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Abstract

We introduce a new model for plant metapopulations with a seed bank component, living in a

fragmented environment in which local extinction events are frequent. This model is an intermediate

between population dynamics models with a seed bank component, based on the classical Wright-

Fisher model, and Stochastic Patch Occupancy Models (SPOMs) used in metapopulation ecology.

Its main feature is the use of "ghost" individuals, which can reproduce but with a very strong

selective disadvantage against "real" individuals, to artificially ensure a constant population size.

We show the existence of an extinction threshold above which persistence of the subpopulation

of "real" individuals is not possible, and investigate how the seed bank characteristics affect this

extinction threshold. We also show the convergence of the model to a SPOM under an appropriate

scaling, bridging the gap between individual-based models and occupancy models.
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1 Introduction

Understanding how plant populations survive in fragmented landscapes is an important question in

ecology and conservation biology [14]. One potential driver of plant populations’ persistence is the abil-

ity to form a seed bank, which greatly influences population and community dynamics [15]. For such

plant species, the seeds produced can stay dormant in the soil during up to several decades depending

on the species, without loosing viability [3]. See [28] for an overview of seed bank characteristics and

properties, along with the emergent phenomena it can generate.

Populations living in fragmented landscapes are often modelled as metapopulations, that is, as

populations distributed over a set of interconnected patches. Metapopulations are also frequently

characterized by recurrent local extinction events, regional persistence being the result of a balance

between colonization (from neighbouring patches or from an external source) and local extinction

events [29, 32]. See [23] for a general introduction to metapopulation theory.

Many classical metapopulation models, such as the Levins model [29] or the Propagule Rain model

[20], describe the occupancy of each patch (i.e whether the species of interest is present or absent in

each of the patches) and do not depend on, nor model, the actual census numbers. These models

are referred to as Stochastic Patch Occupancy models, or SPOMs. Since presence/absence data is

easier to collect than abundance data, and since parameter inference is possible for a broad range

of SPOMs (see e.g [33, 34, 36]), they are well-suited to the study of real metapopulations. Classical

metapopulation models do not account for seed dormancy, but more recently models incorporating a

seed bank component were also developed [9, 17, 36]. The model introduced in [36] was successfully

applied to plant metapopulations in highly disturbed environments, such as weeds in agroecosystems

[36] or plants in urban tree bases [31], highlighting that some plant species monitored did have a seed

bank.

In population genetics, metapopulation models often describe the number and genetic types of

individuals rather than the occupancy in each patch. They are usually defined by first specifying an

intra-patch dynamic, and then adding migration between patches. The migration process can heavily

depend on the underlying geographical structure, as in the stepping-stone model [26], or not depend

on it at all, as in Wright’s island model [39]. See e.g [27, 37, 38] and references therein for examples

of metapopulation models based on Wright’s island model, and [1, 2, 35] and references therein for

examples of metapopulation models based on the stepping-stone model.

Models used to specify the intra-patch dynamic can be classical population dynamics models,

without any intra-patch spatial structure, provided patches are considered as sufficiently small to

neglect spatial effects in each one of them. The geographical structure in the metapopulation model

3



is then only contained in the localization of the patches. The intra-patch dynamic can comprise a

seed bank, using population dynamics models with a seed bank component, such as the ones based

on the Wright-Fisher model. In the original Wright-Fisher model, the population size (in a single

patch) is constant through time and equal to N , and each individual has a genetic type, or allele.

In each generation, each one of the N new individuals chooses a parent uniformly at random among

the N individuals in the previous generation, and adopts its type. Including a seed bank in the

Wright-Fisher model implies choosing a parent potentially not in the previous generation, but at least

two generations ago, the maximal number of potentially contributing generations being bounded [25]

or not [4, 5]. See [6] for a review of seed bank models in population genetics, and [11, 21, 40] for

extensions of the Wright-Fisher model with a seed bank component to metapopulations.

For plant metapopulations in which extinction events are frequent, we can expect the population

size of each patch to vary a lot from one generation to the next. This contradicts the constant patch

population size hypothesis underlying the use of a Wright-Fisher model. In order to incorporate

extinction event-induced fluctuations in a Wright-Fisher model, it is possible to adopt the approach

used in [13, 22]: assign a maximal population size to each patch, and fill the remaining space with

"ghost", or type 0, individuals. In this framework, each patch contains both type 1 "real" individuals

and type 0 "ghost" individuals, the former having a very strong selective advantage over the latter (in

the spirit of [30]).

In this article, we introduce a new individual-based metapopulation model for plant metapopula-

tions in which local extinction events are frequent. This model is primarily suited to annual plants

living in highly disturbed patchy environments, such as urban tree bases or agroecosystems. It is

also adapted to other plant species living in such environments, provided each patch is "emptied" at

the end of each generation (for instance by gardeners in an urban environment or by farmers in an

agroecosystem). The intra-patch dynamics will be based on a variant of a Wright-Fisher model with

a seed bank component, using ghost individuals to allow for fluctuating patch population sizes. It will

use the model introduced in [5], with an extra bound introduced on the number of generations a seed

can stay dormant without losing viability. Indeed, for some plant species, seeds lose viability after

only one or two years of dormancy [3]. Although this is reminiscent of the model introduced in [25],

the main difference is that in our model, even though "real" individuals do come from parents living

a bounded number of generations ago, individuals of unknown types may come from a parent living

arbitrarily far ago in the past.

In order to bridge the gap between individual-based metapopulation models and SPOMs, we shall

show that our metapopulation process can be embedded in a SPOM. Moreover, we shall prove that
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under an appropriate scaling of the selection strength and patch population size, the individual-based

metapopulation process converges to this SPOM. The convergence result will have two applications.

First, from a theoretical viewpoint, it will show that a specific SPOM (or presence/absence-based

model) is the scaling limit of an individual-based metapopulation model. Then, we shall use the

convergence result and the embedding in order to show the existence of an extinction threshold for

metapopulation persistence, depending only on the seed bank parameters, and highlighting how the

presence of a seed bank can prevent metapopulation extinction.

While the metapopulation model we shall introduce and study is based on models coming from

population genetics, this article will not focus on the study of the genetic diversity in such populations,

which is deferred to future work. Instead, the aims of this work are threefold:

1. Introduce a general individual-based metapopulation model with a seed bank component, in

which local extinction events can be frequent and patch population sizes can vary from one

generation to the next.

2. Show the existence of an extinction threshold depending on the seed bank parameters.

3. Bridge the gap between SPOMs and individual-based metapopulation models by showing that

in a well-chosen parameter regime, the individual-based metapopulation model we consider con-

verges to a SPOM.

1.1 The k-parent Wright-Fisher metapopulation process with seed bank

We shall consider that the metapopulation is formed by an infinite number of patches arranged in a

line. A patch contains a fixed number of seed bank compartments, each one containing exactly one

seed: either a ghost (type 0) seed, or a real (type 1) seed. In order to define the metapopulation

model, we shall describe how in each generation, seeds germinate and grow into plants which produce

new seeds and die. Concretely, the metapopulation model will only record the composition of the

seed bank at the beginning of each generation, and not the standing vegetation in each patch in each

generation.

In all that follows, let M ∈ N∗, H ∈ N, k ∈ N\{0, 1}, g ∈ (0, 1), c ∈ (0, 1/2) and p ∈ [0, 1]. We

assume that bgMc ≥ 1. Patches will be indexed by i ∈ Z, and seed bank compartments inside a patch

by j ∈ J1,MK. The notation (i, j) will correspond to the seed bank compartment j in patch i.

The following two spaces will be used to describe the initial types and the age of the seeds occupying

the seed bank compartments:

FM :=
{

(ξi,j)i∈Z,j∈J1,MK : ∀i, j ∈ Z× J1,MK, ξi,j ∈ {0, 1}
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and Card ({(i, j) ∈ Z× J1,MK : ξi,j = 1}) < +∞
}
,

and HM :=
{

(hi,j)i∈Z,j∈J1,MK : ∀(i, j) ∈ Z× J1,MK, hi,j ∈ N
}
.

Here N = {0, 1, 2, ...} and J1,MK = {1, ...,M}.

(ξ, h) ∈ FM ×HM corresponds to a metapopulation in which for all (i, j) ∈ Z × J1,MK, the seed

occupying the seed bank compartment (i, j) is of age hi,j and of type ξi,j × 1{hi,j≤H}. That is, the

seed in (i, j) was originally of type ξi,j when it was produced, but may have expired since then.

The k-parent Wright-Fisher metapopulation process with seed bank is defined in the following way.

Definition 1.1. (k-parent WFSB metapopulation process) Let (ξ, h) ∈ FM × HM . The k-parent

Wright-Fisher metapopulation process with seed bank, with parameters (M,H, g, c, p) and initial condi-

tion (ξ, h) and denoted by (ξn, hn)n∈N, is the (FM ×HM )-valued Markov chain defined by (ξ0, h0) = (ξ, h)

and for all n ∈ N, given (ξn, hn) :

1. For each i ∈ Z, we sample bgMc different seed bank compartments si,1, ..., si,bgMc ∈ J1,MK

uniformly at random in patch i.

2. Let (Exti)i∈Z be i.i.d {0, 1}-valued random variables such that P(Ext1 = 1) = p.

3. For all (i, j) ∈ Z× J1,MK, if j /∈ {si,j′ : j′ ∈ J1, bgMcK}, we set ξn+1
i,j = ξni,j and hn+1

i,j = hni,j + 1.

4. On the other hand, if j ∈ {si,j′ : j′ ∈ J1, bgMcK}, we first set hn+1
i,j = 0. Moreover, let C1, ..., Ck

be i.i.d {−1, 0, 1}-valued random variables such that

P(C1 = 1) = P(C1 = −1) = c.

For all l ∈ J1, kK, if Exti+Cl = 1, we set k̃l = 0, and if Exti+Cl = 0, we sample one seed bank

compartment jl uniformly at random among the bgMc ones sampled in the patch i + Cl (those

in the set {si+Cl,j′ : j′ ∈ J1, bgMcK}), and we set

k̃l = ξni+Cl,jl × 1{hni+Cl,jl≤H}.

We conclude by setting ξn+1
i,j = max{k̃l : l ∈ J1, kK}.

Intuitively, the k-parent WFSB metapopulation process evolves as follows.

1. At each generation, exactly bgMc seeds germinate in each patch. Type 0 seeds yield (ghost)

type 0 plants, while type 1 seeds yield (real) type 1 plants only if the seed was produced less than

H + 1 generations ago, i.e, only if it has not expired.
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2. Then, each patch is affected by an extinction event independently from other patches and with

probability p. During an extinction event, all the juvenile plants in the patch become type 0

plants.

3. In each patch, the bgMc empty seed bank compartments are filled with new seeds in the following

way. For each compartment, k potential parents are chosen uniformly at random, each one of

them being chosen in the same patch with probability 1− 2c, or in the patch on the left (resp.

on the right) with probability c. The same potential parent may be chosen more than once for

the same seed bank compartment. If all the k plants chosen as potential parents are of type 0,

then the seed bank compartment is filled with a type 0 seed produced by the last plant chosen.

Conversely, if at least one of the k plants chosen is of type 1, then the first type 1 plant chosen

produces a seed which fills the seed bank compartment.

See Figure 1 for an illustration of this dynamics. As mentioned above, observe that while the dynamics

involves seeds germinating, growing into plants which produce new seeds and then die, the model only

encodes the seed bank composition, and not the types of the plants.

Old type-1 
seeds lose 
viability

Germination of a 
fraction of the 
seed bank

Patch extinction with 
probability p

New seeds 
produced by the 
plants in the 
neighbouring 
patches enter the 
seed bank

Seed production 
by the plants in 
the patch

Some seeds 
produced by the 
plants in the 
patch move to the 
neighbouring 
patches

Death of the 
plants in the 
patch

Figure 1: Illustration of the intra-patch dynamics of the k-parent WFSB metapopulation process.
Here M = 12 and bgMc = 3. The double line in the top line of the figure indicates the starting time
of a new generation.
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In all that follows, we shall refer to :

• M as the number of seeds per patch,

• H as the maximal dormancy duration,

• g as the germination probability,

• c as the potential colonisation probability,

• p as the patch extinction probability.

Remark 1.2. Even if the model is defined for c ∈ (0, 1/2), in practice, since one of the assumptions

behind the model is that colonization from patches which are not nearest neighbours is negligible, it

is implicitely assumed that c is small. Moreover, notice that if c > 1/3, then the potential parents

have higher chance of being taken from the patch on the left (or right) than in the focal patch.

Remark 1.3. It is possible to generalize the k-parent WFSB metapopulation process by taking the

potential parents of a seed in more patches than only neighbouring patches, or by having patches in a

two dimensional environment instead of a one dimensional one. If the distance that seeds can travel

is bounded, then all the results in this article can be extended to the generalized model (though the

numerical values for the extinction thresholds will change).

Remark 1.4. The idea of sampling several potential parents to model selection can be found in various

population genetics models, including variants of the Wright-Fisher model. See e.g [7, 8, 10, 16, 18, 19].

Usually, the models comprise both selective reproduction events, during which several potential parents

are chosen, and neutral reproduction events, during which only one parent is chosen. Moreover, the

mathematical analysis often involves taking selective reproduction events to be rare compared to

neutral reproduction events, and to change of time scale to observe them in the limit. In contrast, the

model we introduce in this article only comprises selective reproduction events, and the questions we

aim at answering do not require a change of time scale.

1.2 The associated k-parent occupancy process and its limit

1.2.1 BOA process and k-parent occupancy process

The k-parent WFSB metapopulation process can be seen as a multi-colony Wright-Fisher model with

selection and seed bank, embedded in a Stochastic Patch Occupancy Model indicating which patches

are extinct, and which patches are potentially occupied. Indeed, for a patch to contain real seeds, it

is not sufficient for it not to be extinct. The viable seeds it contains can only come from 3 patches
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(the focal patch and its two neighbours), and can only have entered the seed bank during the H + 1

previous generations. If all these times, the 3 patches were affected by extinction events, then the

patch cannot contain viable seeds during the current generation. For instance, if H = 0, a patch which

was extinct along with its two neighbours during the previous generation cannot contain non-expired

type 1 seeds. In the SPOM we define just below, this patch will appear as empty. In other words,

the SPOM will encode which patches cannot contain type 1 seeds, given the initial condition and the

extinction events.

This SPOM is defined on the state space F∞ ×H∞, with F∞ and H∞ given by:

F∞ := {(Oi)i∈Z : ∀i ∈ Z, Oi ∈ {0, 1} and Card ({i ∈ Z : Oi = 1}) < +∞}

and H∞ := {(hi)i∈Z : ∀i ∈ Z, hi ∈ N} .

As for the k-parent WFSB metapopulation process, each patch is associated to a type (0 or 1) and an

age, but now they have a different interpretation. Indeed, in the SPOM, a "type 0" patch corresponds

to a patch which cannot contain nonexpired type 1 seeds, while a "type 1" patch is a patch which can

potentially contain type 1 seeds, the age hi encoding the last time type 1 seeds could have entered the

seed bank.

Definition 1.5. (BOA process) Let (O, h) ∈ F∞ × H∞. The Best Occupancy Achievable process

(or BOA process) with parameters (H, p) and with initial conditions (O, h) is the (F∞ ×H∞)-valued

Markov process (O∞,n, h∞,n)n∈N defined as follows. First, we set (O∞,0, h∞,0) = (O, h). Then, for all

n ∈ N, given (O∞,n, h∞,n) :

1. Let (Exti)i∈Z be i.i.d {0, 1}-valued random variables such that P(Ext1 = 1) = p.

2. For all i ∈ Z, if Exti = 0 and O∞,ni × 1{h∞,ni ≤H} = 1, then we set

O∞,n+1
i−1 = O∞,n+1

i = O∞,n+1
i+1 = 1

and h∞,n+1
i−1 = h∞,n+1

i = h∞,n+1
i+1 = 0.

We do nothing during this step if Exti = 1 or O∞,ni × 1{h∞,ni ≤H} = 0.

3. For all i ∈ Z, if O∞,n+1
i was not defined during step 2, then we set O∞,n+1

i = O∞,ni and

h∞,n+1
i = h∞,ni + 1.

Moreover, we shall say that patch i ∈ Z is reachable at generation n ∈ N if O∞,ni × 1{h∞,ni ≤H} = 1.
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The BOA process represents all the patches which can potentially contain seeds produced by the

ones initially present (as given by (O, h)), given the extinction events. In other words, informally, the

BOA process keeps track of the patches that are linked to the patches originally containing viable

seeds by means of a path of reachable patches. Notice that O∞,ni describes the composition of the seed

bank, while extinction events affect the standing vegetation. Therefore, an extinction event affecting

patch i during the n-th generation does not set the value of O∞,ni to 0.

The BOA process is a best-case scenario, in the sense that using the same extinction events to

construct the BOA process and the k-parent WFSB metapopulation process, it is possible to couple

both processes so that all patches containing seeds in the k-parent WFSB metapopulation process are

reachable patches in the BOA process. In order to formalize the coupling property, we introduce a

new object associated to our metapopulation process, describing whether the seed bank in each patch

contains real seeds, or only ghost seeds.

Definition 1.6. (k-parent occupancy process) Let (ξ, h) ∈ FM ×HM . The k-parent occupancy process

(
Ok,n, hk,n

)
n∈N

=
((
Ok,ni , hk,ni

)
i∈Z

)
n∈N

associated to the k-parent WFSB metapopulation process (ξn, hn)n∈N with parameters (M,H, g, c, p)

and initial conditions (ξ, h) is defined as follows.

First, for all i ∈ Z, we set

Ok,0i := 1−
∏

j∈J1,MK

(1− ξi,j) = max{ξi,j : j ∈ J1,MK}

hk,0i :=


min{hi,j : j ∈ J1,MK and ξi,j = 1} if Ok,0i = 1

0 otherwise.

Then, for all n ∈ N∗ and i ∈ Z, we set

Ok,ni := 1−
∏

j∈J1,MK

(
1− ξni,j

)

hk,ni :=


min{hni,j : j ∈ J1,MK and ξni,j = 1} if Ok,ni = 1

hk,n−1
i + 1 otherwise.

Under this setting, if the generation corresponding to the initial condition is numbered 0, Ok,ni = 1

if and only if at the beginning of the (n+1)-th generation, before germination occurs, the patch i

contains at least one (potentially expired) seed which was initially of type 1. In this case, hk,ni is the
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number of complete generations spent in the seed bank by the youngest of such seeds. Therefore,

patch i contains at least one type 1 seed at the beginning of generation n if, and only if:

Ok,ni × 1{hk,ni ≤H} = 1.

Remark 1.7. Note that the k-parent occupancy process is also defined on the state space F∞ ×H∞.

However, contrary to the BOA process, the k-parent occupancy process cannot be considered as a

SPOM, since (Ok,n+1, hk,n+1) does not depend only on (Ok,n, hk,n). Therefore, both processes are

intrinsically different.

In all that follows, we shall say that the BOA process associated to the k-parent WFSB metapop-

ulation process with parameters (M,H, g, c, p) and initial condition (ξ, h) is the BOA process with

parameters (H, p) and initial condition (Ok,0, hk,0), constructed using the same extinction events as

the k-parent WFSB metapopulation process. Under this coupling, the k-parent WFSB metapopula-

tion process and the BOA process satisfy the following relation:

∀n ∈ N,∀i ∈ Z, Ok,ni ≤ O∞,ni and hk,ni ≥ h∞,ni .

This result will be proved in Section 3.1.

1.2.2 Convergence of the k-parent occupancy process to the BOA process

When M and k are finite, deviations from the BOA process can occur in the following three cases:

1. Type 1 plants are present in a patch, but none of them is chosen as a potential parent.

2. Non-expired type 1 seeds are present in a patch, but none of them germinate.

3. Several type 1 seeds entered the seed bank less than H + 1 generations ago, but all of them

already germinated, and there is no remaining non-expired type 1 seeds in the seed bank.

However, when both M → +∞ and k → +∞ in an appropriate way, we can show that the

occupancy process converges to the BOA process. For this convergence to occur, two conditions need

to be satisfied. First, k needs to grow to +∞ "faster" thanM . We shall set k = dMeα, with α > 1, and

hence define a sequence of dMeα-parent WFSB processes. Notice that since the k potential parents

of an individual do not have to be necessarily different, it is possible to have k > 3bgMc (the number

of plants in the focal patch and the two neighbouring patches). Then, we shall need the following

constraints on the initial conditions of the processes.
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Let (O∞, h∞) ∈ (F∞ ×H∞). For all M ≥ 2, let ξ(M) ∈ FM be such that

∀i ∈ Z, 1−
∏

j∈J1,MK

(
1− ξ(M)

i,j

)
= O∞i .

Moreover, let h(M) ∈ HM be the random variable encoding the age of seeds, whose distribution satisfies

the following conditions.

1. The vectors (h(M)
i,j )j∈J1,MK, i ∈ Z of the age of seeds are independent from one patch to another.

2. For all i ∈ Z, the vector (h(M)
i,j )j∈J1,MK of the ages of seeds in patch i is distributed according to

the invariant distribution µM,g (defined in Section 2.1), conditional on

(2A) For all i ∈ Z, if O∞i = 1, then min{h(M)
i,j : j ∈ J1,MK and ξ(M)

i,j = 1} = h∞i .

(2B) For all i ∈ Z such that O∞i × 1{h∞i ≤H} = 1,

lim inf
M→+∞

1
M

M∑
i=1

ξ
(M)
i,j × 1{h(M)

i,j =h∞i }
> 0 a.s.

We shall say that the sequence of initial conditions (ξ(M), h(M))M≥2 satisfies condition (C).

Intuitively, the first constraint ensure that the patches initially occupied for the k-parent WFSB

metapopulation process and the BOA process are the same. Condition (2A) implies that in each

patch, the youngest type-1 seeds (if present) have the same age for both processes, while condition

(2B) means that the youngest type 1 seeds represent a significant portion of the seed bank, even in

the large population limit. Note that this constraint is on the proportion of the youngest type 1 seeds,

and not on the proportion of all type 1 seeds.

Theorem 1.8. Let α > 1. For all M ≥ 2, let
(
O(M),n, h(M),n

)
n∈N

be the dMαe-parent occupancy

process associated to the dMαe-parent WFSB metapopulation process with parameters (M,H, g, c, p)

and initial condition (ξ(M), h(M)), and let
(
O(M),∞,n, h(M),∞,n

)
n∈N

be the BOA process associated to

the same WFSB metapopulation process. Then, for all N ∈ N,

P
(

N⋂
n=0

({
∀i ∈ Z, O(M),n

i = O
(M),∞,n
i

}
∩
{
∀i ∈ Z, h(M),n

i = h
(M),∞,n
i

}))
−−−−−→
M→+∞

1.

One of the biological interpretations of this result is that under the limit considered, the metapop-

ulation dynamics is well approximated by the BOA process. Moreover, this theorem bridges the gap

between individual-based metapopulation models and SPOMs, in the sense that the BOA process is

the limit of the k-parent WFSB metapopulation process under a suitable scaling.
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1.2.3 Critical patch extinction probability

Using the coupling with the BOA process, we shall also show the existence of a critical patch extinction

probability pc(H) depending only on H such that for all p > pc(H), no matter the values of M , g, c

or k, the metapopulation will almost surely go extinct in finite time.

Theorem 1.9. For all H ∈ N, there exists pc(H) ∈ (0, 1) such that for all M ∈ N∗, k ∈ N\{0, 1},

g ∈ (0, 1) and c ∈ (0, 1/2), for all (ξ, h) ∈ FM × HM and p > pc(H), if (Ok,n, hk,n)n∈N is the k-

parent occupancy process associated to the k-parent WFSB metapopulation process with parameters

(M,H, g, c, p) and initial condition (ξ, h), then

lim
n→+∞

P
(
∀i ∈ Z, Ok,ni × 1{hk,ni ≤H} = 0

)
= 1.

The proof of this result, which can be found in Section 3, relies on the coupling between the

k-parent WFSB metapopulation process and the BOA process, together with appropriate results in

percolation theory.
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Figure 2: Approximate value of the critical extinction probability pc(H) as a function of the maximal
dormancy durationH. The red dashed line indicates pc(0), or in other words, the extinction probability
above which (real) plants persistence without a seed bank is not possible. See the Appendix for details
on the method used to compute pc(H).

The biological interpretation of this theorem is the following. For each maximal dormancy duration

H ∈ N, there exists a critical extinction probability pc(H) above which any metapopulation evolving

according to a k-parent WFSB metapopulation process of maximal dormancy duration H will almost

surely go extinct in finite time, no matter how quickly plants can invade a patch initially empty (which

is quantified by k and to a lesser extent c). In particular, no metapopulation without a seed bank can

persist if the patch extinction probability is above pc(0). pc(H) is increasing with H, so the ability

13



to form a seed bank can potentially allow population persistence and expansion in highly disturbed

fragmented environments. See Figure 2 for approximate values for pc(H), computed using the method

presented in the Appendix. Numerical simulations show the existence of parameter sets (M,H, g, c, p)

with H > 0 and p > pc(0) for which population persistence is indeed possible (see Figure 3). Since the

k-parent occupancy process converges to the BOA process, the critical extinction probability pc(H)

we obtain is optimal, in the sense that it is not possible to obtain a lower critical extinction probability

which depends only on H, and not also on one of the other parameters.

(a) p = 0.5 and H = 1 (b) p = 0.7 and H = 3

Figure 3: Plant metapopulation expansion for extinction probabilities pc(0) < p < pc(H), and for a
maximal dormancy duration H 6= 0. The values taken by the other parameters are M = 100, g = 0.5,
c = 0.05 and k = 25. Initially, 5 consecutive patches contained gM = 50 type 1 seeds, and all the
other seed bank compartments were empty. Since only the first 100 generations were considered, the
simulation was performed on a torus of 200 patches, and the density of type 1 seeds was computed
over these 200 patches.

2 Proof of the convergence of the k-parent occupancy process to the

BOA process

The goal of this section is to show that the k-parent occupancy process converges to the BOA process

in the sense of Theorem 1.8, that is, when bothM → +∞ and k → +∞, but with k increasing "faster"

than M . In order to do so, we shall first study the invariant distribution of the age of seeds in a patch

being part of a metapopulation evolving according to the k-parent WFSB metapopulation process.

The results will then be used in order to show that when M → +∞, with very high probability, a

sample of bgMc seeds contains at least one seed of age 0, 1,..., up to age H.
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2.1 Invariant distribution of the age of seeds

In order to introduce the invariant distribution µM,g, let us first set the following notation for the set

of all partitions of J1,MK:

EM := {(Ev)v∈N : ∀v ∈ N, Ev ⊆ J1,MK and ∀m ∈ J1,MK, ∃!v ∈ N,m ∈ Ev} .

An element (Ev)v∈N of EM will be interpreted as follows. Thinking of a single patch, for all v ∈ N,

Ev represents the list of all seed bank compartments in this patch which contain seeds of age v. The

second condition in the definition of EM simply says that the age of a seed is well-defined, that is, that

a seed has one and only one age. Notice that all but a finite number of terms of the sequence (Ev)v∈N

are equal to the empty set, or equivalently, that there exists V ∈ N such that

∀v ≥ V, Ev = ∅, or, in other words,
⋃

v∈J0,V−1K

Ev = J1,MK. (2.1)

We shall use the analogy between a subset of J1,MK and a subset of seeds/seed bank compartments,

and between the choice of a subset of J1,MK and seed germination, throughout this section.

Consider a metapopulation having evolved according to the k-parent WFSB metapopulation pro-

cess for a very long time, and take a patch in this metapopulation. The probability that the age of the

seeds in the patch is given by (Ev)v∈N can be computed using the following observation. For a seed to

be of age v, the corresponding seed bank compartment needs to have been involved in a germination

event v + 1 generations ago, but not during the more recent generations. Therefore:

1. First, going backwards in time, the first germination event has to affect all the seeds in E0,

but none of the seeds in ∪v>0Ev. As (Ev)v∈N is a partition of J1,MK, this is only possible if

Card(E0) = bgMc.

Therefore, if Card(E0) 6= bgMc, then the event has a probability equal to 0 of occuring. If

Card(E0) = bgMc, since a germination event can be interpreted as the choice of a subset of

J1,MK with cardinality bgMc, the probability that it is exactly the seed bank compartments in

E0 that were chosen is equal to
1( M
bgMc

) .
Considering that by convention,

(a
b

)
is equal to 0 if a < b or b < 0, we can group the two cases

together and say that the probability that the first germination affects all the seeds in E0, but
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none of the seeds in ∪v>0Ev, is equal to

δbgMc,Card(E0) =
( 0
bgMc−Card(E0)

)
( M
bgMc

) =

(M−∑
v≥0 Card(Ev)

bgMc−Card(E0)
)

( M
bgMc

) .

2. Then, the second germination event has to affect all the seeds in E1, but none of the seeds in

∪v>1Ev. This is not possible if Card(E1) > bgMc. If Card(E1) < bgMc, then the remaining

bgMc − Card(E1) seeds can be chosen in the seed bank compartments in E0, since the seeds

they contain are not the ones we observe at present.

Therefore, there are

(
Card(E0)

bgMc − Card(E1)

)
=
(
M −

∑
v≥1 Card(Ev)

bgMc − Card(E1)

)

ways of choosing a subset with cardinality bgMc of J1,MK containing E1 with the required

constraint, and so the event we consider occurs with probability

(M−∑
v≥1 Card(Ev)

bgMc−Card(E1)
)

( M
bgMc

) .

3. We repeat this for all v ∈ N\{0, 1}. The (v + 1)-th germination event has to affect all the seeds

in Ev, but none of the seeds in ∪v′>vEv′ . This amounts to choosing a subset with cardinality

bgMc of J1,MK, containing all Ev, and bgMc − Card(Ev) elements taken in J1,MK\ ∪v′≥v Ev′ .

It occurs with probability (M−∑
v′≥v Card(Ev′ )

bgMc−Card(Ev)
)

( M
bgMc

) .

Therefore, the probability that the age of the seeds in the patch is given by (Ev)v∈N is equal to

µM,g ((Ev)v∈N) :=
∏
v∈N

(M−∑
v′≥v Card(Ev′ )

bgMc−Card(Ev)
)

( M
bgMc

) .

Notice that by property (2.1), there exists V ∈ N such that for all v ≥ V , Card(Ev) = 0. Therefore,

this product only contains a finite number of terms which are different from 1.

We shall say that h = (hi,j)i∈Z,j∈J1,MK ∈ HM is sampled according to the invariant distribution

µ⊗NM,g if it is sampled as follows. Independently for all i ∈ Z, we sample (Eiv)v∈N ∈ EM , and for all

j ∈ J1,MK, hi,j is defined as the unique integer such that j ∈ Eihi,j , or in other words, such that the

seed in the seed bank compartment (i, j) is of age hi,j . We shall often abuse notation and say that
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such an h is sampled according to µM,g.

We now assume that the age of the seeds in the focal patch is distributed according to the invariant

distribution µM,g, and given by (Ev)v∈N. We would like to show that out of the bgMc seeds which

germinate during the next generation, the proportion of seeds of age h ∈ J0, HK is roughly equal to

g × (1− g)H . More specifically, we would like to show the following lemma.

Lemma 2.1. Suppose the age of seeds is distributed according to µM,g. Let ε > 0. Let (an)n∈N be the

sequence defined by a0 = 0 and ∀n ∈ N, an+1 = 2an + 1. For all h ∈ J0, HK, we set:

Wh :=
[
(1− g)h × bgMc − εMah, (1− g)h × bgMc+ εMah

]
.

Then, for all h ∈ J0, HK,

P (Card(Eh) ∈Wh) ≥
h−1∏
h′=0

(
1−

(
(1− g)h × g + εah

)g×((1−g)h×bgMc−εMah)−εM

−
(

1− (1− g)h ×
(
g − 1

M

)
+ εah

)gM(1−g(1−g)h)+M(1+ah)ε−1
)
.

This lemma will be shown by induction, using the following technical lemma.

Lemma 2.2. Let E ⊆ J1,MK be a non-empty strict subset of the seed bank compartments in the focal

patch (or equivalently, of J1,MK), and let ε > 0. Let G ⊆ J1,MK be the random set (with cardinality

bgMc) of all the seed bank compartments in the focal patch containing the seeds germinating during

the next generation. Then,

P (Card(E ∩G) ≥ g × Card(E) + εM) ≤
(Card(E)

M

)g×Card(E)−εM

P (Card(E ∩G) ≤ g × Card(E)− εM) ≤
(

1− Card(E)
M

)gM−g×Card(E)+εM−1
.

Proof. First, we assume that

0 < g × Card(E)− εM < g × Card(E) + εM < M.

In order to construct a sample of bgMc seeds containing at least g×Card(E) + εM seeds from E, one

strategy, generating all possible samples, is to do as follows.

1. Choose a sequence of dgCard(E) + εMe seeds among the ones in E.

2. Choose a sequence of bgMc−dgCard(E)+εMe seeds among theM−dgCard(E)+εMe remaining

ones.
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3. Account for the fact that (bgMc)! sequences yield the same sample.

Therefore, out of the
( M
bgMc

)
possible samples of bgMc seeds, there are

1
(bgMc)! ×

Card(E)!
(Card(E)− dgCard(E) + εMe)! ×

(M − dgCard(E) + εMe)!
(M − bgMc)!

samples containing at least g×Card(E)+εM seeds from E. Since the seed sample is chosen uniformly

at random over all the possible ones,

P (Card(E ∩G) ≥ gCard(E) + εM)

= 1( M
bgMc

) × 1
(bgMc)! ×

Card(E)!
(Card(E)− dgCard(E) + εMe)! ×

(M − dgCard(E) + εMe)!
(M − bgMc)!

= (M − bgMc)!
M ! × Card(E)!

(Card(E)− dgCard(E) + εMe)! ×
(M − dgCard(E) + εMe)!

(M − bgMc)!

=
dgCard(E)+εMe−1∏

i=0

Card(E)− i
M − i

≤
(Card(E)

M

)dgCard(E)+εMe

≤
(Card(E)

M

)dgCard(E)−εMe

≤
(Card(E)

M

)gCard(E)−εM

where the inequality on the 5th line comes from the fact that Card(E)×M−1 < 1.

Then, it is possible to construct a sample of bgMc seeds containing at most gCard(E)− εM seeds

from E as follows:

1. Choose a sequence of bgMc−bgCard(E)−εMc seeds among theM−Card(E) ones in J1,MK\E.

2. Choose a sequence of bgCard(E)−εMc seeds among theM−bgMc+bgCard(E)−εMc remaining

ones.

3. Account for the fact that (bgMc)! sequences yield the same sample.

Again, it can be checked that this strategy generates all possible samples satisfying the desired condi-

tion. Similarly as before, we obtain

P (Card(E ∩G) ≤ gCard(E)− εM)

= 1( M
bgMc

) × 1
(bgMc)! ×

(M − Card(E))!
(M − Card(E)− bgMc+ bgCard(E)− εMc)!

× (M − bgMc+ bgCard(E)− εMc)!
(M − bgMc)!
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= (M − Card(E))!
M ! × (M − bgMc+ bgCard(E) + εMc)!

(M − Card(E)− bgMc+ bgCard(E)− εMc)!

=
bgMc−bgCard(E)−εMc−1∏

i=0

M − Card(E)− i
M − i

≤
(
M − Card(E)

M

)bgMc−bgCard(E)−εMc

≤
(

1− Card(E)
M

)gM−gCard(E)+εM−1

since 1− Card(E)×M−1 < 1.

This concludes the proof for the case 0 < g × Card(E) − εM < g × Card(E) + εM < M . If

g × Card(E) + εM > M , then the probability of sampling at least gCard(E) + εM seeds from E is

equal to 0, and the upper bound remains valid. Similarly, if gCard(E)− εM < 0, then the probability

of sampling at most gCard(E)− εM is equal to 0 as well, which concludes the proof.

We can now show Lemma 2.1. The proof relies on the observation that for all h ∈ J1, HK, the

number of age h seeds during the current generation is equal to the number of age h− 1 seeds during

the last generation, minus the number of such seeds which just germinated. But since the age of seeds

is distributed according to the invariant distribution, the number of age h−1 seeds during the previous

generation has the same distribution as the number of age h− 1 seeds during the current generation.

Proof. (Lemma 2.1) First, if h = 0, then Card(E0) = bgMc and

W0 =
[
(1− g)0 × bgMc − 0, (1− g)0 × bgMc+ 0

]
= {bgMc}.

Therefore, P(Card(E0) ∈W0) = 1, and the result is true for h = 0.

In order to argue by induction, we observe that

(1− g)h × bgMc − εMah − g ×
(
(1− g)h × bgMc+ εMah

)
− εM

= (1− g)h+1 × bgMc − εM × (ah(1 + g) + 1)

≥ (1− g)h+1 × bgMc − εM × (2ah + 1)

≥ (1− g)h+1 × bgMc − εMah+1

and (1− g)h × bgMc+ εMah − g ×
(
(1− g)h × bgMc − εMah

)
+ εM

≤ (1− g)h+1 × bgMc+ εM × (ah × (1 + g) + 1)

≤ (1− g)h+1 × bgMc+ εM × (2ah + 1)

≤ (1− g)h+1 × bgMc+ εMah+1.
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Moreover, if E ⊆ J1,MK is a subset of J1,MK with cardinality Card(E) ∈ Wh, we have the following

properties.

1. If less than g×Card(E)+ εM seeds from E germinate, then the maximal number of seeds which

germinate is bounded from above by

g ×
(
(1− g)h × bgMc+ εMah

)
+ εM,

and the number of remaining seeds is bounded from below by

(1−g)h×bgMc− εMah−g×
(
(1− g)h × bgMc+ εMah

)
− εM ≥ (1−g)h+1×bgMc− εMah+1.

2. If more than g × Card(E) − εM seeds from E germinate, then the minimal number of seeds

which germinate is bounded from below by

g ×
(
(1− g)h × bgMc − εMah

)
− εM,

and the number of remaining seeds is bounded from above by

(1−g)h×bgMc+ εMah−g×
(
(1− g)h × bgMc − εMah

)
+ εM ≤ (1−g)h+1×bgMc+ εMah+1.

Therefore, if

1. (Event 1) at the beginning of a given generation, the number Ch of age h seeds belongs to Wh,

2. (Event 2) during the generation, more than gCh − εM but less than gCh + εM age h seeds

germinate,

then the number of remaining age h seeds, which is also the number of age h+1 seeds at the beginning of

the next generation, belongs toWh+1. Moreover, by Lemma 2.2 , the probability of Event 2 is bounded

from below by

P(Event 2) = 1− P ({more than gCh − εM age h seeds germinate}c

∪ {less than gCh + εM age h seeds germinate}c)

= 1− P ({less than gCh − εM age h seeds germinate}

∪ {more than gCh + εM age h seeds germinate})

= 1− P ({less than gCh − εM age h seeds germinate})
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− P ({more than gCh + εM age h seeds germinate})

≥ 1−
(
(1− g)h × g + εah

)g×((1−g)h×bgMc−εMah)−εM

−
(

1− (1− g)h ×
(
g − 1

M

)
+ εah

)gM(1−g(1−g)h)+M(1+ah)ε−1
.

Let now h ∈ J0, H − 1K. We assume the induction property is true for h. Using the fact that the

age of seeds is distributed according to the invariant distribution yields

P (Card(Eh+1) ∈Wh+1) ≥ P (Card(Eh) ∈Wh)

×
(

1−
(
(1− g)h × g + εah

)g×((1−g)h×bgMc−εMah)−εM

−
(

1− (1− g)h ×
(
g − 1

M

)
+ εah

)gM(1−g(1−g)h)+M(1+ah)ε−1
)

which concludes the proof.

2.2 Proof of Theorem 1.8

In all that follows, let α > 1, and let (ξ(M), h(M))M≥2 ∈ FM ×HM satisfy condition (C). In order to

simplify the proof, we shall assume that for all M ≥ 2 and for all i ∈ Z,

∀j1, j2 ∈ J1,MK, h(M)
i,j1

= h
(M)
i,j2

=⇒ ξ
(M)
i,j1

= ξ
(M)
i,j2

,

or in other words, that in each patch, all the seeds produced during the same generation are of the

same type. However, the proof can be generalized to the original case.

For all M ≥ 2, let (ξM,n, hM,n)n∈N be the dMαe-parent WFSB metapopulation process with pa-

rameters (M,H, g, c, p) and initial condition (ξ(M), h(M)). We denote the associated dMαe-parent oc-

cupancy process by (O(M),n, h(M),n)n∈N, and the associated BOA process by (O(M),∞,n, h(M),∞,n)n∈N.

Since only neighbouring sites can send colonizing seeds, if type 1 seeds were initially in a finite

number of patches, then it is also the case after any arbitrary finite duration. More specifically, if we

set

iM,0
min := min

{
i ∈ Z : ∃j ∈ J1,MK, ξM,0

i,j = 1
}
,

and iM,0
max := max

{
i ∈ Z : ∃j ∈ J1,MK, ξM,0

i,j = 1
}
,
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and if for all n ∈ N, we set

iM,n+1
min := iM,n

min − 1,

and iM,n+1
max := iM,n

max + 1,

then the only patches which can potentially contain type 1 seeds after n generations are the patches

of index i ∈ JiM,n
min , i

M,n
maxK. In other words, for all M ≥ 2, n ∈ N and i ∈ Z\JiM,n

min , i
M,n
maxK,

O
(M),n
i = O

(M),∞,n
i = 0

and h
(M),n
i = h

(M),∞,n
i .

A consequence of this observation is the following lemma.

Lemma 2.3. For all M ≥ 2 and N ∈ N,

P
(
∪Nn=0

({
∃i ∈ Z, O(M),n

i 6= O
(M),∞,n
i or h(M),n

i 6= h
(M),∞,n
i

}))
≤
(
N ×

(
iM,0
max − i

M,0
min + 1

)
+N(N + 1)

)
× P

(
O

(M),1
0 6= O

(M),∞,1
0

∣∣∣ ∀i′ ∈ J−1, 1K, O(M),0
i′ = O

(M),∞,0
i′ and h(M),0

i′ = h
(M),∞,0
i′

)

Proof. Let M ≥ 2 and N ∈ N. First, we observe that by definition, for n = 0,

P
(
∃i ∈ Z, O(M),0

i 6= O
(M),∞,0
i or h(M),0

i 6= h
(M),∞,0
i

)
= 0.

Moreover, if we set

n0 := min
{
n ∈ N : ∃i ∈ Z, O(M),n

i 6= O
(M),∞,n
i or h(M),n

i 6= h
(M),∞,n
i

}
,

if n0 ≤ N , then there exists i ∈ Z such that both O
(M),n0
i 6= O

(M),∞,n0
i and h

(M),n0
i 6= h

(M),∞,n0
i .

Therefore, we deduce

P
(
∪Nn=0

({
∃i ∈ Z, O(M),n

i 6= O
(M),∞,n
i or h(M),n

i 6= h
(M),∞,n
i

}))
=

N∑
n=1

P
({
∃i ∈ Z, O(M),n

i 6= O
(M),∞,n
i or h(M),n

i 6= h
(M),∞,n
i

}
∩
{
∀0 ≤ n′ < n,∀i ∈ Z, O(M),n′

i = O
(M),∞,n′
i and h(M),n

i = h
(M),∞,n′
i

})
≤

N∑
n=1

P
({
∃i ∈ Z, O(M),n

i 6= O
(M),∞,n
i

}∣∣∣ ∀i ∈ Z, O(M),n−1
i = O

(M),∞,n−1
i and h(M),n−1

i = h
(M),∞,n−1
i

)
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× P
({
∀0 ≤ n′ < n,∀i ∈ Z, O(M),n′

i = O
(M),∞,n′
i and h(M),n

i = h
(M),∞,n′
i

})
≤

N∑
n=1

P
({
∃i ∈ Z, O(M),n

i 6= O
(M),∞,n
i

}∣∣∣ ∀i ∈ Z, O(M),n−1
i = O

(M),∞,n−1
i and h(M),n−1

i = h
(M),∞,n−1
i

)

≤
N∑
n=1

P

 iM,nmax⋃
i=iM,nmin

{
O

(M),n
i 6= O

(M),∞,n
i

}∣∣∣∣∣∣∣ ∀i ∈ Z, O(M),n−1
i = O

(M),∞,n−1
i and h(M),n−1

i = h
(M),∞,n−1
i


≤

N∑
n=1

iM,nmax∑
i=iM,nmin

P
(
O

(M),n
i 6= O

(M),∞,n
i

∣∣∣ ∀i′ ∈ Z, O(M),n−1
i′ = O

(M),∞,n−1
i′ and h(M),n−1

i′ = h
(M),∞,n−1
i′

)

≤ P
(
O

(M),1
0 6= O

(M),∞,1
0

∣∣∣ ∀i′ ∈ Z, O(M),0
i′ = O

(M),∞,0
i′ and h(M),0

i′ = h
(M),∞,0
i′

)
×
(

N∑
n=1

(
iM,0
max − i

M,0
min + 2n+ 1

))

≤ P
(
O

(M),1
0 6= O

(M),∞,1
0

∣∣∣ ∀i′ ∈ Z, O(M),0
i′ = O

(M),∞,0
i′ and h(M),0

i′ = h
(M),∞,0
i′

)
×
(
N ×

(
iM,0
max − i

M,0
min + 1

)
+N(N + 1)

)
≤ P

(
O

(M),1
0 6= O

(M),∞,1
0

∣∣∣ ∀i′ ∈ J−1, 1K, O(M),0
i′ = O

(M),∞,0
i′ and h(M),0

i′ = h
(M),∞,0
i′

)
×
(
N ×

(
iM,0
max − i

M,0
min + 1

)
+N(N + 1)

)
.

Here we used the invariance by translation in space and in time of the distribution of the process to

pass from the 6th to the 7th line.

This lemma implies that in order to prove Theorem 1.8, it is sufficient to show that

P
(
O

(M),1
0 6= O

(M),∞,1
0

∣∣∣ ∀i′ ∈ J−1, 1K, O(M),0
i′ = O

(M),∞,0
i′ and h(M),0

i′ = h
(M),∞,0
i′

)
−−−−−→
M→+∞

0.

In order to do so, we recall that three different reasons can lead to deviations from the BOA process.

1. If some type 1 plants are present but are never chosen as potential parents.

2. If type 1 seeds are present in the seed bank, but do not germinate during the generation we

consider.

3. If type 1 seeds were produced less than H + 1 generations ago, but already germinated.

In particular, for the event {O(M),1
0 6= O

(M),∞,1
0 } to occur given the initial condition, at least one of

these events need to occur:

1. There exists a plant in patches {−1, 0, 1} which does not belong to the set of potential parents

of at least one seed bank compartment in patch 0. This event will be denoted as R(M).
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2. In at least one of the patches {−1, 0, 1}, one age class of potentially viable seeds was not

represented among the seeds which germinated. In other words, there exists i ∈ {−1, 0, 1} and

h ∈ J0, HK such that none of the seeds which germinated in the patch i were of age h. There

events will be denoted respectively as S(M)
−1 (for patch −1), S(M)

0 (for patch 0) and S(M)
1 (for

patch 1).

Note that P(S(M)
−1 ) = P(S(M)

0 ) = P(S(M)
1 ) by invariance by translation of the process. Therefore, in

order to prove Theorem 1.8, it is sufficient to show that

P(RM)) −−−−−→
M→+∞

0

and P(S(M)
0 ) −−−−−→

M→+∞
0.

In order to do so, we shall bound from above both probabilities by quantities that vanish when both

M and k = dMeα grow to +∞.

2.2.1 Upper bound on P(R(M))

We set c∗ = min(c, 1− 2c). The goal of this section is to show the following lemma.

Lemma 2.4. For all M ≥ 2,

P(R(M)) ≤ 3g2M2 × exp
(
Mα × ln

(
1− c∗

g
× 1
M

))
.

A direct consequence of this lemma is the fact that since α > 1,

P(R(M)) −−−−−→
M→+∞

0.

Proof. Assume that c∗ = c. Let R̃(M) be the event: "The first seed which germinated in patch 1 was

not chosen as a potential parent by the first seed bank compartment in patch 0 to be refilled." Then,

P(R(M)) ≤ 3bgMc × bgMc × P(R̃(M)).

Indeed, R(M) is the event "at least one plant in one of the patches {−1, 0, 1} is not chosen as a potential

parent in order to refill at least one seed bank compartment in patch 0." There exists 3bgMc2 pairs

"plant not chosen in patch −1, 0 or 1 - seed bank compartment in patch 0", and as c∗ = c, plants in

patches −1 and 1 have less chances of being chosen as potential parents than plants in patch 0.

Then, each one of the dMαe potential parents chosen to refill the first seed bank compartment in
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patch 0 is not the first plant of patch 1 with probability

1− c∗ × 1
bgMc

≤ 1− c∗

g
× 1
M
.

Hence,

P(R̃(M)) ≤
(

1− c∗

g
× 1
M

)dMαe

≤
(

1− c∗

g
× 1
M

)Mα

and P(R(M)) ≤ 3g2M2 × exp
(
Mα × ln

(
1− c∗

g
× 1
M

))
.

If c∗ 6= c, then we can directly adapt this proof defining instead the event R̃(M) as the event "The first

seed which germinated in the patch 0 (instead of the patch 1) was not chosen as a potential parent by

the first seed bank compartment in patch 0 to be refilled."

2.2.2 Upper bound on P(S(M)
0 )

The goal of this section is to prove the following lemma.

Lemma 2.5. For all M ≥ 2, for all ε > 0,

P(S(M)
0 )

≤ (H + 1)×
(

1− (1− g)H × g
(

1− 1
M

)
+ εaH

)gM(1−g(1−g)H)+M(1+aH)ε−1

+ (H + 1)×
(

1−
H−1∏
h′=0

(
1−

(
(1− g)h × g + εah

)g×((1−g)h×bgMc−εMah)−εM

−
(

1− (1− g)h ×
(
g − 1

M

)
+ εah

)gM(1−g(1−g)h)+M(1+ah)ε−1
))

.

Proof. Let M ≥ 2. In order to show this lemma, we define new events. For all h ∈ J0, HK, let S(M),h
0

be the event : "None of the bgMc seeds germinating in patch 0 during the first generation are of age

h." Then,

P(S(M),0
0 ) ≤ P(S(M),1

0 ) ≤ ... ≤ P(S(M),H
0 ). (2.2)

Indeed, informally, the age h seeds need to have avoided germination during h generations, so the

expected number of age h seeds in the seed bank decreases with h. The inequality then comes from

the observation that the less age h seeds there are, the easier it is to avoid all of them while choosing

the bgMc seeds germinating during the current generation.
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Remark 2.6. Notice that this inequality would not be true if we had worked conditional on (Ev)v∈N,

i.e, we do not have

P(S(M),0
0 |(Ev)v∈N ) ≤ P(S(M),1

0 |(Ev)v∈N ) ≤ ... ≤ P(S(M),H
0 |(Ev)v∈N ).

Indeed, for instance, consider the case E1 = ∅ and E2 6= ∅. Then the seed bank does not contain any

age 1 seed, and

P(S(M),1
0 |(Ev)v∈N ) = 1.

However, since the seed bank contains age 2 seeds,

P(S(M),h
0 |(Ev)v∈N ) < 1 = P(S(M),1

0 |(Ev)v∈N ).

Eq. (2.2) yields

P(S(M)
0 ) ≤

H∑
h=0

P(S(M),h
0 )

≤ (H + 1)× P(S(M),H
0 ).

Under the notation of Lemma 2.1, we can rewrite the event S(M),H
0 as:

S(M),H
0 = {None of the seeds in EH germinate during the next generation} ∪ {Card(EH) = 0} .

Therefore,

P(S(M)
0 )

≤ (H + 1)× P (Card(EH) /∈WH)

+ (H + 1)× P (None of the seeds in EH germinate during the next generation|Card(EH) ∈WH)

≤ (H + 1)× P (Card(EH) /∈WH)

+ (H + 1)× P ( less than gCard(EH)− εM seeds from EH germinate |Card(EH) ∈WH) .

We then use Lemmas 2.1 and 2.2 to conclude:

P(S(M)
0 )

≤ (H + 1)×
(

1− (1− g)H × g
(

1− 1
M

)
+ εaH

)gM(1−g(1−g)H)+M(1+aH)ε−1
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+ (H + 1)×
(

1−
H−1∏
h′=0

(
1−

(
(1− g)h × g + εah

)g×((1−g)h×bgMc−εMah)−εM

−
(

1− (1− g)h ×
(
g − 1

M

)
+ εah

)gM(1−g(1−g)h)+M(1+ah)ε−1
))

.

We can now prove Theorem 1.8.

Proof. We have seen that in order to show the theorem, it is sufficient to show that

P(R(M)) −−−−−→
M→+∞

0

and P(S(M)
0 ) −−−−−→

M→+∞
0.

By Lemma 2.4, it is clear that

P(R(M)) −−−−−→
M→+∞

0.

Then, let M0 such that 1
M0

< g, and let ε > 0 such that

∀h ∈ J0, HK, gM
(
1− g(1− g)h

)
+M(1 + ah)ε− 1 < 1

and gbgMc × (1− g)h −M(1 + ah)ε < 1.

Applying Lemma 2.5 to ε and to M ≥M0, we also obtain that

P(S(M)
0 ) −−−−−→

M→+∞
0,

and we can conclude.

3 Extinction threshold for the k-parent WFSB metapopulation pro-

cess

This section is devoted to the proof of Theorem 1.9, that is, to the proof of the existence of a critical

extinction probability pc(H) depending only on the maximal dormancy duration H. In order to do

so, we shall first formalize the coupling between the k-parent WFSB metapopulation process and a

BOA process. Then, we shall explain how the issue of occupied patches in the BOA process can be

seen as a percolation problem. We shall conclude using a specific case of Eq.(4) in [24].
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3.1 Coupling between the k-parent WFSB metapopulation process and the BOA

process

In all that follows, let (ξ, h) ∈ FM × HM , let (ξn, hn)n∈N be the k-parent WFSB metapopulation

process with parameters (M,H, g, c, p) and initial condition (ξ, h), and let (Ok,n, hk,n)n∈N be the asso-

ciated k-parent occupancy process. In order to couple a BOA process to (ξn, hn)n∈N, for all n ∈ N∗, we

denote by (Extni )i∈Z the extinction events used to define (ξn, hn) given (ξn−1, hn−1). In other words,

for all n ∈ N∗ and i ∈ Z, Extni = 1 if, and only if the patch i was extinct during the n-th genera-

tion. We then define the coupled BOA process (O∞,n, h∞,n)n∈N as the BOA process with parameters

(H, p) and initial condition (Ok,0, hk,0), constructed using the extinction events (Extni )i∈Z,n∈N∗ : for

all n ∈ N, (O∞,n+1, h∞,n+1) is constructed using (O∞,n, h∞,n) and the extinction events (Extn+1
i )i∈Z.

This coupling satisfies the following property, whose proof is postponed until later in this section for

the sake of clarity.

Proposition 3.1. For all n ∈ N and i ∈ Z,

Ok,ni ≤ O∞,ni and hk,ni ≥ h∞,ni .

Therefore, at any generation n ∈ N, the set of patches which contain nonexpired seeds in the k-

parent WFSB metapopulation process is included in the set of reachable patches in the BOA process.

In particular, a consequence of this coupling is the following corollary.

Corollary 3.2. For all n ∈ N,

P

1−
∏

(i,j)∈Z×J1,MK

(
1− 1{hni,j≤H} × ξ

n
i,j

)
= 1

 ≤ P

1−
∏
i∈Z

(
1− 1{h∞,ni ≤H} ×O

∞,n
i

)
= 1

 .
Proof. Let n ∈ N. By definition of the k-parent occupancy process, for all (i, j) ∈ Z× J1,MK,

ξni,j ≤ O
k,n
i .

Indeed, both ξni,j and O
k,n
i are {0, 1}-valued, and if ξni,j = 1, then Ok,ni = 1.

Moreover, if Ok,ni = 1, then hk,ni is the age of the youngest type 1 seed in patch i. Therefore, for

all (i, j) ∈ Z× J1,MK, if ξni,j = 1, then hni,j ≥ h
k,n
i . We deduce that

1{hni,j≤H} × ξ
n
i,j ≤ 1{hk,ni,j ≤H}

×Ok,ni .
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By Proposition 3.1, we obtain

1{hni,j≤H} × ξ
n
i,j ≤ 1{h∞,ni ≤H} ×O

∞,n
i .

Taking the product over all (i, j) ∈ Z× J1,MK yields

1−
∏

(i,j)∈Z×J1,MK

(
1− 1{hni,j≤H} × ξ

n
i,j

)
≤1−

∏
(i,j)∈Z×J1,MK

(
1− 1{h∞,ni ≤H} ×O

∞,n
i

)

≤1−
∏
i∈Z

(
1− 1{h∞,ni ≤H} ×O

∞,n
i

)
.

since all the terms of the product are {0, 1}-valued, and we can conclude.

We now show Proposition 3.1.

Proof. (Proposition 3.1) We show the result by induction. The result is clear for n = 0. Let then

n ∈ N, and we assume that for all i ∈ Z,

Ok,ni ≤ O∞,ni and hk,ni ≥ h∞,ni .

Let i ∈ Z. We first show that Ok,n+1
i ≤ O∞,n+1

i . Since Ok,n+1
i ∈ {0, 1}, if O∞,n+1

i = 1, then

Ok,n+1
i ≤ O∞,n+1

i . Therefore, we assume O∞,n+1
i = 0. Notice that by definition of the BOA process,

(O∞,ni )n∈N is an increasing sequence. This means that O∞,n+1
i = 0 implies O∞,ni = 0 and Ok,ni = 0.

Moreover, it also means that both neighbouring patches were either extinct or not reachable. We

deduce

(
1− Extn+1

i+1

)
×O∞,ni+1 × 1{h∞,ni+1 ≤H}

= 0

and
(
1− Extn+1

i−1

)
×O∞,ni−1 × 1{h∞,ni−1 ≤H}

= 0.

Therefore, by the induction hypothesis,

(
1− Extn+1

i+1

)
×Ok,ni+1 × 1{hk,ni+1≤H}

= 0

and
(
1− Extn+1

i−1

)
×Ok,ni−1 × 1{hk,ni−1≤H}

= 0,

which means that the patches i− 1 and i+ 1 are either extinct or containing only ghost type 0 seeds.

Combined with the knowledge that Ok,ni = 0, we obtain that Ok,n+1
i = 0.

We now have to show that hk,n+1
i ≥ h∞,n+1

i . Since hk,ni ≥ h∞,ni and since hk,n+1
i (resp. h∞,n+1

i )
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is either equal to hk,ni + 1 (resp. h∞,ni + 1) or equal to 0, the only potential issue is when hk,n+1
i = 0.

Let us assume that hk,n+1
i = 0. This means that new seeds were just produced, and implies that

1−
i+1∏

i′=i−1

(
1−

(
1− Extn+1

i′

)
×Ok,ni′ × 1{hk,n

i′ ≤H}

)
= 1,

i.e, that non-expired seeds were present in at least one of the patches {i − 1, i, i + 1}, and that at

least one of these patches was not affected by an extinction event. Moreover,

h∞,n+1
i =

i+1∏
i′=i−1

(
1−

(
1− Extn+1

i′

)
×O∞,ni′ × 1{h∞,n

i′ ≤H}

)
.

Using the induction hypothesis yields

h∞,n+1
i ≤

i+1∏
i′=i−1

(
1−

(
1− Extn+1

i′

)
×Ok,ni′ × 1{hk,n

i′ ≤H}

)

=0,

hence h∞,n+1
i = hk,n+1

i and we can conclude.

3.2 Percolation problem

In order to show Theorem 1.9, we now link the BOA process to a percolation problem. More specifi-

cally, we rephrase the question of which patches are reachable in the BOA process as an oriented site

percolation problem. Indeed, we can see patch i ∈ Z in generation n ∈ N as the site (i, n) of the space

Z× N. Each site (i, n) ∈ Z× N is open (the analog of non-extinct in the terminology of percolation)

with probability 1 − p, and closed (i.e, extinct) otherwise. Reachable patches can be seen as sites of

the space Z× N linked to a site of Z× {0} by a path of open sites

(i0, n0) = (i0, 0) −→ (i1, n1) −→ ... −→ (iL, nL) = (i, n)

such that O∞,0i0
× 1{h∞,ni0

≤H} = 1 and for all l ∈ J1, LK,

il ∈ {il−1 − 1, il−1, il−1 + 1} and nl − nl−1 ∈ J1, H + 1K. (3.1)

For all n ∈ N, let Sn(p) be the set of all the sites (i, n) with i ∈ Z that are connected to (0, 0)

by a path of open sites satisfying (3.1). Equivalently, let (O{0},n, h{0},n)n∈N be the BOA process with

parameters (H, p) and initial condition satisfying:
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1. O{0},00 = 1 and h{0},00 = 0.

2. For all i ∈ Z\{0}, O{0},0i = 0 and h{0},0i = 0.

We can then define Sn(p) as

Sn(p) :=
{
i ∈ Z : O{0},ni × 1{h{0},ni ≤H} = 1

}
.

Under this notation, a direct consequence of Eq. (4) in [24] is the following proposition.

Proposition 3.3. There exists a unique pc(H) ∈ (0, 1) such that

∀p ∈ [0, pc(H)),P (∀n ∈ N, Sn(p) 6= ∅) > 0

∀p ∈ (pc(H), 1],P (∀n ∈ N, Sn(p) 6= ∅) = 0.

What remains to show is that pc(H) is indeed the extinction threshold we are looking for.

3.3 Proof of Theorem 1.9

In order to prove Theorem 1.9, we make three observations. First, for all n ∈ N, the event {Sn 6= ∅}

is the same as the event 1−
∏
i∈Z

(
1−O{0},ni × 1{h{0},ni ≤H}

)
= 1

 .
Moreover, for all finite subsets L of Z, let (OL, hL) ∈ F∞ ×H∞ satisfy the two following conditions:

• For all i ∈ L, OLi = 1 and hLi = 0.

• For all i ∈ Z\L, OLi = 0 and hLi = 0.

Let also (OL,n, hL,n)n∈N be the BOA process with parameters (H, p) and initial condition (OL, hL).

That is, (OL,n, hL,n)n∈N is the BOA process starting from the state where all the patches in L

are of type 1 and all the patches in Lc of type 0. Notice that if L = {0}, then the definition of(
O{0},n, h{0},n

)
)n∈N matches the one given above. We then have the following result.

Lemma 3.4. For all L ∈ Pf (Z), for all n ∈ N,

P

1−
∏
i∈Z

(
1−OL,ni × 1{hL,ni ≤H}

)
= 0

 ≥ P

1−
∏
i∈Z

(
1−O{0},ni × 1{h{0},ni ≤H}

)
= 0

Card(L)

.

This lemma gives a lower bound of the probability that no patches are reachable in at least n

generations in the BOA process starting from the patches in L, each one of them containing type 1
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seeds of age 0. This lower bound involves the probability that no patches are reachable in at least n

generations starting from only one patch, which is used in the definition of pc(H).

Proof. Let n ∈ N and L ∈ Pf (Z). First, we observe that if we couple all the BOA processes considered

by constructing them using the same extinction events,

1−
∏
i∈Z

(
1−OL,ni × 1{hL,ni ≤H}

)
= 1−

∏
i′∈L

∏
i∈Z

(
1−O{i

′},n
i × 1

{h{i
′},n

i ≤H}

) .
Indeed, each one of the reachable patches in the BOA process with initial conditions (OL, hL) is

connected by a path of nonextinct patches to a patch in L, and so there exists i0 ∈ L such as the

patch is also reachable in the BOA process with initial condition (O{i0}, h{i0}). We can then use the

fact that all the quantities appearing in the product are {0, 1}-valued.

Moreover, for i0, i1 ∈ L and again using our coupling, knowing that no patch is reachable in

n generations starting from i0 increases the probability that no patch is reachable in n generations

starting from i1. Indeed, informally, the fact that no patch is reachable starting from i0 "blocks" some

patches, which cannot be used by a path linking i1 to other patches. Therefore,

P

∏
i∈Z

(
1−O{i1},ni × 1{h{i1},ni ≤H}

)
= 1

∣∣∣∣∣∣
∏
i∈Z

(
1−O{i0},ni × 1{h{i0},ni ≤H}

)
= 1


≥ P

∏
i∈Z

(
1−O{i1},ni × 1{h{i1},ni ≤H}

)
= 1

 ,
and hence for i0 ∈ L,

P

1−
∏
i∈Z

(
1−OL,ni × 1{hL,ni ≤H}

)
= 0

 = P

1−
∏
i′∈L

∏
i∈Z

(
1−O{i

′},n
i × 1

{h{i
′},n

i ≤H}

] = 0


= P

 ⋂
i′∈L

∏
i∈Z

(
1−O{i

′},n
i × 1

{h{i
′},n

i ≤H}

)
= 1




≥ P

∏
i∈Z

(
1−O{i0},ni × 1{h{i0},ni ≤H}

)
= 1

Card(L)

= P

∏
i∈Z

(
1−O{0},ni × 1{h{0},ni ≤H}

)
= 1

Card(L)

,

where the invariance by translation of the process is used to pass from the last but first to the last

line.

We recall that the k-parent occupancy process associated to (ξn, hn)n∈N is denoted by (Ok,n, hk,n)n∈N.

The coupling based on the extinction events also yields the following lemma.
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Lemma 3.5. Let L ∈ Pf (Z) be the set defined as

L :=
{
i ∈ Z : Ok,0i = 1

}
.

Then,

P

1−
∏
i∈Z

(
1−Ok,ni × 1{hk,ni ≤H}

)
= 0

 ≥ P

1−
∏
i∈Z

(
1−OL,ni × 1{hL,ni ≤H}

)
= 0

 .
Indeed, if (ξn, hn)n∈N (hence (Ok,n, hk,n)n∈N) and (OL,n, hL,n)n∈N are constructed using the same

extinction events, then all the patches occupied by the k-parent WFSB metapopulation process are also

reachable by the BOA process (OL,n, hL,n)n∈N. Here deviations from the BOA process (OL,n, hL,n)n∈N

can also occur if the youngest type 1 seeds in (ξ0, h0) are not of age 0, but older.

We can now prove Theorem 1.9.

Proof. (Theorem 1.9) Let pc(H) be given by Proposition 3.3. We assume that p > pc(H). Let also

n ∈ N, and let L ∈ Pf (Z) be defined as in Lemma 3.5.

By Lemma 3.5,

P
(
∀i ∈ Z, Ok,ni × 1{hk,ni ≤H} = 0

)
= P

1−
∏
i∈Z

(
1−Ok,ni × 1{hk,ni ≤H}

)
= 0


≥ P

1−
∏
i∈Z

(
1−OL,ni × 1{hL,ni ≤H}

)
= 0

 .
Using Lemma 3.4, we obtain

P
(
∀i ∈ Z, Ok,ni × 1{hk,ni ≤H} = 0

)
≥ P

1−
∏
i∈Z

(
1−O{0},ni × 1{h{0},ni ≤H}

)
= 0

Card(L)

= P (Sn(p) = ∅)Card(L) .

Therefore,

lim
n→+∞

P
(
∀i ∈ Z, Ok,ni × 1{hk,ni ≤H} = 0

)
≥ lim

n→+∞
P(Sn(p) = ∅)Card(L)

≥ 1

by Proposition 3.3, and we can conclude.
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4 Appendix - Computation of pc(H)

In this section, we briefly explain how to compute pc(H), and how to implement this approach and

obtain an approximation for pc(H). The computation method is a direct adaptation of Section 3 in

[12]. Our goal here is not to obtain very precise approximations, but rather to have a rough estimate

of pc(H), and use it to assess the impact of the presence of a seed bank on the extinction threshold.

We first introduce the following notation. For all i ∈ Z and n ∈ N, let U i,n be a random variable

such that U i,n ∼ Unif([0, 1]). We assume that all the random variables (U i,n)i∈Z,n∈N are independent.

For all p ∈ [0, 1], let Sp be the set defined as

Sp :=
{

(i, n) : i ∈ Z, n ∈ N and U i,n ≥ p
}
.

Sp can be interpreted as the set of patches which would be non-extinct, if the extinction probability

was equal to p.

For all x, y ∈ Z, n(x), n(y) ∈ N, H ∈ N and p ∈ [0, 1], we shall say that (x, n(x)) is (H,p)-reachable

from (y, n(y)), and denote it as (y, n(y)) −−−→
(H,p)

(x, n(x)), if there exists L ∈ N, x0, x1,..., xL ∈ Z and

n0, n1,..., nL ∈ N such that:

1. x0 = y, n0 = n(y), xl = x and nl = n(x),

2. ∀l ∈ J1, LK, xl ∈ {xl−1 − 1, xl−1, xl−1 + 1} and 1 ≤ nl − nl−1 ≤ H + 1,

3. ∀l ∈ J1, LK, (xl, nl) ∈ Sp.

In other words, (y, n(y)) −−−→
(H,p)

(x, n(x)) if there exists a path of open sites going from (y, n(y)) to

(x, n(x)), spending at most H generations in each patch.

Moreover, for all p ∈ [0, 1] and n ∈ N, let ξ̄n(H, p) be the set defined as:

ξ̄n(H, p) :=
{
x ∈ Z : ∃hx, hy ∈ J0, HK,∃y ∈ Z\(N\{0}), (y, hy) −−−→

(H,p)
(x, n+ hx)

}
,

and let r̄n(H, p) := sup ξ̄n(H, p). ξ̄n(H, p) is akin to the set of patches which are reachable in n

generations in a BOA process with parameters (H, p), but starting from an infinite number of patches.

A direct adaptation of Section 3 from [12] yields the following result.

Lemma 4.1. For all H ∈ N,

pc(H) := max
{
p ∈ [0, 1] : lim

n→+∞

r̄n(H, p)
n

≥ 0
}
.
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Therefore, in order to compute pc(H), it is possible to simulate the random variable r̄n(H, p) for

a large value of n and for different values of p.

Let H ∈ N. In order to obtain an approximation for pc(H), we first define some approximations for

ξ̄n(H, p) and r̄n(H, p). Let p ∈ [0, 1]. For all x, y ∈ J−10500, 10500K and n(x), n(y) ∈ J0, 10000K, we shall

say that (x, n(x)) is approximatively (H, p)-reachable from (y, n(y)), and denote it as (y, n(y)) −−−−−−−−→
Approx(H,p)

(x, n(x)),

if there exists L ∈ N, x0,... , xL ∈ J−10500, 10500K and n0,... ,nL ∈ J0, 10000K such that:

1. x0 = y, n0 = n(y), xl = x and nl = n(x).

2. ∀l ∈ J1, LK, xl ∈ {xl−1 − 1, xl−1, xl−1 + 1} and 1 ≤ nl − nl−1 ≤ H + 1.

3. ∀l ∈ J1, LK, if xl 6= −10500, then (xl, nl) ∈ Sp and xl 6= 10500.

Therefore, in the approximation, the paths linking two sites together have to remain in the domain

J−10500, 10500K, with extra conditions at the border of the domain. Since the value of the quantity

we are interested in depends on the presence of paths staying close to the centre of the domain, we

can assume that the border conditions chosen will not affect the approximate value.

We then define

Approx(ξ̄n(H, p)) :=
{
x ∈ Z : ∃hx, hy ∈ J0, HK,∃y ∈ Z\(N\{0}), (y, hy) −−−−−−−−→

Approx(H,p)
(x, n+ hx)

}
,

and let Approx(r̄n(H, p)) := sup Approx(ξ̄n(H, p)).

In order to compute an approximate value for pc(H), we apply the following method, starting from

p = 0.99.

1. We simulate the random variable Approx(r̄10000(H, p))× (10000)−1.

2. If the value obtained is larger than −0.005, we take pc(H) = p.

3. Otherwise, we substitute p with p− 0.01, and restart at Step 1.
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