 of another entity in GS do

10 #R4
11 sameNum := 0
12 for each line of values(p1) as v1, values(p2) as v2, . . . ,

values(pn) as vn do
13 if value(p0) != v1.concat(v2, v3, . . . , vn) then
14 sameNum++

15 if sameNum > 0 then
16 Create “aggregation” between p1, p2, . . . , and pn

with argument (sameNum/length(values(p1, p2,...),
sameNum/length(values(p0))) in GS

17 for each couple of propery nodes (p1, p2) in GS do
18 #R5
19 includePct = values(p1).some(values(p2))
20 if includePct > 0 then
21 Create “includes” from p1 to p2, with

(includePct/length(values(p1),
includePct/length(p2)) in GS

22 #R6
23 if links(p1).filter(links(p2).filter(type = ‘extends’).size > 0

then
24 A := nodes(links(p1).filter(type =

‘hasProp’)).filter(type = ‘entity’)[0] B :=
nodes(links(p2).filter(type = ‘hasProp’)).filter(type
= ‘entity’)[0] if A != B then

25 Create new “hasProp” between A and p2 in GS

26 return GS;

Algorithm 3: Global Schema Construction: instance and
schema based rules
1 Input: S = s1, s2, ...sn #Set of all the data source schemata (=

Source Schema)
2 GS = CurrentGlobalSchema #Result of the previous

Algorithm
3 for each couple of "ENTITY" nodes (e1, e2) in GS do
4 #R7
5 if links(nodes(links(e1).filter(type = ‘hasProp’))).filter(type

in ‘includes’,
‘aggregate’).includes(links(nodes(links(e2).filter(type =
‘hasProp’))).filter(type in ‘includes’, ‘aggregate’)) AND
links(nodes(links(e2).filter(type = ‘hasProp’))).filter(type
in ‘includes’,
‘aggregate’).includes(links(nodes(links(e1).filter(type =
‘hasProp’))).filter(type in ‘includes’, ‘aggregate’)) AND
“all 2nd arg is 1” then

6 Create “extends” between e1 and e2 in GS
7 #R8
8 if links(nodes(links(e1).filter(type = ‘hasProp’))).filter(type

in ‘extends’,
‘aggregate’).includes(links(nodes(links(e2).filter(type =
‘hasProp’))).filter(type in ‘extends’, ‘aggregate’)) AND
nodes(links(e1)).some(e2) == 0 then

9 Create new REL node (A) in GS Create new hasRel
between e1 and A in GS Create new hasRel
between e2 and A in GS

10 return GS;

matched nodes of the Global Schema. Please note that in Figure 3,
we also stored, as an attribute in every element we created during
this step, the rule name it has been generated with. That allows the
system to differentiate all graph nodes/edges even if they have the
same type.

3.4 Constructing the Business View Schema
As explained in section 3.2.4, the Business View Schema is one of
the most important aspect of our proposal. That view must be built
from the Global Schema, and allow user to see all available data at
a glance. The construction of the Business View schema relies on 2
phases.

3.4.1 First Phase. The first phase is quite usual, since it aims to
gather all similar nodes/edges available in the global schema into a
single node/edge. The result is called "Synthetic Global Schema".
It is important to note that the NAME attribute of every gathered
nodes is stored in a new attribute (a set of NAME) called CONTAINS
in the final node. Such new attributes allow us to keep the path to
the aggregated nodes within the global schema. Also, every source
URIs from the sources nodes are still stored in a new attribute
containing the set of URIs corresponding to the sources of those
source nodes.
To do so, we exploit the new edges created during schema matching
in the Global Schema ; meaning that we gather all nodes connected



Designing a Business View of Enterprise Data IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

by edges of type "identical", "similar", "extends", "aggregation" and
"includes", as specified in the Algorithm 4.

Algorithm 4: Business View: node combining
1 Input: GS
2 for each link R in GS do
3 if type(R.subject) = prop and type(R.object) = prop then
4 if R.predicate = includes(x,y) and x = 1 then
5 Combine R.object into R.subject
6 if R.predicate = aggregate(x,y) and x = 1 then
7 Combine R.object into R.subject

8 if type(R.subject) = entity and type(R.object) = entity
then

9 if R.predicate = extends then
10 Combine R.object into R.subject Add R.object

into “contains” attribute in R.subject
11 if R.predicate = similar OR R.predicate = identical

then
12 Create a node E in GS Set E.name =

R.subject.name + R.object.name Combine
R.subject into E Combine R.object into E

13 if type(R.subject) = rel and type(R.object) = rel then
14 if R.predicate = extends then
15 Combine R.object into R.subject Add R.object

into “contains” attribute in R.subject
16 if R.predicate = identical then
17 Create a node E in GE Set E.name =

R.subject.name + R.object.name Combine
R.subject into E Combine R.object into E

18 if R.predicate = similar then then
19 if links(R.subject).filter(type = “hasRel”).subject =

links(R.object).filter(type = “hasRel”).subject
AND links(R.subject).filter(type =
“hasRel”).object = links(R.object).filter(type =
“hasRel”).object then

20 Combine R.object into R.subject Set
R.subject = links(R.subject).filter(type =
“hasRel”).subject.name + ‘-’ +
links(R.subject).filter(type =
“hasRel”).object.name

3.4.2 Example. When applying such process on the Global Schema
(Figure 3) we obtain the resulting Synthetic Global Schema as shown
in Figure 4. We can see that the nodes with name "Teacher" and
"Student" have been gathered in node with name "People" since
extends type edges have been created between these nodes in the
Global Schema. You can also see that a new attribute named "con-
tains" have been added to node Peoplewith the values "Teacher" and
"Student" to keep a link to the corresponding nodes in the Global
Schema.

Figure 4: Synthetic global schema

Figure 5: Generated Business View

3.4.3 Second Phase. While the first phase goal was to combine
similar/identical nodes of the global schema, the second phase aims
at transforming the "Synthetic Global Schema" into the final Busi-
ness View in which PROP nodes are re-integrated in corresponding
nodes and relationships as attributes. The Business View is a non-
technical view, computed on the fly, that represents all the sources
data in a single endpoint. It is aimed at end-users to help them
understand and query the available organisations data.
The types of the nodes and relationships in the Business View corre-
spond to the NAME attribute value in the Synthetic Global Schema.
That phase makes the Business View look like an understandable
and regular entity-relationship meta-graph as graph databases like
Neo4J present their schema. The algorithm 5 describes this nodes
re-integration.

3.4.4 Example. After converting the Synthetic Global Schema (Fig-
ure 4) into a Business View Schema as explained in above section,
we obtain the Business View Schema (Figure 5). As we can see, this
figure is quite "simple" and is synthetic enough to be displayed to
end-users. Such visualisation will support exploration, navigation
or querying operators.

4 IMPLEMENTATION OF A DEKG
Despite Distributed solutions for Knowledge Graphs already exist
(like Akutan by Ebay [2]), it has not been clearly defined in academic



IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Max Chevalier, Joan Marty, Franck Ravat, and Bastien Vidé

Algorithm 5: Business View: schema reducing
1 for each “prop” P node do
2 if links(P).length = 1 then
3 N = links(P).nodes[0]
4 for each property Pr of P do
5 N.properties[Pr.name] = Pr
6 Delete links(P)
7 Delete P

8 for each “rel” Rn node do
9 Create a link L

10 L.type = Rn.name
11 for each property P of Rn do
12 L.P = Rn.P
13 Delete links(Rn)
14 Delete Rn

papers as far as we know, especially for the Enterprise Knowledge
Graph. The current well known decentralised one is a federated
approach of EKGs allow small subsets of information or knowledge
to be linked together, despite being in separated Knowledge Bases
[11].

In order to improve maintenability, scalability and high avail-
ability of the DEKG we propose a specific architecture (see Figure
6) based on specific DEKG components that can be implemented as
services. This proposal is inspired from Federated Databases [28]
and its adaptation to the Data Warehouses [6].

The figure 6 follows the workflow of figure 1, from the sources
(top of the figure) to the users (bottom). The different components
were designed to follow the different steps of theDEKG construction
process described at Section 3.2: the Data Component objective to
produce the source schema (Step #1; Section 3.2.2) which creates
the Sources Schemata; the DEKG Management System is in charge

of Step #2 (Section 3.2.3), building and storing the Global Schema;
endly the EKG App objective is to build the Business View for the
User described in Step #3 (Section 3.2.4), and send queries to the
DEKGMS. The following sections introduce those main components
of this architecture.

4.1 Data Components.
Our proposition of architecture contains numerous components
named "Data Component". Their aim is to interpret the data inside
one or multiple data sources which are all related by its location (for
instance, in a Business Unit). As we’re working in a "Knowledge
Graph" environment, the Data Component will have to create a
graph schema representing the data of the source. It is also responsi-
ble for the link between the schema sent to the "DEKGManagement
System" and the data contained in the source.

All those Data Components act as "bridges" between the Busi-
ness View managed by the DEKG Schema component and the data
sources. Indeed, when the EKG will be queried, Data Component
will be also queried in order to obtain the corresponding data. So,
they have to translate the query coming from the Business View to
match the queried source (querying a SQL, a document, a CSV...).
They all are implemented differently depending on the information
the organisation wants to expose for each source. Furthermore,
the Data Components ensures the availability to the information.
As they’re quite small, they can be scaled both horizontally and
vertically to ensure both a great scalability and availability to the
users. Finally, those components also insure the performance of the
overall system. They can for instance cache either data or informa-
tion, or even queries to answer faster to the queries made by the
Decentralised Enterprise Knowledge Graph (DEKG) Management
System.

4.2 DEKG Management System.
As shown in Figure 6, a bigger component named "DEKG Man-
agement System" is proposed. Its aim is to manage the User and

Figure 6: Decentralised EKG architecture components



Designing a Business View of Enterprise Data IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

Applications queries and communicate with every Data Compo-
nent to answer to the user queries. It builds and manages all DEKG
schemata and generates at the end the Business View. The answers,
the schema, and queries must be transparent to the user as if it
was querying a centralised system. The Management System is
divided in three essential components : the "Query Decomposer",
the "DEKG Schema", and the "Data Merger".

The most important and most complex component of the DEKG
Management System is the "DEKG Schema" component. It inte-
grates, stores, and maps the different schemata - not the actual data -
coming from all the Data Components included in the Decentralised
Enterprise Knowledge Graph. It is in that specific component that
the Global Schema of the section 3.3 is constructed and stored.

TheQueryDecomposer is the component receiving the queries
from the User/App. Its goal is to break down the user query into
sub-queries, which will be sent to the corresponding Data Compo-
nents using the DEKG schema. The Data Merger goal is to get the
different responses from the Data Components and merge them
back as a single response using the original user query and the
DEKG Schema. That unified response is sent to the user.
To do so, the Query Decomposer must use the previous Global
Schema to expand the user query into subsets of queries for each
source, concurrently run them and all subset responses. Those are
received by the Data Merger, which will need to aggregate them,
and manage the inconsistencies between all sources [19, 23].

4.3 Querying the DEKG Synthetic View
Finally, the component named "EKG App" in the Figure 6 rep-
resents the Human Machine Interface between the end-user and
the Decentralised Enterprise Knowledge Graph. This component
allows the user to visualise the Business View as specified in the
Section 3.4 and shown on Figure 5. The Application goal is also to
query the whole DEKG from a unified endpoint.

5 EXPERIMENTAL RESULTS OF THE DEKG
To evaluate our DEKG, we decided to implement real-world open-
data on a real use case. Our EKG would allow a user of Toulouse or
its surrounding cities to know which vaccination centre they can
go, depending either on their city name, or postal code. In France,
a Postal Code can cover multiple cities or a city can have multiple
postal codes: thus the importance to be able to search both by "City"
or "Postal Code".

To do so, we integrated the french Toulouse city Opendata (Com-
munes Toulouse1; Code postaux Toulouse2) containing data on all

1https://data.toulouse-metropole.fr/explore/dataset/communes/information/, accessed
2021-05-11
2https://data.toulouse-metropole.fr/explore/dataset/codes-postaux-de-
toulouse/information/, accessed 2021-05-11

Cities of Toulouse and ZIP Codes; and a COVID-19 dataset from
France (Centres de Vaccination3) representing all available vacci-
nation centres in France.

Figure 7: Open Data Schema Matching

As those open-data are all flat files, there were not any rela-
tionships in their initial schemata. The only applicable rule in that
specific case was the Rule 5 (creating includes between properties).
After Global Schema reducing in Figure 7, we can see that we are
able to get indirect relationships between entities. That example
has shown us than even with if not all rules are applicable on data
sources, our approach is able to highlight and create relationships
between data sources.

To continue our tests, we ran the algorithm onto our first School
example, but also on enterprise employees skills data, acquired with
internal survey. All the results of the different steps execution times,
and the number of nodes and links contained in both the Global
Schema and the Business View are presented on the Table 2. We
can see that when the amount of data grows, the Schema Matching
is the step taking the most time. Also, the Business View has a
much more reduced number of nodes and links compared to the
Global Schema; making it much more understandable by the end-
user, especially when the data is clean, and therefore successfully
matched.

6 CONCLUSION
Organisations really need a Unified Views of their data in order
to strengthen their data management. We presented in this paper

3https://www.data.gouv.fr/fr/datasets/relations-commune-cms/, accessed 2021-05-11

Table 2: Algorithm runs on different datasets

Dataset Execution time (ms) Global Schema Business View
Source Load Schema Load Schema Matching Schema Reducing Total Nodes Links Nodes Links

School Example 6.141 2.75 3.992 1.224 35.221 22 31 5 6
France OpenData 96.283 29.796 424.383 3.237 563.481 52 56 10 13
Company Team of Teams 12.362 36.748 1:02.683 (m:ss) 65.805 1:02.807 (m:ss) 281 7766 214 7681



IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Max Chevalier, Joan Marty, Franck Ravat, and Bastien Vidé

the Decentralised Enterprise Knowledge Graph as one solution
to build a Unified View of the whole organisation data, through
our Business View. Thus, we offered a more organisation-oriented
definition of the Enterprise Knowledge Graph and a decentralised
architecture that can be implemented in an enterprise. Using the
sources schemata and schema matching, our Decentralised Knowl-
edge Graph is able to generate a Business View of all the data and
data-sources. This approach has been tested against sample data,
but also on real-life data from different public sources of multiple
providers.

This Decentralised Enterprise Knowledge Graph can be used by
organisation to build Enterprise Knowledge Graph which are not
copying the original sources, while still allowing its users to query
the source data from a single unified point. Our Business View
method allow to show the stored Global Schema to non-technical
end-users in an easy and understandable way. This DEKG can
be used in a lot of applications the Enterprise Knowledge Graph
currently used today, for instance building Data Catalogues of
organisations.

Despite our architecture being scalable in terms of sources inte-
gration, the Global Schema building might grow in computational
complexity as the sources grow. Thus, we plan on working on
more specific processes to help the Global Schema update when the
sources schemata are updated, while keeping the integrity of the
schema. Using graph embeddings to enhance our current rule-set is
also planned. Also, we’ll need to work and integrate existing meth-
ods allowing the queries decomposition and responses merging,
that we did not describe and evaluate in this current paper. Finally,
another future work is to handle data duplication and inconsis-
tency when the same data can be queried from multiple sources.
We’ve worked until now on non-duplicated and consistent data that
showed us the feasibility of our DEKG, but we might face difficulties
and challenges when working with low-quality data.

REFERENCES
[1] [n.d.]. Neo4j Data Import: Moving Data from RDBMS to Graph.
[2] 2019. Akutan: A Distributed Knowledge Graph Store.
[3] Sarawat Anam, Yang Sok Kim, Byeong Ho Kang, and Qing Liu. 2016. Adapting a

knowledge-based schema matching system for ontology mapping. In Proceed-
ings of the Australasian Computer Science Week Multiconference. ACM, Canberra
Australia, 1–10. https://doi.org/10.1145/2843043.2843048

[4] Mithun Balakrishna, Munirathnam Srikanth, and Lymba Corporation. 2008. Auto-
matic Ontology Creation fromText for National Intelligence Priorities Framework
(NIPF). OIC 2008 (2008), 5.

[5] Giacomo Bergami, Matteo Magnani, and Danilo Montesi. [n.d.]. A Join Operator
for Property Graphs. ([n. d.]), 9.

[6] Stefan Berger andMichael Schrefl. 2008. From Federated Databases to a Federated
Data Warehouse System. In Proceedings of the 41st Annual Hawaii International
Conference on System Sciences (HICSS 2008). IEEE, Waikoloa, HI, 394–394. https:
//doi.org/10.1109/HICSS.2008.178

[7] Andreas Blumauer. 2014. From Taxonomies over Ontologies to Knowledge
Graphs.

[8] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE, Paris,
1001–1012. https://doi.org/10.1109/ICDE.2018.00094

[9] Andreia Dal and José Maria. 2012. Simple Method for Ontology Automatic
Extraction from Documents. IJACSA 3, 12 (2012). https://doi.org/10.14569/
IJACSA.2012.031206

[10] Lisa Ehrlinger and Wolfram Wöß. 2016. Towards a Definition of Knowledge
Graphs. In Joint Proceedings of the Posters and Demos Track of 12th International
Conference on Semantic Systems. 4.

[11] Mikhail Galkin, Soren Auer, Haklae Kim, and Simon Scerri. 2016. Integration
Strategies for Enterprise Knowledge Graphs. In 2016 IEEE Tenth International
Conference on Semantic Computing (ICSC). IEEE, Laguna Hills, CA, 242–245.

https://doi.org/10.1109/ICSC.2016.24
[12] Aldo Gangemi, Valentina Presutti, Diego Reforgiato Recupero, Andrea Giovanni

Nuzzolese, Francesco Draicchio, and Misael Mongiovì. 2017. Semantic Web
Machine Reading with FRED. SW 8, 6 (Aug. 2017), 873–893. https://doi.org/10.
3233/SW-160240

[13] Jose Manuel Gomez-Perez, Jeff Z. Pan, Guido Vetere, and Honghan Wu. 2017.
Enterprise Knowledge Graph: An Introduction. In Exploiting Linked Data and
Knowledge Graphs in Large Organisations, Jeff Z. Pan, Guido Vetere, Jose Manuel
Gomez-Perez, and Honghan Wu (Eds.). Springer International Publishing, Cham,
1–14. https://doi.org/10.1007/978-3-319-45654-6_1

[14] Lushan Han, Tim Finin, Cynthia Parr, Joel Sachs, and Anupam Joshi. 2008.
RDF123: From Spreadsheets to RDF. In The Semantic Web - ISWC 2008, Amit
Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy
Finin, and Krishnaprasad Thirunarayan (Eds.). Vol. 5318. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 451–466. https://doi.org/10.1007/978-3-540-88564-1_29
Series Title: Lecture Notes in Computer Science.

[15] Wael H.Gomaa and Aly A. Fahmy. 2013. A Survey of Text Similarity Approaches.
IJCA 68, 13 (April 2013), 13–18. https://doi.org/10.5120/11638-7118

[16] Lan Jiang and Felix Naumann. 2020. Holistic primary key and foreign key
detection. J Intell Inf Syst 54, 3 (June 2020), 439–461. https://doi.org/10.1007/
s10844-019-00562-z

[17] Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, and
Erhard Rahm. [n.d.]. Analyzing Extended Property Graphs with Apache Flink.
([n. d.]), 9.

[18] Kendall Clark. 2017. What is a Knowledge Graph.
[19] Maurizio Lenzerini. [n.d.]. Data Integration: A Theoretical Perspective. ([n. d.]),

15.
[20] Anan Marie and Avigdor Gal. [n.d.]. Managing Uncertainty in Schema Matcher

Ensembles. ([n. d.]), 15.
[21] Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, Panos Vassiliadis. 2000.

Fundamentals of Data Warehouses. Springer Berlin Heidelberg.
[22] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. [n.d.]. Similarity Flood-

ing: A Versatile Graph Matching Algorithm and its Application to Schema Match-
ing. ([n. d.]), 13.

[23] M. Tamer Özsu and Patrick Valduriez. 2011. Principles of Distributed Database
Systems, Third Edition. Springer New York, New York, NY. https://doi.org/10.
1007/978-1-4419-8834-8

[24] Heiko Paulheim. 2016. Knowledge graph refinement: A survey of approaches and
evaluation methods. SW 8, 3 (Dec. 2016), 489–508. https://doi.org/10.3233/SW-
160218

[25] Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches to automatic
schema matching. The VLDB Journal 10, 4 (Dec. 2001), 334–350. https://doi.org/
10.1007/s007780100057

[26] Franck Ravat and Yan Zhao. 2019. Data Lakes: Trends and Perspectives. In
Database and Expert Systems Applications, Sven Hartmann, Josef Küng, Sharma
Chakravarthy, Gabriele Anderst-Kotsis, A Min Tjoa, and Ismail Khalil (Eds.).
Vol. 11706. Springer International Publishing, Cham, 304–313. https://doi.org/
10.1007/978-3-030-27615-7_23

[27] Tomer Sagi. [n.d.]. Non-binary evaluation measures for big data integration.
([n. d.]), 22.

[28] Amit P. Sheth and James A. Larson. 1990. Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv.
22, 3 (Sept. 1990), 183–236. https://doi.org/10.1145/96602.96604

[29] Amit Singhal. 2012. Introducing the Knowledge Graph: things, not strings.
[30] Dezhao Song, Frank Schilder, Shai Hertz, Giuseppe Saltini, Charese Smiley, Phani

Nivarthi, Oren Hazai, Dudi Landau, Mike Zaharkin, Tom Zielund, Hugo Molina-
Salgado, Chris Brew, and Dan Bennett. 2019. Building and Querying an Enterprise
Knowledge Graph. IEEE Trans. Serv. Comput. 12, 3 (May 2019), 356–369. https:
//doi.org/10.1109/TSC.2017.2711600

[31] Varish Mulwad. 2010. T2LD - An automatic framework for extracting, interpreting
and representing tables as Linked Data. Ph.D. Dissertation. Faculty of the Graduate
School of the University of Maryland.

[32] Boris Villazon-Terrazas, Nuria Garcia-Santa, Yuan Ren, Alessandro Faraotti, Hong-
han Wu, Yuting Zhao, Guido Vetere, and Jeff Z. Pan. 2017. Knowledge Graph
Foundations. In Exploiting Linked Data and Knowledge Graphs in Large Organisa-
tions, Jeff Z. Pan, Guido Vetere, JoseManuel Gomez-Perez, andHonghanWu (Eds.).
Springer International Publishing, Cham, 17–55. https://doi.org/10.1007/978-3-
319-45654-6_2

[33] Boris Villazon-Terrazas, Nuria Garcia-Santa, Yuan Ren, Kavitha Srinivas, Mariano
Rodriguez-Muro, Panos Alexopoulos, and Jeff Z. Pan. 2017. Construction of
Enterprise Knowledge Graphs (I). In Exploiting Linked Data and Knowledge
Graphs in Large Organisations, Jeff Z. Pan, Guido Vetere, Jose Manuel Gomez-
Perez, and Honghan Wu (Eds.). Springer International Publishing, Cham, 87–116.
https://doi.org/10.1007/978-3-319-45654-6_4

https://doi.org/10.1145/2843043.2843048
https://doi.org/10.1109/HICSS.2008.178
https://doi.org/10.1109/HICSS.2008.178
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.14569/IJACSA.2012.031206
https://doi.org/10.14569/IJACSA.2012.031206
https://doi.org/10.1109/ICSC.2016.24
https://doi.org/10.3233/SW-160240
https://doi.org/10.3233/SW-160240
https://doi.org/10.1007/978-3-319-45654-6_1
https://doi.org/10.1007/978-3-540-88564-1_29
https://doi.org/10.5120/11638-7118
https://doi.org/10.1007/s10844-019-00562-z
https://doi.org/10.1007/s10844-019-00562-z
https://doi.org/10.1007/978-1-4419-8834-8
https://doi.org/10.1007/978-1-4419-8834-8
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/978-3-030-27615-7_23
https://doi.org/10.1007/978-3-030-27615-7_23
https://doi.org/10.1145/96602.96604
https://doi.org/10.1109/TSC.2017.2711600
https://doi.org/10.1109/TSC.2017.2711600
https://doi.org/10.1007/978-3-319-45654-6_2
https://doi.org/10.1007/978-3-319-45654-6_2
https://doi.org/10.1007/978-3-319-45654-6_4

	Abstract
	1 Introduction
	2 Related work
	3 Enterprise Knowledge Graph
	3.1 From EKG to DEKG
	3.2 Our DEKG construction process
	3.3 Constructing the DEKG Global Schema
	3.4 Constructing the Business View Schema

	4 Implementation of a DEKG
	4.1 Data Components.
	4.2 DEKG Management System.
	4.3 Querying the DEKG Synthetic View

	5 Experimental Results of the DEKG
	6 Conclusion
	References

