Set-constrained delivery broadcast: A communication abstraction for read/write implementable distributed objects

Damien Imbs, Achour Mostéfaoui, Matthieu Perrin, Michel Raynal

To cite this version:
Damien Imbs, Achour Mostéfaoui, Matthieu Perrin, Michel Raynal. Set-constrained delivery broadcast: A communication abstraction for read/write implementable distributed objects. Theoretical Computer Science, 2021, 886, pp.49-68. 10.1016/j.tcs.2021.06.044 . hal-03304269

HAL Id: hal-03304269
https://hal.science/hal-03304269
Submitted on 28 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Set-Constrained Delivery Broadcast: a Communication Abstraction for Read/Write Implementable Distributed Objects

Damien Imbs°, Achour Mostéfaoui†, Matthieu Perrin†, Michel Raynal⋆, ♦

°LIS, Aix-Marseille Université & CNRS & Univ. Toulon, 13288 Marseille, France
†LS2N, Université de Nantes, 44322 Nantes, France
⋆Univ Rennes IRISA, CNRS, Inria, 35042 Rennes, France
♦Department of Computing, Polytechnic University, Hong Kong

Abstract

This paper introduces a new communication abstraction, called Set-Constrained Delivery Broadcast (SCD-broadcast), whose aim is to provide its users with an appropriate abstraction level when they have to implement objects or distributed tasks in an asynchronous message-passing system prone to process crash failures. This abstraction allows each process to broadcast messages and deliver a sequence of sets of messages in such a way that, if a process delivers a set of messages including a message \(m \) and later delivers a set of messages including a message \(m' \), no process delivers first a set of messages including \(m' \) and later a set of message including \(m \).

After having presented an algorithm implementing SCD-broadcast, the paper investigates its programming power and its computability limits. On the “power” side it presents SCD-broadcast-based algorithms, which are both simple and efficient, building objects (such as snapshot and conflict-free replicated data types), and distributed tasks. On the “computability limits” side it shows that SCD-broadcast and read/write registers are computationally equivalent.

Keywords: Abstraction, Asynchronous system, Communication abstraction, Communication pattern, Conflict-free replicated data type, Design simplicity, Distributed task, Linearizability, Message-passing system, Process crash, Read/write atomic register, Sequential consistency, Snapshot object.
1 Introduction

Programming abstractions. Informatics is a science of abstractions, and a main difficulty consists in providing users with a “desired level of abstraction and generality – one that is broad enough to encompass interesting new situations, yet specific enough to address the crucial issues” as expressed in [20]. When considering sequential computing, functional programming and object-oriented programming are well-know examples of what means “desired level of abstraction and generality”.

In the context of asynchronous distributed systems where the computing entities (processes) communicate—at the basic level– by sending and receiving messages through an underlying communication network, and where some of them can experience failures, a main issue consists in finding appropriate communication-oriented abstractions, where the meaning of the term “appropriate” is related to the problems we intend to solve. Solving a problem at the send/receive abstraction level is similar to the writing of a program in a low-level programming language. Programmers must be provided with abstractions that allow them to concentrate on the problem they solve and not on the specific features of the underlying system. This is not new. Since a long time, high level programming languages have proved the benefit of this approach. From a synchronization point of view, this approach is the one promoted in software transactional memory [39], whose aims is to allow programmers to focus on the synchronization needed to solve their problems and not on the way this synchronization must be implemented (see the textbooks [22, 34]).

If we consider specific coordination/cooperation problems, “matchings” between problems and specific communication abstractions are known. One of the most famous examples concerns the consensus problem whose solution rests on the total order broadcast abstraction (also called atomic broadcast). Another “matching” example is the causal message delivery broadcast abstraction [12, 37], which allows for a very simple implementation of a causal read/write memory [2].

Aim of the paper. The aim of this paper is to introduce and investigate a high level communication abstraction which allows for simple and efficient implementations of concurrent objects and distributed tasks, in the context of asynchronous message-passing systems prone to process crash failures. The concurrent objects in which we are interested are defined by a sequential specification [23] (e.g., a queue). Differently, a task extends to the distributed context the notion of a function [11, 31]. It is defined by a mapping from a set of input vectors to a set of output vectors, whose sizes are the number of processes. An input vector \(I \) defines the input value \(I[i] \) of each process \(p_i \), and, similarly, an output vector \(O \) defines the output \(O[j] \) of each process \(p_j \). Agreement problems such as consensus and \(k \)-set agreement are distributed tasks. What makes the implementation of a task difficult is the fact that each process knows only its input, and, due to net effect of asynchrony and process failures, no process can distinguish if another process is very slow or crashed. The difficulty results in an impossibility for consensus [19], even in a system in which at most one process may crash.

A new broadcast abstraction. The Set-Constrained Delivery broadcast (in short SCD-broadcast) communication abstraction proposed in the paper allows a process to broadcast messages, and to deliver sets of messages (instead of a single message) in such a way that, if a process \(p_i \) delivers a message set \(mset \) containing a message \(m \), and later delivers a message set \(mset' \) containing a message \(m' \), then no process \(p_j \) can deliver first a set containing \(m' \) and later another set containing \(m \). Let us notice that \(p_j \) is not prevented from delivering \(m \) and \(m' \) in the same set. Moreover, SCD-broadcast imposes no

\[\text{More generally, in terms of consensus numbers [21], as soon as we can build atomic registers on top of an asynchronous message-passing system [5], the consensus number of total order broadcast is } +\infty \text{ and the one SCD-broadcast is } 1. \]
constraint on the order in which a process must process the messages it receives in a given message set.

After having defined SCD-broadcast, the paper presents an implementation of it in asynchronous systems where a minority of processes may crash. This assumption is actually a necessary and sufficient condition to cope with the net effect of asynchrony and process failures (see below). The SCD-broadcast of an application message generates $O(n^2)$ implementation messages, and assuming an upper bound Δ on message transfer delays and zero processing time, its time complexity is upper bounded by 2Δ time units (by “time complexity” we mean the time elapsed between the SCD-broadcast of an application message m and the latest time at which m is locally delivered at the application layer by all the processes that have not crashed).

Implementing objects and tasks. Then, the paper addresses two fundamental issues of SCD-broadcast: its abstraction power and its computability limits. As far as its abstraction power is concerned, i.e., its ability and easiness to implement atomic (linearizable) or sequentially consistent concurrent objects [23, 29] and read/write solvable distributed tasks, the paper presents, on the one side, two algorithms implementing atomic objects (namely a snapshot object [1, 3], and a distributed increasing/decreasing counter), and, on the other side, an algorithm solving the lattice agreement task [6, 18].

The two concurrent objects (snapshot and counter) have been chosen because they are encountered in many applications, and are also good representative of the class of objects identified in [4]. The objects of this class are characterized by the fact that each pair op_1 and op_2 of their operations either commute (i.e., in any state, executing op_1 before op_2 leads to the same state as executing op_2 before op_1, as it is the case for a counter), or any of op_1 and op_2 can overwrite the other one (e.g., executing op_1 before op_2 leads to the same state as executing op_2 alone). Our implementation of a counter can be adapted for all objects with commutative operations, and our implementation of the snapshot object illustrates how overwriting operations can be obtained directly from the SCD-broadcast abstraction. Concerning these objects, it is also shown that a slight change in the algorithms allows us to obtain implementations (with a smaller cost) in which the consistency condition is weakened from linearizability to sequential consistency [28].

In the case of read/write solvable tasks, SCD-broadcast shows how the concurrency inherent (but hidden) in a task definition can be easily mastered and solved.

A distributed software engineering dimension. All the algorithms presented in the paper are based on the same communication pattern. As far as objects are concerned, the way this communication pattern is used brings to light two genericity dimensions of the algorithms implementing them. One is on the variety of objects that, despite their individual features (e.g., snapshot vs counter), have very similar SCD-broadcast-based implementations (actually, they all have the same communication pattern-based structure). The other one is on the consistency condition they have to satisfy (linearizability vs sequential consistency).

On programming languages for distributed computing. Differently from sequential computing for which there are plenty of high level languages (each with its idiosyncrasies), there is no specific language for distributed computing. Instead, addressing distributed settings is done by the enrichment of sequential computing languages with high level communication abstractions. When considering asynchronous systems with process crash failures, total order broadcast is one of them. SCD-broadcast is a candidate to be one of them, when one has to implement read/write solvable objects and distributed tasks.

The computability limits of SCD-broadcast. The paper also investigates the computability power of the SCD-broadcast abstraction, namely it shows that SCD-broadcast and atomic read/write registers (or equivalently snapshot objects) have the same computability power in asynchronous systems prone to process crash failures. Everything that can be implemented with atomic read/write registers can be implemented with SCD-broadcast, and vice versa.
As read/write registers (or snapshot objects) can be implemented in asynchronous message-passing systems where only a minority of processes may crash [5], it follows that the proposed algorithm implementing SCD-broadcast is resilience-optimal in these systems. From a theoretical point of view, this means that the consensus number of SCD-broadcast is 1 (the weakest possible).

Roadmap. The paper is composed of 10 sections. Section 2 defines the SCD-broadcast abstraction and the associated communication pattern used in all the algorithms presented in the paper. Section 4 presents a resilience-optimal algorithm implementing SCD-broadcast in asynchronous message-passing systems prone to process crash failures, while Section 5 adopts a distributed software engineering point of view and presents a communication pattern associated with SCD-broadcast. Then, Sections 6-8 present SCD-broadcast-based algorithms for concurrent objects and tasks. Section 9 focuses on the computability limits of SCD-broadcast. Finally, Section 10 concludes the paper.

Remark. It is worth noticing that the a self-stabilizing version of the SCD algorithm presented in this article is described in [30], and an extension of it where up to $t < n/4$ processes may commit Byzantine failures is described in [10]. It is still an open problem to find an SCD algorithm coping with up to $t < n/3$ Byzantine processes.

2 The SCD-broadcast Communication Abstraction

Process model. The computing model is composed of a set of n asynchronous sequential processes, denoted $p_1, ..., p_n$. “Asynchronous” means that each process proceeds at its own speed, which can be arbitrary and always remains unknown to the other processes.

A process may halt prematurely (crash failure), but it executes its local algorithm correctly until it crashes (if it ever does). The model parameter t denotes the maximal number of processes that may crash in a run r. A process that crashes in a run is said to be faulty in r. Otherwise, it is non-faulty.

Definition of SCD-broadcast. The set-constrained delivery broadcast abstraction (SCD-broadcast) provides the processes with one operation $\text{scd_broadcast}(m)$ and one event $\text{scd_deliver}(mset)$. The operation takes a message m to broadcast as input parameter. When the event is triggered at a process p_i, it dispenses a non-empty set of messages $mset$ to p_i. Using a classical terminology, when a process invokes the operation $\text{scd_broadcast}(m)$, we say that it “scd-broadcasts a message m”. Similarly, when $\text{scd_deliver}(mset)$ is triggered at a process, we say that it “scd-delivers the set of messages $mset$”. By a slight abuse of language, when we are interested in a message m, we say that a process “scd-delivers the message m” when actually it scd-delivers a message set $mset$ containing m.

SCD-broadcast is defined by the following set of properties, where we assume –without loss of generality– that all the messages that are scd-broadcast are different.

- Validity. If a process scd-delivers a set containing a message m, then m was scd-broadcast by a process.
- Integrity. A message is scd-delivered at most once by each process.
- MS-Ordering. Let p_i be a process that scd-delivers first a message set $mset_i$ and later a message set $mset'_i$. For any pair of messages $m \in mset_i$ and $m' \in mset'_i$, no process p_j scd-delivers first a message set $mset'_j$ containing m' and later a message set $mset_j$ containing m.
- Termination-1. If a non-faulty process scd-broadcasts a message m, it terminates its scd-broadcast invocation and scd-delivers a message set containing m.
- Termination-2. If a process scd-delivers a message m, every non-faulty process scd-delivers a message set containing m.
Termination-1 and Termination-2 are classical liveness properties (found for example in Uniform Reliable Broadcast [9, 36]). The other ones are safety properties. Validity and Integrity are classical communication-related properties. The first states that there is neither message creation nor message corruption, while the second states that there is no message duplication.

The MS-Ordering property is new, and characterizes SCD-broadcast. It states that the contents of the sets of messages scd-delivered at any two processes are not totally independent: the sequence of sets scd-delivered at a process \(p \) and the sequence of sets scd-delivered at a process \(p' \) must be mutually consistent in the sense that a process \(p \) cannot scd-deliver first \(m \in mset_1 \) and later \(m' \in mset'_1 \neq mset_i \), while another process \(p' \) scd-delivers first \(m' \in mset'_1 \) and later \(m \in mset_j \neq mset'_j \). Let us nevertheless observe that if \(p \) scd-delivers first \(m \in mset_i \) and later \(m' \in mset'_i, p \) may scd-deliver \(m \) and \(m' \) in the same set of messages.

Let us remark that, if the MS-Ordering property is suppressed and messages are scd-delivered one at a time, SCD-broadcast boils down to the well-known Reliable Broadcast [9, 36]. The other ones are safety properties. Validity and Integrity are classical communication-related properties. The first states that there is neither message creation nor message corruption, while the second states that there is no message duplication.

The MS-Ordering property is new, and characterizes SCD-broadcast. It states that the contents of the sets of messages scd-delivered at any two processes are not totally independent: the sequence of sets scd-delivered at a process \(p \) and the sequence of sets scd-delivered at a process \(p' \) must be mutually consistent in the sense that a process \(p \) cannot scd-deliver first \(m \in mset_1 \) and later \(m' \in mset'_1 \neq mset_i \), while another process \(p' \) scd-delivers first \(m' \in mset'_1 \) and later \(m \in mset_j \neq mset'_j \). Let us nevertheless observe that if \(p \) scd-delivers first \(m \in mset_i \) and later \(m' \in mset'_i, p \) may scd-deliver \(m \) and \(m' \) in the same set of messages.

Let us remark that, if the MS-Ordering property is suppressed and messages are scd-delivered one at a time, SCD-broadcast boils down to the well-known Reliable Broadcast abstraction [13, 36].

An example. Let \(m_1, m_2, m_3, m_4, m_5, m_6, m_7 \) and \(m_8 \) be messages that have been scd-broadcast by different processes. Processes deliver sets of messages and do not deliver more than one set at once; whereas there is no particular order within each set. The following scd-deliveries of message sets by \(p_1 \), \(p_2 \) and \(p_3 \) respect the definition of SCD-broadcast:

- at \(p_1 \): \{\(m_1, m_2 \), \(m_3, m_4, m_5 \), \(m_6 \), \(m_7, m_8 \)\}.
- at \(p_2 \): \{\(m_1 \), \(m_2, m_3 \), \(m_4, m_5, m_6 \), \(m_7 \), \(m_8 \)\}.
- at \(p_3 \): \{\(m_1, m_2, m_3 \), \(m_4, m_5, m_6 \), \(m_7 \), \(m_8 \)\}.

Differently, due to the scd-deliveries of the sets including \(m_2 \) and \(m_3 \), the following scd-deliveries by \(p_1 \) and \(p_2 \) do not satisfy the MS-broadcast property:

- at \(p_1 \): \{\(m_1, m_2 \), \(m_3, m_4, m_5 \), \...
- at \(p_2 \): \{\(m_1, m_3 \), \(m_2 \), \...

A containment property. Let \(mset_i^\ell \) denote the \(\ell \)-th message set scd-delivered by \(p_i \). Hence, at some time, \(p_i \) scd-delivered the sequence of message sets \(mset_1^1, \ldots, mset_\ell^\ell \). Let \(MSet_\ell^\ell = mset_1^1 \cup \ldots \cup mset_\ell^\ell \). The following Containment property follows directly from the MS-Ordering and Termination-2 properties: \(\forall i, j, x, y: (MSet_i^\ell \subseteq MSet_j^y) \lor (MSet_j^y \subseteq MSet_i^\ell) \).

Partial order on messages created by the message sets. The MS-Ordering and Integrity properties establish a partial order on the set of all the messages, defined as follows. Let \(\rightarrow_i \) be the local message delivery order at process \(p_i \) defined as follows: \(m \rightarrow_i m' \) if \(p_i \) scd-delivers the message set containing \(m \) before the message set containing \(m' \). As no message is scd-delivered twice, it is easy to see that \(\rightarrow_i \) is a partial order (locally known by \(p_i \)). The containment property implies that there is a total order (which remains unknown to the processes) on the whole set of messages, that complies with the partial order \(\rightarrow = \cup_{1 \leq i \leq n} \rightarrow_i \). This is where SCD-broadcast can be seen as a weakening of total order broadcast.

3 Underlying communication network

Send/receive asynchronous network. Each pair of processes communicate through two uni-directional channels on which they send and receive messages. Hence, the communication network is a complete network: any process \(p_i \) can directly send a message to any process \(p_j \) (including itself). A process \(p_i \) invokes the operation “send \(TYPE(m) \) to \(p_j \)” to send to \(p_j \) the message \(m \), whose type is \(TYPE \). The operation “receive \(TYPE() \) from \(p_j \)” allows \(p_i \) to receive from \(p_j \) a message whose type is \(TYPE \).
Each channel is reliable (no loss, corruption, nor creation of messages), not necessarily FIFO, and asynchronous (while the transit time of each message is finite, there is no upper bound on message transit times) Let us notice that, due to process and message asynchrony, no process can know if another process crashed or is only very slow.

Uniform FIFO-broadcast abstraction. To simplify the presentation, and without loss of generality, we consider that the system is equipped with a FIFO-broadcast abstraction. Such an abstraction can be built on top of the previous basic system model without enriching it with additional assumptions (see e.g. [36]). It is defined by an operation \(\text{fifo_broadcast}()\) and an event \(\text{fifo_deliver}()\), which satisfy the properties of Uniform Reliable Broadcast (Validity, Integrity, Termination-1, and Termination-2, with the same definitions as in SCD-broadcast), plus the following message ordering property.

- **FIFO-Order.** For any pair of processes \(p_i\) and \(p_j\), if \(p_i\) fifo-delivers first a message \(m\) and later a message \(m'\), both from \(p_j\), no process fifo-delivers \(m'\) before \(m\).

4 An Implementation of SCD-broadcast

This section shows that the SCD-broadcast communication abstraction is not an oracle-like object (oracles allow us to extend our understanding of computing, but cannot be implemented). It describes an implementation of SCD-broadcast in an asynchronous send/receive message-passing system in which any minority of processes may crash. This system model is denoted \(\text{CAMP}_{n,t}[t < n/2]\) (where \(\text{CAMP}_{n,t}\) stands for “Crash Asynchronous Message-Passing” and \(t < n/2\) is its restriction on failures). As \(t < n/2\) is the weakest assumption on process failures that allows a read/write register to be built on top of an asynchronous message-passing system \([5]\)\(^2\), and SCD-broadcast and read/write registers are computationally equivalent (as shown in Sections 6 and 9), the proposed implementation is optimal from a resilience point of view.

4.1 Algorithm

This section describes Algorithm 1, which implements SCD-broadcast in \(\text{CAMP}_{n,t}[t < n/2]\). From a terminology point of view, an **application message** is a message that has been scd-broadcast by a process, while a **protocol message** is an implementation message generated by the algorithm.

Local metadata quadruplets. For each application message \(m\), each process stores a quadruplet \(qdplt = (qdplt.msg, qdplt.sd, qdplt.sn, qdplt.cl)\) whose fields have the following meaning.

- \(qdplt.msg\) contains an application message \(m\),
- \(qdplt.sd\) contains the id of the sender of \(qdplt.msg\),
- \(qdplt.sn\) contains the local date (sequence number) associated with \(m\) by its sender. Hence, the pair \((qdplt.sd, qdplt.sn)\) is the identity of the application message \(m\), denoted \(ts(qdplt)\).
- \(qdplt.cl\) is an array of size \(n\), initialized to \([+\infty, \ldots, +\infty]\). Then, \(qdplt.cl[x]\) will contain the sequence number associated with \(m\) by \(p_x\) when it broadcast the message \(\text{FORWARD_MSG}(msg.m, -, -, -, -)\). This last field is crucial in the scd-delivery by the process \(p_i\) of a message set containing \(m\).

Local variables at a process \(p_i\). Each process \(p_i\) manages the following local variables.

- **buffer\(_i\):** buffer (initially empty) where the quadruplets containing messages that have been fifo-delivered but not yet scd-delivered in a message set are stored.

\(^2\)From the point of view of the maximal number of process crashes that can be tolerated, assuming failures are independent.
• to_deliverᵢ: set of quadruplets containing messages to be scd-delivered.
• snᵢ: local logical clock which takes the values 0, 1, 2, ..., that measure the local progress of pᵢ. Each application message scd-broadcast by pᵢ is identified by a pair ⟨i, sn⟩, where sn is the current value of snᵢ.
• clockᵢ[1..n]: array of clock values; clockᵢ[j] is the greatest lock value x such that the application message m identified ⟨x, j⟩ has been scd-delivered by pᵢ.

Protocol message. The algorithm uses a single type of protocol message denoted FORWARD_MSG(m, sd, sn, g, snᵢ). Such a message is made up of five fields: the first field is an associated application message m, the second and third form a pair ⟨sd, sn⟩ that is the identity of the application message and the fourth and fifth form a pair ⟨g, snᵢ⟩ that describes the local progress (as captured by snᵢ) of the forwarder process pᵢ when it fifo-broadcast this protocol message to the other processes by invoking fifo_broadcast FORWARD_MSG(m, sd, snᵢ, g, sn) (line 11).

Operation scd_broadcast(). When pᵢ invokes the operation scd_broadcast(m), where m is an application message, it executes the internal operation forward(m, i, snᵢ, i, snᵢ), which initializes the algorithm, and waits until it has no more message from itself pending in bufferᵢ, which means it has scd-delivered a set containing m (lines 19 and 20).

Uniform fifo-broadcast of a message FORWARD_MSG. When a process pᵢ fifo-delivers a protocol message FORWARD_MSG(m, sd, snᵢ, g, sn) or scd-broadcast by pᵢ, it first invokes the internal operation forward(m, i, snᵢ, i, snᵢ) (lines 5 and 11). In addition to the invocation of forward(), the fifo-delivery of FORWARD_MSG() also invokes try_deliver(), which strives to scd-deliver a message set (lines 4).

The core of the algorithm. Expressed with the relations ⟦→⟧ᵢ, 1 ≤ i ≤ n, introduced in Section 2, the main issue of the algorithm is to ensure that, if there are two message m and m' and a process pᵢ such that m ⟦→⟧ᵢ m', then there is no pⱼ such that m' ⟦→⟧ⱼ m. To this end, a process pᵢ is allowed to scd-deliver a message m before a message m' only if it knows that a majority of processes pⱼ have fifo-delivered a protocol message FORWARD_MSG(m', −, −, −, −) before a protocol message FORWARD_MSG(m, −, −, −, −); pᵢ knows it either (i) because it fifo-delivered from pⱼ a message FORWARD_MSG(m, −, −, −, −) but not yet a message FORWARD_MSG(m', −, −, −, −), or (ii) because it fifo-delivered from pⱼ both FORWARD_MSG(m, −, −, −, snm) and FORWARD_MSG(m', −, −, −, snm') and the sending date snm is smaller than the sending date snm'. The MS-Ordering property follows then from the impossibility that a majority of processes “sees m before m’”, while another majority “sees m’ before m”.

Internal operation forward(). This operation can be seen as an enrichment (with the fields g and sn) of the reliable fifo-broadcast implemented by the protocol messages FORWARD_MSG(m, sd, snᵢ −, −). Considering such a message FORWARD_MSG(m, sd, snᵢ, g, sn) and relayed by the forwarding process pⱼ at its local time snⱼ. If snⱼ ≤ clockⱼ[sd], pⱼ has already scd-delivered a message set containing m (see lines 18 and 20). If snⱼ > clockⱼ[sd], there are two cases defined by the predicate of line 6.

• No quadruplet qdpt in bufferᵢ is such that qdpt.msg = m. In this case, pᵢ creates a quadruplet associated with m, and adds it to bufferᵢ (lines 8-10). Then, pᵢ participates in the fifo-broadcast of m identified by ⟨sd, snᵢ⟩ (line 11) and records its local progress by increasing snᵢ (line 12).
• There is a quadruplet qdpt in bufferᵢ associated with m, i.e., qdpt = ⟨m, −, −, −⟩ ∈ bufferᵢ. In this case, pᵢ assigns snᵢ to qdpt.cl[g] (line 7), thereby indicating that m was known and forwarded
operation scd_broadcast(m) is
(1) forward(m, i, sn_i, i, sn_i);
(2) wait(∃ qdplt ∈ buffer_i : qdplt.sd = i).

when the message FORWARD_MSG(m, sd, sn_ad, g, sn_y) is fifo-delivered do % from p_g
(3) forward(m, sd, sn_ad, g, sn_y);
(4) try_deliver().

procedure forward(m, sd, sn_ad, g, sn_y) is
(5) if (sn_y > clock_i[sd])
(6) then if (∃ qdplt ∈ buffer_i : qdplt.sd = sd ∧ qdplt.sn = sn_ad)
(7) then qdplt.cl[g] ← sn_y
(8) else threshold[1..n] ← [∞, ..., ∞]; threshold[g] ← sn_y;
(9) let qdplt ← {m, sd, sn_ad, threshold[1..n]};
(10) buffer_i ← buffer_i ∪ {qdplt};
(11) fifo_broadcast FORWARD_MSG(m, sd, sn_ad, i, sn_i);
(12) sn_i ← sn_i + 1
(13) end if
(14) end if.

procedure try_deliver() is
(15) let to_deliver_i ← {qdplt ∈ buffer_i : |{f : qdplt.cl[f] < ∞}| > 2/3};
(16) while (∃ qdplt ∈ to_deliver_i, ∃ qdplt' ∈ buffer_i \ to_deliver_i : |{f : qdplt.cl[f] < qdplt'.cl[f]}| ≤ 2/3) do
(17) to_deliver ← to_deliver \ {qdplt}
(18) then for each qdplt ∈ to_deliver do
(19) clock_i[qdplt.sd] ← max(clock_i[qdplt.sd], qdplt.sn);
(20) ms ← {m : ∃ qdplt ∈ to_deliver : qdplt.msg = m}; scd_deliver(ms)
(21) end if.

Algorithm 1: An implementation of SCD-broadcast in CAMP_{n,t}[t < n/2] (code for p_i)

by p_g at its local time sn_y.

Internal operation try_deliver(). When a process p_i executes try_deliver(), it first computes the set to_deliver_i of the quadruplets qdplt containing application messages m which have been seen by a majority of processes (line 15). From p_i’s point of view, a message has been seen by a process p_g if qdplt.cl[g] has been set to a finite value (line 7).

As indicated in a previous paragraph, if a majority of processes received first a message FORWARD_MSG carrying m’ and later another message FORWARD_MSG carrying m, it might be that some process p_j scd-delivered a set containing m’ before scd-delivering a set containing m. Therefore, p_i must avoid scd-delivering a set containing m before scd-delivering a set containing m’. This is done at line 16, where p_i withdraws the quadruplet qdplt corresponding to m if it cannot deliver m’ yet (i.e. the corresponding qdplt’ is not in to_deliver_i) or it does not have the proof that the situation cannot happen, i.e. no majority of processes saw the message corresponding to qdplt before the message corresponding to qdplt’ (this is captured by the predicate |{g : qdplt.cl[g] < qdplt’.cl[g]}| ≤ 2/3).

If to_deliver_i is not empty after it has been purged (lines 16-17), p_i computes a message set to scd-deliver. This set mset contains all the application messages in the quadruplets of to_deliver_i (line 20). These quadruplets are withdrawn from buffer_i (line 18). Moreover, before this scd-delivery, p_i needs to updates clock_i[x] for all the entries such that x = qdplt.sd where qdplt ∈ to_deliver_i (line 18). This update is needed to ensure that the future uses of the predicate of line 17 are correct.

4.2 Cost and proof of correctness

Lemma 1 (Validity) If a process scd-delivers a message set containing m, some process cd-broadcast m.
Proof If a process \(p_i \) scd-delivers a set containing a message \(m \), it previously added into \(\text{buffer}_i \) a quadruplet \(\text{qdplt} \) such that \(\text{qdplt.msg} = m \) (line 10), for which it follows that it fifo-delivered a protocol message \(\text{FORWARD_MSG}(m, -,-,-,-) \). Due to the fifo-validity property, it follows that a process generated the fifo-broadcast of this message, which originated from an invocation of \(\text{scd_broadcast}(m) \). \(\square \) Lemma 1

Lemma 2 (Integrity) No process scd-delivers the same message twice.

Proof Let us observe that, due to the wait statement at line 2, and the increase of \(sn_i \) at line 15 between two successive scd-broadcast by a process \(p_i \), no two application messages can have the same identity \(\langle i, sn_i \rangle \). It follows that there is a single quadruplet \(\langle m, i, sn_i, - \rangle \) that can be added to \(\text{buffer}_i \), and this is done only once (line 10). Finally, let us observe that this quadruplet is suppressed from \(\text{buffer}_i \), just before \(m \) is scd-delivered (line 19-20), which concludes the proof of the lemma. \(\square \) Lemma 2

Lemma 3 If \(p_i \) fifo-broadcasts \(\text{FORWARD_MSG}(m, sd, sn_{sd}, i, sn_i) \) (i.e., executes line 11), each non-faulty process \(p_j \) executes once fifo_broadcast \(\text{FORWARD_MSG}(m, sd, sn_{sd}, j, sn_j) \).

Proof Let \(p_j \) be a correct process. First, we prove that \(p_j \) broadcasts a message \(\text{FORWARD_MSG}(m, sd, sn_{sd}, j, sn_j) \). As \(p_i \) is non-faulty, \(p_j \) will eventually receive the message sent by \(p_i \). At that time, if \(sn_{sd} > \text{clock}_j[\text{sd}] \), after the condition on line 6 and whatever its result, \(\text{buffer}_i \) contains a quadruplet \(\text{qdplt} \) with \(\text{qdplt.sd} = sd \) and \(\text{qdplt.sn} = sn_{sd} \). That \(\text{qdplt} \) was inserted at line 10 (possibly after the reception of a different message), just before \(p_j \) sent a message \(\text{FORWARD_MSG}(m, sd, sn_{sd}, j, sn_j) \) at line 11. Otherwise, \(\text{clock}_j[\text{sd}] \) was incremented on line 18, when validating some \(\text{qdplt}' \) added to \(\text{buffer}_j \) after \(p_j \) received a (first) message \(\text{FORWARD_MSG}(\text{qdplt}'.msg, sd, sn_{sd}, g, \text{clock}_j[\text{sd}]) \) from \(p_g \). Because the messages \(\text{FORWARD_MSG}() \) are fifo-broadcast (hence they are delivered in their sending order), \(p_{sd} \) sent message \(\text{FORWARD_MSG}(\text{qdplt}.msg, sd, sn_{sd}, sd, sn_{sd}) \) before \(\text{FORWARD_MSG}(\text{qdplt}'.msg, sd, \text{clock}_j[\text{sd}], sd, \text{clock}_j[\text{sd}]) \), and all other processes only forward messages, \(p_j \) received \(\text{FORWARD_MSG}(\text{qdplt}.msg, sd, sn_{sd}, -,-) \) from \(p_g \) before the message \(\text{FORWARD_MSG}(\text{qdplt}'.msg, sd, \text{clock}_j[\text{sd}], -,-) \). At that time, \(sn_{sd} > \text{clock}_j[\text{sd}] \), so the previous case applies.

After \(p_j \) broadcasts its message \(\text{FORWARD_MSG}(m, sd, sn_{sd}, j, sn_j) \) on line 11, there is a \(\text{qdplt} \in \text{buffer}_j \) with \(ts(\text{qdplt}) = \langle sd, sn_{sd} \rangle \), until it is removed on line 16 and \(\text{clock}_j[\text{sd}] \geq sn_{sd} \). Therefore, one of the conditions at lines 5 and 6 will stay false for the stamp \(ts(\text{qdplt}) \) and \(p_j \) will never execute line 11 with the same stamp \(\langle sd, sn_{sd} \rangle \) later. \(\square \) Lemma 3

Lemma 4 (MS-Ordering) Let \(p_i \) be a process that scd-delivers a set \(ms_i \) containing a message \(m \) and later scd-delivers a set \(ms'_i \) containing a message \(m' \). No process \(p_j \) scd-delivers first a set \(ms'_j \) containing \(m' \) and later a message set \(ms_j \) containing \(m \).

Proof Let us suppose there are two messages \(m \) and \(m' \) and two processes \(p_i \) and \(p_j \) such that \(p_i \) scd-delivers a set \(ms_i \) containing \(m \) and later scd-delivers a set \(ms'_i \) containing \(m' \) and \(p_j \) scd-delivers a set \(ms'_j \) containing \(m' \) and later scd-delivers a set \(ms_j \) containing \(m \).

When \(m \) is delivered by \(p_i \), there is an element \(\text{qdplt} \in \text{buffer}_i \) such that \(\text{qdplt.msg} = m \) and because of line 15, \(p_i \) has received a message \(\text{FORWARD_MSG}(m, -,-,-,-) \) from more than \(n/2 \) processes.

- If there is no element \(\text{qdplt}' \in \text{buffer}_i \) such that \(\text{qdplt}'.msg = m' \), since \(m' \) has not been delivered by \(p_i \) yet, \(p_i \) has not received a message \(\text{FORWARD_MSG}(m', -,-,-,-) \) from any process (lines 10 and 19). Hence, because the communication channels are FIFO, more than \(n/2 \) processes have sent a message \(\text{FORWARD_MSG}(m, -,-,-,-) \) before sending a message \(\text{FORWARD_MSG}(m', -,-,-,-) \).
Otherwise, \(qdpt' \notin to_deliver \) after line 16. As the communication channels are FIFO, more than half of the processes have sent a message \(\text{FORWARD_MSG}(m', \ldots, \ldots, \ldots) \) before a message \(\text{FORWARD_MSG}(m', \ldots, \ldots, \ldots) \).

Using the same reasoning, it follows that when \(m' \) is delivered by \(p_j \), more than \(\frac{n}{2} \) processes have sent a message \(\text{FORWARD_MSG}(m', \ldots, \ldots, \ldots) \) before sending a message \(\text{FORWARD_MSG}(m, \ldots, \ldots, \ldots) \). There exists a process \(p_k \) in the intersection of the two majorities, that has (a) sent \(\text{FORWARD_MSG}(m, \ldots, \ldots, \ldots) \) before sending \(\text{FORWARD_MSG}(m', \ldots, \ldots, \ldots) \) and (b) sent \(\text{FORWARD_MSG}(m', \ldots, \ldots, \ldots) \) before sending a message \(\text{FORWARD_MSG}(m, \ldots, \ldots, \ldots) \). However, it follows from Lemma 3 that \(p_k \) can send a single message \(\text{FORWARD_MSG}(m', \ldots, \ldots, \ldots) \) and a single message \(\text{FORWARD_MSG}(m, \ldots, \ldots, \ldots) \), which leads to a contradiction.

\[\square \text{Lemma 4} \]

\[\text{FORWARD_MSG}(m_{i+1}, sd_{i+1}, sn_{sd_{i+1}}, \ldots, \ldots) \]

\[\text{FORWARD_MSG}(m, sd, sn_{sd}, \ldots, \ldots) \]

Lemma 5 If a non-faulty process executes fifo_broadcast \(\text{FORWARD_MSG}(m, sd, sn_{sd}, i, sn_i) \) (line 11), it sd-delivers a message set containing \(m \).

Proof Let \(p_i \) be a non-faulty process. For any pair of messages \(qdpt \) and \(qdpt' \) ever inserted in \(buffer_i \), let \(ts = ts(qdpt) \) and \(ts' = ts(qdpt') \). Let \(\rightarrow_i \) be the dependency relation defined as follows: \(ts \rightarrow_i ts' \) if \(|\{j : qdpt'_cl[j] < qdpt_cl[j]\}| \leq \frac{n}{2} \) (i.e. the dependency does not exist if \(p_j \) knows that a majority of processes have seen the first update –due to \(qdpt' \)– before the second –due to \(qdpt \)). Let \(\rightarrow^*_i \) denote the transitive closure of \(\rightarrow_i \).

Let us suppose (by contradiction) that the timestamp \(\langle sd, sn_{sd} \rangle \) associated with the message \(m \) (carried by the protocol message \(\text{FORWARD_MSG}(m, sd, sn_{sd}, i, sn_i) \) fifo-broadcast by \(p_i \)), has an infinity of predecessors according to \(\rightarrow^*_i \). As the number of processes is finite, an infinity of these predecessors have been generated by the same process, let us say \(p_g \). Let \(\langle g, sn_g(k) \rangle_{k \in \mathbb{N}} \) be the infinite sequence of the timestamps associated with the invocations of the \(\text{scd_broadcast}() \) issued by \(p_g \). The situation is depicted by Figure 1.

As \(p_i \) is non-faulty, \(p_g \) eventually receives a message \(\text{FORWARD_MSG}(m, sd, sn_{sd}, i, sn_i) \), which means \(p_g \) broadcast an infinity of messages \(\text{FORWARD_MSG}(m(k), g, sn_g(k), g, sn_g(k)) \) after having broadcast the message \(\text{FORWARD_MSG}(m, sd, sn_{sd}, g, sn_g) \). Let \(\langle g, sn_g(k_1) \rangle \) and \(\langle g, sn_g(k_2) \rangle \) be the timestamps associated with the next two messages \(\text{scd_broadcast} \) by \(p_g \), with \(sn_g(k_1) < sn_g(k_2) \). By hypothesis, we have \(\langle g, sn_g(k_2) \rangle \rightarrow^*_i \langle sd, sn_{sd} \rangle \). Moreover, all processes received their first message \(\text{FORWARD_MSG}(m, sd, sn_{sd}, \ldots, \ldots) \) before their first message \(\text{FORWARD_MSG}(m(k), g, sn_g(k), \ldots, \ldots) \), so \(\langle sd, sn_{sd} \rangle \rightarrow^*_i \langle g, sn_g(k_1) \rangle \). Let us express the path \(\langle g, sn_g(k_2) \rangle \rightarrow^*_i \langle g, sn_g(k_1) \rangle \): \(\langle g, sn_g(k_2) \rangle = \langle sd'(1), sn'(1) \rangle \rightarrow_i \langle sd'(2), sn'(2) \rangle \rightarrow_i \cdots \rightarrow_i \langle sd(m), sn'(m) \rangle = \langle g, sn_g(k_1) \rangle \).
In the time interval starting when \(p_g \) sent the message \(\text{FORWARD MSG}(m(k_1), g, s_{ng}(k_1), g, s_{ng}(k_1)) \) and finishing when it sent the message \(\text{FORWARD MSG}(m(k_2), g, s_{ng}(k_2), g, s_{ng}(k_2)) \), the waiting condition of line 2 became true, so \(p_g \) scd-delivered a set containing the message \(m(k_1) \), and according to Lemma 1, no set containing the message \(m(k_2) \). Therefore, there is an index \(l \) such that process \(p_g \) delivered sets containing messages associated with a timestamp \(\langle sd'(l), sn'(l) \rangle \) for all \(l' > l \) but not for \(l' = l \). Because the channels are FIFO and thanks to lines 15 and 16, it means that a majority of processes have sent a message \(\text{FORWARD MSG}(-, sd'(l + 1), sn'(l + 1), - , -) \) before a message \(\text{FORWARD MSG}(-, sd'(l), sn'(l), - , -) \), which contradicts the fact that \(\langle sd'(l), sn'(l) \rangle \rightarrow_i \langle sd'(l + 1), sn'(l + 1) \rangle \).

Let us suppose a non-faulty process \(p_i \) has fifo-broadcast a message \(\text{FORWARD MSG}(m, sd, s_{nd}, i, s_{ni}) \) (line 10). It inserted a quadruplet \(qdplt \) with timestamp \(\langle sd, s_{nd} \rangle \) on line 9 and by what precedes, \(\langle sd, s_{nd} \rangle \) has a finite number of predecessors \(\langle sd_1, s_{nd_1} \rangle, \ldots, \langle sd_l, s_{nd_l} \rangle \) according to \(\rightarrow^*_i \). As \(p_i \) is non-faulty, according to Lemma 3, it eventually receives a message \(\text{FORWARD MSG}(-, sd_k, s_{nd_k}, - , -) \) for all \(1 \leq k \leq l \) and from all non-faulty processes, which are in majority.

Let \(\text{pred} \) be the set of all quadruplets \(qdplt' \) such that \(\langle qdplt'.sd, qdplt'.sn \rangle \rightarrow^*_i \langle sd, s_{nd} \rangle \). Let us consider the moment when \(p_i \) receives the last message \(\text{FORWARD MSG}(-, sd_k, s_{nd_k}, - , -) \) sent by a correct process \(p_g \). For all \(qdplt' \in \text{pred} \), either \(qdplt'.msg \) has already been delivered or \(qdplt' \) is inserted \(\text{to_deliver}_i \) on line 15. Moreover, no \(qdplt' \in \text{pred} \) will be removed from \(\text{to_deliver}_i \), on line 16, as the removal condition is the same as the definition of \(\rightarrow_i \). In particular for \(qdplt' = qdplt \), either \(m \) has already been scd-delivered or \(m \) is present in \(\text{to_deliver}_i \) on line 17 and will be scd-delivered on line 20.

\[\text{Lemma 6 (Termination-1)} \quad \text{If a non-faulty process}\ \text{scd-broadcasts a message} \ m,\ \text{it scd-delivers a message set containing} \ m.\]

\[\text{Proof} \quad \text{If a non-faulty process} \ p_i \ \text{scd-broadcasts a message} \ m,\ \text{it executes the procedure} \ \text{forward}(m, i, s_{ni}, i, s_{ni}) \ \text{(Lines (22) and (23)). Similarly to Lemma 3, as no message} \ \text{FORWARD MSG}(m, i, s_{ni}, g, s_{ng}) \ \text{was previously broadcast,} \ \langle s_{ni}, > \ \text{clock}_i[i] \rangle \ \text{and there is no} \ qdplt \in \text{buffer}_i \ \text{such that} \ \langle qdplt.sd, qdplt.sn \rangle = \langle i, s_{ni} \rangle. \ \text{Therefore,} \ p_i \ \text{fifo-broadcasts the message} \ \text{FORWARD MSG}(m, sd, s_{nd}, i, s_{ni}) \ \text{at line 11). Then, due to Lemma 5,} \ p_i \ \text{scd-delivers a message set containing} \ m.\]

\[\text{Lemma 7 (Termination-2)} \quad \text{If a process} \ \text{scd-delivers a message} \ m, \ \text{every non-faulty process} \ \text{scd-delivers a message set containing} \ m.\]

\[\text{Proof} \quad \text{Let} \ p_i \ \text{be a process} \ p_i \ \text{that scd-delivers a message} \ m. \ \text{At line 20, there is a quadruplet} \ qdplt \in \text{to_deliver}_i \ \text{such that} \ qdplt.msg = m. \ \text{At line 15,} \ qdplt \in \text{buffer}_i, \ \text{and} \ qdplt \ \text{was inserted in} \ \text{buffer}_i \ \text{at line 10, just before} \ p_i \ \text{fifo-broadcast the message} \ \text{FORWARD MSG}(m, sd, s_{nd}, i, s_{ni}). \ \text{By Lemma 3, every non-faulty process} \ p_j \ \text{sends a message} \ \text{FORWARD MSG}(m, sd, s_{nd}, j, s_{nj}), \ \text{so by Lemma 5,} \ p_j \ \text{scd-delivers a message set containing} \ m.\]

\[\text{Theorem 1} \quad \text{Algorithm 1 implements the SCD-broadcast communication abstraction in CAMP}_{n,t}[t < n/2]. \ \text{Moreover, each invocation of the operation} \ \text{scd_broadcast()} \ \text{requires} \ O(n^2) \ \text{protocol messages. If there is an upper bound} \ \Delta \ \text{on messages transfer delays (and local computation times are equal to zero), each SCD-broadcast takes at most} \ 2\Delta \ \text{time units.}\]

\[\text{Proof} \quad \text{The proof follows from Lemma 1 (Validity), Lemma 2 (Integrity), Lemma 4 (MS-Ordering), Lemma 6 (Termination-1), and Lemma 7 (Termination-2).}

\[\text{The} \ O(n^2) \ \text{message complexity comes from the fact that, due to the predicates of line 5 and 6, each application message} \ m \ \text{is forwarded at most once by each process (line 11). The} \ 2\Delta \ \text{follows from the same argument.}\]

\[\text{Theorem 1}\]
5 An SCD-broadcast-based Communication Pattern

All the algorithms implementing concurrent objects and tasks, which are presented in this paper, are based on the same communication pattern described by Algorithm 2. This pattern involves each process, either as a client (when it invokes an operation), or as a server (when it scd-delivers a message set).

When a process \(p_i \) invokes an operation \(\text{op}() \), it executes once the lines 1-3 for a task, and 0, 1, or 2 times for an operation on a concurrent object. In this last case, this number of times depends on the consistency condition which is implemented (linearizability [23] or sequential consistency [28]).

All the messages sent by a process \(p_i \) are used to synchronize its local data representation of the object, or its local view of the current state of the task. This synchronization is realized by the Boolean \(\text{done}_i \) and the parameter \(i \) carried by every message (lines 1, 3, and 6): \(p_i \) is blocked until the message it scd-broadcast just before is scd-delivered. The values carried by a message \(\text{MSG} \) are related to the object/task that is implemented, and may require local computation.

It appears that the combination of this communication pattern and the properties of SCD-broadcast provides us with a single simple framework that allows for correct implementations of a specific family of concurrent objects and tasks.

The next three sections describe algorithms implementing a snapshot object, a counter object, and the lattice agreement task, respectively. All these algorithms consider the system model \(\text{CAMP}_{n,t}[^\emptyset] \) enriched with SCD-broadcast (denoted \(\text{CAMP}_{n,t}[^{\text{SCD-broadcast}}] \)), and use the previous communication pattern.

6 The Power of SCD-broadcast: Snapshot Object

6.1 Snapshot object

Definition. The snapshot object was introduced in [1, 3]. A snapshot object is an array \(\text{REG}[1..m] \) of atomic read/write registers which provides the processes with two operations, denoted \(\text{write}(r,v) \) and \(\text{snapshot}() \). The invocation of \(\text{write}(r,v) \), where \(1 \leq r \leq m \), by a process \(p_i \) assigns atomically \(v \) to \(\text{REG}[r] \). The invocation of \(\text{snapshot}() \) returns the value of \(\text{REG}[1..m] \) as if it was executed instantaneously. Hence, in any execution of a snapshot object, its operations \(\text{write}() \) and \(\text{snapshot}() \) are linearizable.

The underlying atomic registers can be Single-Reader (SR) or Multi-Reader (MR) and Single-Writer (SR) or Multi-Writer (MW). We consider only SWMR and MWMR registers. If the registers are SWMR the snapshot is called SWMR snapshot (and we have then \(m = n \)). Moreover, we always have \(r = i \).
when \(p_i \) invokes write\((r, -) \). If the registers are MWMR, the snapshot object is called MWMR.

Implementations based on read/write registers. Implementations of both SWMR and MWMR snapshot objects on top of read/write atomic registers have been proposed (e.g., [1, 3, 25, 26]). The “hardness” to build snapshot objects in read/write systems and associated lower bounds are presented in the survey [17]. The best algorithm known ([7]) to implement an SWMR snapshot requires \(O(n \log n) \) read/write on the base SWMR registers for both write() and snapshot(). As far as MWMR snapshot objects are concerned, there are implementations where each operation has an \(O(n) \) cost.

As far as the construction of an SWMR (or MWMR) snapshot object in crash-prone asynchronous message-passing systems where \(t < n/2 \) is concerned, it is possible to stack two constructions: first an algorithm implementing SWMR (or MWMR) atomic read/write registers (e.g., [5]), and, on top of it, an algorithm implementing an SWMR (or MWMR) snapshot object. This stacking approach provides objects whose operation cost is \(O(n^2 \log n) \) messages for SWMR snapshot, and \(O(n^2) \) messages for MWMR snapshot.

6.2 An algorithm for atomic MWMR snapshot in \(C.A.M.P_{n,t}[S.C.D.-b r o a d c a s t] \)

Local representation of \(R E G \) at a process \(p_i \). At each process \(p_i \), \(R E G[1..m] \) is represented by three local variables \(r e g_i[1..m] \) (data part), plus \(t s a_i[1..m] \) and \(d o n e_i \) (control part).

- \(d o n e_i \) is a Boolean variable.
- \(r e g_i[1..m] \) contains the current value of \(R E G[1..m] \), as known by \(p_i \).
- \(t s a_i[1..m] \) is an array of timestamps associated with the values stored in \(r e g_i[1..m] \). A timestamp is a pair made of a local clock value and a process identity. Its initial value is \((0, -) \). The fields associated with \(t s a_i[r] \) are denoted \(\langle t s a_i[r], d a t e, t s a_i[r], p r o c \rangle \).

Timestamp-based order relation. We consider the classical lexicographical total order relation on timestamps, denoted \(<_{t s} \). Let \(t s 1 = \langle h_1, i_1 \rangle \) and \(t s 2 = \langle h_2, i_2 \rangle \). We have \(t s 1 <_{t s} t s 2 \overset{\text{def}}{=} (h_1 < h_2) \vee ((h_1 = h_2) \cap (i_1 < i_2)) \).

```
operation snapshot() is
(1) \( d o n e_i \leftarrow false; \) scd_broadcast \( \text{SYNC}(i) \); wait(\( d o n e_i \));
(2) return(\( r e g_i[1..m] \)).

operation write\((r, v) \) is
(3) \( d o n e_i \leftarrow false; \) scd_broadcast \( \text{SYNC}(i) \); wait(\( d o n e_i \));
(4) \( d o n e_i \leftarrow false; \) scd_broadcast write\((r, v, \langle t s a_i[r].\text{date} + 1, i \rangle \)); wait(\( d o n e_i \)).

when the message \{ write\((r_{j_1}, v_{j_1}, \langle d a t e_{j_1}, j_1 \rangle \), \ldots , write\((r_{j_x}, v_{j_x}, \langle d a t e_{j_x}, j_x \rangle), \text{SYNC}(j_{x+1}), \ldots , \text{SYNC}(j_y) \) \} is scd-delivered do
(5) for each \( r \) such that write\((r, -, -) \) \( \in \) scd-delivered message set do
(6) let \( \langle d a t e, w r i t e r \rangle \) be the greatest timestamp in the messages write\((r, -, -)\);
(7) if \( (t s a_i[r] <_{t s} \langle d a t e, w r i t e r \rangle) \)
(8) then let \( v \) be the value in write\((r, -, \langle d a t e, w r i t e r \rangle);\)
(9) \( r e g_i[r] \leftarrow v; t s a_i[r] \leftarrow \langle d a t e, w r i t e r \rangle \)
(10) end if;
(11) end for;
(12) if \( \exists j \colon j_x = i \) then \( d o n e_i \leftarrow true \) end if.
```

Algorithm 3: Construction of an MWMR snapshot object \(C.A.M.P_{n,t}[S.C.D.-b r o a d c a s t] \) (code for \(p_i \))

3Snapshot objects built in read/write models enriched with operations such as Compare\&Swap, or LL/SC, have also been considered, e.g., [25, 27]. Here we are interested in pure read/write models.
Algorithm 3: snapshot operation. This algorithm consists of one instance of the communication pattern introduced in Section 5 (line 1), followed by the return of a copy of the local value of \(reg_i[1..m] \) (line 2). The message \(\text{SYNC}(i) \), which is scd-broadcast is a pure synchronization message, whose aim is to entail the refreshment of the value of \(reg_i[1..m] \) (lines 5-11) which occurs before the setting of \(done_i \) to true (line 12).

Algorithm 3: write operation. (Lines 3-4) When a process \(p_i \) wants to assign a value \(v \) to \(\text{REG}[r] \), it invokes \(\text{REG}.\text{write}(r, v) \). This operation is made up of two instances of the communication pattern. The first one (line 3) is a re-synchronization, as in the snapshot operation, whose side effect is here to provide \(p_i \) with an up-to-date value of \(\text{tsa}_i[r].\text{date} \). In the second instance of the communication pattern, \(p_i \) associates the timestamp \((\text{tsa}_i[r].\text{date} + 1, i) \) with \(v \), and scd-broadcasts the data/control message \(\text{WRITE}(r, v, (\text{tsa}_i[r].\text{date} + 1, i)) \). In addition to informing the other processes on its write of \(\text{REG}[r] \), this message \(\text{WRITE()} \) acts as a re-synchronization message, exactly as a message \(\text{SYNC}(i) \).

When this synchronization terminates (i.e., when the Boolean \(done_i \) is set to true), \(p_i \) returns from the write operation.

Algorithm 3: scd-delivery of a set of messages. When process \(p_i \) scd-delivers a message set, namely, \{ \(\text{WRITE}(r_{j_1}, v_{j_1}, \langle date_{j_1}, j_1 \rangle), \ldots, \text{WRITE}(r_{j_x}, v_{j_x}, \langle date_{j_x}, j_x \rangle), \text{SYNC}(j_{x+1}), \ldots, \text{SYNC}(j_y) \) \} it first looks if there are messages \(\text{WRITE()} \). If it is the case, for each register \(\text{REG}[r] \) for which there are messages \(\text{WRITE}(r, -, -) \) (line 5), \(p_i \) computes the maximal timestamp carried by these messages (line 6), and updates accordingly its local representation of \(\text{REG}[r] \) (lines 7-10). Finally, if \(p_i \) is the sender of one of these messages (\(\text{WRITE()} \) or \(\text{SYNC()} \)), \(done_i \) is set to true, which terminates \(p_i \)’s re-synchronization (line 12).

Remark: Linearizability imposes that, when two snapshot operations are not concurrent, the second operation returns a value at least as recent as the first one. In [5], this is done by forcing the readers to mimic the algorithm executed by the writers, which is usually summarized by the adage “readers must write”. This step is not required in Algorithm 3 because the \(\text{SYNC()} \) message sent during a snapshot operation by \(p_i \) (Line 1) serves two purposes: 1) it gathers all \(\text{WRITE}(-, -, -) \) messages sent by write operations that have already terminated when \(p_i \) started its snapshot operation, and 2) it orders, by transitivity, all \(\text{SYNC()} \) messages sent by subsequent snapshot operations with all \(\text{WRITE}(-, -, -) \) messages received by \(p_i \) before the end of its snapshot operation.

6.3 Proof of Algorithm 3

As they are implicitly used in the proofs that follow, let us recall the properties of the SCD-broadcast abstraction. The non-faulty processes scd-deliver the same messages (exactly one each), and each of them was scd-broadcast. As a faulty process behaves correctly until it crashes, it scd-delivers a subset of the messages scd-delivered by the non-faulty processes.

Without loss of generality, we assume that there is an initial write operation issued by a non-faulty process. Moreover, if a process crashes in a snapshot operation, its snapshot is not considered. If a process crashes in a write operation, its write is considered only if the message \(\text{WRITE()} \) it sent at line 4 is scd-delivered to at least one non-faulty process (and by the Termination-2 property, to all non-faulty processes). Let us notice that a message \(\text{SYNC()} \) scd-broadcast by a process \(p_i \) does not modify the local variables of the other processes.

Lemma 8 If a non-faulty process invokes an operation, it returns from its invocation.

Proof Let \(p_i \) be a non-faulty process that invokes a read or write operation. By the Termination-1 property of SCD-broadcast, it eventually receives a message set containing the message \(\text{SYNC()} \) or
Consequently, set (lines 5-12) terminate, it follows that the synchronization Boolean \(done_i \) is eventually set to \(\text{true} \). Consequently, \(p_i \) returns from the invocation of its operation.

Lemma 8

Extension of the relation \(<_{ts} \). The relation \(<_{ts} \) is extended to a partial order on arrays of timestamps, denoted \(\leq_{tsa} \), defined as follows: \(tsa1[1..m] \leq_{tsa} tsa2[1..m] \) \(\overset{\text{def}}{=} \forall r : (tsa1[r] = tsa2[r] \lor tsa1[r] <_{ts} tsa2[r]) \). Moreover, \(tsa1[1..m] <_{ts} tsa2[1..m] \) \(\overset{\text{def}}{=} (tsa1[1..m] \leq_{tsa} tsa2[1..m]) \land (tsa1[1..m] \neq tsa2[1..m]) \).

Definition. Let \(TSA_i \) be the set of the array values taken by \(tsa_i[1..m] \) at line 12 (end of the processing of a message set by process \(p_i \)). Let \(TSA = \cup_{1 \leq i \leq n} TSA_i \).

Lemma 9 The order \(\leq_{tsa} \) is total on \(TSA \).

Proof Let us first observe that, for any \(i \), all values in \(TSA_i \) are totally ordered (this comes from \(tsa_i[1..m] \) whose entries can only increase, lines 7 and 10). Hence, let \(tsa1[1..m] \) be an array value of \(TSA_i \), and \(tsa2[1..m] \) an array value of \(TSA_j \), where \(i \neq j \).

Let us assume, by contradiction, that \(\lnot(tsa1 \leq_{tsa} tsa2) \) and \(\lnot(tsa2 \leq_{tsa} tsa1) \). As \(\lnot(tsa1 \leq_{tsa} tsa2) \), there is a registers \(r \) such that \(tsa2[r] <_{ts} tsa1[r] \). According to lines 7 and 9, there is a message \(\text{WRITE}(r, -, tsa1[r]) \) received by \(p_i \) when \(tsa_i = tsa1 \) and not received by \(p_j \) when \(tsa_j = tsa2 \) (because \(tsa2[r] <_{ts} tsa1[r] \)). Similarly, there is a message \(\text{WRITE}(r, -, tsa2[r]) \) received by \(p_j \) when \(tsa_j = tsa2 \) and not received by \(p_i \) when \(tsa_i = tsa1 \). This situation contradicts the MS-Ordering property, from which we conclude that either \(tsa1 \leq_{tsa} tsa2 \) or \(tsa2 \leq_{tsa} tsa1 \).

Definitions. Let us associate a timestamp \(ts(\text{write}(r, v)) \) with each write operation as follows. Let \(p_i \) be the invoking process; \(ts(\text{write}(r, v)) \) is the timestamp of \(v \) as defined by \(p_i \) at line 4, i.e., \(tsa_i[r].date + 1, i \).

Let \(\text{op1} \) and \(\text{op2} \) be any two operations. The relation \(\prec \) on the whole set of operations is defined as follows: \(\text{op1} \prec \text{op2} \) if \(\text{op1} \) terminated before \(\text{op2} \) started. It is easy to see that \(\prec \) is a real-time-compliant partial order on all the operations.

Lemma 10 No two write operations on the same register \(\text{write1}(r, v) \) and \(\text{write2}(r, w) \) have the same timestamp, and \((\text{write1}(r, v) \prec \text{write2}(r, w)) \Rightarrow (ts(\text{write1}) <_{ts} ts(\text{write2})) \).

Proof Let \((date1, i) \) and \((date2, j) \) be the timestamp of \(\text{write1}(r, v) \) and \(\text{write2}(r, w) \), respectively. If \(i \neq j \), \(\text{write1}(r, v) \) and \(\text{write2}(r, w) \) have been produced by different processes, and their timestamp differ at least in their process identity.

So, let us consider that the operations have been issued by the same process \(p_i \), with \(\text{write1}(r, v) \) first. As \(\text{write1}(r, v) \) precedes \(\text{write2}(r, w) \), \(p_i \) first (line 4) invoked \(\text{scd广播} \text{write}(r, v, (date1, i)) \), and later \(\text{write}(r, w, (date2, i)) \). It follows that these SCD-broadcast invocations are separated by a local reset of the Boolean \(done_i \) at line 4. Moreover, before the reset of \(done_i \) due to the scd-delivery of the message \{ \ldots, \text{write}(r, v, (date1, i)), \ldots \}, we have \(tsa_i[r].date_i \geq date1 \) (lines 6-10). Hence, we have \(tsa_i[r].date \geq date1 \) before the reset of \(done_i \) (line 12). Then, due to the “+1” at line 4, \(\text{write}(r, w, (date2, i)) \) is such that \(date2 > date1 \), which concludes the proof of the first part of the lemma.

Let us now consider that \(\text{write1}(r, v) \prec \text{write2}(r, w) \). If \(\text{write1}(r, v) \) and \(\text{write2}(r, w) \) have been produced by the same process we have \(date1 < date2 \) from the previous reasoning. So let us assume that they have been produced by different processes \(p_i \) and \(p_j \). Before terminating \(\text{write1}(r, v) \) (when the Boolean \(done_i \) is set \(\text{true} \) at line 12), \(p_i \) received a message set \(m_{sl1} \) containing the message \(\text{write}(r, v, (date1, i)) \). When \(p_j \) executes \(\text{write2}(r, w) \), it first invokes \(\text{scd广播} \text{sync}(j) \)
at line 3. Because write1(r, v) terminated before write2(r, w) started, this message SYNC(j) cannot belong to msl1.

Due to Integrity and Termination-2 of SCD-broadcast, p_j eventually scd-delivers exactly one message set msl_1, containing WRITE(r, v, (date1, i)). Moreover, it also scd-delivers exactly one message set msl_2 containing its own message SYN(j). On the the other side, p_i scd-delivers exactly one message set msl_2 containing the message SYN(j). It follows from the MS-Ordering property that, if msl_2 \neq msl_1, p_j cannot scd-deliver msl_2 before msl_1. Then, whatever the case (msl_1 = msl_2 or msl_1 is scd-delivered at p_j before msl_2), it follows from the fact that the messages WRITE() are processed (lines 5-11) before the messages SYN(j) (line 12), that we have tsa_j[r] \geq \langle date1, i \rangle when done_j is set to true. It then follows from line 4 that date2 > date1, which concludes the proof of the lemma.

\[\text{Lemma 10} \]

Associating timestamp arrays with operations. Let us associate a timestamp array tsa(op)[1..m] with each operation op as follows.

- Case op() = snapshot(). Let p_i be the invoking process; tsa(op) is the value of tsa_i[1..m] when p_i returns from the snapshot operation (line 2).
- Case op() = write(r, v). Let min_{tsa}(\{A\}), where A is a set of array values, denote the smallest array value of A according to <_{tsa}. Let tsa(op) \defeq \min_{tsa}\{\{tsa[1..m] \in TSA \text{ such that } ts(op) \leq ts'\} tsa[r]\}). Hence, tsa(op) is the first tsa[1..m] of TSA, that reports the operation op() = write(r, v).

Lemma 11 Let op and op' be two distinct operations such that op < op'. We have tsa(op) \leq_{tsa} tsa(op'). Moreover, if op' is a write operation, we have tsa(op) <_{tsa} tsa(op').

Proof Let p_i and p_j be the processes that performed op and op', respectively. Let Sync_j be the Sync(j) message sent by p_j (at line 1 or 3) during the execution of op'. Let term_{tsa_i} be the value of tsa_i[1..m] when op terminates (line 2 or 4), and sync_{tsa_j} the value of tsa_j[1..m] when done_j becomes true for the first time after p_j sent Sync_j (line 1 or 3). Let us notice that term_{tsa_i} and sync_{tsa_j} are elements of the set TSA.

According to lines 7 and 10, for all r, tsa_i[r] is the largest timestamp carried by a message WRITE(r, v, −) received by p_i in a message set before op terminates. Let m be a message such that there is a set sm scd-delivered by p_i before it terminated op. As p_j sent Sync_j after p_i terminated, p_j did not receive any set containing Sync_j before it terminated op. By the properties Termination-2 and MS-Ordering, p_j received message m in the same set as Sync_j or in a message set sm' received before the set containing Sync_j. Therefore, we have term_{tsa_i} \leq_{tsa} sync_{tsa_j}.

If op is a snapshot operation, then tsa(op) = term_{tsa_i}. Otherwise, op() = write(r, v). As p_i has to wait until it processes a set of messages including its WRITE() message (and executes line 12), we have ts(op) <_{tsa} term_{tsa_i}[r]. Finally, due to the fact that term_{tsa_i} \in TSA and Lemma 9, we have tsa(op) \leq_{tsa} term_{tsa_i}.

If op' is a snapshot operation, then sync_{tsa_j} = tsa(op') (line 2). Otherwise, op() = write(r, v) and thanks to the +1 in line 4, sync_{tsa_j}[r] is strictly smaller than tsa(op')[r] which, due to Lemma 9, implies sync_{tsa_j} <_{tsa} tsa(op').

It follows that, in all cases, we have tsa(op) \leq_{tsa} term_{tsa_i} \leq_{tsa} sync_{tsa_j} \leq_{tsa} tsa(op') and if op' is a write operation, we have tsa(op) \leq_{tsa} term_{tsa_i} \leq_{tsa} sync_{tsa_j} <_{tsa} tsa(op'), which concludes the proof of the lemma.

\[\text{Lemma 11} \]

The previous lemmas allow the operations to be linearized (i.e., totally ordered in an order compliant with both the sequential specification of a register, and their real-time occurrence order) according to a total order extension of the reflexive and transitive closure of the \(\rightarrow_{lin} \) relation defined thereafter.
Definition 1 Let op, op’ be two operations. We define the \(\rightarrow_{lin} \) relation by op \(\rightarrow_{lin} \) op’ if one of the following properties holds:

\begin{itemize}
 \item op \(\prec \) op’,
 \item ts(a(op)) \(\prec_{tsa} \) ts(a(op’)),
 \item ts(a(op)) = ts(a(op’)), op is a write operation and op’ is a snapshot operation,
 \item ts(a(op)) = ts(a(op’)), op and op’ are two write operations on the same register and \(ts(op) <_{ts} ts(op’) \).
\end{itemize}

Lemma 12 The snapshot object built by Algorithm 3 is linearizable.

Proof We recall the definition of the \(\rightarrow_{lin} \) relation: op \(\rightarrow_{lin} \) op’ if one of the following properties holds:

\begin{itemize}
 \item op \(\prec \) op’,
 \item ts(a(op)) \(\prec_{tsa} \) ts(a(op’)),
 \item ts(a(op)) = ts(a(op’)), op is a write operation and op’ is a snapshot operation,
 \item ts(a(op)) = ts(a(op’)), op and op’ are two write operations on the same register and \(ts(op) <_{ts} ts(op’) \).
\end{itemize}

We define the \(\rightarrow^{\star}_{lin} \) relation as the reflexive and transitive closure of the \(\rightarrow_{lin} \) relation.

Let us prove that the \(\rightarrow^{\star}_{lin} \) relation is a partial order on all operations. Transitivity and reflexivity are given by construction. Let us prove antisymmetry. Suppose there are op_0, op_1, ..., op_m such that op_0 = op_m and op_i \(\rightarrow_{lin} \) op_{i+1} for all i < m. By Lemma 11, for all i < m, we have ts(a(op_i)) \(\leq_{tsa} \) ts(a(op_{i+1})), and ts(a(op_m)) = ts(a(op_0)), so the timestamp array of all operations are the same. Moreover, if op_i is a snapshot operation, then op_i \(\prec \) op_{(i+1)%m} is the only possible case (% stands for “modulo”), and by Lemma 11 again, op_{(i+1)%m} is a snapshot operation. Therefore, only two cases are possible.

\begin{itemize}
 \item Let us suppose that all the op_i are snapshot operations and for all i, op_i \(\prec \) op_{(i+1)%m}. As \(\prec \) is a partial order relation, it is antisymmetric, so all the op_i are the same operation.
 \item Otherwise, all the op_i are write operations. By Lemma 11, for all op_i \(\not\prec \) op_{(i+1)%m}. The operations op_i and op_{(i+1)%m} are ordered by the fourth point, so they are write operations on the same register and ts(op_i) <_{ts} ts(op_{(i+1)%m}). By antisymmetry of the \(<_{ts} \) relation, all the op_i have the same timestamp, so by Lemma 10, they are the same operation, which proves antisymmetry.
\end{itemize}

Let \(\leq_{lin} \) be a total order extension of \(\rightarrow^{\star}_{lin} \). Relation \(\leq_{lin} \) is real-time compliant because \(\rightarrow^{\star}_{lin} \) contains \(\prec \).

Time and Message costs. An invocation of snapshot() involves one invocation of scd_broadcast(), while an invocation of write() involves two. As scd_broadcast() costs \(O(n^2) \) protocol messages and 2\(\Delta \) time units, snapshot() cost the same, and write() costs the double.

Theorem 2 Algorithm 3 builds an MWMR atomic snapshot object in the model \(C, A, M, P_{n,t} [SCD \text{-broadcast}] \). The operation snapshot costs one SCD-broadcast, the write() operation costs two.
Linearizable register

<table>
<thead>
<tr>
<th></th>
<th>Read / Snapshot</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># msgs</td>
<td>latency</td>
</tr>
<tr>
<td>[5]</td>
<td>(\mathcal{O}(n))</td>
<td>4(\Delta)</td>
</tr>
<tr>
<td>[32]</td>
<td>(\mathcal{O}(n))</td>
<td>2 — 4(\Delta)</td>
</tr>
</tbody>
</table>

Linearizable snapshot object

<table>
<thead>
<tr>
<th></th>
<th>Read / Snapshot</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># msgs</td>
<td>latency</td>
</tr>
<tr>
<td>[5] + [7]</td>
<td>(\mathcal{O}(n^2 \log n))</td>
<td>(\mathcal{O}(n \log n \Delta))</td>
</tr>
<tr>
<td>[15]</td>
<td>(\mathcal{O}(n^3))</td>
<td>(\mathcal{O}(n \Delta))</td>
</tr>
<tr>
<td>This paper</td>
<td>(\mathcal{O}(n^2))</td>
<td>2(\Delta)</td>
</tr>
</tbody>
</table>

Sequentially consistent snapshot object

<table>
<thead>
<tr>
<th></th>
<th>Read / Snapshot</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># msgs</td>
<td>latency</td>
</tr>
<tr>
<td>[33]</td>
<td>0</td>
<td>0 — 4(\Delta)</td>
</tr>
<tr>
<td>This paper</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2: Comparison of various algorithms (best complexities are highlighted)

Proof. The proof follows from Lemmas 8-12. The cost of the operation \(\text{snapshot}\) follows from line 1, and the one of \(\text{write}\) follows from lines 3-4.

\(\Box\) Theorem 2

The next corollary follows from (i) Theorem 1, (ii) Theorem 2 and (iii) the fact that the constraint \((t < n/2)\) is an upper bound on the number of faulty processes to build a read/write register (or snapshot object) [5].

Corollary 1 Algorithm 1 is resiliency optimal.

Comparison with other algorithms. Interestingly, Algorithm 3 is more efficient (from both time and message point of views) than the stacking of a read/write snapshot algorithm running on top of a message-passing emulation of a read/write atomic memory (as presented on Figure 2, such a stacking would costs \(\mathcal{O}(n^2 \log n)\) messages and \(\mathcal{O}(n \Delta)\) time units, see Section 6.1).

Sequentially consistent snapshot object. When considering Algorithm 3, let us suppress line 1 and line 3 (i.e., the messages \(\text{SYNC}\) are suppressed). The resulting algorithm no more implements a linearizable snapshot object. However, it still implements a snapshot object that is sequentially consistent [28]. This means that the order in which each process sees the operations performed on the snapshot object is consistent with a same total order similarly to linearizability except that this order may not respect real time. This results from the suppression of the real-time compliance due to the messages \(\text{SYNC}\). The operation \(\text{snapshot}\) is purely local, hence its cost is 0. The cost of the operation \(\text{write}\) is one SCD-broadcast, i.e., 2\(\Delta\) time units and \(\mathcal{O}(n^2)\) protocol messages. The proof of this algorithm is left to the reader.

7 The Power of SCD-broadcast: Counter Object

Definition. Let a counter be an object which can be manipulated by three parameterless operations denoted \(\text{increase}\), \(\text{decrease}\), and \(\text{read}\). Let \(C\) be a counter. From a sequential specification point of view \(C.\text{increase}\) adds 1 to \(C\), \(C.\text{decrease}\) subtracts 1 from \(C\), \(C.\text{read}\) returns the value of \(C\). As indicated in the Introduction, due to its commutative operations, this object is a good representative of a class of CRDT objects (conflict-free replicated data type as defined in [38]).

An algorithm satisfying linearizability. Algorithm 4 implements an atomic counter \(C\). Each process \(p_i\) manages a local variable \(\text{counter}_i\) which stores its local view of the counter \(C\). The text of the algorithm is self-explanatory.
operation increase() is
(1) done, ← false; scd_broadcast PLUS(i); wait(done,);
(2) return().

operation decrease() is the same as increase() where PLUS(i) is replaced by MINUS(i).

operation read() is
(3) done, ← false; scd_broadcast SYNC(i); wait(done,);
(4) return(counter,).

when the message set \{ PLUS(j_1), \ldots, MINUS(j_k), \ldots, SYNC(j_k), \ldots \} is scd-delivered do
(5) let \(p \) = number of messages PLUS() in the message set;
(6) let \(m \) = number of messages MINUS() in the message set;
(7) counter, ← counter, + \(p - m \);
(8) if \(\exists j : j \neq i \) then done, ← true end.

Algorithm 4: Construction of an atomic counter in \(CAMP_{n,t} \) [SCD-broadcast] (code for \(p_i \))

The operation read() is similar to the operation snapshot() of the snapshot object. Differently from the write() operation on a snapshot object (which requires a synchronization message SYNC() and a data/synchronization message WRITE()), the update operations increase() and decrease() require only one data/synchronization message PLUS() or MINUS(). This is the gain obtained from the fact that, from a process \(p_i \) point of view, the operations increase() and decrease() which appear between two consecutive of its read() invocations are commutative.

Lemma 13 If a non-faulty process invokes an operation, it returns from its invocation.

Proof Let \(p_i \) be a non-faulty process that invokes increase(), decrease() or read(). By the Termination-1 property of SCD-broadcast, it eventually receives a message set containing the message PLUS(), MINUS() or SYNC() it sends at line 1 or 3. As all the statements associated with the scd-delivery of a message set (lines 5-8) terminate, it follows that the synchronization Boolean \(done, \) is eventually set to \(\text{true} \). Consequently, \(p_i \) returns from the invocation of its operation. \(\square \) Lemma 13

Definition 2 Let \(\text{op}_i \) be an operation performed by \(p_i \). We define \(\text{past}(\text{op}_i) \) as a set of messages by:

- If \(\text{op}_i \) is an increase() or decrease() operation, and \(m_i \) is the message sent during its execution at line 1, then \(\text{past}(\text{op}_i) = \{ m : m \mapsto m_i \} \).
- If \(\text{op}_i \) is a read() operation, then \(\text{past}(\text{op}_i) \) is the union of all sets of messages scd_delivered by \(p_i \) before it executed line 4.

We define the \(\rightarrow_{\text{lin}} \) relation by \(\text{op} \rightarrow_{\text{lin}} \text{op}' \) if one of the following conditions hold:

- \(\text{past}(\text{op}) \subseteq \text{past}(\text{op}') \);
- \(\text{past}(\text{op}) = \text{past}(\text{op}') \), \(\text{op} \) is an increase() or a decrease() operation and \(\text{op}' \) is a read() operation.

Lemma 14 The counter object built by Algorithm 4 is linearizable.

Proof Let us prove that \(\rightarrow_{\text{lin}} \) is a strict partial order relation. Let us suppose \(\text{op} \rightarrow_{\text{lin}} \text{op}' \rightarrow_{\text{lin}} \text{op}'' \). If \(\text{op}' \) is a read() operation, we have \(\text{past}(\text{op}) \subseteq \text{past}(\text{op}') \subseteq \text{past}(\text{op}'') \). If \(\text{op}' \) is an increase() or a decrease() operation, we have \(\text{past}(\text{op}) \not\subseteq \text{past}(\text{op}') \subseteq \text{past}(\text{op}'') \). In both cases, we have \(\text{past}(\text{op}) \not\subseteq \text{past}(\text{op}'') \), which proves transitivity as well as antisymmetry and irreflexivity since it is impossible to have \(\text{past}(\text{op}) \not\subseteq \text{past}(\text{op}') \).

Let us prove that \(\rightarrow_{\text{lin}} \) is real-time compliant. Let \(\text{op}_i \) and \(\text{op}_j \) be two operations performed by processes \(p_i \) and \(p_j \) respectively, and let \(m_i \) and \(m_j \) be the message sent during the execution of \(\text{op}_i \)
and \(\text{op}_j \) respectively, on line 1 or 3. Suppose that \(\text{op}_i \prec \text{op}_j \) (\(\text{op}_j \) terminated before \(\text{op}_i \) started). When \(p_i \) returns from \(\text{op}_i \), by the waiting condition of line 1 or 3, it has received \(m_i \), but \(p_j \) has not yet sent \(m_j \). Therefore, \(m_i \rightarrow \text{op}_i \rightarrow m_j \), and consequently \(m_j \not\in \text{past}(\text{op}_i) \). By the waiting condition during the execution of \(\text{op}_j \) (line 1 or 3), we have \(m_j \in \text{past}(\text{op}_j) \). By the Containment property of SCD-broadcast, we therefore have \(\text{past}(\text{op}_i) \subset \text{past}(\text{op}_j) \), so \(\text{op}_i \rightarrow_{\text{lin}} \text{op}_j \). Let \(\leq_{\text{lin}} \) be a total order extension of \(\rightarrow_{\text{lin}} \). It is real-time compliant because \(\rightarrow_{\text{lin}}^* \) contains \(\prec \).

Let us now consider the value returned by a \(\text{read}() \) operation \(\text{op} \). Let \(p \) be the number of \(\text{PLUS}() \) messages in \(\text{past}(\text{op}) \) and let \(m \) be the number of \(\text{MINUS}() \) messages in \(\text{past}(\text{op}) \). According to line 1, \(\text{op} \) returns the value of \(\text{counter}_i \) that is modified only at line 7 and contains the value \(p - m \), by commutativity of additions and subtractions. Moreover, due to the definition of \(\rightarrow_{\text{lin}} \), all pairs composed of a \(\text{read}() \) and an \(\text{increase}() \) or \(\text{decrease}() \) operations are ordered by \(\rightarrow_{\text{lin}} \), and consequently, \(\text{op} \) has the same \(\text{increase}() \) and \(\text{decrease}() \) operations issued by \(\text{op} \) are same as \(\text{increase}() \) where \(\text{PLUS}(i) \) is replaced by \(\text{MINUS}(i) \).

Theorem 3 Algorithm 4 implements an atomic counter.

Proof Follows from Lemmas 13 and 14. □

<table>
<thead>
<tr>
<th>operation increase() is</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (\text{lsc}_i \leftarrow \text{lsc}_i + 1);</td>
</tr>
<tr>
<td>(2) (\text{scd广播PLUS}());</td>
</tr>
<tr>
<td>(3) (\text{return}()).</td>
</tr>
</tbody>
</table>

| operation decrease() is the same as increase() where PLUS(i) is replaced by MINUS(i). |

<table>
<thead>
<tr>
<th>operation read() is</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) (\text{wait}());</td>
</tr>
<tr>
<td>(5) (\text{return}()).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>when the message set { \text{PLUS}(j_1), \ldots, \text{MINUS}(j_r), \ldots } is scd-delivered do</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) (\text{let } p = \text{number of messages PLUS()} \text{ in the message set};)</td>
</tr>
<tr>
<td>(7) (\text{let } m = \text{number of messages MINUS()} \text{ in the message set};)</td>
</tr>
<tr>
<td>(8) (\text{counter}_i \leftarrow \text{counter}_i + p - m);</td>
</tr>
<tr>
<td>(9) (\text{let } c = \text{number of messages PLUS()} \text{ and MINUS()} \text{ in the message set};)</td>
</tr>
<tr>
<td>(10) (\text{lsc}_i \leftarrow \text{lsc}_i - c).</td>
</tr>
</tbody>
</table>

Algorithm 5: Construction of a seq. consistent counter in \(\text{CAMP}_{n,t} \{\text{SCD-broadcast}\} \) (code for \(p_i \))

An algorithm satisfying sequential consistency. The previous algorithm can be easily modified to obtain a sequentially consistent counter. To this end, a technique similar to the one introduced in [8] can be used to allow the operations \(\text{increase}() \) and \(\text{decrease}() \) to have a fast implementation. “Fast” means here that these operations are purely local: they do not require the invoking process to wait in the algorithm implementing them. Differently, the operation \(\text{read}() \) issued by a process \(p_i \) cannot be fast, namely, all the previous \(\text{increase}() \) and \(\text{decrease}() \) operations issued by \(p_i \) must be applied to its local copy of the counter for its invocation of \(\text{read}() \) to terminate (this is the rule known under the name “read your writes”).

Algorithm 5 is the resulting algorithm. In addition to \(\text{counter}_i \), each process manages a synchronization counter \(\text{lsc}_i \) initialized to 0, which counts the number of \(\text{increase}() \) and \(\text{decrease}() \) executed by \(p_i \) and not yet locally applied to \(\text{counter}_i \). Only when \(\text{lsc}_i \) is equal to 0, \(p_i \) is allowed to read \(\text{counter}_i \).

The cost of an operation \(\text{increase}() \) and \(\text{decrease}() \) is 0 time units plus the \(O(n^2) \) protocol messages of the underlying SCD-broadcast. The time cost of the operation \(\text{read}() \) by a process \(p_i \) depends on the
value of lsc_i. It is 0 when p_i has no “pending” counter operations.

Remark As in [8], using the same technique, it is possible to design a sequentially consistent counter in which the operation $\text{read}()$ is fast, while the operations $\text{increase}()$ and $\text{decrease}()$ are not.

8 The Power of SCD-broadcast: Lattice Agreement Task

Definition. Let S be a partially ordered set, and \leq its partial order relation. Given $S' \subseteq S$, an upper bound of S' is an element x of S such that $\forall y \in S': y \leq x$. The least upper bound of S' is an upper bound z of S' such that, for all upper bounds y of S', $z \leq y$. S is called a semilattice if all its finite subsets have a least upper bound. Let $\text{lub}(S')$ denotes the least upper bound of S'.

Let us assume that each process p_i has an input value in_i that is an element of a semilattice S. The lattice agreement task was introduced in [6] and generalized in [18]. It provides each process with an operation denoted $\text{propose}()$, such that a process p_i invokes $\text{propose}(in_i)$ (we say that p_i proposes in_i); this operation returns an element $z \in S$ (we say that it decides z). The task is defined by the following properties, where it is assumed that each non-faulty process invokes $\text{propose}()$.

- **Validity.** If process p_i decides out_i, we have $in_i \leq out_i \leq \text{lub}\{in_1, \ldots, in_n\}$.
- **Containment.** If p_i decides out_i and p_j decides out_j, we have $out_i \leq out_j$ or $out_j \leq out_i$.
- **Termination.** If a non-faulty process proposes a value, it decides a value.

Algorithm. Algorithm 6 implements the lattice agreement task. It is a very simple algorithm, which uses one instance of the communication pattern introduced in Section 5. The text of the algorithm is self-explanatory.

Algorithm 6: Solving Lattice Agreement in $\mathcal{CAMP}_{n,t}[\text{SCD-broadcast}]$ (code for p_i)

```
operation propose(in_i) is
(1) done_i ← false; scd_broadcast MSG(i, in_i); wait(done_i);
(2) return(lub(rec_i)).

when the message set \{ MSG(j_1, v_{j_1}), \ldots, MSG(j_s, v_{j_s}) \} is scd-delivered do
(3) rec_i ← rec_i ∪ \{v_{j_1}, \ldots, v_{j_s}\};
(4) if $\exists \ell : j_\ell = i$ then done_i ← true end if.
```

Theorem 4 Algorithm 6 solves lattice agreement.

Proof The Termination property follows from the Termination-1 property of SCD-broadcast (if a non-faulty process SCD-broadcasts a message m, it SCD-delivers a message set containing m). The Validity property follows from the definition of the lub() operation, and the fact that, when a process p_i executes line 2, rec_i contains in_i (it executed before lines 3-4 when it received a message set containing the message $MSG(i, in_i)$ it SCD-broadcast at line 1).

As far as the Containment property is concerned we have the following. Let us assume, by contradiction, that there are two processes p_i ans p_j such that we have neither $out_i \leq out_j$ nor $out_j \leq out_i$. This means that there is a value $v \in out_i \setminus out_j$, and a value $v' \in out_j \setminus out_i$. Let ms_i and ms'_i be the message sets (scd-delivered by p_i) which contained v and v' respectively. As $v \in out_i$ and $v' \notin out_i$, we have $ms_i \neq ms'_i$, and ms_i was scd-delivered before ms'_i.

Defining similarly ms_j (containing v') and ms'_j (containing v), we have $ms'_j \neq ms_j$, and ms'_j was scd-delivered before ms_j. It follows that $m \mapsto m'$ and $m' \mapsto j m$, from which it follows that $\mapsto = \bigcup_{1 \leq x \leq n} \mapsto_x$ is not a partial order. A contradiction with the SCD-broadcast definition. □
Remark 1. SCD-broadcast can be built on top of read/write registers (see below Theorem 5). It follows that the combination of Algorithm 6 and Algorithm 7 provides us with a pure read/write algorithm solving the lattice agreement task. As far as we know, this is the first algorithm solving lattice agreement, based only on read/write registers.

Remark 2. Similarly to the algorithms implementing snapshot objects and counters satisfying sequential consistency (instead of linearizability), Algorithm 6 uses no message \textsc{Sync}().

Let us also notice the following. Objects are specified by “witness” correct executions, which are defined by sequential specifications. According to the time notion associated with these sequences we have two consistency conditions: linearizability (the same “physical” time for all the objects) or sequential consistency (a logical time is associated with each object, independently from the other objects). Differently, as distributed tasks are defined by relations from input vectors to output vectors (i.e., without referring to specific execution patterns or a time notion), the notion of a consistency condition (such as linearizability or sequential consistency) is meaningless for tasks.

9 The Computability Limit of SCD-broadcast

This section presents an algorithm building SCD-broadcast on top of SWMR snapshot objects. (Such snapshot objects can be easily obtained from MWMR snapshot objects [16].) Hence, it follows from (a) this algorithm, (b) Algorithm 1, and (c) the impossibility proof to build an atomic register on top of asynchronous message-passing systems where \(t \geq n/2 \) process may crash [5], that SCD-broadcast cannot be implemented in \(\mathcal{CAMP}_{n,t}[t \geq n/2] \), and snapshot objects and SCD-broadcast are computationally equivalent.

9.1 From snapshot to SCD-broadcast

Shared objects. The shared memory is composed of two SWMR snapshot objects. Let \(\varepsilon \) denote the empty sequence.

- \(SENT[1..n] \): snapshot object (initialized to \([\emptyset, \ldots, \emptyset]\)), such that \(SENT[i] \) contains the messages scd-broadcast by \(p_i \).
- \(SETS_SEQ[1..n] \): snapshot object (initialized to \([\varepsilon, \ldots, \varepsilon]\)), such that \(SETS_SEQ[i] \) contains the sequence of the sets of messages scd-delivered by \(p_i \).

The notation \(\oplus \) is used for the concatenation of a message set at the end of a sequence of message sets.

Local objects Each process \(p_i \) manages the following local objects.

- \(sent_i \): local copy of the snapshot object \(SENT \).
- \(sets_seq_i \): local copy of the snapshot object \(SETS_SEQ \).
- \(to_deliver_i \): auxiliary variable whose aim is to contain the next message set that \(p_i \) has to scd-deliver.

The function \(\text{members}(set_seq) \) returns the set of all the messages contained in \(set_seq \).

Description of Algorithm 7. When a process \(p_i \) invokes \(\text{scd_broadcast}(m) \), it adds \(m \) to \(sent_i[i] \) and \(SENT[i] \) to inform all the processes on the scd-broadcast of \(m \). It then invokes the internal procedure \(\text{progress}() \) from which it exits once it has a set containing \(m \) (line 1).

A background task \(T \) ensures that all messages will be scd-delivered (line 2). This task invokes repeatedly the internal procedure \(\text{progress}() \). As, locally, both the application process and the underlying task \(T \) can invoke \(\text{progress}() \), which accesses the local variables of \(p_i \), those variables are protected by a
Lemma 15 If a process scd-delivers a set containing a message \(m \), some process invoked \(\text{scd_broadcast}(m) \).

Proof The proof follows directly from the text of the algorithm, which copies messages from \(\text{SENT} \) to \(\text{SETS_SEQ} \), without creating new messages. \(\square \) Lemma 15

Lemma 16 No process scd-delivers the same message twice.

Proof Let us first observe that, due to lines 7 and 15, all messages that are scd-delivered at a process \(p_i \) have been added to \(\text{sets_seq}_i[i] \). The proof then follows directly from (a) this observation, (b) the fact...
that (due to the local mutual exclusion at each process) \(\text{sets}_\text{seq}_i[i] \) is updated consistently, and (c) lines 6 and 14, which state that a message already scd-delivered (i.e., a message belonging to \(\text{sets}_\text{seq}_i[i] \)) cannot be added to \(\text{to_deliver}_i \).

\[\square \text{Lemma 16} \]

Lemma 17 Any invocation of \(\text{scd_broadcast}() \) by a non-faulty process \(p_i \) terminates.

Proof The proof consists in showing that the internal procedure \(\text{progress}() \) terminates. As the mutex algorithm is assumed to be fair, process \(p_i \) cannot block forever at line 3. Hence, \(p_i \) invokes the internal procedure \(\text{catchup}() \). It then issues first a snapshot invocation on \(\text{SETS_SEQ} \) and stores the value it obtains the value of \(\text{sets_seq}_i \). There is consequently a finite number of message sets in \(\text{sets_seq}_i \). Hence, the “while” of lines 13-17 can be executed only a finite number of times, and it follows that any invocation of \(\text{catchup}() \) by a non-faulty process terminates. The same reasoning (replacing \(\text{SETS_SEQ} \) by \(\text{SENT} \)) shows that process \(p_i \) cannot block forever when it executes the lines 5-10 of the procedure \(\text{progress}() \).

\[\square \text{Lemma 17} \]

Lemma 18 If a non-faulty process \(\text{scd_broadcasts} \) a message \(m \), it \(\text{scd_delivers} \) a message set containing \(m \).

Proof Let \(p_i \) be a non-faulty process that \(\text{scd_broadcasts} \) a message \(m \). As it is non-faulty, \(p_i \) adds \(m \) to \(\text{SENT}[i] \) and then invokes \(\text{progress}() \) (line 1). As \(m \in \text{SENT} \), it is eventually added to \(\text{to_deliver}_i \) if not yet scd-delivered (line 6), and scd-delivered at line 9, which concludes the proof of the lemma.

\[\square \text{Lemma 18} \]

Lemma 19 If a non-faulty process \(\text{scd_delivers} \) a message \(m \), every non-faulty process \(\text{scd_delivers} \) a message set containing \(m \).

Proof Let us assume that a process \(\text{scd_delivers} \) a message set containing a message \(m \). It follows that the process that invoked \(\text{scd_broadcast}(m) \) added \(m \) to \(\text{SENT}[i] \) (otherwise no process could scd-deliver \(m \)). Let \(p_i \) be a correct process. It invokes \(\text{progress}() \) infinitely often (line 2). Hence, there is a first execution of \(\text{progress}() \) such that \(\text{sent}_i \) contains \(m \) (line 5). If then follows from line 6 that \(m \) will be added to \(\text{to_deliver}_i \) (if not yet scd-delivered). If follows that \(p_i \) will scd-deliver a set of messages containing \(m \) at line 9.

\[\square \text{Lemma 19} \]

Lemma 20 Let \(p_i \) be a process that \(\text{scd_delivers} \) a set \(m_{s_i} \) containing a message \(m \) and later \(\text{scd_delivers} \) a set \(m_{s_j} \) containing a message \(m' \). No process \(p_j \) \(\text{scd_delivers} \) first a set \(m_{s_j} \) containing \(m' \) and later a set \(m_{s_j} \) containing \(m \).

Proof Let us consider two message \(m \) and \(m' \). Due to total order property on the operations on the snapshot object \(\text{SENT} \), it is possible to order the write operations of \(m \) and \(m' \) into \(\text{SENT} \). Without loss of generality, let us assume that \(m \) is added to \(\text{SENT} \) before \(m' \). We show that no process \(\text{scd_delivers} \) \(m' \) before \(m \).

Let us consider a process \(p_i \) that \(\text{scd_delivers} \) the message \(m' \). There are two cases.

- \(p_i \) scd-delivers the message \(m' \) at line 9. Hence, \(p_i \) obtained \(m' \) from the snapshot object \(\text{SENT} \) (lines 5-6). As \(m \) was written in \(\text{SENT} \) before \(m' \), we conclude that \(\text{SENT} \) contains \(m \). It then follows from line 6 that, if \(p_i \) has not scd-delivered \(m \) before (i.e., \(m \) is not in \(\text{sets_seq}_i[i] \)), then \(p_i \) scd-delivers it in the same set as \(m' \).

\[\text{Let us notice that it is possible that a process \(\text{scd_delivers} \) them in two different message sets, while another process \(\text{scd_delivers} \) them in the same set (which does not contradict the lemma).} \]

23
• \(p_i \) scd-delivers the message \(m' \) at line 16. Due to the predicate used at line 13 to build a set of messages to scd-deliver, this means that there is a process \(p_j \) that has previously scd-delivered a set of messages containing \(m' \).

Moreover, let us observe that the first time the message \(m' \) is copied from \(SENT \) to some \(SETS_{-}SEQ[x] \) occurs at line 8. As \(m \) was written in \(SENT \) before \(m' \), the corresponding process \(p_x \) cannot see \(m' \) and not \(m \). It follows from the previous item that \(p_x \) has scd-delivered \(m \) in the same message set (as the one including \(m' \)), or in a previous message set. It then follows from the predicate of line 13 that \(p_i \) cannot scd-deliver \(m' \) before \(m \).

To summarize, the scd-deliveries of message sets in the procedure \(catchup() \) cannot violate the MS-Ordering property, which is established at lines 6-10.

\[\square \text{Lemma 20} \]

Theorem 5 Algorithm 7 implements SCD-Broadcast in the classical wait-free read/write model \(CARW_{n,t}[t < n] \).

Proof The proof follows from Lemma 15 (Validity), Lemma 16 (Integrity), Lemmas 17 and 18 (Termination-1), Lemma 19 (Termination-2), and Lemma 20 (MS-Ordering).

\[\square \text{Theorem 5} \]

10 Conclusion

This paper has introduced a new communication abstraction, suited to asynchronous message-passing systems where computing entities (processes) may crash. Denoted SCD-broadcast, it allows processes to broadcast messages and deliver sets of messages (instead of delivering each message one after the other).

More precisely, if a process \(p_i \) delivers a set of messages containing a message \(m \), and later delivers a set of messages containing a message \(m' \), no process \(p_j \) can deliver a set of messages containing \(m' \) before a set of messages containing \(m \). Moreover, there is no local constraint imposed on the processing order of the messages belonging to a same message set. SCD-broadcast has the following noteworthy features:

• It can be implemented in asynchronous message passing systems where any minority of processes may crash. Its costs are upper bounded by twice the network latency (from a time point of view) and \(O(n^2) \) (from a message point of view).

• Its computability power is the same as the one of atomic read/write register (anything that can be implemented in asynchronous read/write systems can be implemented with SCD-broadcast).

• It promotes a communication pattern which is simple to use, when one has to implement concurrent objects defined by a sequential specification or distributed tasks.

• When interested in the implementation of a concurrent object \(O \), a simple weakening of the SCD-broadcast-based atomic implementation of \(O \) provides us with an SCD-broadcast-based implementation satisfying sequential consistency (moreover, the sequentially consistent implementation is more efficient than the atomic one).

On programming languages for distributed computing. Differently from sequential computing for which there are plenty of high level languages (each with its idiosyncrasies), there is no specific language for distributed computing. Instead, addressing distributed settings is done by the enrichment of sequential computing languages with high level communication abstractions. When considering asynchronous systems with process crash failures, total order broadcast is one of them. SCD-broadcast is a candidate to be one of them, when one has to implement read/write solvable objects and distributed tasks.
Remark. It is worth noticing that the a self-stabilizing version of the SCD algorithm presented in this article is described in [30], and an extension of it where up to \(t < \frac{n}{4} \) processes may commit Byzantine failures is described in [10]. It is still an open problem to find an SCD algorithm coping with up to \(t < \frac{n}{3} \) Byzantine processes.

Acknowledgments

The authors want to thank the referees for their constructive comments that helped improve the content and the presentation of the paper.

This work was partially supported by the French ANR project DESCARTES (16-CE40-0023-03) devoted to layered and modular structures in distributed computing, the French “Étoile Montante en Pays De La Loire” regional project BROCCOLI devoted to the computability aspects of broadcast abstractions, and the French ANR project ByBLoS (ANR-20-CE25-0002-01) devoted the modular design of building blocks for large-scale trustless multi-users applications.

References

[28] Lamport L., How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Transactions on Computers, C28(9):690–691 (1979)

