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Abstract

This paper introduces a new communication abstraction, called Set-Constrained Delivery Broad-
cast (SCD-broadcast), whose aim is to provide its users with an appropriate abstraction level when
they have to implement objects or distributed tasks in an asynchronous message-passing system
prone to process crash failures. This abstraction allows each process to broadcast messages and
deliver a sequence of sets of messages in such a way that, if a process delivers a set of messages
including a message m and later delivers a set of messages including a message m′, no process
delivers first a set of messages including m′ and later a set of message including m.

After having presented an algorithm implementing SCD-broadcast, the paper investigates its pro-
gramming power and its computability limits. On the “power” side it presents SCD-broadcast-based
algorithms, which are both simple and efficient, building objects (such as snapshot and conflict-free
replicated data types), and distributed tasks. On the “computability limits” side it shows that SCD-
broadcast and read/write registers are computationally equivalent.

Keywords: Abstraction, Asynchronous system, Communication abstraction, Communication pat-
tern, Conflict-free replicated data type, Design simplicity, Distributed task, Linearizability, Message-
passing system, Process crash, Read/write atomic register, Sequential consistency, Snapshot object.



1 Introduction

Programming abstractions. Informatics is a science of abstractions, and a main difficulty consists in
providing users with a “desired level of abstraction and generality – one that is broad enough to encom-
pass interesting new situations, yet specific enough to address the crucial issues” as expressed in [20].
When considering sequential computing, functional programming and object-oriented programming are
well-know examples of what means “desired level of abstraction and generality”.

In the context of asynchronous distributed systems where the computing entities (processes) com-
municate –at the basic level– by sending and receiving messages through an underlying communication
network, and where some of them can experience failures, a main issue consists in finding appropri-
ate communication-oriented abstractions, where the meaning of the term “appropriate” is related to the
problems we intend to solve. Solving a problem at the send/receive abstraction level is similar to the
writing of a program in a low-level programming language. Programmers must be provided with ab-
stractions that allow them to concentrate on the problem they solve and not on the specific features of the
underlying system. This is not new. Since a long time, high level programming languages have proved
the benefit of this approach. From a synchronization point of view, this approach is the one promoted in
software transactional memory [39], whose aims is to allow programmers to focus on the synchroniza-
tion needed to solve their problems and not on the way this synchronization must be implemented (see
the textbooks [22, 34]).

If we consider specific coordination/cooperation problems, “matchings” between problems and spe-
cific communication abstractions are known. One of the most famous examples concerns the consensus
problem whose solution rests on the total order broadcast abstraction (also called atomic broadcast).
Another “matching” example is the causal message delivery broadcast abstraction [12, 37], which al-
lows for a very simple implementation of a causal read/write memory [2]1.

Aim of the paper. The aim of this paper is to introduce and investigate a high level communication
abstraction which allows for simple and efficient implementations of concurrent objects and distributed
tasks, in the context of asynchronous message-passing systems prone to process crash failures. The con-
current objects in which we are interested are defined by a sequential specification [23] (e.g., a queue).
Differently, a task extends to the distributed context the notion of a function [11, 31]. It is defined by a
mapping from a set of input vectors to a set of output vectors, whose sizes are the number of processes.
An input vector I defines the input value I[i] of each process pi, and, similarly, an output vector O de-
fines the outputO[j] of each process pj . Agreement problems such as consensus and k-set agreement are
distributed tasks. What makes the implementation of a task difficult is the fact that each process knows
only its input, and, due to net effect of asynchrony and process failures, no process can distinguish if
another process is very slow or crashed. The difficulty results in an impossibility for consensus [19],
even in a system in which at most one process may crash.

A new broadcast abstraction. The Set-Constrained Delivery broadcast (in short SCD-broadcast) com-
munication abstraction proposed in the paper allows a process to broadcast messages, and to deliver
sets of messages (instead of a single message) in such a way that, if a process pi delivers a message set
mset containing a message m, and later delivers a message set mset′ containing a message m′, then
no process pj can deliver first a set containing m′ and later another set containing m. Let us notice that
pj is not prevented from delivering m and m′ in the same set. Moreover, SCD-broadcast imposes no

1More generally, in terms of consensus numbers [21], as soon as we can build atomic registers on top of an asynchronous
message-passing system [5], the consensus number of total order broadcast is +∞ and the one SCD-broadcast is 1. A com-
munication abstraction, called k-BO-Broadcast, has been introduced in [24], where it is shown that its computabilty power is
exactly the one of k-set agreement (a natural generalization of consensus that allows up to k different values to be decided;
consensus is 1-set agreement). In a system of n processes, SCD-broadcast and n-BO-Broadcast are equivalent. Unfortunately,
except for the extreme cases k = 1 and k = n, it is not know how to implement k-BO-Broadcast.
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constraint on the order in which a process must process the messages it receives in a given message set.
After having defined SCD-broadcast, the paper presents an implementation of it in asynchronous

systems where a minority of processes may crash. This assumption is actually a necessary and sufficient
condition to cope with the net effect of asynchrony and process failures (see below). The SCD-broadcast
of an application message generates O(n2) implementation messages, and assuming an upper bound ∆
on message transfer delays and zero processing time, its time complexity is upper bounded by 2∆ time
units (by “time complexity” we mean the time elapsed between the SCD-broadcast of an application
message m and the latest time at which m is locally delivered at the application layer by all the pro-
cesses that have not crashed).

Implementing objects and tasks. Then, the paper addresses two fundamental issues of SCD-broadcast:
its abstraction power and its computability limits. As far as its abstraction power is concerned, i.e.,
its ability and easiness to implement atomic (linearizable) or sequentially consistent concurrent ob-
jects [23, 29] and read/write solvable distributed tasks, the paper presents, on the one side, two al-
gorithms implementing atomic objects (namely a snapshot object [1, 3], and a distributed increas-
ing/decreasing counter), and, on the other side, an algorithm solving the lattice agreement task [6, 18].

The two concurrent objects (snapshot and counter) have been chosen because they are encountered in
many applications, and are also good representative of the class of objects identified in [4]. The objects
of this class are characterized by the fact that each pair op1 and op2 of their operations either commute
(i.e., in any state, executing op1 before op2 leads to the same state as executing op2 before op1, as it is
the case for a counter), or any of op1 and op2 can overwrite the other one (e.g., executing op1 before
op2 leads to the same state as executing op2 alone). Our implementation of a counter can be adapted
for all objects with commutative operations, and our implementation of the snapshot object illustrates
how overwriting operations can be obtained directly from the SCD-broadcast abstraction. Concerning
these objects, it is also shown that a slight change in the algorithms allows us to obtain implementations
(with a smaller cost) in which the consistency condition is weakened from linearizability to sequential
consistency [28].

In the case of read/write solvable tasks, SCD-broadcast shows how the concurrency inherent (but
hidden) in a task definition can be easily mastered and solved.

A distributed software engineering dimension. All the algorithms presented in the paper are based on
the same communication pattern. As far as objects are concerned, the way this communication pattern
is used brings to light two genericity dimensions of the algorithms implementing them. One is on the
variety of objects that, despite their individual features (e.g., snapshot vs counter), have very similar
SCD-broadcast-based implementations (actually, they all have the same communication pattern-based
structure). The other one is on the consistency condition they have to satisfy (linearizability vs sequen-
tial consistency).
On programming languages for distributed computing. Differently from sequential computing for
which there are plenty of high level languages (each with its idiosyncrasies), there is no specific lan-
guage for distributed computing. Instead, addressing distributed settings is done by the enrichment of
sequential computing languages with high level communication abstractions. When considering asyn-
chronous systems with process crash failures, total order broadcast is one of them. SCD-broadcast is a
candidate to be one of them, when one has to implement read/write solvable objects and distributed tasks.

The computability limits of SCD-broadcast. The paper also investigates the computability power
of the SCD-broadcast abstraction, namely it shows that SCD-broadcast and atomic read/write registers
(or equivalently snapshot objects) have the same computability power in asynchronous systems prone
to process crash failures. Everything that can be implemented with atomic read/write registers can be
implemented with SCD-broadcast, and vice versa.
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As read/write registers (or snapshot objects) can be implemented in asynchronous message-passing
systems where only a minority of processes may crash [5], it follows that the proposed algorithm im-
plementing SCD-broadcast is resilience-optimal in these systems. From a theoretical point of view, this
means that the consensus number of SCD-broadcast is 1 (the weakest possible).

Roadmap. The paper is composed of 10 sections. Section 2 defines the SCD-broadcast abstraction
and the associated communication pattern used in all the algorithms presented in the paper. Section 4
presents a resilience-optimal algorithm implementing SCD-broadcast in asynchronous message-passing
systems prone to process crash failures, while Section 5 adopts a distributed software engineering point
of view and presents a communication pattern associated with SCD-broadcast. Then, Sections 6-8
present SCD-broadcast-based algorithms for concurrent objects and tasks. Section 9 focuses on the
computability limits of SCD-broadcast. Finally, Section 10 concludes the paper.

Remark. It is worth noticing that the a self-stabilizing version of the SCD algorithm presented in this
article is described in [30], and an extension of it where up to t < n/4 processes may commit Byzantine
failures is described in [10]. It is still an open problem to find an SCD algorithm coping with up to
t < n/3 Byzantine processes.

2 The SCD-broadcast Communication Abstraction

Process model. The computing model is composed of a set of n asynchronous sequential processes,
denoted p1, ..., pn. “Asynchronous” means that each process proceeds at its own speed, which can be
arbitrary and always remains unknown to the other processes.

A process may halt prematurely (crash failure), but it executes its local algorithm correctly until it
crashes (if it ever does). The model parameter t denotes the maximal number of processes that may
crash in a run r. A process that crashes in a run is said to be faulty in r. Otherwise, it is non-faulty.

Definition of SCD-broadcast. The set-constrained delivery broadcast abstraction (SCD-broadcast) pro-
vides the processes with one operation scd_broadcast(m) and one event scd_deliver(mset). The oper-
ation takes a message m to broadcast as input parameter. When the event is triggered at a process pi,
it dispenses a non-empty set of messages mset to pi. Using a classical terminology, when a process
invokes the operation scd_broadcast(m), we say that it “scd-broadcasts a message m”. Similarly, when
scd_deliver(mset) is triggered at a process, we say that it “scd-delivers the set of messages mset”. By
a slight abuse of language, when we are interested in a message m, we say that a process “scd-delivers
the message m” when actually it scd-delivers a message set mset containing m.

SCD-broadcast is defined by the following set of properties, where we assume –without loss of
generality– that all the messages that are scd-broadcast are different.

• Validity. If a process scd-delivers a set containing a message m, then m was scd-broadcast by a
process.

• Integrity. A message is scd-delivered at most once by each process.

• MS-Ordering. Let pi be a process that scd-delivers first a message set mseti and later a message
set mset′i. For any pair of messages m ∈ mseti and m′ ∈ mset′i, no process pj scd-delivers first
a message set mset′j containing m′ and later a message set msetj containing m.

• Termination-1. If a non-faulty process scd-broadcasts a messagem, it terminates its scd-broadcast
invocation and scd-delivers a message set containing m.

• Termination-2. If a process scd-delivers a message m, every non-faulty process scd-delivers a
message set containing m.
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Termination-1 and Termination-2 are classical liveness properties (found for example in Uniform
Reliable Broadcast [9, 36]). The other ones are safety properties. Validity and Integrity are classical
communication-related properties. The first states that there is neither message creation nor message
corruption, while the second states that there is no message duplication.

The MS-Ordering property is new, and characterizes SCD-broadcast. It states that the contents of
the sets of messages scd-delivered at any two processes are not totally independent: the sequence of sets
scd-delivered at a process pi and the sequence of sets scd-delivered at a process pj must be mutually
consistent in the sense that a process pi cannot scd-deliver first m ∈ mseti and later m′ ∈ mset′i 6=
mseti, while another process pj scd-delivers first m′ ∈ mset′j and later m ∈ msetj 6= mset′j . Let us
nevertheless observe that if pi scd-delivers first m ∈ mseti and later m′ ∈ mset′i, pj may scd-deliver m
and m′ in the same set of messages.

Let us remark that, if the MS-Ordering property is suppressed and messages are scd-delivered one
at a time, SCD-broadcast boils down to the well-known Uniform Reliable Broadcast abstraction [13, 36].

An example. Let m1, m2, m3, m4, m5, m6, m7 and m8 be messages that have been scd-broadcast by
different processes. Processes deliver sets of messages and do not deliver more than one set at once;
whereas there is no particular order within each set. The following scd-deliveries of message sets by p1,
p2 and p3 respect the definition of SCD-broadcast:

• at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}.
• at p2: {m1}, {m2,m3}, {m4,m5,m6}, {m7}, {m8}.
• at p3: {m1,m2,m3}, {m4,m5,m6}, {m7}, {m8}.

Differently, due to the scd-deliveries of the sets including m2 and m3, the following scd-deliveries by
p1 and p2 do not satisfy the MS-broadcast property:

• at p1: {m1,m2}, {m3,m4,m5}, ...

• at p2: {m1,m3}, {m2}, ...

A containment property. Let mset`i denote the `-th message set scd-delivered by pi. Hence, at some
time, pi scd-delivered the sequence of message sets mset1i , . . . ,mset

x
i . Let MSetxi = mset1i ∪ . . . ∪

msetxi . The following Containment property follows directly from the MS-Ordering and Termination-2
properties: ∀ i, j, x, y: (MSetxi ⊆ MSetyj ) ∨ (MSetyj ⊆ MSetxi ).

Partial order on messages created by the message sets. The MS-Ordering and Integrity properties
establish a partial order on the set of all the messages, defined as follows. Let 7→i be the local message
delivery order at process pi defined as follows: m 7→i m

′ if pi scd-delivers the message set containingm
before the message set containing m′. As no message is scd-delivered twice, it is easy to see that 7→i is
a partial order (locally know by pi). The containment property implies that there is a total order (which
remains unknown to the processes) on the whole set of messages, that complies with the partial order
7→= ∪1≤i≤n 7→i. This is where SCD-broadcast can be seen as a weakening of total order broadcast.

3 Underlying communication network

Send/receive asynchronous network. Each pair of processes communicate through two uni-directional
channels on which they send and receive messages. Hence, the communication network is a complete
network: any process pi can directly send a message to any process pj (including itself). A process pi
invokes the operation “send TYPE(m) to pj” to send to pj the message m, whose type is TYPE. The
operation “receive TYPE() from pj” allows pi to receive from pj a message whose type is TYPE.
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Each channel is reliable (no loss, corruption, nor creation of messages), not necessarily FIFO, and
asynchronous (while the transit time of each message is finite, there is no upper bound on message tran-
sit times) Let us notice that, due to process and message asynchrony, no process can know if another
process crashed or is only very slow.

Uniform FIFO-broadcast abstraction. To simplify the presentation, and without loss of generality,
we consider that the system is equipped with a FIFO-broadcast abstraction. Such an abstraction can be
built on top of the previous basic system model without enriching it with additional assumptions (see
e.g. [36]). It is defined by an operation fifo_broadcast() and an event fifo_deliver(), which satisfy the
properties of Uniform Reliable Broadcast (Validity, Integrity, Termination-1, and Termination-2, with
the same definitions as in SCD-broadcast), plus the following message ordering property.

• FIFO-Order. For any pair of processes pi and pj , if pi fifo-delivers first a message m and later a
message m′, both from pj , no process fifo-delivers m′ before m.

4 An Implementation of SCD-broadcast

This section shows that the SCD-broadcast communication abstraction is not an oracle-like object (or-
acles allow us to extend our understanding of computing, but cannot be implemented). It describes an
implementation of SCD-broadcast in an asynchronous send/receive message-passing system in which
any minority of processes may crash. This system model is denoted CAMPn,t[t < n/2] (where
CAMPn,t stands for “Crash Asynchronous Message-Passing” and t < n/2 is its restriction on fail-
ures). As t < n/2 is the weakest assumption on process failures that allows a read/write register to
be built on top of an asynchronous message-passing system [5]2, and SCD-broadcast and read/write
registers are computationally equivalent (as shown in Sections 6 and 9), the proposed implementation is
optimal from a resilience point of view.

4.1 Algorithm

This section describes Algorithm 1, which implements SCD-broadcast in CAMPn,t[t < n/2]. From a
terminology point of view, an application message is a message that has been scd-broadcast by a pro-
cess, while a protocol message is an implementation message generated by the algorithm.

Local metadata quadruplets. For each application message m, each process stores a quadruplet
qdplt = 〈qdplt.msg, qdplt.sd, qdplt.sn, qdplt.cl〉 whose fields have the following meaning.

• qdplt.msg contains an application message m,

• qdplt.sd contains the id of the sender of qdplt.msg,

• qdplt.sn contains the local date (sequence number) associated with m by its sender. Hence, the
pair 〈qdplt.sd, qdplt.sn〉 is the identity of the application message m, denoted ts(qdplt).

• qdplt.cl is an array of size n, initialized to [+∞, . . . ,+∞]. Then, qdplt.cl[x] will contain the se-
quence number associated withm by px when it broadcast the message FORWARD_MSG(msg.m,−,−,−,−).
This last field is crucial in the scd-delivery by the process pi of a message set containing m.

Local variables at a process pi. Each process pi manages the following local variables.

• bufferi : buffer (initially empty) where the quadruplets containing messages that have been fifo-
delivered but not yet scd-delivered in a message set are stored.

2From the point of view of the maximal number of process crashes that can be tolerated, assuming failures are independent.
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• to_deliveri : set of quadruplets containing messages to be scd-delivered.
• sni: local logical clock which takes the values 0, 1, 2, ..., that measure the local progress of
pi. Each application message scd-broadcast by pi is identified by a pair 〈i, sn〉, where sn is the
current value of sni.
• clocki[1..n]: array of clock values; clocki[j] is the greatest lock value x such that the application

message m identified 〈x, j〉 has been scd-delivered by pi.

Protocol message. The algorithm uses a single type of protocol message denoted FORWARD_MSG(m, sd, sn, g, sng).
Such a message is made up of five fields: the first field is an associated application messagem, the second
and third form a pair 〈sd, sn〉 that is the identity of the application message and the fourth and fifth form
a pair 〈g, sng〉 that describes the local progress (as captured by sng ) of the forwarder process pg when it
fifo-broadcast this protocol message to the other processes by invoking fifo_broadcast FORWARD_MSG(m, sd, snsd , g, sng)
(line 11).

Operation scd_broadcast(). When pi invokes the operation scd_broadcast(m), where m is an applica-
tion message, it executes the internal operation forward(m, i, sni, i, sni), which initializes the algorithm,
and waits until it has no more message from itself pending in buffer i, which means it has scd-delivered
a set containing m (lines 19 and 20).

Uniform fifo-broadcast of a message FORWARD_MSG. When a process pi fifo-delivers a protocol mes-
sage FORWARD_MSG(m, sd, snsd , g, sng), it first invokes the internal operation forward(m, sd, snsd , g, sng).
In addition to other statements, the first fifo-delivery of such a message by a process pi entails its par-
ticipation in the uniform reliable fifo-broadcast of this message (lines 5 and 11). In addition to the
invocation of forward(), the fifo-delivery of FORWARD_MSG() also invokes try_deliver(), which strives
to scd-deliver a message set (lines 4).

The core of the algorithm. Expressed with the relations 7→i, 1 ≤ i ≤ n, introduced in Section 2,
the main issue of the algorithm is to ensure that, if there are two message m and m′ and a process
pi such that m 7→i m

′, then there is no pj such that m′ 7→j m. To this end, a process pi is al-
lowed to scd-deliver a message m before a message m′ only if it knows that a majority of processes
pj have fifo-delivered a protocol message FORWARD_MSG(m,−,−,−,−) before a protocol message
FORWARD_MSG(m′,−,−,−,−); pi knows it either (i) because it fifo-delivered from pj a message
FORWARD_MSG(m,−,−,−,−) but not yet a message FORWARD_MSG(m′,−,−,−,−), or (ii) be-
cause it fifo-delivered from pj both FORWARD_MSG(m,−,−,−, snm) and FORWARD_MSG(m′,−,−,−, snm′)
and the sending date smn is smaller than the sending date snm′. The MS-Ordering property follows
then from the impossibility that a majority of processes “sees m before m′”, while another majority
“sees m′ before m”.

Internal operation forward(). This operation can be seen as an enrichment (with the fields g and sng ) of
the reliable fifo-broadcast implemented by the protocol messages FORWARD_MSG(m, sd, snsd ,−,−).
Considering such a message FORWARD_MSG(m, sd, snsd , g, sng), m was scd-broadcast by psd at its
local time snsd , and relayed by the forwarding process pg at its local time sng . If snsd ≤ clocki[sd], pi
has already scd-delivered a message set containing m (see lines 18 and 20). If snsd > clocki[sd], there
are two cases defined by the predicate of line 6.

• No quadruplet qdplt in bufferi is such that qdplt.msg = m. In this case, pi creates a quadruplet
associated with m, and adds it to bufferi (lines 8-10). Then, pi participates in the fifo-broadcast
of m identified by 〈sd, snsd 〉. (line 11) and records its local progress by increasing sni (line 12).
• There is a quadruplet qdplt in bufferi associated with m, i.e., qdplt = 〈m,−,−,−〉 ∈ bufferi . In

this case, pi assigns sng to qdplt.cl[g] (line 7), thereby indicating thatmwas known and forwarded
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operation scd_broadcast(m) is
(1) forward(m, i, sni, i, sni);
(2) wait(@ qdplt ∈ bufferi : qdplt.sd = i).

when the message FORWARD_MSG(m, sd, snsd , g, sng) is fifo-delivered do % from pg

(3) forward(m, sd, snsd , g, sng);
(4) try_deliver().

procedure forward(m, sd, snsd , g, sng) is
(5) if (snsd > clocki[sd])
(6) then if (∃ qdplt ∈ bufferi : qdplt.sd = sd ∧ qdplt.sn = snsd)
(7) then qdplt.cl[g]← sng

(8) else threshold[1..n]← [∞, . . . ,∞]; threshold[g]← sng ;
(9) let qdplt← 〈m, sd, snsd , threshold[1..n]〉;
(10) bufferi ← bufferi ∪ {qdplt};
(11) fifo_broadcast FORWARD_MSG(m, sd, snsd , i, sni);
(12) sni ← sni + 1
(13) end if
(14) end if.

procedure try_deliver() is
(15) let to_deliveri ← {qdplt ∈ bufferi : |{f : qdplt.cl[f ] <∞}| > n

2
};

(16) while (∃ qdplt ∈ to_deliveri , ∃ qdplt′ ∈ bufferi \ to_deliveri : |{f : qdplt.cl[f ] < qdplt′.cl[f ]}| ≤ n
2

) do
to_deliveri ← to_deliveri \ {qdplt} end while;

(17) if (to_deliveri 6= ∅)
(18) then for each qdplt ∈ to_deliveri do clocki[qdplt.sd]← max(clocki[qdplt.sd], qdplt.sn) end for;
(19) bufferi ← bufferi \ to_deliveri ;
(20) ms← {m : ∃ qdplt ∈ to_deliveri : qdplt.msg = m}; scd_deliver(ms)
(21) end if.

Algorithm 1: An implementation of SCD-broadcast in CAMPn,t[t < n/2] (code for pi)

by pg at its local time sng .

Internal operation try_deliver(). When a process pi executes try_deliver(), it first computes the set
to_deliveri of the quadruplets qdplt containing application messages m which have been seen by a
majority of processes (line 15). From pi’s point of view, a message has been seen by a process pg if
qdplt.cl[g] has been set to a finite value (line 7).

As indicated in a previous paragraph, if a majority of processes received first a message FOR-
WARD_MSG carrying m′ and later another message FORWARD_MSG carrying m, it might be that some
process pj scd-delivered a set containing m′ before scd-delivering a set containing m. Therefore, pi
must avoid scd-delivering a set containing m before scd-delivering a set containing m′. This is done at
line 16, where pi withdraws the quadruplet qdplt corresponding to m if it cannot deliver m′ yet (i.e. the
corresponding qdplt′ is not in to_deliver i) or it does not have the proof that the situation cannot happen,
i.e. no majority of processes saw the message corresponding to qdplt before the message corresponding
to qdplt′ (this is captured by the predicate |{g : qdplt.cl[g] < qdplt′.cl[g]}| ≤ n

2 ).
If to_deliveri is not empty after it has been purged (lines 16-17), pi computes a message set to scd-

deliver. This set mset contains all the application messages in the quadruplets of to_deliveri (line 20).
These quadruplets are withdrawn from bufferi (line 18). Moreover, before this scd-delivery, pi needs to
updates clocki[x] for all the entries such that x = qdplt.sd where qdplt ∈ to_deliveri (line 18). This
update is needed to ensure that the future uses of the predicate of line 17 are correct.

4.2 Cost and proof of correctness

Lemma 1 (Validity) If a process scd-delivers a message set containingm, some process cd-broadcastm.
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Proof If a process pi scd-delivers a set containing a message m, it previously added into bufferi a
quadruplet qdplt such that qdplt.msg = m (line 10), for which it follows that it fifo-delivered a protocol
message FORWARD_MSG(m,−,−,−,−). Due to the fifo-validity property, it follows that a process
generated the fifo-broadcast of this message, which originated from an invocation of scd_broadcast(m).

2Lemma 1

Lemma 2 (Integrity) No process scd-delivers the same message twice.

Proof Let us observe that, due to the wait statement at line 2, and the increase of sni at line 15 between
two successive scd-broadcast by a process pi, no two application messages can have the same identity
〈i, sn〉. It follows that there is a single quadruplet 〈m, i, sn,−〉 that can be added to bufferi , and this
is done only once (line 10). Finally, let us observe that this quadruplet is suppressed from bufferi , just
before m is scd-delivered (line 19-20), which concludes the proof of the lemma. 2Lemma 2

Lemma 3 If pi fifo-broadcasts FORWARD_MSG(m, sd, snsd , i, sni) (i.e., executes line 11), each non-
faulty process pj executes once fifo_broadcast FORWARD_MSG(m, sd, snsd , j, snj).

Proof Let pj be a correct process. First, we prove that pj broadcasts a message FORWARD_MSG(m, sd, snsd , j, snj).
As pi is non-faulty, pj will eventually receive the message sent by pi. At that time, if snsd > clockj [sd],
after the condition on line 6 and whatever its result, buffer i contains a quadruplet qdplt with qdplt.sd =
sd and qdplt.sn = snsd . That qdplt was inserted at line 10 (possibly after the reception of a differ-
ent message), just before pj sent a message FORWARD_MSG(m, sd, snsd , j, snj) at line 11. Otherwise,
clockj [sd] was incremented on line 18, when validating some qdplt′ added to bufferj after pj received
a (first) message FORWARD_MSG(qdplt′.msg, sd, snsd , g, clockg[sd]) from pg. Because the messages
FORWARD_MSG() are fifo-broadcast (hence they are delivered in their sending order), psd sent message
FORWARD_MSG(qdplt.msg, sd, snsd , sd, snsd ) before FORWARD_MSG(qdplt′.msg, sd, clockj [sd], sd, clockj [sd]),
and all other processes only forward messages, pj received FORWARD_MSG(qdplt.msg, sd, snsd ,−,−)
from pg before the message FORWARD_MSG(qdplt′.msg, sd, clockj [sd],−,−). At that time, snsd >
clockj [sd], so the previous case applies.

After pj broadcasts its message FORWARD_MSG(m, sd, snsd , j, snj) on line 11, there is a qdplt ∈
buffer j with ts(qdplt) = 〈sd, snsd 〉, until it is removed on line 16 and clockj [sd] ≥ snsd . Therefore,
one of the conditions at lines 5 and 6 will stay false for the stamp ts(qdplt) and pj will never execute
line 11 with the same stamp 〈sd, snsd 〉 later. 2Lemma 3

Lemma 4 (MS-Ordering) Let pi be a process that scd-delivers a set msi containing a message m
and later scd-delivers a set ms′i containing a message m′. No process pj scd-delivers first a set ms′j
containing m′ and later a message set msj containing m.

Proof Let us suppose there are two messages m and m′ and two processes pi and pj such that pi scd-
delivers a set msi containing m and later scd-delivers a set ms′i containing m′ and pj scd-delivers a set
ms′j containing m′ and later scd-delivers a set msj containing m.

When m is delivered by pi, there is an element qdplt ∈ buffer i such that qdplt.msg = m and
because of line 15, pi has received a message FORWARD_MSG(m,−,−,−,−) from more than n

2 pro-
cesses.
• If there is no element qdplt′ ∈ buffer i such that qdplt′.msg = m′, since m′ has not been

delivered by pi yet, pi has not received a message FORWARD_MSG(m′,−,−,−,−) from any
process (lines 10 and 19). Hence, because the communication channels are FIFO, more than
n
2 processes have sent a message FORWARD_MSG(m,−,−,−,−) before sending a message
FORWARD_MSG(m′,−,−,−,−).
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• Otherwise, qdplt′ /∈ to_deliver i after line 16. As the communication channels are FIFO, more
than half of the processes have sent a message FORWARD_MSG(m,−,−,−,−) before a message
FORWARD_MSG(m′,−,−,−,−).

Using the same reasoning, it follows that when m′ is delivered by pj , more than n
2 processes have

sent a message FORWARD_MSG(m′,−,−,−,−) before sending a message FORWARD_MSG(m,−,−,−,−).
There exists a process pk in the intersection of the two majorities, that has (a) sent FORWARD_MSG(m,−,−,−,−)
before sending FORWARD_MSG(m′,−,−,−,−) and (b) sent FORWARD_MSG(m′,−,−,−,−) before
sending a message FORWARD_MSG(m,−,−,−,−). However, it follows from Lemma 3 that pk can
send a single message FORWARD_MSG(m′,−,−,−,−) and a single message FORWARD_MSG(m,−,−,−,−),
which leads to a contradiction. 2Lemma 4

pi

pg · · ·scd_broadcast(mk)•

sng(k)

scd_broadcast(mk1)•

sng(k1)

scd_broadcast(mk2)•

sng(k2)

FORWARD_MSG(m, sd, snsd ,−,−)

•

FORWARD_MSG(ml+1, sdl+1, snsdl+1 ,−,−)

•••

m ?
i mk1

?
i mk2

?
i

Figure 1: Message pattern introduced in Lemma 5

Lemma 5 If a non-faulty process executes fifo_broadcast FORWARD_MSG(m, sd, snsd , i, sni) (line 11),
it scd-delivers a message set containing m.

Proof Let pi be a non-faulty process. For any pair of messages qdplt and qdplt′ ever inserted in
bufferi , let ts = ts(qdplt) and ts′ = ts(qdplt′). Let→i be the dependency relation defined as follows:

ts→i ts
′ def= |{j : qdplt′.cl[j] < qdplt.cl[j]}| ≤ n

2 (i.e. the dependency does not exist if pi knows that
a majority of processes have seen the first update –due to qdplt′– before the second –due to qdplt). Let
→?

i denote the transitive closure of→i.
Let us suppose (by contradiction) that the timestamp 〈sd, snsd 〉 associated with the message m (car-

ried by the protocol message FORWARD_MSG(m, sd, snsd , i, sni) fifo-broadcast by pi), has an infinity
of predecessors according to→?

i . As the number of processes is finite, an infinity of these predecessors
have been generated by the same process, let us say pg. Let 〈g, sng(k)〉k∈N be the infinite sequence of
the timestamps associated with the invocations of the scd_broadcast() issued by pg. The situation is
depicted by Figure 1.

As pi is non-faulty, pg eventually receives a message FORWARD_MSG(m, sd, snsd , i, sni), which
means pg broadcast an infinity of messages FORWARD_MSG(m(k), g, sng(k), g, sng(k)) after having
broadcast the message FORWARD_MSG(m, sd, snsd , g, sng). Let 〈g, sng(k1)〉 and 〈g, sng(k2)〉 be the
timestamps associated with the next two messages scd-broadcast by pg, with sng(k1) < sng(k2). By
hypothesis, we have 〈g, sng(k2)〉 →?

i 〈sd, snsd 〉. Moreover, all processes received their first message
FORWARD_MSG(m, sd, snsd ,−,−) before their first message FORWARD_MSG(m(k), g, sng(k),−,−),
so 〈sd, snsd 〉 →?

i 〈g, sng(k1)〉. Let us express the path 〈g, sng(k2)〉 →?
i 〈g, sng(k1)〉:

〈g, sng(k2)〉 = 〈sd′(1), sn′(1)〉 →i 〈sd′(2), sn′(2)〉 →i · · · →i 〈sd(m), sn′(m)〉 = 〈g, sng(k1)〉.
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In the time interval starting when pg sent the message FORWARD_MSG(m(k1), g, sng(k1), g, sng(k1))
and finishing when it sent the message FORWARD_MSG(m(k2), g, sng(k2), g, sng(k2)), the waiting
condition of line 2 became true, so pg scd-delivered a set containing the message m(k1), and accord-
ing to Lemma 1, no set containing the message m(k2). Therefore, there is an index l such that pro-
cess pg delivered sets containing messages associated with a timestamp 〈sd′(l), sn′(l)〉 for all l′ > l
but not for l′ = l. Because the channels are FIFO and thanks to lines 15 and 16, it means that a
majority of processes have sent a message FORWARD_MSG(−, sd′(l + 1), sn′(l + 1),−,−) before a
message FORWARD_MSG(−, sd′(l), sn′(l),−,−), which contradicts the fact that 〈sd′(l), sn′(l)〉 →i

〈sd′(l + 1), sn′(l + 1)〉.
Let us suppose a non-faulty process pi has fifo-broadcast a message FORWARD_MSG(m, sd, snsd , i, sni)

(line 10). It inserted a quadruplet qdplt with timestamp 〈sd, snsd 〉 on line 9 and by what precedes,
〈sd, snsd 〉 has a finite number of predecessors 〈sd1, sn1〉, . . . , 〈sdl, snl〉 according to→?

i . As pi is non-
faulty, according to Lemma 3, it eventually receives a message FORWARD_MSG(−, sdk, snk,−,−) for
all 1 ≤ k ≤ l and from all non-faulty processes, which are in majority.

Let pred be the set of all quadruplets qdplt′ such that 〈qdplt′.sd, qdplt′.sn〉 →?
i 〈sd, snsd 〉. Let us

consider the moment when pi receives the last message FORWARD_MSG(−, sdk, snk, g, sng) sent by
a correct process pg. For all qdplt′ ∈ pred , either qdplt′.msg has already been delivered or qdplt′ is
inserted to_deliver i on line 15. Moreover, no qdplt′ ∈ pred will be removed from to_deliver i, on
line 16, as the removal condition is the same as the definition of→i. In particular for qdplt′ = qdplt,
either m has already been scd-delivered or m is present in to_deliver i on line 17 and will be scd-
delivered on line 20. 2Lemma 5

Lemma 6 (Termination-1) If a non-faulty process scd-broadcasts a message m, it scd-delivers a mes-
sage set containing m.

Proof If a non-faulty process pi scd-broadcasts a messagem, it executes the procedure forward(m, i, sni, i, sni)
(Lines (22) and (23)). Similarly to Lemma 3, as no message FORWARD_MSG(m, i, sni, g, sng) was pre-
viously broadcast, (sni > clocki[i]) and there is no qdplt ∈ buffer i such that (qdplt.sd, qdplt.sn) =
(i, sni). Therefore, pi fifo-broadcasts the message FORWARD_MSG(m, sd, snsd , i, sni) at line 11).
Then, due to Lemma 5, it scd-delivers a message set containing m. 2Lemma 6

Lemma 7 (Termination-2) If a process scd-delivers a messagem, every non-faulty process scd-delivers
a message set containing m.

Proof Let pi be a process pi that scd-delivers a message m. At line 20, there is a quadruplet qdplt ∈
to_deliver i such that qdplt.msg = m. At line 15, qdplt ∈ buffer i, and qdplt was inserted in buffer i

at line 10, just before pi fifo-broadcast the message FORWARD_MSG(m, sd, snsd , i, sni). By Lemma 3,
every non-faulty process pj sends a message FORWARD_MSG(m, sd, snsd , j, snj), so by Lemma 5, pj
scd-delivers a message set containing m. 2Lemma 7

Theorem 1 Algorithm 1 implements the SCD-broadcast communication abstraction in CAMPn,t[t <
n/2]. Moreover, each invocation of the operation scd_broadcast() requiresO(n2) protocol messages. If
there is an upper bound ∆ on messages transfer delays (and local computation times are equal to zero),
each SCD-broadcast takes at most 2∆ time units.

Proof The proof follows from Lemma 1 (Validity), Lemma 2 (Integrity), Lemma 4 (MS-Ordering),
Lemma 6 (Termination-1), and Lemma 7 (Termination-2).

The O(n2) message complexity comes from the fact that, due to the predicates of line 5 and 6, each
application message m is forwarded at most once by each process (line 11). The 2∆ follows from the
same argument. 2Theorem 1
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5 An SCD-broadcast-based Communication Pattern

All the algorithms implementing concurrent objects and tasks, which are presented in this paper, are
based on the same communication pattern described by Algorithm 2. This pattern involves each process,
either as a client (when it invokes an operation), or as a server (when it scd-delivers a message set).

When a process pi invokes an operation op(), it executes once the lines 1-3 for a task, and 0, 1, or
2 times for an operation on a concurrent object. In this last case, this number of times depends on the
consistency condition which is implemented (linearizability [23] or sequential consistency [28]).

operation op() is
According to the object/task that is implemented, and its consistency condition (if it is an object,
linearizability vs seq. consistency), execute 0, 1, or 2 times the lines 1-3 where the message type
TYPE is either a pure synchronization message SYNC or an object/task-dependent message MSG;

(1) donei ← false;
(2) scd_broadcast TYPE(a, b, ..., i);

a, b, ... are data, and i is the id of the invoking process; a message SYNC carries only the id of its sender;
(3) wait(donei);
(4) According to the states of the local variables, compute a result r; return(r).

when the message set { MSG(..., j1), . . . , MSG(..., jx)), SYNC(jx+1), . . . , SYNC(jy) } is scd-delivered do
(5) for each message m = MSG(..., j) do statements specific to the object/task that is implemented end for;
(6) if ∃` : j` = i then donei ← true end if.

Algorithm 2: Communication pattern (Code for pi)

All the messages sent by a process pi are used to synchronize its local data representation of the
object, or its local view of the current state of the task. This synchronization is realized by the Boolean
donei and the parameter i carried by every message (lines 1, 3, and 6): pi is blocked until the message
it scd-broadcast just before is scd-delivered. The values carried by a message MSG are related to the
object/task that is implemented, and may require local computation.

It appears that the combination of this communication pattern and the properties of SCD-broadcast
provides us with a single simple framework that allows for correct implementations of a specific family
of concurrent objects and tasks.

The next three sections describe algorithms implementing a snapshot object, a counter object, and
the lattice agreement task, respectively. All these algorithms consider the system model CAMPn,t[∅]
enriched with SCD-broadcast (denoted CAMPn,t[SCD-broadcast]), and use the previous communica-
tion pattern.

6 The Power of SCD-broadcast: Snapshot Object

6.1 Snapshot object

Definition. The snapshot object was introduced in [1, 3]. A snapshot object is an array REG [1..m]
of atomic read/write registers which provides the processes with two operations, denoted write(r,−)
and snapshot(). The invocation of write(r, v), where 1 ≤ r ≤ m, by a process pi assigns atomically
v to REG [r]. The invocation of snapshot() returns the value of REG [1..m] as if it was executed
instantaneously. Hence, in any execution of a snapshot object, its operations write() and snapshot() are
linearizable.

The underlying atomic registers can be Single-Reader (SR) or Multi-Reader (MR) and Single-Writer
(SR) or Multi-Writer (MW). We consider only SWMR and MWMR registers. If the registers are SWMR
the snapshot is called SWMR snapshot (and we have then m = n). Moreover, we always have r = i,
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when pi invokes write(r,−). If the registers are MWMR, the snapshot object is called MWMR.

Implementations based on read/write registers. Implementations of both SWMR and MWMR snap-
shot objects on top of read/write atomic registers have been proposed (e.g., [1, 3, 25, 26]). The “hard-
ness” to build snapshot objects in read/write systems and associated lower bounds are presented in the
survey [17]. The best algorithm known ([7]) to implement an SWMR snapshot requires O(n log n)
read/write on the base SWMR registers for both write() and snapshot(). As far as MWMR snapshot
objects are concerned, there are implementations where each operation has an O(n) cost3.

As far as the construction of an SWMR (or MWMR) snapshot object in crash-prone asynchronous
message-passing systems where t < n/2 is concerned, it is possible to stack two constructions: first an
algorithm implementing SWMR (or MWMR) atomic read/write registers (e.g., [5])), and, on top of it,
an algorithm implementing an SWMR (or MWMR) snapshot object. This stacking approach provides
objects whose operation cost is O(n2 log n) messages for SWMR snapshot, and O(n2) messages for
MWMR snapshot.

6.2 An algorithm for atomic MWMR snapshot in CAMPn,t[SCD-broadcast]

Local representation of REG at a process pi. At each process pi, REG [1..m] is represented by three
local variables regi[1..m] (data part), plus tsai[1..m] and donei (control part).
• donei is a Boolean variable.

• reg i[1..m] contains the current value of REG [1..m], as known by pi.

• tsai[1..m] is an array of timestamps associated with the values stored in reg i[1..m]. A timestamp
is a pair made of a local clock value and a process identity. Its initial value is 〈0,−〉. The fields
associated with tsai[r] are denoted 〈tsai[r].date, tsai[r].proc〉.

Timestamp-based order relation. We consider the classical lexicographical total order relation on

timestamps, denoted <ts. Let ts1 = 〈h1, i1〉 and ts2 = 〈h2, i2〉. We have ts1 <ts ts2
def
= (h1 <

h2) ∨ ((h1 = h2) ∧ (i1 < i2)).

operation snapshot() is
(1) donei ← false; scd_broadcast SYNC(i); wait(donei);
(2) return(reg i[1..m]).

operation write(r, v) is
(3) donei ← false; scd_broadcast SYNC(i); wait(donei);
(4) donei ← false; scd_broadcast WRITE(r, v, 〈tsai[r].date+ 1, i〉); wait(donei).

when the message set { WRITE(rj1 , vj1 , 〈datej1 , j1〉), . . . , WRITE(rjx , vjx , 〈datejx , jx〉),
SYNC(jx+1), . . . , SYNC(jy) } is scd-delivered do

(5) for each r such that WRITE(r,−,−) ∈ scd-delivered message set do
(6) let 〈date, writer〉 be the greatest timestamp in the messages WRITE(r,−,−);
(7) if (tsai[r] <ts 〈date, writer〉)
(8) then let v the value in WRITE(r,−, 〈date, writer〉);
(9) regi[r]← v; tsai[r]← 〈date, writer〉
(10) end if;
(11) end for;
(12) if ∃` : j` = i then donei ← true end if.

Algorithm 3: Construction of an MWMR snapshot object CAMPn,t[SCD-broadcast] (code for pi)

3Snapshot objects built in read/write models enriched with operations such as Compare&Swap, or LL/SC, have also been
considered, e.g., [25, 27]. Here we are interested in pure read/write models.
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Algorithm 3: snapshot operation. This algorithm consists of one instance of the communication pat-
tern introduced in Section 5 (line 1), followed by the return of a copy of the local value of reg i[1..m]
(line 2). The message SYNC(i), which is scd-broadcast is a pure synchronization message, whose aim is
to entail the refreshment of the value of reg i[1..m] (lines 5-11) which occurs before the setting of donei

to true (line 12).

Algorithm 3: write operation. (Lines 3-4) When a process pi wants to assign a value v to REG [r],
it invokes REG .write(r, v). This operation is made up of two instances of the communication pattern.
The first one (line 3) is a re-synchronization, as in the snapshot operation, whose side effect is here
to provide pi with an up-to-date value of tsai[r].date. In the second instance of the communication
pattern, pi associates the timestamp 〈tsai[r].date + 1, i〉 with v, and scd-broadcasts the data/control
message WRITE(r, v, 〈tsai[r].date + 1, i〉). In addition to informing the other processes on its write of
REG [r], this message WRITE() acts as a re-synchronization message, exactly as a message SYNC(i).
When this synchronization terminates (i.e., when the Boolean donei is set to true), pi returns from the
write operation.

Algorithm 3: scd-delivery of a set of messages. When process pi scd-delivers a message set, namely,
{ WRITE(rj1 , vj1 , 〈datej1 , j1〉), . . . , WRITE(rjx , vjx , 〈datejx , jx〉), SYNC(jx+1), . . . , SYNC(jy) } it
first looks if there are messages WRITE(). If it is the case, for each register REG [r] for which there
are messages WRITE(r,−,−) (line 5), pi computes the maximal timestamp carried by these messages
(line 6), and updates accordingly its local representation of REG [r] (lines 7-10). Finally, if pi is the
sender of one of these messages (WRITE() or SYNC()), donei is set to true, which terminates pi’s re-
synchronization (line 12).

Remark: Linearizability imposes that, when two snapshot operations are not concurrent, the second
operation returns a value at least as recent as the first one. In [5], this is done by forcing the readers to
mimic the algorithm executed by the writers, which is usually summarized by the adage “readers must
write”. This step is not required in Algorithm 3 because the SYNC() message sent during a snapshot
operation by pi (Line 1) serves two purposes: 1) it gathers all WRITE(−,−,−) messages sent by write
operations that have already terminated when pi started its snapshot operation, and 2) it orders, by transi-
tivity, all SYNC() messages sent by subsequent snapshot operations with all WRITE(−,−,−) messages
received by pi before the end of its snapshot operation.

6.3 Proof of Algorithm 3

As they are implicitly used in the proofs that follow, let us recall the properties of the SCD-broadcast
abstraction. The non-faulty processes scd-deliver the same messages (exactly one each), and each of
them was scd-broadcast. As a faulty process behaves correctly until it crashes, it scd-delivers a subset
of the messages scd-delivered by the non-faulty processes.

Without loss of generality, we assume that there is an initial write operation issued by a non-faulty
process. Moreover, if a process crashes in a snapshot operation, its snapshot is not considered. If a
process crashes in a write operation, its write is considered only if the message WRITE() it sent at line 4
is scd-delivered to at least one non-faulty process (and by the Termination-2 property, to all non-faulty
processes). Let us notice that a message SYNC() scd-broadcast by a process pi does not modify the local
variables of the other processes.

Lemma 8 If a non-faulty process invokes an operation, it returns from its invocation.

Proof Let pi be a non-faulty process that invokes a read or write operation. By the Termination-
1 property of SCD-broadcast, it eventually receives a message set containing the message SYNC() or
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WRITE() it sends at line 2, 3 or 4. As all the statements associated with the scd-delivery of a message
set (lines 5-12) terminate, it follows that the synchronization Boolean donei is eventually set to true.
Consequently, pi returns from the invocation of its operation. 2Lemma 8

Extension of the relation <ts . The relation <ts is extended to a partial order on arrays of times-

tamps, denoted ≤tsa , defined as follows: tsa1[1..m] ≤tsa tsa2[1..m]
def
= ∀r : (tsa1[r] = tsa2[r] ∨

tsa1[r] <ts tsa2[r]). Moreover, tsa1[1..m] <tsa tsa2[1..m]
def
= (tsa1[1..m] ≤tsa tsa2[1..m]) ∧

(tsa1[1..m] 6= tsa2[1..m]).

Definition. Let TSAi be the set of the array values taken by tsai[1..m] at line 12 (end of the processing
of a message set by process pi). Let TSA = ∪1≤i≤nTSAi.

Lemma 9 The order ≤tsa is total on TSA.

Proof Let us first observe that, for any i, all values in TSAi are totally ordered (this comes from
tsi[1..m] whose entries can only increase, lines 7 and 10). Hence, let tsa1[1..m] be an array value of
TSAi, and tsa2[1..m] an array value of TSAj , where i 6= j.

Let us assume, by contradiction, that ¬(tsa1 ≤tsa tsa2) and ¬(tsa2 ≤tsa tsa1). As ¬(tsa1 ≤tsa

tsa2), there is a registers r such that tsa2[r] < tsa1[r]. According to lines 7 and 9, there is a message
WRITE(r,−, tsa1[r]) received by pi when tsai = tsa1 and not received by pj when tsaj = tsa2
(because tsa2[r] < tsa1[r]). Similarly, there is a message WRITE(r′,−, tsa2[r′]) received by pj when
tsaj = tsa2 and not received by pi when tsai = tsa1. This situation contradicts the MS-Ordering
property, from which we conclude that either tsa1 ≤tsa tsa2 or tsa2 ≤tsa tsa1. 2Lemma 9

Definitions. Let us associate a timestamp ts(write(r, v)) with each write operation as follows. Let pi be
the invoking process; ts(write(r, v)) is the timestamp of v as defined by pi at line 4, i.e., 〈tsai[r].date+
1, i〉.

Let op1 and op2 be any two operations. The relation ≺ on the whole set of operations is defined as
follows: op1 ≺ op2 if op1 terminated before op2 started. It is easy to see that≺ is a real-time-compliant
partial order on all the operations.

Lemma 10 No two write operations on the same register write1(r, v) and write2(r, w) have the same
timestamp, and (write1(r, v) ≺ write2(r, w))⇒ (ts(write1) <ts ts(write2)).

Proof Let 〈date1, i〉 and 〈date2, j〉 be the timestamp of write1(r, v) and write2(r, w), respectively. If
i 6= j, write1(r, v) and write2(r, w) have been produced by different processes, and their timestamp
differ at least in their process identity.

So, let us consider that the operations have been issued by the same process pi, with write1(r, v) first.
As write1(r, v) precedes write2(r, w), pi first (line 4) invoked scd_broadcast WRITE(r, v, 〈date1, i〉),
and later WRITE(r, w, 〈date2, i〉). It follows that these SCD-broadcast invocations are separated by a
local reset of the Boolean donei at line 4. Moreover, before the reset of donei due to the scd-delivery
of the message {. . . ,WRITE(r, v, 〈date1, i〉), . . .}, we have tsai[r].datei ≥ date1 (lines 6-10). Hence,
we have tsai[r].date ≥ date1 before the reset of donei (line 12). Then, due to the “+1” at line 4,
WRITE(r, w, 〈date2, i〉) is such that date2 > date1, which concludes the proof of the first part of the
lemma.

Let us now consider that write1(r, v) ≺ write2(r, w). If write1(r, v) and write2(r, w) have been
produced by the same process we have date1 < date2 from the previous reasoning. So let us as-
sume that they have been produced by different processes pi and pj . Before terminating write1(r, v)
(when the Boolean donei is set true at line 12), pi received a message set ms1i containing the mes-
sage WRITE(r, v, 〈date1, i〉). When pj executes write2(r, w), it first invokes scd_broadcast SYNC(j)
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at line 3. Because write1(r, v) terminated before write2(r, w) started, this message SYNC(j) cannot
belong to ms1i.

Due to Integrity and Termination-2 of SCD-broadcast, pj eventually scd-delivers exactly one mes-
sage set ms1j containing WRITE(r, v, 〈date1, i〉). Moreover, it also scd-delivers exactly one message
set ms2j containing its own message SYNC(j). On the the other side, pi scd-delivers exactly one mes-
sage set ms2i containing the message SYNC(j). It follows from the MS-Ordering property that, if
ms2j 6= ms1j , pj cannot scd-deliver ms2j before ms1j . Then, whatever the case (ms1j = ms2j
or ms1j is scd-delivered at pj before ms2j), it follows from the fact that the messages WRITE() are
processed (lines 5-11) before the messages SYNC(j) (line 12), that we have tsaj [r] ≥ 〈date1, i〉 when
donej is set to true. It then follows from line 4 that date2 > date1, which concludes the proof of the
lemma. 2Lemma 10

Associating timestamp arrays with operations. Let us associate a timestamp array tsa(op)[1..m] with
each operation op() as follows.
• Case op() = snapshot(). Let pi be the invoking process; tsa(op) is the value of tsai[1..m] when
pi returns from the snapshot operation (line 2).

• Case op() = write(r, v). Let mintsa({A}), whereA is a set of array values, denote the smallest ar-

ray value ofA according to<tsa . Let tsa(op)
def
= mintsa({tsa[1..m] ∈ TSA such that ts(op) ≤ts

tsa[r]}). Hence, tsa(op) is the first tsa[1..m] of TSA, that reports the operation op() = write(r, v).

Lemma 11 Let op and op′ be two distinct operations such that op ≺ op′. We have tsa(op) ≤tsa

tsa(op′). Moreover, if op′ is a write operation, we have tsa(op) <tsa tsa(op′).

Proof Let pi and pj be the processes that performed op and op′, respectively. Let SYNCj be the SYNC(j)
message sent by pj (at line 1 or 3) during the execution of op′. Let term_tsa i be the value of tsai[1..m]
when op terminates (line 2 or 4), and sync_tsa j the value of tsaj [1..m] when donej becomes true for
the first time after pj sent SYNCj (line 1 or 3). Let us notice that term_tsa i and sync_tsa j are elements
of the set TSA.

According to lines 7 and 10, for all r, tsai[r] is the largest timestamp carried by a message WRITE(r, v,−)
received by pi in a message set before op terminates. Let m be a message such that there is a set sm
scd-delivered by pi before it terminated op. As pj sent SYNCj after pi terminated, pi did not receive any
set containing SYNCj before it terminated op. By the properties Termination-2 and MS-Ordering, pj
received message m in the same set as SYNCj or in a message set sm′ received before the set containing
SYNCj . Therefore, we have term_tsa i ≤tsa sync_tsa j .

If op is a snapshot operation, then tsa(op) = term_tsa i . Otherwise, op() = write(r, v). As pi has
to wait until it processes a set of messages including its WRITE() message (and executes line 12), we
have ts(op) <ts term_tsa i [r]. Finally, due to the fact that term_tsa i ∈ TSA and Lemma 9, we have
tsa(op) ≤tsa term_tsa i .

If op′ is a snapshot operation, then sync_tsa j = tsa(op′) (line 2). Otherwise, op() = write(r, v)
and thanks to the +1 in line 4, sync_tsa j [r] is strictly smaller than tsa(op′)[r] which, due to Lemma 9,
implies sync_tsa j <tsa tsa(op′).

It follows that, in all cases, we have
tsa(op) ≤tsa term_tsa i ≤tsa sync_tsa j ≤tsa tsa(op′)

and if op′ is a write operation, we have
tsa(op) ≤tsa term_tsa i ≤tsa sync_tsa j <tsa tsa(op′),

which concludes the proof of the lemma. 2Lemma 11

The previous lemmas allow the operations to be linearized (i.e., totally ordered in an order compliant
with both the sequential specification of a register, and their real-time occurrence order) according to a
total order extension of the reflexive and transitive closure of the→lin relation defined thereafter.
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Definition 1 Let op, op′ be two operations. We define the →lin relation by op →lin op′ if one of the
following properties holds:

• op ≺ op′,

• tsa(op) <tsa tsa(op′),

• tsa(op) = tsa(op′), op is a write operation and op′ is a snapshot operation,

• tsa(op) = tsa(op′), op and op′ are two write operations on the same register and ts(op) <ts ts(op′),

Lemma 12 The snapshot object built by Algorithm 3 is linearizable.

Proof We recall the definition of the→lin relation: op→lin op′ if one of the following properties holds:

• op ≺ op′,

• tsa(op) <tsa tsa(op′),

• tsa(op) = tsa(op′), op is a write operation and op′ is a snapshot operation,

• tsa(op) = tsa(op′), op and op′ are two write operations on the same register and ts(op) <ts ts(op′),

We define the→?
lin relation as the reflexive and transitive closure of the→lin relation.

Let us prove that the →?
lin relation is a partial order on all operations. Transitivity and reflexivity

are given by construction. Let us prove antisymmetry. Suppose there are op0, op1, ..., opm such that
op0 = opm and opi →lin opi+1 for all i < m. By Lemma 11, for all i < m, we have tsa(opi) ≤tsa

tsa(opi+1), and tsa(opm) = tsa(op0), so the timestamp array of all operations are the same. Moreover,
if opi is a snapshot operation, then opi ≺ op(i+1)%m is the only possible case (% stands for “modulo”) ,
and by Lemma 11 again, op(i+1)%m is a snapshot operation. Therefore, only two cases are possible.

• Let us suppose that all the opi are snapshot operations and for all i, opi ≺ op(i+1)%m. As ≺ is a
partial order relation, it is antisymmetric, so all the opi are the same operation.

• Otherwise, all the opi are write operations. By Lemma 11, for all opi 6≺ op(i+1)%m. The opera-
tions opi and opi+1%m are ordered by the fourth point, so they are write operations on the same
register and ts(opi) <ts ts(opi+1%m). By antisymmetry of the <ts relation, all the opi have the
same timestamp, so by Lemma 10, they are the same operation, which proves antisymmetry.

Let ≤lin be a total order extension of→?
lin. Relation ≤lin is real-time compliant because→?

lin contains
≺.

Let us consider a snapshot operation op and a register r such that tsa(op)[r] = 〈date1, i〉. Ac-
cording to line 4, it is associated to the value v that is returned by read1() for r, and comes from a
WRITE(r, v, 〈date1, i〉) message sent by a write operation opr = write(r, v). By definition of tsa(opr),
we have tsa(opr) ≤tsa tsa(op) (Lemma 11), and therefore opr ≤lin op. Moreover, for any different
write operation op′r on r, by Lemma 10, ts(op′r) 6= ts(opr). If ts(op′r) <ts ts(opr), then op′r ≤lin opr.
Otherwise we have tsa(op) <tsa tsa(op′r), and (due to the first item of the definition of→lin) we have
op ≤lin op′r. In both cases, the value written by opr is the last value written on r before op, according
to ≤lin. 2Lemma 12

Time and Message costs. An invocation of snapshot() involves one invocation of scd_broadcast(),
while an invocation of write() involves two. As scd_broadcast() costs O(n2) protocol messages and
2∆ time units, snapshot() cost the same, and write() costs the double.

Theorem 2 Algorithm 3 builds an MWMR atomic snapshot object in the model CAMPn,t[SCD-broadcast].
The operation snapshot costs one SCD-broaddast, the write() operation costs two.
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Figure 2: Comparison of various algorithms (best complexities are highlighted)

Proof The proof follows from Lemmas 8-12. The cost of the operation snapshot() follows from line 1,
and the one of write() follows from lines 3-4. 2Theorem 2

The next corollary follows from (i)Theorem 1, (ii) Theorem 2 and (iii) the fact that the constraint
(t < n/2) is an upper bound on the number of faulty processes to build a read/write register (or snapshot
object) [5].

Corollary 1 Algorithm 1 is resiliency optimal.

Comparison with other algorithms. Interestingly, Algorithm 3 is more efficient (from both time
and message point of views) than the stacking of a read/write snapshot algorithm running on top of
a message-passing emulation of a read/write atomic memory (as presented on Figure 2, such a stacking
would costs O(n2 log n) messages and O(n∆) time units, see Section 6.1).

Sequentially consistent snapshot object. When considering Algorithm 3, let us suppress line 1 and
line 3 (i.e., the messages SYNC are suppressed). The resulting algorithm no more implements a lineariz-
able snapshot object. However, it still implements a snapshot object that is sequentially consistent [28].
This means that the order in which each process sees the operations performed on the snapshot object
is consistent with a same total order similarly to linearizability except that this order may not respect
real time. This results from the suppression of the real-time compliance due to the messages SYNC.
The operation snapshot() is purely local, hence its cost is 0. The cost of the operation write() is one
SCD-broadcast, i.e., 2∆ time units and O(n2) protocol messages. The proof of this algorithm is left to
the reader.

7 The Power of SCD-broadcast: Counter Object

Definition. Let a counter be an object which can be manipulated by three parameterless operations
denoted increase(), decrease(), and read(). Let C be a counter. From a sequential specification point of
view C.increase() adds 1 to C, C.decrease() subtracts 1 from C, C.read() returns the value of C. As
indicated in the Introduction, due to its commutative operations, this object is a good representative of a
class of CRDT objects (conflict-free replicated data type as defined in [38]).

An algorithm satisfying linearizability. Algorithm 4 implements an atomic counter C. Each process
pi manages a local variable counteri which stores it s loval view of the counter C. The text of the
algorithm is self-explanatory.
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operation increase() is
(1) donei ← false; scd_broadcast PLUS(i); wait(donei);
(2) return().

operation decrease() is the same as increase() where PLUS(i) is replaced by MINUS(i).

operation read() is
(3) donei ← false; scd_broadcast SYNC(i); wait(donei);
(4) return(counteri).

when the message set { PLUS(j1), . . . ,MINUS(jx), . . . , SYNC(jy), . . . } is scd-delivered do
(5) let p = number of messages PLUS() in the message set;
(6) let m = number of messages MINUS() in the message set;
(7) counteri ← counteri + p−m;
(8) if ∃` : j` = i then donei ← true end if.

Algorithm 4: Construction of an atomic counter in CAMPn,t[SCD-broadcast] (code for pi)

The operation read() is similar to the operation snapshot() of the snapshot object. Differently from
the write() operation on a snapshot object (which requires a synchronization message SYNC() and a
data/synchronization message WRITE()), the update operations increase() and decrease() require only
one data/synchronization message PLUS() or MINUS(). This is the gain obtained from the fact that,
from a process pi point of view, the operations increase() and decrease() which appear between two
consecutive of its read() invocations are commutative.

Lemma 13 If a non-faulty process invokes an operation, it returns from its invocation.

Proof Let pi be a non-faulty process that invokes increase(), decrease() or read(). By the Termination-1
property of SCD-broadcast, it eventually receives a message set containing the message PLUS(), MINUS()
or SYNC() it sends at line 1 or 3. As all the statements associated with the scd-delivery of a message
set (lines 5-8) terminate, it follows that the synchronization Boolean donei is eventually set to true.
Consequently, pi returns from the invocation of its operation. 2Lemma 13

Definition 2 Let opi be an operation performed by pi. We define past(opi) as a set of messages by:
• If opi is an increase() or decrease() operation, and mi is the message sent during its execution at

line 1, then past(opi) = {m : m 7→ mi}.
• If opi is a read() operation, then past(opi) is the union of all sets of messages scd_delivered by
pi before it executed line 4.

We define the→lin relation by op→lin op′ if one of the following conditions hold:
• past(op)  past(op′);

• past(op) = past(op′), op is an increase() or a decrease() operation and op′ is a read() operation.

Lemma 14 The counter object built by Algorithm 4 is linearizable.

Proof Let us prove that→lin is a strict partial order relation. Let us suppose op →lin op′ →lin op′′.
If op′ is a read() operation, we have past(op) ⊆ past(op′)  past(op′′). If op′ is an increase() or a
decrease() operation, we have past(op)  past(op′) ⊆ past(op′′). In both cases, we have past(op)  
past(op′′), which proves transitivity as well as antisymmetry and irreflexivity since it is impossible to
have past(op)  past(op).

Let us prove that →lin is real-time compliant. Let opi and opj be two operations performed by
processes pi and pj respectively, and let mi and mj be the message sent during the execution of opi
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and opj respectively, on line 1 or 3. Suppose that opi ≺ opj (opi terminated before opj started). When
pi returns from opi, by the waiting condition of line 1 or 3, it has received mi, but pj has not yet
sent mj . Therefore, mi 7→i mj , and consequently mj /∈ past(opi). By the waiting condition during the
execution of opj (line 1 or 3), we havemj ∈ past(opj). By the Containment property of SCD-broadcast,
we therefore have past(opi)  past(opj), so opi →lin opj . Let ≤lin be a total order extension of→?

lin.
It is real-time compliant because→?

lin contains ≺.
Let us now consider the value returned by a read() operation op. Let p be the number of PLUS()

messages in past(op) and let m be the number of MINUS() messages in past(op). According to line 1,
op returns the value of counteri that is modified only at line 7 and contains the value p −m, by com-
mutativity of additions and subtractions. Moreover, due to the definition of→lin, all pairs composed of
a read() and an increase() or decrease() operations are ordered by→lin, and consequently, op has the
same increase() and decrease() predecessors according to both→lin and to ≤lin. Therefore, the value
returned by op is the number of times increase() has been called, minus the number of times increase()
has been called, before op according to ≤lin, which concludes the lemma. 2Lemma 14

Theorem 3 Algorithm 4 implements an atomic counter.

Proof Follows from Lemmas 13 and 14. 2Theorem 3

operation increase() is
(1) lsci ← lsci + 1;
(2) scd_broadcast PLUS(i);
(3) return().

operation decrease() is the same as increase() where PLUS(i) is replaced by MINUS(i).

operation read() is
(4) wait(lsci = 0);
(5) return(counteri).

when the message set { PLUS(j1), . . . ,MINUS(jx), . . . } is scd-delivered do
(6) let p = number of messages PLUS() in the message set;
(7) let m = number of messages MINUS() in the message set;
(8) counteri ← counteri + p−m;
(9) let c = number of messages PLUS(i) and MINUS(i) in the message set;
(10) lsci ← lsci − c.

Algorithm 5: Construction of a seq. consistent counter in CAMPn,t[SCD-broadcast] (code for pi)

An algorithm satisfying sequential consistency. The previous algorithm can be easily modified to
obtain a sequentially consistent counter. To this end, a technique similar to the one introduced in [8]
can be used to allow the operations increase() and decrease() to have a fast implementation. “Fast”
means here that these operations are purely local: they do not require the invoking process to wait in the
algorithm implementing them. Differently, the operation read() issued by a process pi cannot be fast,
namely, all the previous increase() and decrease() operations issued by pi must be applied to its local
copy of the counter for its invocation of read() to terminate (this is the rule known under the name “read
your writes”).

Algorithm 5 is the resulting algorithm. In addition to counteri, each process manages a synchro-
nization counter lsci initialized to 0, which counts the number of increase() and decrease() executed by
pi and not yet locally applied to counteri. Only when lsci is equal to 0, pi is allowed to read counteri.

The cost of an operation increase() and decrease() is 0 time units plus the O(n2) protocol messages
of the underlying SCD-broadcast. The time cost of the operation read() by a process pi depends on the
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value of lsci. It is 0 when pi has no “pending” counter operations.

Remark As in [8], using the same technique, it is possible to design a sequentially consistent counter in
which the operation read() is fast, while the operations increase() and decrease() are not.

8 The Power of SCD-broadcast: Lattice Agreement Task

Definition. Let S be a partially ordered set, and ≤ its partial order relation. Given S′ ⊆ S, an upper
bound of S′ is an element x of S such that ∀ y ∈ S′ : y ≤ x. The least upper bound of S′ is an upper
bound z of S′ such that, for all upper bounds y of S′, z ≤ y. S is called a semilattice if all its finite
subsets have a least upper bound. Let lub(S′) denotes the least upper bound of S′.

Let us assume that each process pi has an input value ini that is an element of a semilattice S. The
lattice agreement task was introduced in [6] and generalized in [18]. It provides each process with an
operation denoted propose(), such that a process pi invokes propose(ini) (we say that pi proposes ini);
this operation returns an element z ∈ S (we say that it decides z). The task is defined by the following
properties, where it is assumed that each non-faulty process invokes propose().

• Validity. If process pi decides outi, we have ini ≤ outi ≤ lub({in1, . . . , inn}).

• Containment. If pi decides outi and pj decides outj , we have outi ≤ outj or outj ≤ outi.
• Termination. If a non-faulty process proposes a value, it decides a value.

Algorithm. Algorithm 6 implements the lattice agreement task. It is a very simple algorithm, which
uses one instance of the communication pattern introduced in Section 5. The text of the algorithm is
self-explanatory.

operation propose(ini) is
(1) donei ← false; scd_broadcast MSG(i, ini); wait(donei);
(2) return(lub(reci)).

when the message set { MSG(j1, vj1), . . . , MSG(jx, vjx)} is scd-delivered do
(3) reci ← reci ∪ {vj1 , . . . , vjx};
(4) if ∃` : j` = i then donei ← true end if.

Algorithm 6: Solving Lattice Agreement in CAMPn,t[SCD-broadcast] (code for pi)

Theorem 4 Algorithm 6 solves lattice agreement.

Proof The Termination property follows from the Termination-1 property of SCD-broadcast (if a non-
faulty process SCD-broadcasts a message m, it SCD-delivers a message set containing m). The Validity
property follows from the definition of the lub() operation, and the fact that, when a process pi executes
line 2, reci contains ini (it executed before lines 3-4 when it received a message set containing the
message MSG(i, ini) it SCD-broadcast at line 1).

As far as the Containment property is concerned we have the following. Let us assume, by contradic-
tion, that there are two processes pi ans pj such that we have neither outi ≤ outj nor outj ≤ outi.This
means that there is a value v ∈ outi \ outj , and a value v′ ∈ outj \ outi. Let msi and ms′i be the
message sets (scd-delivered by pi) which contained v and v′ respectively. As v ∈ outi and v′ /∈ outi,
we have msi 6= ms′i, and msi was scd-delivered before ms′i.

Defining similarly msj (containing v′) and ms′j (containing v), we have ms′j 6= msj , and ms′j
was scd-delivered before msj . It follows that m 7→i m

′ and m′ 7→j m, from which it follows that
7→= ∪1≤x≤n 7→x is not a partial order. A contradiction with the SCD-broadcast definition. 2Theorem 4
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Remark 1. SCD-broadcast can be built on top of read/write registers (see below Theorem 5). It follows
that the combination of Algorithm 6 and Algorithm 7 provides us with a pure read/write algorithm solv-
ing the lattice agreement task. As far as we know, this is the first algorithm solving lattice agreement,
based only on read/write registers.

Remark 2. Similarly to the algorithms implementing snapshot objects and counters satisfying sequential
consistency (instead of linearizability), Algorithm 6 uses no message SYNC().

Let us also notice the following. Objects are specified by “witness” correct executions, which are
defined by sequential specifications. According to the time notion associated with these sequences we
have two consistency conditions: linearizability (the same “physical” time for all the objects) or sequen-
tial consistency (a logical time is associated with each object, independently from the other objects).
Differently, as distributed tasks are defined by relations from input vectors to output vectors (i.e., with-
out referring to specific execution patterns or a time notion), the notion of a consistency condition (such
as linearizability or sequential consistency) is meaningless for tasks.

9 The Computability Limit of SCD-broadcast

This section presents an algorithm building SCD-broadcast on top of SWMR snapshot objects. (Such
snapshot objects can be easily obtained from MWMR snapshot objects [16].) Hence, it follows from (a)
this algorithm, (b) Algorithm 1, and (c) the impossibility proof to build an atomic register on top of asyn-
chronous message-passing systems where t ≥ n/2 process may crash [5], that SCD-broadcast cannot
be implemented in CAMPn,t[t ≥ n/2], and snapshot objects and SCD-broadcast are computationally
equivalent.

9.1 From snapshot to SCD-broadcast

Shared objects. The shared memory is composed of two SWMR snapshot objects. Let ε denote the
empty sequence.
• SENT [1..n]: snapshot object (initialized to [∅, . . . , ∅]), such that SENT [i] contains the messages

scd-broadcast by pi.

• SETS_SEQ [1..n]: snapshot object (initialized to [ε, . . . , ε]), such that SETS_SEQ [i] contains
the sequence of the sets of messages scd-delivered by pi.

The notation ⊕ is used for the concatenation of a message set at the end of a sequence of message sets.

Local objects Each process pi manages the following local objects.
• sent i: local copy of the snapshot object SENT .

• sets_seq i: local copy of the snapshot object SETS_SEQ .

• to_deliveri : auxiliary variable whose aim is to contain the next message set that pi has to scd-
deliver.

The function members(set_seq) returns the set of all the messages contained in set_seq.

Description of Algorithm 7. When a process pi invokes scd_broadcast(m), it adds m to sent i[i] and
SENT [i] to inform all the processes on the scd-broadcast of m. It then invokes the internal procedure
progress() from which it exits once it has a set containing m (line 1).

A background task T ensures that all messages will be scd-delivered (line 2). This task invokes
repeatedly the internal procedure progress(). As, locally, both the application process and the underlying
task T can invoke progress(), which accesses the local variables of pi, those variables are protected by a
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operation scd_broadcast(m) is
(1) sent i[i]← sent i[i] ∪ {m}; SENT .write(sent i[i]); progress().

(2) background task T is repeat forever progress() end repeat.

procedure progress() is
(3) enter_mutex();
(4) catchup();
(5) sent i ← SENT .snapshot();
(6) to_deliveri ← (∪1≤j≤n sent i[j]) \members(sets_seqi[i]);
(7) if (to_deliveri 6= ∅)
(8) then sets_seqi[i]← sets_seqi[i]⊕ to_deliveri ; SETS_SEQ .write(sets_seq i[i]);
(9) scd_deliver(to_deliveri)
(10) end if;
(11) exit_mutex().

procedure catchup() is
(12) sets_seq i ← SETS_SEQ .snapshot();
(13) while (∃j, set : set is the first set in sets_seq i[j] : set 6⊆ members(sets_seq i[i]) do
(14) to_deliveri ← set \members(sets_seq i[i]);
(15) sets_seqi[i]← sets_seqi[i]⊕ to_deliveri ; SETS_SEQ .write(sets_seq i[i]);
(16) scd_deliver(to_deliveri)
(17) end while.

Algorithm 7: An implementation of SCD-broadcast on top of snapshot objects (code for pi)

local fair mutual exclusion algorithm providing the operations enter_mutex() and exit_mutex() (lines 3
and 11).

The procedure progress() first invokes the internal procedure catchup(), whose aim is to allow pi to
scd-deliver sets of messages which have been scd-broadcast and not yet locally scd-delivered.

To this end, catchup() works as follows (lines 12-17). Process pi first obtains a snapshot of SETS_SEQ ,
and saves it in sets_seq i (line 12). This allows pi to know which message sets have been scd-delivered
by all the processes; pi then enters a “while” loop to scd-deliver as many message sets as possible ac-
cording to what was scd-delivered by the other processes. For each process pj that has scd-delivered a
message set set containing messages not yet scd-delivered by pi (predicate of line 13), pi builds a set
to_deliver i containing the messages in set that it has not yet scd-delivered (line 14), and locally scd-
delivers it (line 16). This local scd-delivery needs to update accordingly both sets_seq i[i] (local update)
and SETS_SEQ [i] (global update).

When it returns from catchup(), pi strives to scd-deliver messages not yet scd-delivered by the other
processes. To this end, it first obtains a snapshot of SENT , which it stores in sent i (line 5). If there
are messages that can be scd-delivered (computation of to_deliver i at line 6, and predicate at line 7), pi
scd-delivers them and updates sets_seq i[i] and SETS_SEQ [i] (lines 7-9) accordingly.

9.2 Proof of Algorithm 7

Lemma 15 If a process scd-delivers a set containing a messagem, some process invoked scd_broadcast(m).

Proof The proof follows directly from the text of the algorithm, which copies messages from SENT to
SETS_SEQ , without creating new messages. 2Lemma 15

Lemma 16 No process scd-delivers the same message twice.

Proof Let us first observe that, due to lines 7 and 15, all messages that are scd-delivered at a process pi
have been added to sets_seq i[i]. The proof then follows directly from (a) this observation, (b) the fact
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that (due to the local mutual exclusion at each process) sets_seq i[i] is updated consistently, and (c) lines
6 and 14, which state that a message already scd-delivered (i.e., a message belonging to sets_seq i[i])
cannot be added to to_deliver i. 2Lemma 16

Lemma 17 Any invocation of scd_broadcast() by a non-faulty process pi terminates.

Proof The proof consists in showing that the internal procedure progress() terminates. As the mutex
algorithm is assumed to be fair, process pi cannot block forever at line 3. Hence, pi invokes the internal
procedure catchup(). It then issues first a snapshot invocation on SETS_SEQ and stores the value
it obtains the value of sets_seq i. There is consequently a finite number of message sets in sets_seq i.
Hence, the “while” of lines 13-17 can be executed only a finite number of times, and it follows that any
invocation of catchup() by a non-faulty process terminates. The same reasoning (replacing SETS_SEQ
by SENT ) shows that process pi cannot block forever when it executes the lines 5-10 of the procedure
progress(). 2Lemma 17

Lemma 18 If a non-faulty process scd-broadcasts a message m, it scd-delivers a message set contain-
ing m.

Proof Let pi be a non-faulty process that scd-broadcasts a message m. As it is non-faulty, pi adds m
to SENT [i] and then invokes progress() (line 1). As m ∈ SENT , it is eventually added to to_deliveri
if not yet scd-delivered (line 6), and scd-delivered at line 9, which concludes the proof of the lemma.

2Lemma 18

Lemma 19 If a non-faulty process scd-delivers a message m, every non-faulty process scd-delivers a
message set containing m.

Proof Let us assume that a process scd-delivers a message set containing a message m. It follows that
the process that invoked scd_broadcast(m) added m to SENT (otherwise no process could scd-deliver
m). Let pi be a correct process. It invokes progress() infinitely often (line 2). Hence, there is a first
execution of progress() such that senti contains m (line 5). If then follows from line 6 that m will
be added to to_deliver i (if not yet scd-delivered). If follows that pi will scd-deliver a set of messages
containing m at line 9. 2Lemma 19

Lemma 20 Let pi be a process that scd-delivers a set msi containing a message m and later scd-
delivers a set ms′i containing a message m′. No process pj scd-delivers first a set ms′j containing m′

and later a set msj containing m.

Proof Let us consider two messages m and m′. Due to total order property on the operations on the
snapshot object SENT , it is possible to order the write operations ofm andm′ into SENT . Without loss
of generality, let us assume that m is added to SENT before m′. We show that no process scd-delivers
m′ before m.4

Let us consider a process pi that scd-delivers the message m′. There are two cases.

• pi scd-delivers the message m′ at line 9. Hence, pi obtained m′ from the snapshot object SENT
(lines 5-6). As m was written in SENT before m′, we conclude that SENT contains m. It then
follows from line 6 that, if pi has not scd-delivered m before (i.e., m is not in sets_seq i[i]), then
pi scd-delivers it in the same set as m′.

4Let us notice that it is possible that a process scd-delivers them in two different message sets, while another process
scd-delivers them in the same set (which does not contradicts the lemma).

23



• pi scd-delivers the message m′ at line 16. Due to the predicate used at line 13 to build a set of
messages to scd-deliver, this means that there is a process pj that has previously scd-delivered a
set of messages containing m′.
Moreover, let us observe that the first time the message m′ is copied from SENT to some
SETS_SEQ [x] occurs at line 8. As m was written in SENT before m′, the corresponding pro-
cess px cannot see m′ and not m. It follows from the previous item that px has scd-delivered m in
the same message set (as the one including m′), or in a previous message set. It then follows from
the predicate of line 13 that pi cannot scd-deliver m′ before m.

To summarize, the scd-deliveries of message sets in the procedure catchup() cannot violate the
MS-Ordering property, which is established at lines 6-10.

2Lemma 20

Theorem 5 Algorithm 7 implements SCD-Broadcast in the classical wait-free read/write model CARWn,t[t <
n].

Proof The proof follows from Lemma 15 (Validity), Lemma 16 (Integrity), Lemmas 17 and 18 (Termination-
1), Lemma 19 (Termination-2), and Lemma 20 (MS-Ordering). 2Theorem 5

10 Conclusion

This paper has introduced a new communication abstraction, suited to asynchronous message-passing
systems where computing entities (processes) may crash. Denoted SCD-broadcast, it allows processes to
broadcast messages and deliver sets of messages (instead of delivering each message one after the other).
More precisely, if a process pi delivers a set of messages containing a message m, and later delivers a
set of messages containing a message m′, no process pj can deliver a set of messages containing m′

before a set of messages containing m. Moreover, there is no local constraint imposed on the processing
order of the messages belonging to a same message set. SCD-broadcast has the following noteworthy
features:

• It can be implemented in asynchronous message passing systems where any minority of processes
may crash. Its costs are upper bounded by twice the network latency (from a time point of view)
and O(n2) (from a message point of view).

• Its computability power is the same as the one of atomic read/write register (anything that can be
implemented in asynchronous read/write systems can be implemented with SCD-broadcast).

• It promotes a communication pattern which is simple to use, when one has to implement concur-
rent objects defined by a sequential specification or distributed tasks.

• When interested in the implementation of a concurrent object O, a simple weakening of the SCD-
broadcast-based atomic implementation of O provides us with an SCD-broadcast-based imple-
mentation satisfying sequential consistency (moreover, the sequentially consistent implementation
is more efficient than the atomic one).

On programming languages for distributed computing. Differently from sequential computing for
which there are plenty of high level languages (each with its idiosyncrasies), there is no specific lan-
guage for distributed computing. Instead, addressing distributed settings is done by the enrichment of
sequential computing languages with high level communication abstractions. When considering asyn-
chronous systems with process crash failures, total order broadcast is one of them. SCD-broadcast is a
candidate to be one of them, when one has to implement read/write solvable objects and distributed tasks.
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Remark. It is worth noticing that the a self-stabilizing version of the SCD algorithm presented in this
article is described in [30], and an extension of it where up to t < n/4 processes may commit Byzantine
failures is described in [10]. It is still an open problem to find an SCD algorithm coping with up to
t < n/3 Byzantine processes.
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