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This paper presents a theoretical analysis of the liquid film dynamics during the oscillation
of a meniscus between a liquid and its vapour in a cylindrical capillary. By using the theory
of Taylor bubbles, the dynamic profile of the deposited liquid film is calculated within the
lubrication approximation accounting for the finiteness of the film length, i.e. for the presence
of the contact line. The latter is assumed to be pinned on a surface defect and thus immobile;
the contact angle is allowed to vary. The fluid flow effect on the curvature in the central
meniscus part is neglected. This curvature varies in time because of the film variation and is
determined as a part of the solution. The film dynamics depends on the initial contact angle,
which is the maximal contact angle attained during oscillation. The average film thickness is
studied as a function of system parameters. The numerical results are compared to existing
experimental data and to the results of the quasi-steady approximation. Finally, the problem
of an oscillating meniscus is considered accounting for the superheating of the capillary wall
with respect to the saturation temperature, which causes evaporation. When the superheating
exceeds a quite low threshold, oscillations with a pinned contact line are impossible anymore
and the contact line receding caused by evaporation needs to be accounted for.
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1. Introduction
The oscillating motion of menisci in thin capillaries is of importance for many applications.
One can cite the liquid plugs that obstruct the airways in living organisms for certain
pathologies (Baudoin et al. 2013), the distribution of fluids in microfluidics (Angeli &
Gavriilidis 2008) and the oscillations caused by the vapour–liquid mass exchange in heat
pipes. This latter application is targeted in the present work as it is relevant to different types
of heat pipes. One can cite capillary pumped loops (Zhang et al. 1998) or loop heat pipes,
where the pressure oscillations are observed (Launay et al. 2007) and impact the menisci in
the capillary structure. The oscillation of menisci is of special importance for the pulsating
heat pipes, called also oscillating heat pipes (Fourgeaud et al. 2017; Marengo & Nikolayev
2018; Nikolayev 2021), where the liquid films deposited by the oscillating liquid menisci as
they recede provide the main channel of the heat and mass transfer. As the film evaporation
rate is defined by the local film thickness, one needs to understand the film profile for adequate
modelling of the heat pipe. The film evaporation description is the most challenging part
because the liquid film can be partially dried out so that triple vapour-liquid-solid contact
lines form. Strong heat and mass transfers occur in their vicinity (Janeček & Nikolayev 2012;
Savva et al. 2017) so the contact lines are important to model adequately.
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Figure 1: Sketch of the axial cross-section of a cylindrical capillary tube with the liquid
film deposited by the receding meniscus. At 𝑥 = 𝑥f , the film profile solution matches the
right branch of the parabola (red solid line), which is a small-slope approximation of the

circular meniscus shape (dashed line).

The hydrodynamics of menisci has been extensively studied since the seminal articles of
Landau & Levich (1942), Taylor (1961) and Bretherton (1961). Since their works, a strong
effort has been made to understand the dynamics of the Taylor bubbles (i.e. bubbles of
the length larger than their diameter) and the liquid plugs that separate them. Originally,
the hydrodynamics of such a process has been described theoretically within the creeping
flow approximation (i.e. for vanishingly small Reynolds numbers) by using the lubrication
approach for the liquid film description. The inertial effects have been accounted for by
direct numerical simulation (Talimi et al. 2012). In previous approaches, the liquid film was
considered to be continuous, with no dry patches.
The objective of this work is twofold. First, we study the film created by the meniscus

oscillation. Second, we want to understand the impact of the film edge, i.e. of the triple
contact line, for the simplest case where it is pinned at a surface defect and is thus immobile.
The paper is structured as follows. After an introduction of the model in sec. 2, the

background theory of steady meniscus receding is briefly discussed in sec. 3. The meniscus
oscillation is considered in sec. 4. The theory is compared to two experimental works
involving meniscus oscillation. While the main objective of this paper is to consider the
oscillation with no heat and mass transfer, an interesting implication of these results for the
film evaporation is discussed in sec. 5.

2. Model description
Consider a cylindrical capillary tube of an inner radius 𝑅, containing a liquid and its vapour.
The vapour–liquid interface is assumed to be axially symmetric (Fig. 1).
The tube is assumed to be thin enough so the gravity force can be neglected. Following the

classical approach (Bretherton 1961), the vapour–liquid interface can be divided into the film
and the meniscus regions. The liquid–vapour interface slope in the film region is assumed
to be small so the film can be described with the lubrication theory. The meniscus region
is assumed to be controlled by the surface tension only, thus being of constant curvature
(shown in Fig. 1 with a circle of radius 𝑅m).
Because the vapour has a smaller density and viscosity compared with the liquid, the

vapour pressure 𝑝 is assumed to be spatially homogeneous and the vapour-side viscous stress
on the interface can be neglected. Under such assumptions, the lubrication theory results in
the equation (Nikolayev 2010) that describes the interface dynamics in the film region,

𝜕ℎ

𝜕𝑡
+ 𝜕

𝜕𝑥

(
ℎ3

3`
𝜕Δ𝑝

𝜕𝑥

)
= − 𝐽

𝜌
, (2.1)
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where ℎ = ℎ(𝑥, 𝑡) is the local film thickness, and 𝐽 is the mass flux across the interface,
defined to be positive at evaporation. Here, ` and 𝜌 are the liquid shear viscosity and density,
respectively. The lubrication theory is applicable within the assumption |𝜕ℎ/𝜕𝑥 | � 1. The
pressure jump Δ𝑝 = 𝑝 − 𝑝l (with 𝑝l, the liquid pressure) across the interface obeys the
Laplace equation

Δ𝑝 = 𝜎

(
𝐾 + 1

𝑅 − ℎ

)
' 𝜎

(
𝜕2ℎ

𝜕𝑥2
+ 1
𝑅m

)
, (2.2)

where 𝜎 is the surface tension, 𝐾 is the two-dimensional interface curvature in the axial
cross-section shown in Fig. 1; in the small-slope approximation, 𝐾 ' 𝜕2ℎ/𝜕𝑥2. Because of
this limitation, such a film region theory is not able to describe the meniscus region. The
radial contribution to the curvature 𝑅−1

m is assumed to be independent of 𝑥 in the film region
(where ℎ is much smaller than 𝑅). At a large 𝑥, Eq. (2.1) results in an increasingly larger ℎ,
where the viscous forces vanish and the surface tension alone controls the interface, so its
curvature 𝜕2ℎ/𝜕𝑥2 becomes constant. Such a condition corresponds to a parabolic shape in
the axial plane. This parabola needs to be joined to the circular meniscus, which results in
the condition

𝜕2ℎ/𝜕𝑥2 |𝑥=𝑥f = 𝑅−1
m . (2.3)

defined at the ending point (𝑥f , ℎf) of the film region.

3. Isothermal problem with infinite film: steady solutions
First, we would like to recall the theory for the case with no phase change (𝐽 = 0), so Eq. (2.1)
becomes

𝜕ℎ

𝜕𝑡
+ 𝜎

3`
𝜕

𝜕𝑥

(
ℎ3
𝜕3ℎ

𝜕𝑥3

)
= 0. (3.1)

The velocity of the axialmeniscus centre (assumed positive for a recedingmeniscus according
to the 𝑥-axis direction choice) is denoted𝑈. The contact line is not considered so the film is
infinite. In this case, it is advantageous to choose the frame of reference linked to the moving
meniscus where the axial coordinate becomes 𝑥 ′ = 𝑥 −𝑈𝑡. Eq. (3.1) can then be rewritten as

𝜕ℎ

𝜕𝑡
+ 𝜕

𝜕𝑥 ′

(
𝜎

3`
ℎ3
𝜕3ℎ

𝜕𝑥 ′3
−𝑈ℎ

)
= 0. (3.2)

This equation (and this frame of reference) is convenient to use in the present section and in
Appendix A because the film is infinite there. However, the prime will be dropped to make
notation less heavy. In all other sections, where the contact line is considered, the wall frame
of reference will be used as it is more convenient, so the meaning of 𝑥 will be as in (2.1) and
(3.1).
The steady version of Eq. (3.2) for the case of a constant positive velocity𝑈r (that should be

used for 𝑈 in this case) is the Landau–Levich equation (Landau & Levich 1942) describing
the flat infinite film being deposited by a receding meniscus. Note that the film in a cylindrical
capillary (Bretherton 1961) is described by the same equation because of the approximation
(2.2).
The boundary conditions at 𝑥 → −∞ describe the flat film of the yet unknown thickness

ℎr,
ℎ = ℎr, 𝜕ℎ/𝜕𝑥 = 0. (3.3)

The scaling of this problem (Table 1) is based on ℎr. The characteristic axial length
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variable notation
reference values used in

Sec. 3 and Appendix A Other sections

axial coordinate 𝑥 ℎr𝐶𝑎
−1/3
r 𝛼𝑅𝐶𝑎

1/3
0

film thickness ℎ ℎr 𝛼𝑅𝐶𝑎
2/3
0

time 𝑡 ℎr𝐶𝑎
−1/3
r 𝑈−1

r 𝛼𝑅𝐶𝑎
1/3
0 𝑈−1

0
velocity 𝑈 𝑈r 𝑈0 = 2𝜋𝐴/𝑃

Table 1: Dimensional reference values that are used to make the governing equations
non-dimensional.

scale involves the capillary number 𝐶𝑎r = `𝑈r/𝜎 and is chosen in such a way that the
dimensionless equation

𝜕

𝜕𝑥

(
ℎ̃3

3
𝜕3 ℎ̃

𝜕𝑥3
− ℎ̃

)
= 0, (3.4)

does not contain any constants; the tilde means hereafter the corresponding dimensionless
variable.
By integrating Eq. (3.4) from −∞ to 𝑥 and using the conditions (3.3) (in the dimensionless

form, ℎ̃(𝑥 → −∞) = 1), one obtains
𝜕3 ℎ̃

𝜕𝑥3
= 3

ℎ̃ − 1
ℎ̃3

, (3.5)

which is equivalent to the Bretherton equation within a factor 3 that we leave in the equation
instead of putting inside the scaling parameters of Table 1. This helps us to avoid it in many
formulas used below.
Consider now the behaviour at large 𝑥. Eq. (3.5) remains valid until the transition region

(between the film and the meniscus), in which 1 � ℎ̃ < 𝑅. From Eq. (3.5), 𝜕3 ℎ̃/𝜕𝑥3 ' 0.
This means that, at large 𝑥, the second derivative is finite, which is compatible to the condition
(2.3). Eq. (3.5) can be integrated numerically (see Nikolayev&Sundararaj (2014) for details).
The ending point (𝑥f , ℎ̃f) of the integration interval is chosen from a condition that 𝜕2 ℎ̃/𝜕𝑥2
reaches a plateau (with a required accuracy). Such a calculation results in a numerical value
for this plateau

𝜕2 ℎ̃

𝜕𝑥2

����
�̃�=�̃�f

= 𝛼 ' 1.3375 (3.6)

The resulting profile ℎ̃(𝑥) can be found in Fig. 13a of Appendix A. Note that 𝛼 is equivalent
to the numerical value 0.643 originally found by Bretherton (1961); 𝛼 ' 0.643 · 32/3, where
the factor appears because of the different scaling. By comparing Eqs. (2.3, 3.6), one finds
the expression for the film thickness

ℎr = 𝛼𝑅m𝐶𝑎
2/3
r . (3.7)

The only yet unknown quantity is 𝑅m that can be found as proposed by Klaseboer
et al. (2014). As mentioned before, near the point (𝑥f , ℎ̃f) the film shape should satisfy
the condition (2.3) which means that at ℎ � ℎr it asymptotically approaches a parabola

𝑦 = (𝑥 − 𝑥s)2/(2𝑅m) + ℎs, (3.8)

where the parameters (𝑥s, ℎs) are yet to be determined. To understand their meaning, one
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recalls that near its minimum where its curvature is 𝑅−1
m , the parabola approximates the

circular meniscus profile

(𝑥 − 𝑥s)2 + (𝑦 − ℎs − 𝑅m)2 = 𝑅2m. (3.9)

It is evident now that (𝑥s, ℎs) is the circle lowest point. One can obtain (𝑥s, ℎs) by fitting
the film profile ℎ̃(𝑥) near the point (𝑥f , ℎ̃f) to a parabola. Klaseboer et al. (2014) report that
the dimensionless value of ℎ̃s slightly grows with ℎ̃f . Bretherton (1961) gives ℎ̃s = 2.79. The
asymptotic value ℎ̃s = 2.90 is obtained for ℎ̃f > 106. However, to obtain a continuous overall
interface profile, the matching point (𝑥f , ℎ̃f) film–parabola should be lower than the point
where the parabola–circle transition occurs. This requires ℎf < 𝑅. For the value ℎ̃f ' 50 that
satisfies this condition in practical situations, Klaseboer et al. (2014) find ℎ̃s = 2.5, which is
also the value found from the experimental data fits, as discussed below. In summary, the ℎ̃s
variation is weak and one can consider that the circle is nearly invariant of the specific ℎ̃f
choice.
Klaseboer et al. (2014) have proposed the equation

𝑅m + ℎs = 𝑅 (3.10)

that centres the circle with respect to the tube and thus links 𝑅m to 𝑅, cf. Fig. 1. By using
Eq. (3.7) in this equation, one finally obtains

𝑅m =
𝑅

1 + 𝛼ℎ̃s𝐶𝑎2/3r
. (3.11)

By combining Eqs. (3.7, 3.11), one can now finalise the film thickness expression

ℎr =
𝛼𝑅𝐶𝑎

2/3
r

1 + 𝛼ℎ̃s𝐶𝑎2/3r
. (3.12)

The value ℎ̃s ' 2.5 has been determined by Aussillous & Quéré (2000) from the
experimental data fits. For 𝐶𝑎r → 0, 𝑅m ' 𝑅 and Eq. (3.12) reduces to Bretherton’s
original expression

ℎr = 𝛼𝑅𝐶𝑎
2/3
r . (3.13)

One can consider the meniscus advancing at a constant velocity 𝑈 = −𝑈a (where 𝑈a is
the modulus of the advancing velocity) over the pre-existing film of thickness ℎr. Such a
motion has been understood as well. It has been shown (Bretherton 1961) that the film has
a wavy shape (ripples) near the meniscus, cf. the solid curve in Fig. 13a of Appendix A.
The wavelength of ripples depends on the ratio 𝑈a/𝑈r (Maleki et al. 2011; Nikolayev &
Sundararaj 2014), where 𝑈r can be deduced (with Eq. 3.13) from ℎr. The meniscus radius
for the steady advancing case was determined with Eq. (3.10) by Cherukumudi et al. (2015).

4. Oscillations in the presence of a contact line
A previous study (Nikolayev & Sundararaj 2014) demonstrates the film behaviour for the
case of an infinite film. There is no physical criterion imposing its thickness so it is another
independent parameter. When the meniscus approaches the leftmost (in the reference of
Fig. 1) position observed during oscillations, the ripples created near the advancing meniscus
propagate over the film to infinity, so there is no possible periodical regime. This propagation
is amplified by the discrepancy between the imposed film thickness and the film thickness
(3.7) defined by the receding meniscus velocity, which is zero at the leftmost point. Thus
a discrepancy exists for any imposed film thickness. In practical situations of oscillating
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motion (Fourgeaud et al. 2016; Rao et al. 2017), the contact line appears because of the
film evaporation caused by the tube wall heating. The film completely vaporises beyond the
leftmost meniscus position. Before addressing the heating case, in this section we discuss
the film shape in the presence of contact line without any heating.
The hydrodynamics of the pinned (static) contact line is simpler than the dynamic case.

For this reason one needs to understand it first. This is a purpose of this work. The contact
line pinning often occurs in capillaries (Mohammadi & Sharp 2015). It is caused by the
wall heterogeneity (surface defects) that can be either chemical or geometrical (surface
roughness). The heterogeneity can be modelled as a spatial variation of surface energy. The
result of such a theory (Iliev et al. 2014) is that the microscopic contact angle averaged
along the contact line can vary between the static advancing \adv and the static receding \rec
angles while the contact line remains immobile. In our calculation, \adv− \rec (called wetting
hysteresis) is assumed to be sufficiently large so the contact line always remains immobile.
In experiments, the hysteresis can be as large as 50◦ (de Gennes 1985), which is larger than
the angle oscillation magnitude considered below.
At oscillations with the fixed contact line, there are no vortices near it (Ting & Perlin 1987)

and the flow is known to be well described by the lubrication approximation, even down to
the nanometric scale (Mortagne et al. 2017).

4.1. Relaxing the pressure divergence by the Kelvin effect
The Stokes problem of the straight wedge with a varying opening angle leads to the
logarithmic pressure divergence, cf. Appendix B. Such a divergence is integrable and thus
does not cause a paradox similar to that of the moving contact line. However, the infinite
pressure is non-physical. In addition, the pressure boundary condition at the contact line
would be difficult to use in calculation because it requires prior knowledge of the contact
angle and its time derivative (cf. Eq. B 8) that need to be determined themselves during the
solution procedure. As we consider volatile fluids, the phase change together with the Kelvin
effect are introduced. The latter makes the pressure to be finite everywhere, as shown below.
The problem is formulated here for a general case where the tube wall can be superheated
or subcooled with respect to the saturation temperature 𝑇sat corresponding to the imposed
vapour pressure 𝑝. The wall superheating is denoted Δ𝑇 . The tube wall temperature is thus
𝑇w = 𝑇sat + Δ𝑇 .
Conventional hypotheses concerning the liquid film mass exchange (Nikolayev 2010) are

applied. A linear temperature profile in the radial direction is assumed in the thin liquid film,
so the energy balance at the interface results in the mass flux

𝐽 =
𝑘 (𝑇w − 𝑇int)

ℎL , (4.1)

where 𝑇int is the temperature of the vapour–liquid interface, 𝑘 is the liquid heat conductivity
and L is the latent heat. The film is assumed here to be thin with respect to 𝑅 so the one-
dimensional conduction description applies. The evaporation impact on a film is twofold.
First, the film thickness decreases with time everywhere along the film, which is described by
the balance of the first and the right-hand side term of Eq. (2.1). Generally, the film thinning
is not strong during an oscillation period (Fourgeaud et al. 2017).
We focus here on the second effect that appears because of the strength of evaporation

in a narrow vicinity of contact line. If the vapour–liquid interface was at a fixed saturation
temperature (𝑇int = 𝑇sat), the mass flux 𝐽 (4.1) would diverge at the contact line ℎ = 0 as
𝐽 ∼ Δ𝑇/ℎ, which is non-physical because total evaporated mass (the integral of 𝐽) would be
infinite.
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The Kelvin effect, i.e. the dependence of 𝑇int on the interfacial pressure jump Δ𝑝

𝑇int = 𝑇sat

(
1 + Δ𝑝

L𝜌

)
(4.2)

can relax the singularity (Janeček & Nikolayev 2012), because it allows 𝑇int to vary along
the interface so it can attain the wall temperature 𝑇w at the contact line so the mass flux

𝐽 (𝑥 → 0) = 0. (4.3)

From the temperature continuity, one obtains the condition

Δ𝑝(𝑥 → 0) = Δ𝑝cl, (4.4)

where a constant pressure jump at the contact line is introduced as

Δ𝑝cl =
L𝜌
𝑇sat

Δ𝑇. (4.5)

One can show that a solution that satisfies this condition can indeed be found (cf. Appendix
C).
Eqs. (4.1, 4.2) result in

𝐽 =
𝑘

ℎL

(
Δ𝑇 − Δ𝑝

𝑇sat

L𝜌

)
. (4.6)

With its substitution into Eq. (2.1), the governing equation becomes

𝜕ℎ

𝜕𝑡
+ 𝜕

𝜕𝑥

(
ℎ3

3`
𝜕Δ𝑝

𝜕𝑥

)
=
Δ𝑝 − Δ𝑝cl

ℎ

𝑘𝑇sat

(L𝜌)2
. (4.7)

The problem is now regular (because Δ𝑝 is not divergent anymore), unlike other microscopic
approaches (Savva et al. 2017). As the Kelvin effect alone is capable of relaxing the contact
line singularity, the other microscopic scale effects such as hydrodynamic slip, Marangoni
effect or interfacial kinetic resistance (Janeček & Nikolayev 2012) are not crucial anymore.
They are not included in our model for the sake of clarity.
The characteristic size of the contact line vicinity where the Kelvin effect is important

is ℓK (C 4), cf. Appendix C for more details. It is nanometric (Janeček et al. 2013) and is
thus significantly smaller than the characteristic scale of film shape variation that we call
macroscopic. For this reason, Eq. (4.7) can be understood within a multi-scale paradigm
in the spirit of the asymptotic matching techniques (Janeček et al. 2013). In the inner
region, commonly called the microregion, the first (transient) term is negligible with respect
to the Kelvin term (Δ𝑝 containing term in the r.h.s.). The problem is reduced to that of
Appendix C.2. To summarise it, when Δ𝑇 ≠ 0, a strong interfacial curvature that exists in
the microregion can cause a difference between the microscopic contact angle \micro and
the interface slope \ defined at 𝑥 → ∞ within the microregion. In the outer (macroscopic)
region, the Kelvin effect is negligible so the Δ𝑝 term on the r.h.s. of Eq. (4.7) vanishes. For
Δ𝑇 = 0, this equation is that of the isothermal problem (3.1). Both problems can be matched
at scale 𝑥meso � ℓK, much smaller than the macroscopic scale. The apparent contact angle
visible on this latter scale is thus equal to \. It is assumed hereafter that the pinning occurs at
a length scale smaller than ℓK, i.e. there are nanometric defects with sharp borders on which
the contact line is pinned.
In sec. 4, a globally isothermal problem is considered, 𝑇w = 𝑇sat, so Δ𝑇 = 0 and Δ𝑝cl = 0,

which means \ = \micro. At such conditions, the mass exchange appearing at the macroscopic
scale is very weak so that it can be safely neglected. This does not mean, however, that the
mass exchange is absent in the microregion where Δ𝑝 can be large, as mentioned above. The
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mass flux 𝐽 scales with Δ𝑝 according to Eq. (4.6), so phase change occurs. The situation here
shares certain similarities with the contact line motion paradox solved by the Kelvin effect
(Janeček et al. 2013). Consider e.g. an increasing in time \. According to Eq. (C 6), Δ𝑝 > 0
in the very contact line vicinity so the condensation occurs there. It is compensated exactly
by evaporation farther away from the contact line, so the net mass exchange is zero. It should
be noted that the fluid flow associated with the phase change is strongly localised within a
nanoscale distance from the contact line comparable to ℓK.
In conclusion, all results obtained in the present sec. 4, can be seen as obtained with

Eq. (3.1) because the microregion details cannot be resolved at the macroscale pictured in
the figures below. However, the numerical calculations of the regularised Eq. (4.7) are carried
out in reality.

4.2. Oscillation problem statement
The meniscus now oscillates, and the position 𝑥m of its centre (which is the experimentally
measurable quantity) travels periodically with a period 𝑃 and an amplitude 𝐴. One can
assume its harmonic oscillation

𝑥m(𝑡) = 𝑥i + 𝐴[1 − cos(2𝜋𝑡/𝑃)], (4.8)

where 𝑥i is the initial meniscus centre position. Alternatively, one can take the experimentally
measured dependence 𝑥m(𝑡) while comparing the data with the experiment (cf. sec. 4.10
below). The contact line is pinned at the position 𝑥 = 0, and the contact angle \ varies.
For the harmonic oscillation case, the meniscus velocity is 𝑈 (𝑡) = 𝑈0 sin(2𝜋𝑡/𝑃), where
the velocity amplitude 𝑈0 = 2𝜋𝐴/𝑃 is convenient to choose as the characteristic velocity to
define the capillary number 𝐶𝑎0 = `𝑈0/𝜎 and to make all the quantities dimensionless (cf.
Table 1).
Because of the fixed contact line, the frame of reference of the tube wall is chosen.

Eq. (4.7) (with the substitution of Eq. 2.2) is solved for 𝑥 ∈ [0, 𝑥f]. The length 𝑥f is imposed
as explained in secs. 4.3, 4.5 below.
The boundary conditions are defined as

ℎ (𝑥 = 0) = 0, (4.9a)
𝜕Δ𝑝

𝜕𝑥

����
𝑥→0

= 0, (4.9b)

Δ𝑝 (𝑥 = 𝑥f) = 𝑅−1
m , (4.9c)

ℎ (𝑥 = 𝑥f) = ℎf , (4.9d)

where 𝑅m and ℎf are discussed in sec. 4.3. The condition (4.9a) is a geometrical constraint at
the contact line. Eq. (4.9b) is a weaker form of the condition (4.4) used to provide numerical
stability. The boundary conditions (4.9c, 4.9d) impose the liquid film curvature and thickness
at the right end of the integration interval for each time moment.

4.3. Determination of the meniscus curvature
For a small film thickness, one can assume that the meniscus radius 𝑅m is constant and equal
to 𝑅 during oscillation. It is actually a good approximation for a small𝐶𝑎0 . 10−3. However,
at a larger 𝐶𝑎0, the film thickness impacts 𝑅m (see sec. 4.8 below). Since the film thickness
depends on the meniscus velocity, so does the meniscus radius 𝑅m, cf. sec. 3. Therefore, 𝑅m
varies in time. In this section, we generalise to any meniscus dynamics the method for 𝑅m
determination (Klaseboer et al. 2014) discussed above for the steady receding case.
Similarly to the steady case of sec. 3, one needs first to match the film shape ℎ(𝑥) to the
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parabola (3.8), and then the parabola to a circle (3.9). The matching between the film and
the parabola means both the continuity and the smoothness (equality of the derivatives)

ℎf = (𝑥f − 𝑥s)2/(2𝑅m) + ℎs, (4.10a)
𝜕ℎ

𝜕𝑥

����
𝑥=𝑥f

=
𝑥f − 𝑥s
𝑅m

, (4.10b)

where the left-hand sides come from the film calculation and all the parabola parameters are
time dependent. As in the approach of Klaseboer et al. (2014), Eq. (3.10) serves to find 𝑅m.
We introduce in addition a relationship of the abscissas of the lowest and rightmost points of
a circle that is needed to define 𝑥s (Fig. 1):

𝑅m + 𝑥s = 𝑥m. (4.10c)

In the present algorithm, 𝑥f imposed to such a value that the difference 𝑥m − 𝑥f does not
vary in time and ℎf = ℎ(𝑥f) remains large with respect to the deposited film thickness. As
discussed in sec. 3, the solution is nearly independent of the specific choice of ℎf (and thus
of 𝑥f). The set of Eqs. (2.2), (3.10) and (4.7)–(4.10) is then complete, so the film shape and
the unknown parameters (𝑅m, 𝑥s, ℎs, ℎf) can be determined for each 𝑡.

4.4. Initial conditions and solution periodicity
One needs to define now the initial film shape ℎ(𝑥, 0) at 𝑡 = 0, which corresponds to the
(yet unspecified) leftmost meniscus position 𝑥i according to Eq. (4.8). As an initial film
profile, we choose that of equilibrium satisfying the condition 𝜕ℎ/𝜕𝑡 = 0 that can be used in
Eq. (3.1). From the boundary condition (4.9b), one finds straightforwardly 𝜕3ℎ/𝜕𝑥3 = 0, i.e.
the parabolic shape

ℎ(𝑥, 0) = 𝑥2

2𝑅m,i
+ \i𝑥, (4.11a)

where \i ≡ \ (𝑡 = 0) is the initial contact angle. It serves as another boundary condition,
additional to (4.9a) and (4.9c). By applying Eqs. (3.10) and (4.10) at 𝑡 = 0, one gets

𝑅m,i ≡ 𝑅m(𝑡 = 0) = 𝑅/(1 − \2i /2), (4.11b)
𝑥i = 𝑅m,i(1 − \i). (4.11c)

These expressions are the small-angle approximations of the expressions 𝑅m,i = 𝑅/cos \i
and 𝑥i = 𝑅m,i(1 − sin \i) because Eq. (4.11a) is an approximation of the initially spherical
meniscus.
During oscillation, the liquid is driven by the meniscus motion and the free interface

remains in the state where 𝜕ℎ/𝜕𝑡 is always balanced by the curvature gradient, more precisely,
by the second term of Eq. (3.1). This occurs because there are no other forces, in particular,
no inertia. When the meniscus comes near the leftmost position,𝑈 decreases and the system
approaches the state (4.11) with no curvature gradient, thus, |𝜕ℎ/𝜕𝑡 | decreases to zero or
almost zero. It is not a rigorous proof that the state (4.11) belongs to the limit cycle of the
system, albeit, it should be quite close to it. This is surely true when the relaxation time
𝑡rel � 𝑃, which is our case (cf. Appendix A for 𝑡rel discussion). Indeed, the numerical
simulations show that ℎ(𝑥, 𝑃) is indistinguishable from ℎ(𝑥, 0), cf. Fig. 2 below. So do all
other parameters (curvature, contact angle, etc.). This finding allows us to simulate a unique
period.
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4.5. Numerical implementation
The scales for the main quantities to make them dimensionless are shown in Table 1. With
such a “natural” scaling three main dimensionless parameters are left: \i, �̃� and 𝐶𝑎0. All
quantities will be studied in this parametric space. The dimensionless amplitude is linked to
the period

�̃� = �̃�/(2𝜋), (4.12)
where a dimensionless quantity is denoted with a tilde. There is one more dimensionless
parameter

𝑁 =
`𝑘𝑇sat

L𝜌𝛼𝑅𝐶𝑎0
(4.13)

that describes the magnitude of the Kelvin effect in the microregion. However, it does not
impact the interface shape at the film scale provided the characteristic microscopic scale
(C 4) is chosen to be small enough (cf. sec. 4.1). The mesh size is exponentially refined
near the contact line (as 𝑥 → 0) to capture the contact angle variation without considerably
increasing the total number of nodes (Nikolayev 2010).
At 𝑡 = 0, a value of 𝑥f = 10, for which ℎ̃f is around 50, cf. the discussion in sec. 3.

At 𝑡 > 0, the difference 𝑥m − 𝑥f is maintained constant, and equal to that at 𝑡 = 0. To
avoid the discretisation error for the contact angle, the initial interface profile is determined
numerically by solving the equilibrium version of Eq. (4.7), instead of using the analytical
profile (4.11a).
Eq. (4.7) is solved numerically with the finite volume method (FVM), which is more

stable numerically (Patankar 1980) than a more conventional finite difference method. In
one dimension, a finite volume is just a segment. The variables such as ℎ and their even-
order derivatives are defined at its centre (called a node), while the odd-order derivatives are
defined at the segment ends. The FVM has the advantage that the liquid flux is continuous
at the segment ends. Nonlinear terms are managed by iteration: they include values from the
previous iteration. The numerical algorithm is similar to that used by Nikolayev (2010).
One is interested in amplitudes that are large with respect to the meniscus width 𝑥m − 𝑥s,

which means large dimensionless periods of oscillation, see Eq. (4.12). This signifies that
the computational domain size varies considerably during oscillations. The grid thus needs
to be adaptive and the calculation time can be of the order of a day on a regular PC.

4.6. Interface profile during oscillation
Figure 2 shows the interface profiles at several timemoments during oscillation. Themeniscus
motion follows the harmonic law (4.8). The liquid film is deposited until 𝑡 = 𝑃/2. For 𝑡 > 𝑃/2,
the meniscus advances over the deposited film. The ripples near the meniscus appear, like
during the steady meniscus advance discussed in sec. 3. The interface profiles ℎ̃(𝑥, 0) and
ℎ̃(𝑥, �̃�) are indistinguishable, which confirms the periodicity of the oscillations.
Fig. 3 shows examples of interface profiles at 𝑡 = 𝑃/2 (when themeniscus is at its rightmost

position so the film length attains its maximum) for several values of the initial contact angle
\i. All the film profiles are presented in the meniscus reference

𝑥 ′ = 𝑥 − 2𝐴 − 𝑥i, (4.14)

meaning that the meniscus centre is at 𝑥 ′ = 0, cf. Eq. (4.8). One can see that the interface
shape near the meniscus is independent of \i. During the meniscus receding, the film loses
information about the contact line, so the film shape near the meniscus is controlled by the
meniscus dynamics only. This is not surprising as the flow in the film is expected to occur
only in the contact line and meniscus vicinities, but not in the middle of the film. The film
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Figure 3: Film shapes in the meniscus centre reference at 𝑡 = 𝑃/2 for 𝐶𝑎0 = 10−3 and
different \i and 𝑃. The quasi-steady profiles ℎ̃q discussed in sec. 4.9 are shown for

comparison. The scaled contact angle \̃ defined as tan \̃ = 𝐶𝑎−1/30 tan \ is indicated; (a)
�̃� = 50 and (b) �̃� = 150.

profiles exhibit a local minimum ℎmin discussed in sec. 4.7 below. It appears because of the
meniscus velocity reduction at the end of a half-period.

4.7. Contact angle during oscillation
A typical variation of \ during oscillation is plotted in Fig. 4a. The initial contact angle \i is
the maximum contact angle achieved during the periodic motion.
In the beginning of a period, the capillary forces lead to the fast contact angle reduction

until the meniscus recedes far enough so the curvature gradient reduces and the contact
angle becomes nearly constant for a large part of a period. This nearly constant value is quite
insensitive to both \i and 𝑃. A small ridge of constant curvature forms near the contact line.
This phenomenon is similar to the dewetting ridge but of much smaller magnitude because
the contact line is pinned. A small ridge can be seen in Fig. 3b in the contact line region for
the curve corresponding to \i = 40◦.
The ridge width slowly grows so \ slowly decreases until the ripples in the near-meniscus

region approach the contact line during the backward stroke (Fig. 4b) at the end of a period.
This causes the contact angle oscillations, during which its minimal value \min is attained

\ (𝑡) > \min. (4.15)
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Figure 5: Variations of ℎmin and \min with 𝐶𝑎0 for \i = 20◦ and different �̃�; (a) ℎmin
variation with 𝐶𝑎0 and (b) \min variation with 𝐶𝑎0.

It depends quite weakly on \i (Fig. 4a). The variation of \min with the system parameters
follows the variation of ℎmin (which is a minimum of ℎ(𝑥, 0.5𝑃) observed near the meniscus).
This is illustrated in Fig. 5, where the variations of ℎmin and \min with the system parameters
are compared. Only the variations with �̃� and 𝐶𝑎0 are considered (as mentioned above, the
dependence on \i is quite weak). Evidently, the variations of ℎmin and \min with the system
parameters are similar, which shows their intrinsic link. At 𝐶𝑎0 → 0, the dependence on
𝐶𝑎0 is weak, but becomes stronger at large 𝐶𝑎0. This minimal value of the contact angle is
of importance (cf. sec. 5 below). Since the motion is periodic, the contact angle \i is attained
at 𝑡 = 𝑃.

4.8. Meniscus curvature during oscillation
The meniscus curvature (Figs. 6) changes periodically during oscillations. The value of 𝑅m
can be compared to the quasi-steady value 𝑅m,q given by Eq. (3.11) where ℎ̃s = 2.5 and 𝐶𝑎𝑟
are calculated with the instantaneous meniscus velocity𝑈 = 𝑈0 sin(2𝜋𝑡/�̃�) during the liquid
receding (𝑡 6 0.5𝑃).
For 𝑡 = 0, 𝑅m is defined with Eq. (4.11b), which differs from the quasi-steady value

𝑅m,q = 𝑅 for 𝑈 = 0. This difference occurs because of the contact line presence. In its
absence (pre-wetted tube, the situation equivalent to the limit \i → 0 in our model), the
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Figure 6: Time evolution of the radius of meniscus curvature during an oscillation. The
quasi-steady evolution of 𝑅m,q at receding (𝑡 6 0.5𝑃) is shown for comparison: (a) 𝑅m
evolution for different �̃�; \i = 40◦ and 𝐶𝑎0 = 10−3 are fixed, (b) 𝑅m evolution for

different \i; �̃� = 150 and 𝐶𝑎0 = 10−3 are fixed and (c) 𝑅m evolution (dashed curves) for
different 𝐶𝑎0; �̃� = 150 and \i = 20◦ are fixed. The solid curves of the respective colour

show 𝑅m,q (𝑡).

initial radius would be close to 𝑅 because the wetting film is much thinner than the film
considered here.
Within the time scale ∼ 5𝑡rel (see Appendix A), 𝑅m relaxes to the quasi-steady value 𝑅m,q.

The curvature 𝑅m remains close to 𝑅m,q until the deceleration that occurs near the rightmost
meniscus position (at 𝑡 = 0.5𝑃, where 𝑈 = 0). However, the shape relaxation causes a
delay, so the inequality 𝑅m < 𝑅m,q(𝑈 = 0) = 𝑅 always holds at the point 𝑡 = 0.5𝑃. During
the backstroke, 𝑅m varies, finally attaining the initial value (4.11b) that depends only on \i
(Fig. 6b). Evidently, the amplitude of 𝑅m oscillation grows with𝐶𝑎0 (Fig. 6c), as foreseen by
Eq. (3.11). One also mentions the non-monotonic 𝑅m variation during the backstroke with a
local minimum around 𝑡 ' 0.8 − 0.9𝑃 (Fig. 6c). This minimum appears when the trough of
film ripples approaches the contact line close enough and is thus correlated with the contact
angle minimum.

4.9. Quasi-steady approach and average film thickness
One can see that the film is thickest in its centre (Figs. 3), which correlates with the maximum
of the meniscus velocity. It is thus interesting to compare the film thickness with its quasi-
steady value. Within the quasi-steady approach, the term 𝜕ℎ/𝜕𝑡 is neglected and the quasi-
steady thickness ℎq(𝑥) can be defined as corresponding to the meniscus receding velocity as
if it was constant at each time moment (Fourgeaud et al. 2017; Youn et al. 2018). In sec. 4.8
it has been shown that a simple quasi-steady approach predicts well the meniscus curvature
for 0 < 𝑡 < 0.5𝑃. It is interesting to see if it is efficient in predicting the film profile. In this
section, only the profile at 𝑡 = 0.5𝑃 is considered, i.e. that with the longest film.
A difficulty appears because the film thickness ℎ(𝑥, 0.5𝑃) depends on 𝑥. It is clear that ℎ
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Figure 7: Average thickness of the liquid film at 𝑡 = 0.5𝑃; 〈ℎq〉 is shown for comparison.
(A) Value of 〈ℎ̃〉 as a function of oscillation period for different \i and for 𝐶𝑎0 = 10−3 and

(b) value of 〈ℎ〉 as a function of 𝐶𝑎0 for different �̃� and for \i = 20◦.

depends on the velocity that the meniscus had at film deposition, but at which time moment?
The most obvious first option is a moment 𝑡 when the meniscus centre was at the point 𝑥 (i.e.
𝑥m(𝑡) = 𝑥). A more sophisticated option is a moment 𝑡 ′ > 𝑡 such that

𝑥m(𝑡 ′) = 𝑥 + Δ𝑥 (4.16)

with Δ𝑥 > 0. In the previous approaches (Fourgeaud et al. 2017; Youn et al. 2018), the first
option was used. By using Eq. (4.8) one easily finds that this assumption defines 𝑈q(𝑥) for
𝑥 ∈ (𝑥i, 𝑥i + 2𝐴). An obvious contradiction occurs at 𝑥 = 𝑥i + 2𝐴 where ℎq(𝑥i + 2𝐴) = 0
because 𝑈q(𝑥i + 2𝐴) = 0, but the actual film thickness (or rather, the interface height) is 𝑅.
Therefore, a more realistic Δ𝑥 > 0 should be defined. It is reasonable to choose Δ𝑥 to be the
meniscus radius, i.e. 𝑅m. However, it varies with time. We propose to use Δ𝑥 = 〈𝑅m〉, the
average value of 𝑅m(𝑡) (defined using Eq. 3.11) over the first half-period.
For the harmonic meniscus oscillation, one derives from Eqs. (4.8,4.16):

𝑈q(𝑥) = 𝑈0
[
𝑥 + Δ𝑥 − 𝑥i

𝐴

(
2 − 𝑥 + Δ𝑥 − 𝑥i

𝐴

)]1/2
. (4.17)

This velocity can now be used to calculate 𝐶𝑎𝑟 in Eq. (3.12), thus resulting in the quasi-
steady thickness ℎq(𝑥). The ℎ̃q(𝑥 ′) profiles are shown as solid curves in Figs. 3. Note that
they are independent of \i (cf. Eq. 4.14), so there is a unique curve in each figure. One can
also see the necessity of the Δ𝑥 introduction: if it were not included, the ℎ̃q(𝑥 ′) curve would
be shifted with respect to ℎ̃(𝑥 ′) curves in Figs. 3. The agreement between the actual and
quasi-steady film profiles is good in the central part of the film, which shows that the Δ𝑥
choice is acceptable.
At the beginning of a period, due to the presence of the contact line, 𝑅m is always larger

than 𝑅m,q, which leads to a thinner film: ℎ < ℎq, cf. Figs. 3. This difference becomes relatively
less important as 𝑃 increases (compare Figs. 3a and 3b).
To characterise the film at oscillation conditions (e.g. to estimate the film evaporation rate),

it is important to know the average film thickness 〈ℎ〉. It is defined as a spatial average over
the interval between the contact line and 𝑥min (abscissa of the point where ℎmin is attained),

〈ℎ〉 = 1
𝑥min

∫ 𝑥min

0
ℎ(𝑥, 𝑡 = 0.5𝑃)d𝑥. (4.18)

The dependence of 〈ℎ〉 on different parameters can be seen in Figs. 7. It is an increasing
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function of �̃� that saturates for �̃� → ∞. It can be compared to the quasi-steady averaged
thickness

〈ℎq〉 =
1
2𝐴

∫ 2𝐴+𝑥i−Δ𝑥

𝑥i−Δ𝑥
ℎq(𝑥)d𝑥 (4.19)

which is independent of both 𝐴 and \i as follows from Eq. (4.17). It can be easily calculated
without doing any complicated simulations. For small �̃� (i.e. for small �̃�), 〈ℎ〉 < 〈ℎq〉, mainly
because of the contact line vicinity where ℎ(𝑥) < ℎq(𝑥), cf. Figs. 3. It is not surprising that
the saturation value of 〈ℎ〉 increases with \i (just because of the thicker film near the contact
line); however, the increase is weak (Fig. 7a).
In Fig. 7b, one can see the dependence of 〈ℎ〉 on 𝐶𝑎0. One can see that the quasi-steady

average 〈ℎ〉q Eq. (4.19) gives a globally satisfactory approximation of 〈ℎ〉. The increase with
𝐶𝑎0 is mainly due to the 𝐶𝑎2/30 factor in Eq. (3.7).

4.10. Film shape comparison with experiment
In the experiments of Lips et al. (2010), a capillary tube contains a short liquid plug of pentane
in contact with its own vapour at both ends of the tube. One end is connected to a reservoir
at constant pressure. The pressure variation at the other end forces the oscillating motion of
a liquid plug under isothermal conditions. Such a mode of oscillation leads to the oscillation
amplitude increasing in time, which was understood some years later (Signé Mamba et al.
2018). While the amplitude is indeed slightly increasing, the motion is nearly periodic, so
the comparison can still be done.
In their experiments, the plug motion is recorded with a high-resolution camera. Both the

meniscus velocity and the curvature radius are found from image analysis. TheWeber number
𝑊𝑒0 = 2𝑅𝜌𝑈20/𝜎 is larger than unity (table 2). The Reynolds number Re0 = 2𝑅𝜌𝑈0/` is
quite high too and the impact of inertia on the shape of the central meniscus part must
be taken into consideration. Indeed, the quasi-steady 𝑅m(𝑡) evolution and the experimental
measurements of Lips et al. (2010) differ (Fig. 8). One mentions that the measured 𝑅m ' 𝑅

at 𝑡 = 0, 𝑃, which indicates the complete wetting case. Note the 𝑅m local minimum around
𝑡 ' 0.8𝑃. A similar minimum appears in the simulation, see Fig. 6c and the associated
discussion.
In spite of high𝑊𝑒0 and Re0 values mentioned above, the thin film can still be considered

as controlled by the viscosity only. In the simulation, instead of using the 𝑅m calculation of
sec. 4.3, the experimental plug velocity and the radius variation shown in Fig. 8 are used.
Under these conditions, the film ripples in the transition region close to the meniscus can be
compared to the calculations.
Figure 9 presents several snapshots of plug oscillation. The left column shows the original

images of Lips et al. (2010). The liquid film shape in the transition region between the film
and the meniscus is enlarged in the middle column. The numerical results are shown in the
right column. One can see that the wavy appearance of the interface is truthfully captured by
the numerical calculation.
Unfortunately, the quantitative comparison of the film thickness (i.e. the vertical coordi-

nate) is hardly possible since the refraction by the glass capillary is not corrected and the
spatial resolution is not sufficient to distinguish the contact line. However, one can compare
the axial lengths. The size of one pixel in mm can be obtained from the known outer tube
diameter (4 mm) that is visible in the original images. One can compare the axial distance
between the local maximum and the local minimum (Fig. 9) of the film ripple. It can be
measured for the images corresponding to 𝑡 > 0.5𝑃where the ripple is visible. The distance is
almost constant in time. From the experimental images, the axial distance is 0.50±0.02mm,
while from the simulation, it is 0.51 ± 0.01 mm. Evidently, the agreement is excellent.
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parameter notation value
tube inner radius 𝑅 1.2 mm
density 𝜌 625.7 kg/m3
surface tension 𝜎 0.0152 N/m
shear viscosity ` 2.37 · 10−4 Pa·s
reference velocity (velocity amplitude) 𝑈0 0.24 m/s
oscillation frequency 3.7Hz
dimensionless period �̃� 260.1
capillary number 𝐶𝑎0 3.74 · 10−3
Reynolds number Re0 1521
Weber number 𝑊𝑒0 5.66

Table 2: Fluid properties at the experimental conditions (1bar, 20◦C) of Lips et al. (2010);
and key dimensionless numbers.
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Figure 10: Liquid film thickness: comparison of the experimental data of Youn et al.
(2018), quasi-steady estimation with Eq. (3.12) and numerical results for ethanol.

4.11. Film thickness comparison with experiment
The experiment of Youn et al. (2018) was carried out under adiabatic conditions. They
investigated the deposited film thickness of an oscillating meniscus in a cylindrical capillary
tube. Two working fluids are selected for the comparison with the present numerical results:
water and ethanol. Fluid properties and experimental parameters are summarised in table 3.
In the tests, the capillary tube is partially filled so the syringe piston is in contact with

liquid; there is a single meniscus in the tube. The piston is connected to a step motor that
imposes the harmonic motion. The other tube end remains open. Initially, the meniscus
remains stationary, then, following the piston, starts to oscillate with a constant frequency.
Several sensors that measure the film thickness are installed along the tube, within the range
ofmeniscus oscillation. The instantaneous velocity of themeniscuswhen it passes the sensors
is recorded by the high speed camera. Because of the open tube, film evaporation occurs;
however, it is much slower than the oscillation velocity so the film thickness variation during
the oscillation period is negligibly small. Unfortunately, the film shape near the meniscus
and near the contact line was not studied in their experiments and thus cannot be compared
with our results.
The numerical calculation has been done as described in sec. 4 to get the film profiles at

𝑡 = 0.5𝑃. The experimental film thickness and the numerical results are presented in Fig. 10
for ethanol and in Fig. 11 for water. The experimental points are plotted with respect to the
meniscus position known from the experimental data.
The experiment can also be compared with the quasi-steady film thickness calculated with

Eq. (3.12) (with ℎ̃s ' 2.5) where the instantaneous value of the velocity (4.17) is used in
𝐶𝑎r.
Some experimental parameters are summarised in table 3. The numerical results are in

excellent agreement with the quasi-steady data for 2 Hz, where both 𝑊𝑒0 and Re0 are
moderate. This is not surprising as �̃� is large (see the discussion in sec. 4.9). Generally,
there is a good agreement with the experimental data for the same reason. The discrepancy
between the experimental and numerical results is larger for the 6 Hz case where both𝑊𝑒0
and Re0 become large. Both dimensionless numbers are smaller for the ethanol than for the
water, and the discrepancy is smaller too. One can conclude that the discrepancy is caused
by the inertial effects that become important when Re0 attains 500 and𝑊𝑒0 attains 10.
An additional discrepancy comes from the non-harmonicity of the meniscus velocity

profile. As the experimental 𝑈 (𝑡) curves are unavailable, we use the harmonic law (4.8)
that corresponds to experimental oscillation period 𝑃 and amplitude 𝐴. Because of the film
deposition, the experimental𝑈 (𝑡) deviates from the harmonic law. This can be observed from
table 3. Indeed, the velocity amplitude 2𝜋𝐴/𝑃 calculated from the oscillation amplitude and
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Figure 11: Liquid film thickness: comparison of the experimental data of Youn et al.
(2018), quasi-steady estimation with Eq. (3.12) and numerical results for water.

parameter notation value

tube inner radius 𝑅 0.5 mm
fluid water ethanol
surface tension 𝜎 7.20 · 10−2 N/m 2.23 · 10−2 N/m
shear viscosity ` 8.88 · 10−4 Pa·s 1.088 · 10−3 Pa·s
liquid density 𝜌 997 kg/m3 785 kg/m3

oscillation frequency 2 Hz 6 Hz 2 Hz 6 Hz
oscillation amplitude 𝐴0 19.5 mm 22.5 mm 20.69 mm 25.2 mm
𝑈 amplitude in simulation 𝑈0 = 2𝜋𝐴/𝑃 0.245 m/s 0.848 m/s 0.26 m/s 0.950 m/s
𝑈 amplitude in experiments 0.254 m/s 1.025 m/s 0.285 m/s 1.150 m/s
dimensionless period �̃� 1267 966 834 659
capillary number 𝐶𝑎0 0.0030 0.0105 0.0127 0.0463
Reynolds number Re0 275.07 952.09 187.59 685.43
Weber number 𝑊𝑒0 0.8312 9.9576 2.3796 31.77

Table 3: Fluid properties at the experimental conditions (1bar, 25◦C) of Youn et al.
(2018). 𝐴0 and the experimental𝑈 amplitude are not explicitly given by them and are

estimated from their graphs.

the frequency differs substantially from the actual maximum velocity, which points out the
non-harmonicity of the oscillations. The comparison would be improved if the experimental
𝑈 (𝑡) were available to us.

5. Combined effect of oscillation and evaporation
In this section we show the implication of the above results for the case of heating conditions
(i.e., a positive Δ𝑇). According to Eq. (4.6), evaporation occurs for Δ𝑇 > 0, and the mass
flux 𝐽 (𝑥) ∝ ℎ−1(𝑥). Instead of solving Eq. (4.7) for this case (which is out of the scope
of the present article), we apply here the multi-scale reasoning introduced in sec. 4.1. We
consider below a case of a small Δ𝑇 so the evaporation in the film and meniscus regions
can be neglected during an oscillation period so the macroscopic results of sec. 4 still apply.
However, because of the above singularity, the effect is not negligible in themicroregion (inner
region) and leads to a difference between the apparent contact angle \ and the microscopic
contact angle \micro, as defined in sec. 4.1. Their relationship can be expressed as

\ = \ (Δ𝑇, \micro), (5.1)

cf. Appendix C.2.
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When a solution of the full problem exists, the micro- andmacroregions can bematched for
a given Δ𝑇 . They are connected through the formula (5.1), which means that the oscillatory
film shape eventually enforces the value of \micro.
In the sense of the multi-scale reasoning, \ must simultaneously satisfy the conditions:
(i) Similarly to the case where Δ𝑇 = 0, the dynamic film shape imposes the \ value

because the contact line is fixed. This implies that the inequality (4.15) should hold for
Δ𝑇 ≠ 0 too.
(ii) On the other hand, \ is defined by Eq. (5.1). As shown in Appendix C.2, it is bounded

from below: \ > \evp−min(Δ𝑇).
Condition (ii) means that \ (𝑡) remains larger than \evp−min(Δ𝑇) throughout oscillation.

From the inequality (4.15), one thus obtains

\min > \evp−min(Δ𝑇), (5.2)

which presents a necessary condition for matching of two regions. With the equality sign
\min = \evp−min(Δ𝑇max), this equation defines a superheating limit Δ𝑇max. Since \evp−min(Δ𝑇)
is an increasing function (cf. Fig. 15), the superheating limitΔ𝑇max is an upper bound. Thus the
inequality (5.2) can hold whenΔ𝑇 < Δ𝑇max. To determine graphicallyΔ𝑇max, Fig. 12 presents
an example where \ (𝑡) (bottom and vertical axes, extracted from Fig. 4a) is plotted together
with \evp−min(Δ𝑇) (top and vertical axes, extracted from Fig. 15). During the oscillation,
the minimum value \min ' 1.8◦ is attained. From the dependence \evp−min(Δ𝑇), one can
deduce that Δ𝑇max ' 1 mK. So the solution of the oscillation problem with evaporation is
non-existent if Δ𝑇 > 1mK.
The reason for this paradox is the pinned contact line: for the receding contact line, another

degree of freedom appears so the contact angle is not constrained any more. The contact
line is necessarily depinned when \ attains \ (Δ𝑇, 0) (actually, a larger value \ (Δ𝑇, \rec) but
\ (Δ𝑇, 0) gives a lower bound).
Note that \min grows slightly with the meniscus velocity amplitude 𝐶𝑎0 (Fig. 5b), so

does Δ𝑇max. However, the Δ𝑇max value remains of the order of mK. As this maximum
superheating is considerably smaller than that encountered in practice (where it is rather of
several degrees K, see e.g. Fourgeaud et al. (2017)), one can deduce that the contact line
receding at evaporation must be accounted for when the meniscus oscillates.
While the calculation has been carried out here only for the pentane case, one can safely

state that Δ𝑇max is much smaller than realistic superheating used in thermal engineering
applications for many other fluids.

6. Conclusions
We have analysed the liquid film deposited by an oscillating liquid meniscus in a capillary
tube for the case where the contact line is pinned at the farthest meniscus position. The liquid
film thickness is not homogeneous because of the varying meniscus velocity. The periodic
solution for such a problem has been identified. The average film thickness is one of the most
important quantities. It has been analysed depending on the main system parameters, which
are the initial contact angle (that at the farthest meniscus position), the period of oscillation
and the amplitude of the meniscus velocity represented with the dimensionless capillary
number. The average film thickness depends only weakly on the initial contact angle and
grows with the oscillation period until saturation. Globally, the average film thickness is well
described by the quasi-steady approach.
Both the meniscus curvature and the contact angle vary in time during such a motion. The

contact angle remains nearly constant for a large part of the period. This constant value is
independent of both the initial contact angle and the oscillation period. The minimal contact
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superheating Δ𝑇 (example of pentane at 1bar, same as in Fig. 15) plotted together with the
apparent contact angle variation during meniscus oscillation. The latter is a curve for

initial value 10◦, the same as at the inset of Fig. 4a.

angle encountered during oscillation turns out to be an important quantity. It occurs when
the largest film ripple approaches the contact line during the meniscus advance. The minimal
contact angle weakly depends on both the oscillation period and the initial contact angle and
grows with the capillary number. Its value remains, however, small, of the order of several
degrees.
Understanding of evaporation that occurs simultaneously with oscillation is important for

applications. The strongest impact of evaporation concerns the contact line vicinity where
the liquid film is the thinnest. It is shown that the minimal contact angle that occurs during
oscillation with the pinned contact line sets an upper bound for the tube superheating, for
which a solution for such a problem exists. This upper bound is quite small (e.g. it is ∼ 1mK
for the pentane at 1 bar), much smaller than typical experimental superheating. This shows
the necessity of considering the contact line receding during the simultaneous oscillation
and evaporation. Such a result is important, e.g. for theoretical modelling of the pulsating
heat pipes.
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Appendix A. Film relaxation
The meniscus oscillation results in a continuous film shape variation. For this reason, an
important quantity is the relaxation time 𝑡rel. It is a characteristic time scale of decrease of
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Figure 13: Film relaxation: profile evolution and relaxation time. (a) Film profile evolution
(shown in the frame of reference of the meniscus) from steady receding with the velocity
𝑈r to steady advance with the velocity𝑈a such that |𝑈a | = 𝑈r. The time lag between the
two curves is Δ𝑡 = 0.5. The inset shows the root mean square deviation from the steady
advancing profile and (b) relaxation time as a function of𝑈a/𝑈r. The dots are the

numerical points. The line is the exponential fit.

a film perturbation caused by the meniscus velocity change. On a time scale � 𝑡rel, one
expects the meniscus to behave as if the velocity were constant at each time moment (i.e. in
a quasi-steady way).
Relaxation of film profile is studied here on an example of a sudden change in the meniscus

motion direction, from receding to advancing. The initial profile (red monotonic curve in
Fig. 13a) is that of Landau & Levich (1942) defined by Eq. (3.5) describing the meniscus
receding at a constant velocity 𝑈r. In this calculation, 𝑅m is assumed to remain constant
(= 𝑅) because 𝐶𝑎𝑟 is small. The calculation is performed for 𝐶𝑎𝑟 = 10−3 but the results are
independent of 𝐶𝑎𝑟 provided it is small enough. The deposited film thickness is given by
Eq. (3.13).
At 𝑡 = 0, the meniscus makes a sudden change of its motion direction and for 𝑡 > 0

advances over the liquid film at a constant velocity 𝑈a. The film is infinite so the meniscus
frame of reference and thus Eq. (3.2) with 𝑈 = −𝑈a < 0 are employed. With the scaling of
Table 1, the dimensionless governing equation is

𝜕ℎ̃

𝜕𝑡
+ 𝜕

𝜕𝑥

(
ℎ̃3

3
𝜕3 ℎ̃

𝜕𝑥3
− �̃� ℎ̃

)
= 0, (A 1)

where �̃� = −𝑈a/𝑈r. The boundary conditions are Eqs. (3.3, 3.6), where both 𝛼 and ℎr are
now known.
Eq. (A 1) is solved numerically, cf. sec. 4.5 for the details.
The time evolution of the interface profile is shown in Fig. 13a. At 𝑡 = 0, the profile is

given by the Landau & Levich profile. As the time increases, the film relaxes to the steady
advancing profile (the solid curve in Fig. 13a), which coincides with the Bretherton rear
meniscus profile. By fitting the root mean square deviation (shown in the inset) from the
steady advancing profile, one can introduce the relaxation time 𝑡rel; for𝑈a/𝑈r = 1, 𝑡rel ' 0.65.
The calculation shows (Fig. 13b) that the relaxation time 𝑡rel decreases with 𝑈a and

remains smaller than 2. As the exponential vanishes after 𝑡 ' 5𝑡rel, one expects that the
system behaves independently of a current state after a time lag 𝑡 ' 10. This means that, for
�̃� > 100 considered above, the transient evolution needs to be considered only in the very
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Figure 14: Sketch of the straight liquid wedges with varying angle (a) and curved wedge at
evaporation (b).

beginning and the very end of a period where the contact line affects the overall interface
shape. For the remaining part of a period, a quasi-static approach is expected to be valid.

Appendix B. Stokes problem of the straight wedge with a varying angle
We search a solution of the Stokes problem inside a straight two-dimensional liquid wedge
(Fig. 14a) where the opening angle \ varies with the angular velocity 𝜔. In polar coordinates
(𝑟, 𝜑), the Stokes equations for the liquid velocity ®𝑣 = (𝑣𝑟 , 𝑣𝜑) read

𝜕𝑝𝑙

𝜕𝑟
=`

{
𝜕

𝜕𝑟

[
1
𝑟

𝜕 (𝑟𝑣𝑟 )
𝜕𝑟

]
+ 1
𝑟2
𝜕2𝑣𝑟

𝜕𝜑2
− 2
𝑟2

𝜕𝑣𝜑

𝜕𝜑

}
(B 1a)

𝜕𝑝𝑙

𝜕𝜑
=𝑟`

{
𝜕

𝜕𝑟

[
1
𝑟

𝜕 (𝑟𝑣𝜑)
𝜕𝑟

]
+ 1
𝑟2

𝜕2𝑣𝜑

𝜕𝜑2
+ 2
𝑟2
𝜕𝑣𝑟

𝜕𝜑

}
(B 1b)

∇ · ®𝑣 =0. (B 1c)

It is well known that this is equivalent to the streamfunction formulation,

∇4𝜓 = 0, (B 2)

where

𝑣𝑟 =
1
𝑟

𝜕𝜓

𝜕𝜑
(B 3)

𝑣𝜑 = −𝜕𝜓
𝜕𝑟
. (B 4)

Eq. (B 2) admits a solution 𝜓 ∝ 𝑟_ 𝑓 (𝜑), where _ is a constant (Moffatt 1964). On the one
hand, 𝜓 should scale with 𝜔 because it causes the flow. On the other, from Eq. (B 4), its
dimension should be length2/time. The only choice is thus

𝜓 = 𝜔𝑟2 𝑓 (𝜑). (B 5)

The corresponding function 𝑓 is 𝑓 (𝜑) = 𝐴 cos 2𝜑 + 𝐵 sin 2𝜑 + 𝐶𝜑 + 𝐷 (Moffatt 1964),
where 𝐴, 𝐵, 𝐶, 𝐷 are constants. They can be determined with the boundary conditions.
A zero velocity (𝑣𝑟 = 𝑣𝜑 = 0) is imposed at the liquid–solid surface 𝜑 = 0. A radial
velocity 𝑣𝜑 = 𝜔𝑟 is imposed at the liquid–vapour boundary 𝜑 = \, which is also stress free
(𝜕𝑣𝑟/𝜕𝜑 = 0). The result is

𝜓 = 𝜔𝑟2
tan 2\ (cos 2𝜑 − 1) + 2𝜑 − sin 2𝜑

2(tan 2\ − 2\) . (B 6)
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By using it in Eqs. (B 1), one gets

𝜕𝑝𝑙

𝜕𝑟
=

4`𝜔
𝑟 (tan 2\ − 2\) , (B 7)

𝜕𝑝𝑙

𝜕𝜑
=0,

so 𝑝𝑙 ∼ log 𝑟 . Note that for a small \, Eq. (B 7) reduces to
𝜕𝑝𝑙

𝜕𝑟
=
3`𝜔
2𝑟\3

. (B 8)

Appendix C. Lubrication approach to the evaporation problem
C.1. Straight wedge flow

Consider first the case with no phase change. It is described by Eq. (2.1), where 𝐽 = 0. As in
the above Stokes problem (Appendix B), one can consider asymptotically (near the contact
line) the straight wedge ℎ = \𝑥 with the angular velocity 𝜕\/𝜕𝑡 = 𝜔. The governing equation

`𝜔𝑥 + 𝜕

𝜕𝑥

(
\3𝑥3

3
𝜕Δ𝑝

𝜕𝑥

)
= 0

results in
𝜕Δ𝑝

𝜕𝑥
= − 3`𝜔
2𝑥\3

. (C 1)

With no surprise, this expression agrees with the small \ asymptotics (B 8) of the Stokes
approach and leads to the logarithmic pressure divergence at the contact line.
Consider now the lubrication theory for the volatile liquids that accounts for the Kelvin

effect, Eq. (4.7). For the straight wedge with the varying contact angle it becomes

`𝜔𝑥 + 𝜕

𝜕𝑥

(
\3𝑥3

3
𝜕Δ𝑝

𝜕𝑥

)
=
Δ𝑝 − Δ𝑝cl

\𝑥

`𝑘𝑇sat

(L𝜌)2
. (C 2)

For the fixed contact angle case (𝜔 = 0), this equation admits an analytical solution (Janeček
& Nikolayev 2012) that satisfies the condition (4.4):

Δ𝑝 = Δ𝑝cl

[
1 − ℓK

𝑥
𝐾1

(
ℓK

𝑥

)]
, (C 3)

where 𝐾1(·) is the modified Bessel function of the first order and

ℓK =

√︁
3`𝑘𝑇sat
L𝜌\2

(C 4)

is a characteristic length of the Kelvin effect. At 𝑥 � ℓK,

Δ𝑝 = Δ𝑝cl

{
1 − exp

(
−ℓK
𝑥

) [√︂
𝜋

2
ℓK

𝑥
+ O(𝑥1/2)

]}
. (C 5)

For the case of varying contact angle 𝜔 ≠ 0, a solution that satisfies the condition (4.4) can
be found as an asymptotic expansion

Δ𝑝 = Δ𝑝cl +
3`𝜔
\3ℓ2K

𝑥2 + O(𝑥4). (C 6)
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Figure 15: Value of \ as a function of Δ𝑇 for different \micro computed for pentane at 1
bar. The curve for \micro = 0 corresponds to \evp−min (Δ𝑇).

C.2. Curved wedge flow caused by evaporation for 𝜔 = 0
When the substrate is heated, a flow inside the wedge brings the liquid towards the contact
line to compensate for the mass loss by evaporation, thus creating the viscous pressure
drop described by Eq. (C 3). It can be seen as a curvature that increases when 𝑥 → 0. The
curvature creates a difference between the microscopic contact angle \micro, the actual slope
at the contact line, and the interface slope farther away from the contact line, cf. Fig. 14b.
The characteristic length for this effect is ℓK ∼ 10 − 100 nm (Janeček et al. 2013) from the
contact line. At a length scale 𝑥meso � ℓK but much smaller than the film-related length scale
∼ 10 `m, one can define the experimentally measurable interface slope \, called the apparent
contact angle.
The region 𝑥 < 0 < 𝑥meso is often referred to as themicroregion. The numerical calculation

of \ is described by Janeček &Nikolayev (2012). It is based on the steady version of Eq. (4.7)
(i.e. with 𝜕ℎ/𝜕𝑡 = 0) solved with the boundary conditions (4.9a, 4.9b). The other two
boundary conditions for this fourth-order differential equation are the imposed slope \micro
at the contact line and the condition of zero (on the microregion scale) curvature

𝜕2ℎ

𝜕𝑥2

����
𝑥=𝑥meso

= 0 (C 7)

Note that the interface slope saturates at 𝑥 � ℓK so \ is independent of 𝑥meso.
Figure 15 demonstrates an example of \ as a function of \micro and Δ𝑇 for pentane at 1

bar, cf, Eq. (5.1). It turns out that \ (Δ𝑇, \micro) monotonically grows with both \micro and
intensity of evaporation controlled by Δ𝑇 ; evidently, \ (Δ𝑇 = 0) = \micro.
One now introduces

\evp−min(Δ𝑇) ≡ \ (Δ𝑇, \micro = 0), (C 8)
which is the lower bound of \ (Δ𝑇, \micro), i.e. its value for the complete wetting case (Janeček
et al. 2013). Therefore, the \micro = 0 curve in Fig. 15 represents \evp−min(Δ𝑇). For example,
for Δ𝑇 =30 mK, one finds \evp−min(Δ𝑇 = 30mK) ' 8.4◦, see Fig. 15. This means that, for
Δ𝑇 =30 mK, it is impossible to have an apparent angle smaller than 8.4◦.
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