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NUMERICAL STUDY OF SOLITON STABILITY, RESOLUTION AND

INTERACTIONS IN THE 3D ZAKHAROV-KUZNETSOV EQUATION

CHRISTIAN KLEIN, SVETLANA ROUDENKO, AND NIKOLA STOILOV

Abstract. We present a detailed numerical study of solutions to the Zakharov-Kuznetsov equation in
three spatial dimensions. The equation is a three-dimensional generalization of the Korteweg-de Vries
equation, though, not completely integrable. This equation is L2-subcritical, and thus, solutions exist
globally, for example, in the H1 energy space.

We first study stability of solitons with various perturbations in sizes and symmetry, and show as-
ymptotic stability and formation of radiation, confirming the asymptotic stability result in [13] for a
larger class of initial data. We then investigate the solution behavior for different localizations and rates
of decay including exponential and algebraic decays, and give positive confirmation toward the soliton
resolution conjecture in this equation. Finally, we investigate soliton interactions in various settings and
show that there is both a quasi-elastic interaction and a strong interaction when two solitons merge into
one, in all cases always emitting radiation in the conic-type region of the negative x-direction.

1. Introduction

We are interested in the 3D quadratic Zakharov-Kuznetsov (ZK) equation

ut + (uxx + uyy + uzz + u2)x = 0, (

here u = u(x, y, z, t) is real-valued, (x, y, z) ∈ R3, and t ∈ R. This equation is a three-dimension
eneralization of the well-known Korteweg-de Vries (KdV) equation, which is a one-dimensional mod
r weakly nonlinear waves in shallow water. The 3D ZK equation was originally proposed by Zakhar

nd Kuznetsov in the description of weakly magnetized ion-acoustic waves in a low-pressure magnetiz
lasma [48], where they raised the question of studying solitons in a higher-dimensional setting.
articular, their main question was about the stability of solitons, for which they argued that for t
D ZK equation the Lyapunov-type functional attains its minimum on a soliton. The orbital stabili
f solitons was obtained by de Bouard [3] by adapting the KdV argument of Grillakis, Shatah & Strau
0] to the 2D and 3D ZK equation. The more delicate asymptotic stability of solutions (in H1) clo

o a soliton for the 3D ZK equation was recently obtained by the second author together with Holme
arah and Yang in [13]. It is the goal of the present work to investigate soliton formation, stability an
teraction in the 3D ZK equation numerically.
While originally the equation was proposed by Zakharov and Kuznetsov in the 3D setting, the fir

igorous derivation as a long-wave small-amplitude limit of the Euler-Poisson system in the cold-plasm
pproximation was done by Lannes, Linares and Saut in [33], see also [36]. Other derivations exist
ell, for a review see [33, 12, 10] and references therein.
Unlike KdV and its other generalizations such as Kadomtsev-Petviashvili or Benjamin-Ono equation

he Zakharov-Kuznetsov equation is not completely integrable. Nevertheless, it has a Hamiltonia
tructure with three conserved quantities: energy (Hamiltonian), L2-norm (often called mass) and t
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tegral, defined as follows

M [u(t)]
def
=

∫

R3

u2(t) = M [u(0)], (

E[u(t)]
def
=

1

2

∫

R3

[
u2x(t) + u2y(t) + u2z(t)

]
− 1

3

∫

R3

u3(t) = E[u(0)], (

∫

R
u(x, y, z, t) dx =

∫

R
u(x, y, z, 0) dx. (

The equation (1) has a scaling invariance: if u(x, y, z, t) is a solution of (1), then so is the rescal
ersion

uλ(x, y, z, t) = λ2u(λx, λy, λz, λ3t), λ > 0. (

his symmetry makes the Sobolev norm Ḣs with s = −1 invariant, thus, making the equation (
2-subcritical (s < 0). The 3D ZK equation has other invariances such as translation and dilation.
The well-posedness theory for the Cauchy problem for the 3D ZK equation with Hs initial data h

ttracted significant interest in the last decade. The local well-posedness can be established via t
lassical Kato method in Hs for s > 5

2 . This was remarked and improved by Linares & Saut in [36]

he local well-posedness in Hs with s > 9
8 following the method of Kenig [17], which was then furth

proved by Ribaud & Vento [19] down to Hs with s > 1. The global well-posedness in Hs, s >
as established by Molinet & Pilod [18], and had been open for a while, until the recent work of He
Kinoshita [15], obtaining the local well-posedness in Hs for s > −1

2 . We are interested in studyin

nite energy solutions, hence, H1 global well-posedness suffices for our purposes.
The equation has a family of traveling waves called solitary waves (sometimes called solitons, althoug

he model is not integrable), moving only in the positive x-direction:

u(x, y, z, t) = Qc(x− c t, y, z), c > 0, (

here Qc is the dilation

Qc(·) = cQ(
√
c ·). (

e only consider solitary waves vanishing at infinity, thus, Q is the vanishing at infinity ground sta
olution of the well-known nonlinear elliptic equation

−∆R3Q+Q−Q2 = 0, (

e., the unique radial positive smooth solution in H1(R3). The properties of this ground state inclu
∈ C∞(R3), ∂rQ(r) < 0 for any r = |(x, y, z)| > 0, and for any multi-index α

|∂αQ(x, y, z)| .α e
−|(x,y,z)| for any (x, y, z) ∈ R3. (

As it was mentioned in the beginning, these solitary waves are stable, both orbitally (by a result
e Bouard [3]) and also asymptotically stable by the result of the second author with Farah, Holm
nd Yang [13]:

heorem 1 ([13]). For α � 1 and u0 ∈ H1(R3) with ‖u0 − Q‖H1 ≤ α, the solution u(x, t) to the 3
K (1) is asymptotically stable:
• (orbital stability) there exist trajectories c(t) > 0 and (a1(t), a2(t), a3(t)) ∈ R3 such that

∥∥c2(t)u
(
c(t)x+ a1(t), c(t)y + a2(t), c(t)z + a3(t), t

)
−Q(x, y, z)

∥∥
H1 . α,

• (convergence of trajectories) there exists c∗ such that |c∗ − 1| . α such that

c(t)→ c∗ and
(
a′1(t), a

′
2(t), a

′
3(t)
)
→ (c−2∗ , 0, 0) as t→ +∞,

• (weak convergence) as t→ +∞
c2(t)u

(
c(t)x+ a1(t), c(t)y + a2(t), c(t)z + a3(t), t

)
⇀ Q(x, y, z) (weakly) in H1, (1
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ZAKHAROV-KUZNETSOV EQUATION IN 3D

• (L2 strong convergence) for any δ & α the strong convergence in L2 holds outside of the radiatio
one (i.e., on the conic right-half space C)

∥∥c2(t)u(c(t)x+ a1(t), c(t)y + a2(t), c(t)z + a3(t), t)−Q(x, y, z)
∥∥
L2
C
→ 0 as t→ +∞, (1

here

C def
= {(x, y, z) ∈ R3 : x > (−1 + δ)t−

√
y2 + z2 tan θ} (1

r all θ such that

0 ≤ θ ≤ π

3
− δ. (1

We remark that the L2 convergence stated in (11) is in the reference frame of the soliton (bein
t the origin); in the reference frame of the solution, the rightward shifting external conic region

> δt−
√
y2 + z2 tan θ.

Theorem 1 describes the asymptotic behavior of solutions very close (in H1 sense) to solitons.
rder to understand a more general picture of the behavior of solutions in this equation, we perfor
detailed numerical study. The main goal of this study is to investigate stability of solitons, solito

esolution, the radiation regime and the interaction of solitons in this 3D non-integrable model v
umerical approaches.

onjecture 1. Consider the 3D ZK equation (1).

I. The soliton solutions (6)-(7)-(8) are orbitally and asymptotically stable. The stability holds o
a large set of perturbations of soliton-like initial data.

II. Solutions of (1) with sufficiently localized and smooth initial data decompose into solitons an
radiation as t→∞, i.e., the soliton resolution conjecture holds for the 3D ZK equation.

In this work we give positive numerical confirmations to Conjecture 1, as well as to the asymptot
tability result in Theorem 1 showing that asymptotic stability holds on a much larger class of solution
or the asymptotic stability we consider perturbations of solitons within 10% difference in mass or L
orm. To study the soliton resolution, in our simulations we are able to consider not only exponential
ecaying initial data, but also data with a sufficiently rapid algebraic decay. We have also investigat
olutions with initial data not necessarily having a maximum peak at a single point but on a continuo
et (such as an interval). However, we only studied positive valued initial data, as this is the fir
etailed numerical study for the 3D ZK equation.
Besides the soliton stability and soliton resolution, we also investigate the soliton interactions. W

bserve two types of interactions: one that preserves the number of solitons before and after the intera
ion (though the soliton parameters such as amplitude or speed can change) – we term this interactio
s quasi-elastic, and another one that combines the two solitons into one single soliton (and radiatio
hich is present in any interaction) – we refer to that interaction as strong.
For completeness, we mention that the 2 dimensional ZK equation with different powers of nonli

arity has been studied intensively in various aspects and some questions that have been answered in
o-dimensional setting would be interesting to investigate in three dimensions (and higher). For we

osedness results in the 2D quadratic ZK see [8], [34], [40], [21], [24], for other powers of ZK see [34
5], [14], [2], [25]; uniqueness results have been studied in [7], propagation of regularity in [16], uniq

ontinuation, for example, in [42] and [4] ; orbital stability in 2D quadratic ZK was done in [3], t
symptotic stability in [5], in the same paper the authors investigate the behavior of N well-separat
olitons; existence and uniqueness of multi-solitons is discussed in [46]. For instability of solitons in t
ritical and supercritical regimes (i.e., with cubic power and higher), see [9], [11], [10], and existence
low-up in the critical regime (2D cubic ZK) was proved in [12]. We have also investigated numerical
oliton resolution, interaction, as well as the blow-up behavior in the 2D generalized ZK equations
1]. 3D ZK appears as a leading order long-wave approximation in the so called “magma” equation



4

In n
in

D
Z ns
o ic
d a-
t ic
a

-
1 E-
0 ie
S y
t

n
w in
e a
N th
o

2 ly
d he
s n,
w he
F ],
y er
v

4)

T m
( he
d 2,
|k s.
It ly
fo .

ll-
k ar
S e,
h ly
c ta
fo

al

s n
a S

[4 he
it
C. KLEIN, S. ROUDENKO, AND N. STOILOV

[47] the authors make a number of numerical observations on the 3D problem with respect to solito
teraction and resolution.
The paper is organized as follows: in Section 2 we present the numerical methods used to solve the 3

K equation. In Section 3 we first study stability of solitons, where we consider various perturbatio
f the soliton itself. We then consider different types of initial data including exponential and algebra
ecays as well as different localization features and show the soliton resolution and formation of radi
ion. Section 4 contains our study of the soliton interaction in different settings, including quasi-elast
nd strong interactions.

Acknowledgements. CK and NS were partially supported by the ANR-FWF project ANuI - ANR
7-CE40-0035, the isite BFC project NAANoD, the EIPHI Graduate School (contract ANR-17-EUR
002) and by the European Union Horizon 2020 research and innovation program under the Mar
klodowska-Curie RISE 2017 grant agreement no. 778010 IPaDEGAN. SR was partially supported b
he NSF grant DMS-1927258.

2. Numerical methods

We start with a brief review of numerical methods used in this work. For the spatial discretisatio
e use Fourier spectral methods, i.e., we approximate the solutions via trigonometric polynomials
ach spatial variable. Solitons to the 3D ZK equation are constructed after this discretisation via
ewton-Krylov approach. The integration of the ZK equation in time is then performed with a four
rder exponential time differencing method.

.1. Solitons. Fourier spectral methods are known to be efficient in the approximation of sufficient
ecreasing smooth functions. This means we choose spatial periods of sufficient size such that t
tudied function as well as its first derivatives are small (ideally, on the order of the machine precisio
hich is of the order 10−16 here) at the boundaries of the computational domain. It is known that t
ourier coefficients of such functions will be rapidly decreasing. Specifically, we work with x ∈ Lx[−π, π
∈ Ly[−π, π], and z ∈ Lz[−π, π], where Lx, Ly and Lz are positive real numbers. We denote the Fouri

ariables dual to x, y and z by kx, ky and kz, respectively, and approximate a function Q(x, y, z) via

Q(x, y, z) ≈
Nx/2∑

kx=−Nx/2+1

Ny/2∑

ky=−Ny/2+1

Nz/2∑

kz=−Nz/2+1

Q̂(kx, ky, kz) e
i(kxx+kyy+kzz). (1

he discrete Fourier transform Q̂ = FQ can be conveniently computed with a fast Fourier transfor
FFT). An advantage of Fourier methods is that the numerical resolution can be controlled via t
ecay of the Fourier coefficients, the highest coefficients (the coefficients with indices |kx| ∼ Nx/

y| ∼ Ny/2, and |kz| ∼ Nz/2) indicate the numerical error introduced by the truncation of the serie
is known that the Fourier coefficients of an analytic periodic function are decreasing exponential

r k →∞. Therefore, we always look at the behavior of log10 |û| in dependence of the wavenumbers
We first obtain the soliton solution for the equation (1) by solving the equation (8). This is a we

nown nonlinear elliptic equation, it is the same equation for the ground state solution in the nonline
chrödinger or Klein-Gordon equations in 3D and has non-trivial solutions with radial symmetry. Her
owever, we do not use this fact: since we apply Fourier methods throughout the paper, we direct
onstruct the soliton solutions on the given numerical grids to use that later either as the initial da
r the ZK time evolution or for the appropriate fitting of a rescaled soliton.
With the Fourier discretization (14), the equation (8) is approximated by an NxNyNz dimension

ystem of nonlinear equations for the Q̂. The latter is iteratively solved by a Newton-Krylov iteratio
s in [31]. This means that we invert the Jacobian via Krylov subspace methods as in [1], here, GMRE

4]. We use Nx = Ny = Nz = 27, Lx = Ly = Lz = 3 and Q = 2 e−(x
2+y2+z2) as the initial iterate. T

eration is stopped when the residual is smaller than 10−10.
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The ground state solution of −cQ+ ∆R3Q+Q2 = 0 for c = 1 is shown in Fig. 1.

Figure 1. The ground state solution to (8). Left: plot of Q with z = 0. Right: 3D
contour plots of Q on the slices of the coordinate planes. The color bar indicates the
magnitude of the solution.

.2. Time evolution. The Fourier discretization (14) is used also for the full ZK equation (1), whi
thus approximated by an NxNyNz dimensional system of ordinary differential equations in t of t
rm

ût = Lû+N [û], (1

here L = ikx(k2x + k2y + k2z) and N [û] = −ikxF(up). Because of the appearance of third derivativ
x, y, and z, this system is stiff, implying that explicit methods will be inefficient due to stabili

onditions as they necessitate prohibitively small times steps in order to stabilize the code. Implic
chemes are less restrictive in this sense, but are computationally expensive, since the resulting nonline
quation has to be solved in each time step. In [26, 29] we compared various adapted integrators f
tiff systems with a diagonal L as we have here, which are explicit and of fourth order. It turn
ut that exponential time differencing (ETD) schemes, see [22] for a comprehensive review with man
eferences, are most efficient in the context of the KdV-type equations. There are various fourth ord
TD methods, which all showed a similar performance in our tests. As in [31], we apply the method b
ox and Matthews [6] in the implementation described in [26, 29]. The accuracy of the time integratio

cheme can be controlled via the conserved energy of the equation. Due to limitations in the accura
f numerical methods, the computed energy (again Fourier techniques are applied to (3)) will not
xactly conserved. The quantity ∆E = |E(t)/E(0) − 1| can be used as discussed in [26, 29] as a
stimate of the numerical error. Typically, the accuracy of the numerical solution is by 1-2 orders
agnitude worse than this estimator, i.e., the numerical error will at worst of the order of 10−10 if t

elative mass conservation is of the order of 10−12, and if the Fourier coefficients decrease to the sam
rder.

emark 2.1. Note that in this paper we approximate solutions on R3 by simulations on the toru
ithin machine precision, this does not make a difference for rapidly decreasing solution, if sufficient
rge periods are chosen. This is, for instance, possible for stationary localized solutions as the solito
f the ZK equation. However, if radiation appears in non-stationary solutions, one would have
hoose prohibitively large computational domains to avoid the reappearance of emitted radiation (alwa
mitted in the negative x-direction) for positive values of x, which is in practice impossible for 3
omputations. The reappearence of radiation is acceptable as long as it has much smaller amplitud
han the studied bulk of the solution.
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.3. Test. To test the time evolution code and the soliton solution at the same time, we consid
he ground state solution as the initial condition. For t ∈ [0, 1] we apply Nt = 1000 time steps. T
umerically computed energy is conserved to the order of 10−14. The difference between the numerical
omputed solution and the soliton increases with time, but it is of the same order 10−14 as in the ener
onservation. The code is thus able to propagate solitons on the considered time intervals, essential
ith machine precision.

3. Soliton Stability and Soliton Resolution

In this section we consider initial data with monotone decay and a single maximum value (though n
ecessarily assumed at a single point) and investigate how the time evolution of such data resolve in
oherent structures (here, rescaled and shifted solitons) and radiation. We recall that the ZK equatio
not integrable, so we always expect some radiation to form unlike for integrable equations such as t
dV equation. We first consider examples of perturbed soliton initial data and then examine vario
ther settings with different rates of decay and symmetry. Since the effects of the 3D setting are mo
isible if there is no symmetry with respect to an exchange of y and z, we consider also initial da
ithout this symmetry.

.1. Soliton Stability. We start with the investigation of the soliton stability. For that we consid
he following examples of initial data with perturbed solitons:

(a) a multiple of the soliton, u(x, y, z, 0) = λQ(x, y, z), λ ≈ 1; in particular, considering λ & 1 an
λ . 1;

(b) a localized asymmetric perturbation of the soliton, u(x, y, z, 0) = Q(x, y, z) + e−(x
2+y2+α z

α 6= 1, α > 0.

e work in this section with Lx = Ly = Lz = 6 and Nx = Ny = Nz = 28 Fourier modes an

t = 10, 000 time steps on the considered time intervals. In all studied cases the Fourier coefficien
ecrease at least to the order of 10−10, and the relative energy is conserved at least to the same orde
e use a co-moving frame (with the unperturbed soliton), i.e., we solve

ut + (∆u+ u2 − vxu)x = 0 (1

ith vx = 1.

Case (a): multiple of a soliton with λ & 1.

We begin with investigating the ZK time evolution for the initial data from the part (a) abo

0 = λQ, λ & 1. The solution travels in the x-direction and increases its amplitude till it finds
uitable rescaled soliton Qc with c > 1, while shedding some radiation in the negative x-axis directio
n example of such an evolution with λ = 1.1 at t = 12 is shown on the top left of Fig. 2.
Since the perturbation of the original soliton Q is radially symmetric, the solution itself has a sym
etry in y and z due to the corresponding symmetry of the ZK equation. In such cases one can pl

he solution either in the coordinates (x, ρ), where

ρ :=
√
y2 + z2, (1

r in the plane z = 0 (which is equivalent), we will typically plot the snapshots of solutions as projectio
nto the plane z = 0 as in the top left of Fig. 2; nevertheless, the computation is done in the full 3
pace without any assumption on symmetry.

The next important feature is tracking the L∞ norm and its leveling off or saturation in time, if an
hich would indicate that the solution is asymptotically approaching the rescaled and shifted versio
f the soliton Qc as in (6)-(7). The scaling parameter c is defined as

c =
‖u(t∗)‖L∞

‖Q‖L∞
, (1
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Figure 2. ZK solution with u0 = 1.1Q: solution (projected onto the z = 0 plane)
at t = 12 (top left), the time dependence of the L∞ norm (top right), the difference
between the solution and a rescaled soliton Qc with c = 1.3693 at t = 12 (bottom left),
the Fourier coefficients at t = 12 depending on kx and ky (the solution is symmetric in
ky and kz, thus, we project onto kz = 0) (bottom right).

here ideally t∗ = ∞ but for numerical purposes t∗ is the time when the L∞ norm levels off (
cceptable precision). The center of the shifted soliton can be easily identified (e.g., in MATLAB) b
etting the location coordinates of the local maximum. Both the scaling parameter and the shift is us
hen to measure the difference between the solution and the rescaled and shifted soliton at that time
o check if that difference is on the order of the radiation or less (we can then call the time t∗ as t
nal state’ time for numerical investigations).
The L∞ norm of the solution with data u0 = 1.1Q is plotted in the top right of Fig. 2, saturatin

t a slightly higher amplitude than the initial value. This seems to be typical: an initial condition th
a multiple of the ground state with higher amplitude than the original soliton (λ > 1) leads to

escaled version of Qc, defined in (7), with c > 1, and thus, faster moving in the x-direction than t
riginal soliton with speed c = 1. This can also be observed on the top left plot of Fig. 2, since t
cation of the maximum is slightly shifted away from the origin in the positive x-direction (in oth
ords, its maximum does not stay at the origin in the co-moving frame (16) with vx = 1 and shif

o the right). The difference between the solution at t = 12 and a rescaled soliton Qc is plotted o
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he bottom left of Fig. 2. One can notice that the difference is on the order of 10−1, thus, confirmin
he asymptotic shape of the solution as a rescaled and shifted soliton (plus radiation). There is som
adiation propagating into the negative x-direction. Since we work on a periodic domain, the radiatio
annot escape to (negative) infinity, and it reenters the domain on the opposite side, which leads
slightly noisy background (as we discussed in Remark 2.1). Therefore, it might be easier to see t

adiation on the right side of either top left or bottom left plots of Fig. 4. The Fourier coefficients
= 12 are shown in Fig. 2 on the bottom right. One can observe that an accuracy much better tha
lotting accuracy is achieved.

Case (a): multiple of a soliton with λ . 1.

Solutions of the ZK equation (1) with initial data from the part (a) u0 = λQ with λ . 1 al
symptotically approach solitons, with amplitudes or velocities as in (6)-(7), smaller than λ in t
itial data (and hence, smaller than Q itself).

Figure 3. ZK solution with u0 = 0.9Q: solution (projected onto z = 0) at t = 12 (top
left), the L∞ norm of the solution depending on time (top right), the difference between
the solution and a rescaled Qc with c = 0.6965 at t = 12 (bottom left), the Fourier
coefficients at t = 12 depending on kx and ky (projected onto kz = 0).

An example with λ = 0.9 is shown in Fig. 3. First, note that the peak moves to the left of t
rigin in the co-moving frame (that is, in the negative x-direction), indicating that the resulting solito
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as a slower speed and smaller amplitude than the soliton Q itself (and also, smaller than the initi
mplitude). This is also confirmed on the top right of Fig. 3, in the decay and then leveling off of t
∞ norm of this solution.
On the bottom left of Fig. 3 we show the difference between the solution at t = 12 and a rescal

oliton Qc, where c is computed from (18); the difference is on the order of 10−2. The Fourier coefficient
lotted on the bottom right of the same figure, indicate the numerical resolution of the solution.

Case (b): asymmetric perturbations of a soliton.

The previous perturbations of the soliton-type initial data had the same symmetry as the unperturb
oliton, and thus, led to a solution only depending on ρ defined in (17); we now look at the non-symmetr
in y and z) localized perturbations. For example, one can consider

u(x, y, z, 0) = Q(x, y, z) + e−(x
2+y2+α z2), α 6= 1, α > 0. (1

Figure 4. ZK solution with asymmetric initial data (19), α = 4: solution (projection
onto z = 0) at t = 12 (top left), the L∞ norm of the solution depending on time (top
right), the difference between this solution and a rescaled soliton Qc with c = 1.2494 at
t = 12, the Fourier coefficients at t = 12 with respect to kx and ky (the dependence on
kz is very similar to ky, and thus, not shown for the ease of presentation).

An example of the ZK solution with the initial data (19) and α = 4 is shown in Fig. 4. A snapshot
he solution at t = 12 is on the top left, and the time dependence of the L∞ norm is plotted on the to
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ight of Fig. 4. Both show that this solution converges to a rescaled soliton with the amplitude slight
igher than the initial one. Since the amplitude is higher than the original, the rescaled soliton, to whi
he solution is converging asymptotically, is moving slightly faster than the original unperturbed solito
n the top left plot in Fig. 4 the location of the peak is slightly shifted in the positive x-direction; th
also confirmed by the difference of this solution and a rescaled soliton Qc on the bottom left of t

ame figure. The Fourier coefficients on the bottom right show that the solution is numerically w
esolved.

For better understanding of this solution, we provide a 3D visualization in Fig. 5 by showing conto
lots on each of the coordinate plane slices through the solution.
One may notice that the initial data in this case are not spherically symmetric, nevertheless, the tim

volution leads to a more symmetric configuration. For that consider the top right 3D isocurves in Fig.
t the points where y = 0 and note that those curves are more flat compared with the correspondin
ocurves at y = 0 in the very bottom plot (of course, the solution has moved in a positive x-direction
om ellipses the isocurves in the xy-plane become more circular, indicating a more symmetric solutio
Finally, we discuss the formation of radiation in this example. In Fig. 6 we show the development

utgoing radiation in time (again projected onto z = 0). The radiation escapes to the left conic wed
f the moving rightward solution at an angle of 300 with the negative x-axis (for a total opening of 600

his is in agreement with the 3D asymptotic stability result in [13] (in the 2D this angle was obtain
[5], see also numerical confirmations in 2D, for example, in Fig 12 in [31]).

.2. Soliton Resolution. We next study initial data with monotone decay, vanishing at infinity an
ither a single maximum or a continuous interval of the same maximum. The goal here is to investiga
ow the ZK evolution of such data resolves into solitons and radiation. Before we consider non-solito
ke initial data, we mention that if u0 = λQ with either λ� 1 or λ� 1, then we typically observe th
he L∞ norm saturates at a certain level (much faster for larger λ and significantly slower for small
). It is plausible to think that such data always asymptotically approach a rescaled and shifted solito
since the solitons can be of an arbitrary size in the ZK equation). The time of how fast the solutio
esolves into the soliton and radiation is inversely proportional to the initial amplitude of the data.

We next consider initial data, which is different from a soliton, its multiple or a small perturbatio
he decay in space of the initial data, that we consider, is either faster than the exponential decay

he soliton (for example, a Gaussian) or, slower, such as a polynomial decay. Namely, we examine t
llowing cases of initial data:

(a) Gaussian,
(b) flattened Gaussian,
(c) wall-type,
(d) fast algebraic decay, referred here to as ‘super-Lorenzian’.
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Figure 5. Snapshots of ZK solution with u0 as in (19), α = 4, at t = 1.2, 4.8, 8.4. Left:
solutions projected onto z = 0. Right: 3D isocurves on the slices of the coordinate
planes.

Case (a): Gaussian initial data.



1

0)

w m
s

12
is e
t st
t g.
7 of
t a
c g
s ed
o

e
e

es
o n
is a
c

e,
a he
a y
t

2 C. KLEIN, S. ROUDENKO, AND N. STOILOV

Figure 6. Outgoing radiation in the asymmetric deformation of the initially perturbed

soliton u0 = Q + e−(x
2+y2+4z2) at t = 0.12, 0.24, 0.36, 0.48. White lines: the expected

wedge of the radiation front (13) forming a total angle of π/3.

We start here with initial data of the form

u(x, y, z, 0) = Ae−(x
2+y2+z2), A� 1, (2

ith sufficiently large A (so that the solution would not all disperse into radiation and could for
olitons). In Fig. 7 - 9 we discuss the solution with initial amplitude of the Gaussian A = 10.

As the solution evolves with time, a soliton appears to emerge. A snapshop of the solution at t =
shown on the top left of Fig. 7, on the top right we track the L∞ norm, which stabilizes around tim

= 3, approximately the time when the soliton Qc forms. To check the shape of the solution again
he rescaled soliton Qc, we show the difference between the solution and Qc on the bottom left of Fi
, noting that the resulting profile differs from a soliton by less than 2%. This is roughly the size
he radiation, which cannot escape to infinity (since we work on a periodic domain). Here, we use
o-moving frame (16) with the speed vx = 2, which is slightly slower than the velocity of the resultin
oliton. The Fourier coefficients of the solution at the terminal computational time t = 12 are plott
n the bottom right of Fig. 7 and indicate the good numerical resolution of the solution.

To study further the soliton resolution in this example, we consider the initial stages of the tim
volution for these initial data more closely and see the formation of outgoing radiation.

The initial stages of the ZK time evolution are shown in Fig. 8. On the right there are the isocurv
f the solution in three coordinate planes, and as time increases one can clearly see that the radiatio

propagating in the negative direction of the x-axis, widening out in the y and z directions into
one-type region.

Since the solution is symmetric in the y and z coordinates, we suppress for a moment the z-coordinat
nd plot how the radiation develops in Fig. 9 for different times (t = 0.05, 0.15, 0.35 and 0.5). T
ngle of the radiation is 300 from the negative x-axis (or the total opening angle is 600) as shown b
he black lines, which corresponds to the cone C in (12)-(13), i.e., 600 to the y or z-axis.
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Figure 7. ZK solution with Gaussian initial data u0 = 10 e−(x
2+y2+z2): solution (pro-

jected onto z = 0) at t = 12 (top left), the L∞ norm depending on time (top right), the
difference between the solution and a rescaled soliton Qc with c = 2.3123 (bottom left),
the Fourier coefficients at t = 12 (bottom right).

Case (b): flattened Gaussian initial data.

We next examine a flattened (in the y and z directions) Gaussian of the form

u(x, y, z, 0) = Ae−(x
2+0.05ρ2), ρ2 = y2 + z2, A > 1. (2

We take A = 5 and plot the early stages (at times t = 0.4, 1.6, 2.8) of the corresponding ZK evolutio
Fig. 10. Similar to the previous case, one can observe that the radiation is outgoing in the negati

-direction (and due to the periodic domain, reappearing on the far right of the x-axis, which does n
terfere with the soliton formation until much later times). The isocurves on the right of Fig. 10 sho

hat the radiation does go out at some angle around the negative x-axis, though it is more challengin
o give a precise description of the radiation region.

The ZK solution of this flattened Gaussian data (with A = 5) at the time t = 4 is plotted on t
op left of Fig. 11. Tracking the L∞ norm of this solution on the top right of Fig. 11 shows that t
olution grows for some time (till about t ≈ 2.5) until it reaches the height of the appropriate rescal
oliton while shedding some radiation. The oscillations in the L∞ height are due to the periodic doma
etting as well as the reappearence of the radiation on the right. The difference between this solutio
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Figure 8. Snapshots of the ZK solution with Gaussian initial data u0 = 10 e−(x
2+y2+z2)

at t = 0.05, 0.15, 0.35. Left: two dimensional projections onto z = 0. Right: 3D
isocurves on the slices of the coordinate planes.

nd a rescaled soliton Qc on the bottom left of the same figure once more indicates that the solutio
symptotically approaches the soliton as its final state. The Fourier coefficients of the solution at t =
re given on the bottom right of the same figure, showing that the solution is numerically well resolve
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Figure 9. Detail view of the radiation developed in the ZK solution with Gaussian

initial data u0 = 10 e−(x
2+y2+z2) at t = 0.05, 0.15, 0.35, 0.5. Two dimensional projections

onto z = 0 with black lines indicating the π/3 total opening angle of the radiation cone.

Case (c): Wall-type initial data.

Instead of single maximum initial data, we consider a wall-like setup with the maximum value sprea
ut continuously over an interval (for instance −a ≤ y + z ≤ a), while still having a fast decay an
anishing at infinity. For example, we take

u(x, y, z, 0) =





Ae−x
2 |y + z| ≤ a

A e−(x
2+(y+z−a)8) y + z > a

Ae−(x
2+(y+z+a)8) y + z < −a.

(2

Our goal here is to study the time evolution of initial data that are not single peaked, but have t
ame maximum along a certain set, for example, an interval or a curve. In the wall-type data abo
22) we have the maximum elongated in the y and z directions, and in the x-direction the maximu

still localized in a single point (at x = 0). The ZK evolution for such data with A = 3.6, a = 1.5
= 0.05, 0.2, 0.35 is shown in Fig. 12.
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Figure 10. Snapshots of the ZK solution with flattened Gaussian initial data u0 =

5 e−(x
2+0.05ρ2) at t = 0.4, 1.6, 2.8. Projections onto the plane z = 0 (left), the 3D

isocurves on the slices of the coordinate planes (right).

Continuing tracking the time evolution of this solution, we observe that eventually it forms one sing
eak, which then moves along the positive x-axis. The corresponding solution at time t = 5 is plott
n the top left of Fig. 13.
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Figure 11. ZK solution with flattened Gaussian initial data u0 = 5 e−(x
2+0.05ρ2) at

t = 4 (top left), the L∞ norm (top right), the difference of the solution (at t = 4) and a
rescaled soliton Qc with c = 6.9947 (bottom left), the Fourier coefficients of the solution
at t = 4 (bottom right). In all plots the presented solution is projected onto z = 0.

The L∞ norm of the solution is given on the top right of Fig. 13, it shows that it is growing an
hen stabilizes around time t = 4. The difference of the solution at time t = 5 and a rescaled solito

c is shown on the bottom left of the same figure: it does indicate that the single peak bump, in
hich the solution evolved thus far, is very close to a rescaled soliton, thus, showing that the solutio
asymptotically approaching as t → ∞ a rescaled (and shifted) soliton. This, furthermore, confirm

he soliton resolution conjecture for initial data with non-single peaked maximum. We note that sin
he initial condition is not very smooth (at the edges), the spatial resolution suffers, as indicated by t
ourier coefficients of the solution at the final time on the bottom right of the same figure. Nevertheles
his gives a positive confirmation to the soliton resolution conjecture.

We also comment on the radiation cone in this example: we observe that initially the angle θ of t
adiation front with respect to the x-axis is such that tan θ = 4, and as the wall narrows into a solito
for example, compare the top left and bottom left plots in Fig. 12), the angle gets closer to π/6, whi

easier to see here than in the case of the flattened Gaussian example.
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Figure 12. Snapshots of the ZK solution with the wall-type initial data (22) at t = 0.05,
0.2, 0.35. Projections onto the plane z = 0 (left), the 3D contour plots on the slices of
the coordinate planes (right).
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Figure 13. Soliton resolution and control parameters for the wall-type initial data (22).
The profile of the solution at t = 5 (top left), time dependence of the L∞ norm (top
right), the difference of the solution at t = 5 and a rescaled soliton Qc with c = 3.0082
(bottom left), the Fourier coefficients at t = 5 (bottom right).
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Case (d): Algebraic decay initial data.

So far we have been studying data with exponential decay, either the same rate as the decay of
oliton, or even faster such as a Gaussian. We now consider polynomial decay data. Currently, we a
ble to consider sufficiently fast polynomial decay (such as |x|−20), that is, an algebraic decay
oward infinity is rapid enough so that Fourier methods could be used efficiently. We first take initi
ata with the algebraic decay of the form

u(x, y, z, 0) =
A

(1 + x2 + y2 + z2)10
, A� 1. (2

The corresponding solution, despite the significant mass, if we take A large (e.g. A = 10, 20), appea
o disperse without forming a soliton. The snapshots of the solution with A = 20 at different times a
hown in Fig. 14.

We continue to track the solution even though the radiation keeps reappearing on the right as lon
s it does not influence the solution too much, till t = 0.5. The snapshot of that time is given on t
op of Fig. 15.

On the bottom left plot we track the L∞ norm in time, which appears to be monotonously decreasin
hus, it is plausible to think that this solution appears to be purely radiative and no solitons would
rmed. The Fourier coefficients of the solution at t = 0.5 decay considerably less than those for t

xponentially localized initial data, but still indicate a numerical resolution to the order of the plottin
ccuracy. We also check the relative energy conservation, which is on the order of 10−7, indicating th
he resolution in time does not cause any concerns.

Qualitatively an identical result is obtained for the initial condition with faster algebraic decay:

u(x, y, z, 0) =
20

(1 + x2 + y2 + z2)20
, (2

ith all of the solution dispersing into the radiation. We note that since the above initial data d
ot have exponential decay, the spatial resolution with Fourier methods is not on the same order as
he exponentially decaying examples. Nevertheless, it still provides six orders of magnitude precisio

space. Temporal resolution is of the same order. We also note that as we compute on a fini
rid, the exponential decay should become indistinguishable from the algebraic decay at the order
pproximately N/2. The tested super-Lorentzian initial data (24) with the decay rate |x|−40 st
xhibits “not sufficiently compactified” behavior, and therefore, we conclude that the initial data of t
rms (23) and (24) of algebraic decay data do not form a soliton.
We next consider a more flat at the origin initial data with a similar decay rate

u(x, y, z, 0) =
A

1 + (x2 + y2 + z2)10
, A� 1. (2

We plot the ZK solution with the initial condition (25) and A = 10 at t = 0.5 in the top left of Fig.
nd the time dependence of the L∞ norm in the top right of the same figure. One can observe th
round t = 0.15 the L∞ norms starts to stabilize. The difference between the solution and a rescal
nd shifted soliton Qc is obtained in the bottom left of Fig. 16. The difference does confirm that th
olution forms a soliton. We conclude that it is not only the decay rate that affects the asymptot
ehavior of the solution but also the shape (flatness at the origin in this case) of the initial data.

4. Soliton interaction

In this section we study the interaction of solitons. Since the ZK equation is not completely int
rable, there are no exact multi-soliton solutions known, as, for instance, in the KdV or mKdV equation
owever, since the soliton solutions are rapidly decaying as |(x, y, z)| → ∞, one can study their inte
ctions by considering initial data, that are composed as the sum of displaced solitons. Because of t
nite numerical precision, this gives multi-soliton initial data within the available accuracy. Indee
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Figure 14. Snapshots of the ZK solution with u0 = 20/(1 + x2 + y2 + z2)10 at t = 0.05,
0.15, 0.25. Left: 2D projections onto z = 0 (note the changing scale for u). Right: 3D
isocurves on the slices of the coordinate planes.

ince solitons have an exponential decay, their contribution to the locations that are far away fro
heir joint center of mass is zero within the numerical precision. Therefore, we consider initial data b
uperimposing two one-soliton solutions that are sufficiently well separated.
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Figure 15. ZK solution with super-Lorentzian u0 = 20/(1 + x2 + y2 + z2)10: the pro-
jection onto the plane z = 0 at t = 0.5 (top); the L∞ norm depending on time (bottom
left), the Fourier coefficients at t = 0.5 depending on kx and ky on the right (the depen-
dence on kz is suppressed due to the symmetry in y and z).

We study the following three scenarios:

(a) Head-on collision: a classical quasi one-dimensional interaction.
(b) Twin solitons: the interaction of two identical solitons that are separated only in y or in

direction.
(c) Off-set solitons: the interaction of two solitons that are separated in x and y (or z) direction

We show that in some cases the solitons can interact essentially elastically, although with radiatio
s the equation is not integrable, and in other cases the interaction is strong: the solitons can mer
to a single one (also with the outgoing radiation). We mention that the mass and energy conservatio

hat we obtain in the examples below are on the order of 10−8 or smaller.

Case (a): Head-on collision.

We start with considering the initial data with two localized and sufficiently separated solitons: o
f them being a large soliton Qc, c > 1, shifted away from the origin in the negative x-direction, an
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Figure 16. ZK solution for the more flat polynomial initial data (25) with A = 10:
solution (projected onto z = 0) at t = 0.5 (top left), time dependence of the L∞ norm
(top right), the difference of the solution at t = 0.5 and a rescaled soliton Qc with
c = 5.9176 (bottom left), the Fourier coefficients at t = 0.5 (bottom right).

nother one is the soliton Q itself centered at the origin:

u(x, y, z, 0) = Qc(x− a, y, z) +Q(x, y, z), c > 1. (2

e show an example with c = 2 centered at a = −10, that is, the larger soliton is behind the small
oliton on the x-axis, and we expect the larger one to travel twice as fast (at least in the beginnin
han the smaller one. In our simulations we actually solve

−cQ+Qxx +Qyy +Qzz +Q2 = 0 (2

ith c = 2 to obtain the appropriate soliton Q2. As an alternative, we could also use the scalin
roperty (7) to get the soliton with c = 2.
It can be seen in Fig. 17 that the faster soliton will hit the slower soliton around t = 10 (note th

e are still in a co-moving frame with vx = 1). The collision, while not really elastic, does preserve t
umber of solitons, it also exchanges their features, though not exactly. The smaller soliton becom
ven smaller and (in a co-moving frame) shifts back (thus, the speed is slower than c = 1), the fast
oliton grows, and thus, moves faster forward (in the positive x-direction), some radiation is emitte
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Figure 17. Head-on soliton interaction for initial data u0 = Q2(x+10, y, z)+Q(x, y, z)
at times t = 6.0 (before the interaction), t = 7.5, 10.5 (after the interaction), in a co-
moving frame with the soliton that is initially at the origin (i.e., vx = 1). Left: interaction
in 2D (projected onto the plane z = 0). Right: the corresponding 3D isocurves on the
slices of the coordinate planes.
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utgoing as before in a cone-type region around the negative x-axis. We refer to this interaction
uasi-elastic.

We continue the simulation till t = 15 and plot the snapshot of that solution in the top left of Fig. 1
gain as the projection onto the z = 0 plane. The top right of the same figure shows the L∞ norm. T
ppearance of the larger soliton can be seen in the time evolution of the L∞ norm around t = 12. W
nd the scaling parameter c for that soliton from (18) using t = 15. For the second soliton we find t
cal maximum of the L∞ norm, where the first soliton is not present. The difference of the solutio

t t = 15 and the two rescaled and appropriately shifted solitons is shown on the bottom left of Fig.
nd is less than 10−1. The latter suggests that the asymptotic solution on R3 is a superposition of tw
olitons (recall that we approximate this setting on the three-dimensional torus, where the radiatio
annot escape to infinity), thus, confirming the soliton resolution at the (numerical) final state. T
ourier coefficients on the bottom right of Fig. 18 indicate that the solution is numerically well resolve

Figure 18. ZK solution for initial data u0 = Q2(x + 10, y, z) + Q(x, y, z): solution
(projected onto z = 0) at t = 15 (top left), time dependence of the L∞ norm (top
right), the difference of the solution with two fitted rescaled solitons Qc1 and Qc2 with
c1 = 2.2293 and c2 = 0.6372 at t = 15 (bottom left), the Fourier coefficients at t = 15,
projected onto kz = 0 (bottom right).

Case (b): Twin Solitons.



2

-
m

8)
6 C. KLEIN, S. ROUDENKO, AND N. STOILOV

Figure 19. Snapshots of the ZK solution of strong soliton interactrion with u0 =
Q(x, y − a, z) + Q(x, y + a, z), a = π L/8 at t = 1.5, 6.0, 10.5. Left: 2D projections
(onto z = 0 plane). Right: 3D contour plots on the slices of the coordinate planes.

The next example that we consider has initial data of two solitons next to each other shifted sym
etrically in one of the non-leading axis, either in the y-axis or in the z-axis, for instance,

u(x, y, z, 0) = Q(x, y − a, z) +Q(x, y + a, z), a > 0. (2
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In Fig. 19 we show the snapshots of the solution with initial data (28) and a =
π L

8
, noting that t

eriods are 2πLx, 2πLy, 2πLz, respectively in each direction, and Lx = Ly = Lz = L. The two nearb
olitons clearly merge into a single soliton of larger velocity. We refer to this interaction as a stron
steraction, since the number of solitons has changed.
Continuing tracking the solution up to t = 15, we show a projection onto the z-plane of the solutio

t that time on the top left of Fig. 20. The difference with a rescaled soliton Qc is on the bottom left
he same figure; this suggests that the final state in this interaction is indeed a soliton plus radiation

Figure 20. Soliton resolution for u0 = Q(x, y − a, z) + Q(x, y + a, z), a = π L/8.
The solution (projection onto z = 0) for t = 15 (top left), the L∞ norm (top right),
the difference between the resulting profile and a rescaled soliton Qc with c = 2.1845
(bottom left), the Fourier coefficients at t = 15 (bottom right).

This result is also confirmed by the time dependence of the L∞ norm of the solution on the top rig
f Fig. 20 (from which we determined the scaling parameter c for the rescaled soliton Qc). The Fouri
oefficients on the bottom right of the same figure indicate that the solution is numerically well resolve

Case (c): Off-set solitons.

Finally, we consider two identical solitons displaced in both x and y (or in x and z) directions
reak the symmetry in the interaction. Specifically, we study the initial data of the form

u(x, y, z, 0) = Q(x, y, z) +Q(x+ a, y + a, z), a > 0. (2
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Figure 21. Snapshots of ZK solution with off-set initial data u0(x, y, z) = Q(x, y, z) +
Q(x+ a, y + a, z), a = 3/8π, at t = 1.5, 6.0, 15.0. Left: 2D projections onto the z-plane.
Right: 3D contour plots on the coordinate plane slices.

As an example, we take a =
3

8
π. We observe a quasi-elastic soliton interaction: some mass

ransferred to the front soliton, the number of solitons remain the same, though their characteristi
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ave changed: the back soliton is slower than the original Q and the fast soliton is faster than Q aft
he interaction. One can notice an increasing separation of them due to their different speeds.

Figure 22. Soliton resolution for the off-set initial data (29), a = 3
8π: final profile (at

t = 15), projected onto z = 0 (top left), the time dependence of the L∞ norm (top
right), the difference between the solution at t = 15 and two two fitted rescaled solitons
Qc1 and Qc2 with c1 = 1.4918 and c2 = 0.7107 (bottom left), the Fourier coefficients at
t = 15 (bottom right).

The projection of the solution at the ‘final’ time t = 15 onto the z = 0 plane is shown on the to
ft of Fig. 22. The difference of the solution at t = 15 and the leading soliton is on the bottom left

he same figure; it indicates that the final state can again be interpreted as a superposition of soliton
his result is also confirmed by the L∞ norm of the solution on the top right of Fig. 22. The Fouri
oefficients on the bottom right of the same figure indicate that the solution is numerically well resolve

We conclude that the soliton stability, soliton resolution hold for the 3D ZK equation as well as t
teraction of solitons in this equation can be quasi-elastic or strong.
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nue Alain Savary, 21078 Dijon Cedex, France

Email address: Christian.Klein@u-bourgogne.fr

Department of Mathematics & Statistics, Florida International University, Miami, FL, 33199, USA
Email address: sroudenko@fiu.edu
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