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N -order solutions to the modified Korteweg-de Vries (mKdV) equation are given in terms of a quotient of two wronskians of order N depending on 2N real parameters. When one of these parameters goes to 0, we succeed to get for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2N real parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 6.

Introduction

We consider the modified Korteweg-de Vries (mKdV) equation

u t -6u 2 u x + u xxx = 0, (1) 
with u t = ∂ t u, u x = ∂ x u and u xxx = ∂ 3 x u. The mKdV equation has many applications in various fields as in the study of waves propagating in plasma [START_REF] Khater | Bäcklund transformations and exact solutions for Alfven solitons in a relativistic electronpositron plasma[END_REF], the dynamics of traffic flow [START_REF] Li | Analysis of stability and density waves of traffic flow model in an ITS environment[END_REF] and fluid mechanics [START_REF] Helal | Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics[END_REF]. In particular, it is used in nonlinear optics as for example to model supercontinuum generation in optical fibres [START_REF] Leblond | Models for supercontinuum generation beyond the slowly-varying-envelope approximation[END_REF] or to describe pulses consisting of a few optical cycles [START_REF] Leblond | Few-optical-cycle solitons: Modified Kortewegde Vries sine-Gordon equation versus other non-slowly-varying-envelopeapproximation models[END_REF]. Various methods have been used to contruct solutions to the mKdV equation. Hirota [START_REF] Hirota | Exact envelope-soliton solutions of a nonlinear wave equation[END_REF] constructed the exact soliton for the mKdV equation in 1972. In the same year, Tanaka [START_REF] Tanaka | Modified Korteweg. de Vries Equation and Scattering Theory[END_REF] was the first to solve the mKdV equation by using the inverse scattering technique. Wadati using this same method succeeded to obtain the exact N-soliton solution for the mKdV [START_REF] Wadati | The Exact Solution of the Modified Korteweg-de Vries Equation[END_REF]. In 1976, rational solutions to the mKdV equation [START_REF] Ono | Algebraic Soliton of the Modified Korteweg-de Vries Equation[END_REF] were derived by Ono by using Bäcklund transformation. A limiting procedure based on bilinear results gave other type of solutions [START_REF] Ablowitz | Solitons and rational solutions of nonlinear evolution equations[END_REF] in 1978. In 1983, rational solutions to the mKdV equation were determined by recurrence relations in [START_REF] Kametaka | On Rational Similarity Solutions o[ KdV and m.KdV Equations[END_REF] by Tanaka. Solitary wave solutions and cnoidal wave solutions were given in 1994 in [START_REF] Lou | Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation[END_REF]. Some classes of periodic solutions of mKdV have been given in [START_REF] Kevrekidis | On some classes of mKdV periodic solutions[END_REF] in 2004. More recently, in 2012, solutions to the mKdV equation has been constructed via bilinear Bäcklund transformation in [START_REF] Sun | Rational Solutions with non-zero asymptotics of the modified Korteweg-de Vries Equation[END_REF] and rational solutions in terms of Wronskians were obtained. In 2016, periodic solutions and rational solution of first and second order were presented in [START_REF] Chowdury | Periodic and rational solutions of modified Korteweg-de Vries equation[END_REF] by using a Darboux transformation were constructed.

Here, Darboux transformation is used to construct different type of solutions. Representations of solutions in terms of wronskians of order N depending on 2N real parameters are given, using trigonometric or hyperbolic functions. Rational solutions are obtained in performing a passage to the limit when one of these parameters goes to 0. So rational solutions as a quotient of polynomials in x and t, depending on 2N parameters are constructed. We give explicit solutions in the simplest cases N = 1, 2, 3 and some particular rational solutions for N = 1 until 6.

2 N-order solutions to the mKdV equation in terms of wronskians 2.1 N-order solutions in terms of wronskians of hyperbolic sine functions

We consider the mKdV equation

u t -6u 2 u x + u xxx = 0.
We recall that the wronskian of order N of the functions f 1 , . . . , f N is the determinant denoted W (f 1 , . . . , f N ), defined by det

(∂ i-1 x f j ) 1≤i≤N, 1≤j≤N , ∂ i x
being the partial derivative of order i with respect to x and ∂ 0 x f j being the function f j . We consider a j , b j arbitrary real numbers 1 ≤ j ≤ N . We have the following result :

Theorem 2.1 Let f j be the functions defined by

f j (x, t) = sinh 1 2 a j x - 1 2 a 3 j t + b j , for 1 ≤ i ≤ N, (2) 
then the function u defined by

u(x, t) = ∂ x ln W (∂ x (f 1 ), . . . , ∂ x (f N )) W (f 1 , . . . , f N ) (3)
is a solution to the mKdV equation ( 1) depending on 2N real parameters a j , b j , 1 ≤ j ≤ N .

Proof : For the Korteweg de Vries (4) (KdV) equation

u t -6uu x + u xxx = 0, (4) 
the Lax pairs can be written as

-φ xx + uφ = λφ, φ t = -4φ xxx + 6vφ x + 3v x uφ. ( 5 
)
This system is covariant [START_REF] Matveev | Darboux transformations and solitons[END_REF] We choose u = 0, then the functions φ j = f j defined in (2) verify the following system

-φ xx = λφ, φ t = -4φ xx . (6) 
We can deduce that the solution of the system (5) associated to λ can be written

as ϕ(x, t) = W (f 1 , . . . , f N , f ) W (f 1 , . . . , N )
, for f any solution of (5) associated with λ.

From [START_REF] Yu | Darboux transformations and solitons[END_REF] we know that if ϕ is a solution of the system (5), then the function w defined by w(x, t) = ∂ x ln(ϕ(x, t)) is a solution to the equation

w t -6(λ + w 2 )w x + w xxx = 0. (7) 
Thus the function u defined by u(x, t

) = ∂ x ln W (f 1 , . . . , f N , f ) W (f 1 , . . . , f N ) is a solution
of the equation [START_REF] Tanaka | Modified Korteweg. de Vries Equation and Scattering Theory[END_REF].

If we choose for f , the constant function f (x, t) = 1, associated to λ = 0, then

u(x, t) = ∂ x ln W (f 1 , . . . , f N , f ) W (f 1 , . . . , f N )
is a solution of the equation [START_REF] Leblond | Models for supercontinuum generation beyond the slowly-varying-envelope approximation[END_REF].

By expanding the determinant of the numerator of u(x, t) along his last column, the solution u(x, t) can be rewritten as u(x, t

) = ∂ x ln W (∂ x (f 1 ), . . . , ∂ x (f N )) W (f 1 , . . . , f N ) ,
which proves the result.

Some examples of solutions to the mKdV equation with sine hyperbolic generating functions

In the following we only give the solutions of order 1, 2 and 3 in the case of generating hyperbolic sinus functions. Solution of order 1 Proposition 2.1 The function u defined by

u(x, t) = a1 sinh(-a1x + a1 3 t -2b1)
is a solution to the mKdV equation ( 1) with a 1 , b 1 arbitrarily real parameters.

Solution of order 2

Proposition 2.2 The function u defined by

u(x, t) = n(x, t) d(x, t) , (8) 
with

n(x, t) = - 1 2 (a1 2 -a2 2 )[a2 sinh(-a1x + a1 3 t -2b1) -a1 sinh(-a2x + a2 3 t -2b2)])
and,

d(x, t) = 2 (-sinh(-1/2 a1x+1/2 a1 3 t-b1) cosh(-1/2 a2x+1/2 a2 3 t-b2)a2+sinh(-1/2 a2x+ 1/2 a2 3 t-b2) cosh(-1/2 a1x+1/2 a1 3 t-b1)a1)(cosh(-1/2 a1x+1/2 a1 3 t-b1) sinh(-1/2 a2x+ 1/2 a2 3 t -b2)a2 -cosh(-1/2 a2x + 1/2 a2 3 t -b2) sinh(-1/2 a1x + 1/2 a1 3 t -b1)a1)
is a solution to the mKdV equation ( 1) with a 1 , a 2 , b 1 , b 2 arbitrarily real parameters.

Solution of order 3

In this case of order 3, we only present solution with a 1 = 1, a 2 = 2, a 3 = 3, b 1 = 0, b 2 = 0, b 3 = 0 to shorten the paper.

Proposition 2.3

The function u defined by

u(x, t) = n(x, t) d(x, t) , (9) 
with

n(x, t) = -150 (cosh(-1/2 x + 1/2 t)) 2 -384 (cosh(-x + 4 t -2)) 2 -54 (cosh(-3/2 x + 27 2 t-3)) 2 +300 sinh(-1/2 x+1/2 t) cosh(-3/2 x+ 27 2 t-3) cosh(-1/2 x+1/2 t) sinh(-3/2 x+ 27 2 t-3)-312 cosh(-3/2 x+ 27 2 t-3) sinh(-x+4 t-2) sinh(-3/2 x+ 27 2 t-3) cosh(-x+ 4 t -2) -180 (cosh(-1/2 x + 1/2 t)) 2 (cosh(-3/2 x + 27 2 t -3)) 2 + 480 (cosh(-x + 4 t - 2)) 2 (cosh(-1/2 x + 1/2 t)) 2 + 288 (cosh(-x + 4 t -2)) 2 (cosh(-3/2 x + 27 2 t -3)) 2 - 600 sinh(-1/2 x + 1/2 t) cosh(-x + 4 t -2) cosh(-1/2 x + 1/2 t) sinh(-x + 4 t -2)
and,

d(x, t) = 2 (16 sinh(-1/2 x+1/2 t) cosh(-x+4 t-2) sinh(-3/2 x+ 27 2 t-3)-9 sinh(-1/2 x+ 1/2 t) cosh(-3/2 x + 27 2 t -3) sinh(-x + 4 t -2) -5 cosh(-1/2 x + 1/2 t) sinh(-x + 4 t - 4 2) sinh(-3/2 x + 27 2 t -3))(-16 cosh(-1/2 x + 1/2 t) sinh(-x + 4 t -2) cosh(-3/2 x + 27 2 t-3)+9 cosh(-1/2 x+1/2 t) sinh(-3/2 x+ 27 2 t-3) cosh(-x+4 t-2)+5 sinh(-1/2 x+ 1/2 t) cosh(-x + 4 t -2) cosh(-3/2 x + 27 2 t -3))
is a solution to the mKdV equation (1).

Other types of solutions

We obtain similar results with other types of generating functions whose proofs are identical.

Solutions with hyperbolic cosine generating functions

Theorem 2.2 Let h j , h be the following functions

h j (x, t) = cosh 1 2 a j x - 1 2 a 3 j t + b j , for 1 ≤ i ≤ N, (10) 
then the function u defined by

u(x, t) = ∂ x ln W (∂ x (h 1 ), . . . , ∂ x (h N )) W (h 1 , . . . , h N ) ( 11 
)
is a solution to the mKdV equation ( 1) with a j , b j 1 ≤ j ≤ N arbitrarily real parameters.

Solutions with trigonometric generating functions

Theorem 2.3 Let g j be the following functions

g j (x, t) = cos 1 2 a j x + 1 2 a 3 j t + b j , for 1 ≤ i ≤ N, (12) 
then the function u defined by

u(x, t) = ∂ x ln W (∂ x (g 1 ), . . . , ∂ x (g N )) W (g 1 , . . . , g N ) ( 13 
)
is a solution to the mKdV equation ( 1) with a j , b j 1 ≤ j ≤ N arbitrarily real parameters.

Theorem 2.4 Let k j be the following functions

k j (x, t) = sin 1 2 a j x + 1 2 a 3 j t + b j , for 1 ≤ i ≤ N, (14) 
then the function u defined by

u(x, t) = ∂ x ln W (∂ x (k 1 ), . . . , ∂ x (k N ) W (k 1 , . . . , k N ) ( 15 
)
is a solution to the mKdV equation ( 1) with a j , b j 1 ≤ j ≤ N arbitrarily real parameters.

3 Rational solutions to the mKdV equation

In the following, we replace all parameters a j and b j , 1 ≤ j ≤ N by âj = N k=1 a k (je) 2k-1 and bj = N k=1 b k (je) 2k-1 with e an arbitrary real parameter. We realize this change to obtain rational solutions to the mKdV equation [START_REF] Leblond | Models for supercontinuum generation beyond the slowly-varying-envelope approximation[END_REF]; for this, we perform a limit when the parameter e tends to 0. We get the following result : Theorem 3.1 Let ψ j be the functions

ψ j (x, t, e) = sinh 1 2 N k=1 a k (je) 2k-1 x - 1 2 N k=1 a k (je) 2k-1 3 t + N k=1 b k (je) 2k-1 , for 1 ≤ j ≤ N , then the function u defined by u(x, t) = lim e→0 ∂ x ln W (∂ x (ψ 1 ), . . . , ∂ x (ψ N )) W (ψ 1 , . . . , ψ N ) (16) 
is a rational solution to the mKdV equation [START_REF] Leblond | Models for supercontinuum generation beyond the slowly-varying-envelope approximation[END_REF].

Proof : It is a direct consequence of the result of the previous section.
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We have similar results with generating sine or trigonometric functions.

We can also give the expression of the rational solutions of the mKdV without the presence of a limit. We get the following result :

Theorem 3.2 Let ψ, ϕ j be the functions

ψ(x, t, e) = sinh 1 2 N k=1 a k e 2k-1 x - 1 2 N k=1 a k e 2k-1 3 t + N k=1 b k e 2k-1 , ϕ j (x, t) = ∂ 2j-1 ψ(x, t, 0) ∂ 2j-1 e , for 1 ≤ j ≤ N , then the function v defined by v(x, t) = ∂ x ln W (∂ x (ϕ 1 ), . . . , ∂ x (ϕ N ) W (ϕ 1 , . . . , ϕ N ) ( 17 
)
is a rational solution to the mKdV equation (1) depending on 2N parameters a j , b j , 1 ≤ j ≤ N .

Proof : For this, we combine the columns of the determinant of the previous theorem and we take a passage to the limit when e tends to 0 for each column.

2

We give some examples of rational solutions in the following. It must be pointed out that these resulting rational solutions are singular. These results are consequences of the previous result.

First order rational solutions

We have the following result at order N = 1 :

Proposition 3.1 The function v defined by v(x, t) = -a1 a1x + 2 b1 , ( 18 
)
is a rational solution to the mKdV equation ( 1) with a 1 , b 1 , arbitrarily real parameters. 

Second order rational solutions

with n(x, t) = -2 a1 5 x 3 -12 a1 4 b1x 2 -24 a1 3 b1 2 x + 2 a1(12 a2b1 + 6 a1 4 t -12 b2a1 -8 a1b1 3 ), and,

d(x, t) = a 1 5 x 4 + 8 a 1 4 b 1 x 3 + 24 a 1 3 b 1 2 x 2 + (24 a 1 2 b 1 3 + a 1 (24 a 2 b 1 + 12 a 1 4 t - 24 b 2 a 1 + 8 a 1 b 1 3 ))x + 2 b 1 (24 a 2 b 1 + 12 a 1 4 t -24 b 2 a 1 + 8 a 1 b 1 3
) is a rational solution to the mKdV equation ( 1 

Rational solutions of order three

In this case, we only give the rational solution with some fixed parameters in reason of the length of the general solution. We choose a j = b j = j for 1 ≤ j ≤ 3.

We get the following rational solution given by : is a rational solution to the mKdV equation (1). 

Proposition 3.3 The function v defined by v(x, t) = n(x, t) d(x, t) , (20) 

Rational solutions of order four

With the same choices of parameters a j = b j = j for 1 ≤ j ≤ 4, we get the following rational solution given by : -462720 t+(-160-60 t)(180 t+960))x 10 + ((-160 -60 t)(2520 t + 3360) -1752000 t -696320 + (-360 t -240)(180 t + 960) + 14400 t 2 )x 9 + (-1013760 + 129600 t 2 -4440960 t + (-160 -60 t)(8064 + 15120 t) + (-192-720 t)(180 t+960)+(-360 t-240)(2520 t+3360))x 8 +(-302400 t 3 -7580160 t-1064960+(-192-720 t)(2520 t+3360)+(-360 t-240)(8064+15120 t)+(-64+720 t 2 -480 t)(180 t + 960) + (-160 -60 t)(13440 + 50400 t))x 7 + ((-64 + 720 t 2 -480 t)(2520 t + 3360) -4233600 t 3 -8248320 t -753664 + (-160 -60 t)(100800 t + 15360) + (-192 -720 t)(8064+15120 t)+(-360 t-240)(13440+50400 t))x 6 +(-25401600 t 3 -5114880 t-319488 + (-192 -720 t)(13440 + 50400 t) + (-360 t -240)(100800 t + 15360) + (-64 + 720 t 2 -480 t)(8064 + 15120 t) + (-160 -60 t)(120960 t + 11520))x 5 + ((-64 + 720 t 2 -480 t)(13440 + 50400 t) + (-192 -720 t)(100800 t + 15360) + (-160 -60 t)(302400 t 3 + 80640 t+5120)-61440-1382400 t-36288000 t 3 +(-360 t-240)(120960 t+11520))x 4 + ((-360 t -240)(302400 t 3 + 80640 t + 5120) + (-64 + 720 t 2 -480 t)(100800 t + 15360) + (-192-720 t)(120960 t+11520)+(-160-60 t)(1024+23040 t+604800 t 3 ))x 3 +((-64+ 720 t 2 -480 t)(120960 t+11520)+(-192-720 t)(302400 t 3 +80640 t+5120)+(-360 t-240)(1024+23040 t+604800 t 3 ))x 2 +((-64+720 t 2 -480 t)(302400 t 3 +80640 t+5120)+ (-192 -720 t)(1024 + 23040 t + 604800 t 3 ))x + (-64 + 720 t 2 -480 t)(1024 + 23040 t + 604800 t 3 ) is a rational solution to the mKdV equation [START_REF] Leblond | Models for supercontinuum generation beyond the slowly-varying-envelope approximation[END_REF]. 

Proposition 3.4 The function v defined by v(x, t) = n(x, t) d(x, t) , (21) 

Rational solutions of orders five and six

We choose parameters to get the shorter expression of the solution. For this, we consider a j = j and b j = 0, for 1 ≤ j ≤ N , we get the following rational solution given by : Order 5 Proposition 3.5 The function v defined by

v(x, t) = n(x, t) d(x, t) , (22) 
with n(x, t) = 5 x 24 +2280 tx 21 +352800 t 2 x 18 +4838400 t 3 x 15 +2794176000 t 4 x 12 +259096320000 t 5 x 9 + 5120962560000 t is a rational solution to the mKdV equation [START_REF] Leblond | Models for supercontinuum generation beyond the slowly-varying-envelope approximation[END_REF].

For solutions of order 5 and 6 depending respectively on 10 and 12 parameters, the structure of the polynomials of the numerators and denominators is the following. For order 5, the numerator contains 8370 terms and the denominator 10279; the degree of the numerator in x is 24, in t is 8; the degree of the denominator in x is 25, in t is 8. For order 6, the numerator contains 100409 terms and the denominator 119620; the degree of the numerator in x is 35, in t is 11; the degree of the denominator in x is 36, in t is 12. Unlike other equations like the nonlinear Schrödinger equation, we do not see a specific structure of polynomials defining these solutions.

Conclusion

Two types of representations of solutions to the mKdV equation have been given. First, we have constructed solutions as a quotient of a wronskian of order N by a wronskian of order N depending on 2N real parameters. Then rational solutions to the mKdV equation depending on 2N real parameters, performing a passage to the limit when one parameter goes to 0. We can mention some other recent works about this equation. In [START_REF] Chowdury | Periodic and rational solutions of mKdV equation[END_REF], first and second-order rational solutions are given as limiting cases of periodic solutions, the second one depending on one real parameter. In [START_REF] Wei | Periodic and rational solutions of the reduced Maxwell Bloch equations[END_REF] the reduced Maxwell-Bloch (RMB) equations are considered and N th-order rational solutions containing several free parameters are presented, in particular explicit expressions of these solutions from first to second order. Explicit periodic and rational solutions of first and second order are given in [START_REF] Wang | Conservation laws periodic and rational solutions for an extended mKdV equation[END_REF], and some typical nonlinear wave patterns are shown. The first four exact rational solutions of the set of rational solutions of the mKdV equation are presented in [START_REF] Ankiewicz | Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions[END_REF]. Multiple periodic solutions of the mKdV equation are given in [START_REF] Zhaquilao | Nonsingular complexiton and rational solutions for the mKdV equation and KdV equation[END_REF] and in particular first to third-order rational solutions.

All the solutions presented in this article are different from those proposed in previous references and are new. So we get an infinite hierarchy of multiparametric families of rational solutions to the mKdV equation as a quotient of a polynomials in x and t depending on 2N real parameters. It would be relevant to better understand the structure of polynomials defining the rational solutions of this equation.
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 1 Figure 1. Solution of order 1 to (1), on the left a 1 = 1, b 1 = 1; on the right a 1 = 1, b 1 = 10 2 .
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 2 Figure 2. Solution of order 2 to (1), on the left a 1 = 1, a 2 = 2, b 1 = 10, b 2 = 2; in the center a 1 = 1, a 2 = 2, b 1 = 1, b 2 = 2; on the right a 1 = 1, a 2 = 2, b 1 = 10, b 2 = 0.
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 3 Figure 3. Solution of order 3 to (1), on the left a 1 = 1, a 2 = 2, a 3 = 3, b 1 = 0, b 2 = 0, b 3 = 0; in the center a 1 = 1, a 2 = 2, a 3 = 3, b 1 = 10, b 2 = 2, b 3 = 3; on the right a 1 = 1, a 2 = 2, a 3 = 3, b 1 = 10, b 2 = 0, b 3 = 0.
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 4 Figure 4. Solution of order 4 to (1), on the left a 1 = 1, a 2 = 2, a 3 = 3, a 4 = 4, b 1 = 0, b 2 = 0, b 3 = 0, b 4 = 10; in the center a 1 = 1, a 2 = 2, a 3 = 3, a 4 = 4, b 1 = 10, b 2 = 0, b 3 = 0, b 4 = 0; on the right a 1 = 1, a 2 = 2, a 3 = 3, a 4 = 4, b 1 = 0, b 2 = 0, b 3 = 0, b 4 = 4.
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