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NUMERICAL STUDY OF SOLITON STABILITY, RESOLUTION AND
INTERACTIONS IN THE 3D ZAKHAROV-KUZNETSOV EQUATION

CHRISTIAN KLEIN, SVETLANA ROUDENKO, AND NIKOLA STOILOV

ABSTRACT. We present a detailed numerical study of solutions to the Zakharov-Kuznetsov equation in
three spatial dimensions. The equation is a three-dimensional generalization of the Korteweg-de Vries
equation, though, not completely integrable. This equation is L*-subcritical, and thus, solutions exist
globally, for example, in the H' energy space.

We first study stability of solitons with various perturbations in sizes and symmetry, and show as-
ymptotic stability and formation of radiation, confirming the asymptotic stability result in [13] for a
larger class of initial data. We then investigate the solution behavior for different localizations and rates
of decay including exponential and algebraic decays, and give positive confirmation toward the soliton
resolution conjecture in this equation. Finally, we investigate soliton interactions in various settings and
show that there is both a quasi-elastic interaction and a strong interaction when two solitons merge into
one, in all cases always emitting radiation in the conic-type region of the negative z-direction.

1. INTRODUCTION

We are interested in the 3D quadratic Zakharov-Kuznetsov (ZK) equation
g+ (Upg + Uyy + Uz +u?)y =0, (1)

where u = u(z,vy, 2,t) is real-valued, (z,y,2) € R3, and ¢t € R. This equation is a three-dimensional
generalization of the well-known Korteweg-de Vries (KdV) equation, which is a one-dimensional model
for weakly nonlinear waves in shallow water. The 3D ZK equation was originally proposed by Zakharov
and Kuznetsov in the description of weakly magnetized ion-acoustic waves in a low-pressure magnetized
plasma [48], where they raised the question of studying solitons in a higher-dimensional setting. In
particular, their main question was about the stability of solitons, for which they argued that for the
3D ZK equation the Lyapunov-type functional attains its minimum on a soliton. The orbital stability
of solitons was obtained by de Bouard [3] by adapting the KdV argument of Grillakis, Shatah & Strauss
[20] to the 2D and 3D ZK equation. The more delicate asymptotic stability of solutions (in H') close
to a soliton for the 3D ZK equation was recently obtained by the second author together with Holmer,
Farah and Yang in [13]. It is the goal of the present work to investigate soliton formation, stability and
interaction in the 3D ZK equation numerically.

While originally the equation was proposed by Zakharov and Kuznetsov in the 3D setting, the first
rigorous derivation as a long-wave small-amplitude limit of the Euler-Poisson system in the cold-plasma
approximation was done by Lannes, Linares and Saut in [33], see also [36]. Other derivations exist as
well, for a review see [33, 12, 10] and references therein.

Unlike KdV and its other generalizations such as Kadomtsev-Petviashvili or Benjamin-Ono equations,
the Zakharov-Kuznetsov equation is not completely integrable. Nevertheless, it has a Hamiltonian
structure with three conserved quantities: energy (Hamiltonian), L?-norm (often called mass) and the
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integral, defined as follows

Mpul) [ W) = Mu(O), )
RS
Bl 5 [ [0+ 0 +20) - 3 [ 40 = Bu(o), Q
/ u(z,y,z,t)de = / u(z,y,z,0)d. (4)
R R

The equation (1) has a scaling invariance: if u(z,y, z,t) is a solution of (1), then so is the rescaled

version
u(,y, 2, t) = Nu(Az, Ay, Az, A3t), X > 0. (5)

This symmetry makes the Sobolev norm H*® with s = —1 invariant, thus, making the equation (1)
L2-subcritical (s < 0). The 3D ZK equation has other invariances such as translation and dilation.

The well-posedness theory for the Cauchy problem for the 3D ZK equation with H® initial data has
attracted significant interest in the last decade. The local well-posedness can be established via the
classical Kato method in H*® for s > 3. This was remarked and improved by Linares & Saut in [36] to
the local well-posedness in H® with s > % following the method of Kenig [17], which was then further
improved by Ribaud & Vento [19] down to H* with s > 1. The global well-posedness in H®, s > 1,
was established by Molinet & Pilod [18], and had been open for a while, until the recent work of Herr
& Kinoshita [15], obtaining the local well-posedness in H® for s > f%. We are interested in studying
finite energy solutions, hence, H! global well-posedness suffices for our purposes.

The equation has a family of traveling waves called solitary waves (sometimes called solitons, although
the model is not integrable), moving only in the positive a-direction:

u(x,y, z,t) = Qc(x — ct,y,z), ¢ >0, (6)
where Q). is the dilation
Qc(r) = cQ(Ver). (7)
We only consider solitary waves vanishing at infinity, thus, @ is the vanishing at infinity ground state
solution of the well-known nonlinear elliptic equation

—ApsQ+Q - Q* =0, (8)
i.e., the unique radial positive smooth solution in H'(R?). The properties of this ground state include
Q € C®(R3), 9,Q(r) < 0 for any r = |(x,y, )| > 0, and for any multi-index o

0°Q(,y,2)| Sa ¥ for any  (2,y,2) € RY. (9)

As it was mentioned in the beginning, these solitary waves are stable, both orbitally (by a result of
de Bouard [3]) and also asymptotically stable by the result of the second author with Farah, Holmer
and Yang [13]:

Theorem 1 ([13]). For a < 1 and ug € HY(R?) with |lug — Q||zn < o, the solution u(x,t) to the 3D
ZK (1) is asymptotically stable:
e (orbital stability) there ezist trajectories c(t) > 0 and (ay(t),as2(t),as(t)) € R® such that

HCQ(t) u(c(t)r + ar(t), c(t)y + az(t), c(t)z + as(t), t) — Q(z,y, z)HH1 < a,
e (convergence of trajectories) there exists c. such that |c. — 1| < a such that
c(t) » e and (dy(t),dh(t), ds(t)) = (c;2,0,0) as t— +oo,
e (weak convergence) as t — +00

A(t) u(c(t):r + ay(t), c(t)y + aa(t), c(t)z + as(t), t) — Q(z,y,2) (weakly) in H, (10)
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e (L? strong convergence) for any § > « the strong convergence in L* holds outside of the radiation
cone (i.e., on the conic right-half space C)

HCQ(t) u(e(t)x 4+ a1(t), c(t)y + az(t), c(t)z + as(t), t) — Q(z,y, z)HLg — 0 as t = +oo, (11)
where
¢ {(z,y,2) ER3: &> (=148t —/y2 +22tanh} (12)
for all 0 such that

0<6<— —6. (13)

wl 3

We remark that the L? convergence stated in (11) is in the reference frame of the soliton (being
at the origin); in the reference frame of the solution, the rightward shifting external conic region is
x> 0t — \/y? + 22 tan@.

Theorem 1 describes the asymptotic behavior of solutions very close (in H! sense) to solitons. In
order to understand a more general picture of the behavior of solutions in this equation, we perform
a detailed numerical study. The main goal of this study is to investigate stability of solitons, soliton
resolution, the radiation regime and the interaction of solitons in this 3D non-integrable model via
numerical approaches.

Conjecture 1. Consider the 3D ZK equation (1).

I. The soliton solutions (6)-(7)-(8) are orbitally and asymptotically stable. The stability holds on
a large set of perturbations of soliton-like initial data.

I1. Solutions of (1) with sufficiently localized and smooth initial data decompose into solitons and
radiation as t — 00, i.e., the soliton resolution conjecture holds for the 3D ZK equation.

In this work we give positive numerical confirmations to Conjecture 1, as well as to the asymptotic
stability result in Theorem 1 showing that asymptotic stability holds on a much larger class of solutions.
For the asymptotic stability we consider perturbations of solitons within 10% difference in mass or L™
norm. To study the soliton resolution, in our simulations we are able to consider not only exponentially
decaying initial data, but also data with a sufficiently rapid algebraic decay. We have also investigated
solutions with initial data not necessarily having a maximum peak at a single point but on a continuous
set (such as an interval). However, we only studied positive valued initial data, as this is the first
detailed numerical study for the 3D ZK equation.

Besides the soliton stability and soliton resolution, we also investigate the soliton interactions. We
observe two types of interactions: one that preserves the number of solitons before and after the interac-
tion (though the soliton parameters such as amplitude or speed can change) — we term this interaction
as quasi-elastic, and another one that combines the two solitons into one single soliton (and radiation,
which is present in any interaction) — we refer to that interaction as strong.

For completeness, we mention that the 2 dimensional ZK equation with different powers of nonlin-
earity has been studied intensively in various aspects and some questions that have been answered in a
two-dimensional setting would be interesting to investigate in three dimensions (and higher). For well-
posedness results in the 2D quadratic ZK see [8], [34], [40], [21], [24], for other powers of ZK see [34],
[35], [14], [2], [25]; uniqueness results have been studied in [7], propagation of regularity in [16], unique
continuation, for example, in [42] and [4] ; orbital stability in 2D quadratic ZK was done in [3], the
asymptotic stability in [5], in the same paper the authors investigate the behavior of N well-separated
solitons; existence and uniqueness of multi-solitons is discussed in [46]. For instability of solitons in the
critical and supercritical regimes (i.e., with cubic power and higher), see [9], [11], [10], and existence of
blow-up in the critical regime (2D cubic ZK) was proved in [12]. We have also investigated numerically
soliton resolution, interaction, as well as the blow-up behavior in the 2D generalized ZK equations in
[31]. 3D ZK appears as a leading order long-wave approximation in the so called “magma” equations.
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In [47] the authors make a number of numerical observations on the 3D problem with respect to soliton
interaction and resolution.

The paper is organized as follows: in Section 2 we present the numerical methods used to solve the 3D
ZK equation. In Section 3 we first study stability of solitons, where we consider various perturbations
of the soliton itself. We then consider different types of initial data including exponential and algebraic
decays as well as different localization features and show the soliton resolution and formation of radia-
tion. Section 4 contains our study of the soliton interaction in different settings, including quasi-elastic
and strong interactions.

Acknowledgements. CK and NS were partially supported by the ANR-FWF project ANul - ANR-
17-CE40-0035, the isite BFC project NAANoD, the EIPHI Graduate School (contract ANR-17-EURE-
0002) and by the European Union Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie RISE 2017 grant agreement no. 778010 IPADEGAN. SR was partially supported by
the NSF grant DMS-1927258.

2. NUMERICAL METHODS

We start with a brief review of numerical methods used in this work. For the spatial discretisation
we use Fourier spectral methods, i.e., we approximate the solutions via trigonometric polynomials in
each spatial variable. Solitons to the 3D ZK equation are constructed after this discretisation via a
Newton-Krylov approach. The integration of the ZK equation in time is then performed with a fourth
order exponential time differencing method.

2.1. Solitons. Fourier spectral methods are known to be efficient in the approximation of sufficiently
decreasing smooth functions. This means we choose spatial periods of sufficient size such that the
studied function as well as its first derivatives are small (ideally, on the order of the machine precision,
which is of the order 10716 here) at the boundaries of the computational domain. It is known that the
Fourier coeflicients of such functions will be rapidly decreasing. Specifically, we work with z € L,[—, 7],
y € Ly[—m, 7], and z € L,[—m, x|, where L, L, and L, are positive real numbers. We denote the Fourier
variables dual to z, y and z by k., k, and k,, respectively, and approximate a function Q(z,y, z) via

Ny/2 Ny/2 N, /2

Qay,2)~ Y, > > Qs ky, k) efherthoythz), (14)

ke=—Ngz/2+1 ky=—Ny/24+1 k.=—N./2+1

The discrete Fourier transform Q = FQ can be conveniently computed with a fast Fourier transform
(FFT). An advantage of Fourier methods is that the numerical resolution can be controlled via the
decay of the Fourier coefficients, the highest coefficients (the coefficients with indices |kz| ~ Ng/2,
|ky| ~ Ny/2, and |k;| ~ N,/2) indicate the numerical error introduced by the truncation of the series.
It is known that the Fourier coefficients of an analytic periodic function are decreasing exponentially
for k — oco. Therefore, we always look at the behavior of log;, 4| in dependence of the wavenumbers.

We first obtain the soliton solution for the equation (1) by solving the equation (8). This is a well-
known nonlinear elliptic equation, it is the same equation for the ground state solution in the nonlinear
Schrodinger or Klein-Gordon equations in 3D and has non-trivial solutions with radial symmetry. Here,
however, we do not use this fact: since we apply Fourier methods throughout the paper, we directly
construct the soliton solutions on the given numerical grids to use that later either as the initial data
for the ZK time evolution or for the appropriate fitting of a rescaled soliton.

With the Fourier discretization (14), the equation (8) is approximated by an N;N,N, dimensional
system of nonlinear equations for the Q. The latter is iteratively solved by a Newton-Krylov iteration
as in [31]. This means that we invert the Jacobian via Krylov subspace methods as in [1], here, GMRES
[44]. Weuse Ny =Ny =N, =27, L, =L,=L, =3 and Q =2 e~ @ +¥°+2%) ag the initial iterate. The
iteration is stopped when the residual is smaller than 10710,
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The ground state solution of —c@Q 4+ AgsQ + Q% = 0 for ¢ = 1 is shown in Fig. 1.

FIGURE 1. The ground state solution to (8). Left: plot of @ with z = 0. Right: 3D
contour plots of () on the slices of the coordinate planes. The color bar indicates the
magnitude of the solution.

2.2. Time evolution. The Fourier discretization (14) is used also for the full ZK equation (1), which
is thus approximated by an NN, N, dimensional system of ordinary differential equations in ¢ of the
form

= L4+ NTd), (15)
where £ = ik, (k2 + k} + k2) and N[i] = —ik,F(uP). Because of the appearance of third derivatives
in z, y, and z, this system is stiff, implying that explicit methods will be inefficient due to stability
conditions as they necessitate prohibitively small times steps in order to stabilize the code. Implicit
schemes are less restrictive in this sense, but are computationally expensive, since the resulting nonlinear
equation has to be solved in each time step. In [26, 29] we compared various adapted integrators for
stiff systems with a diagonal £ as we have here, which are explicit and of fourth order. It turned
out that exponential time differencing (ETD) schemes, see [22] for a comprehensive review with many
references, are most efficient in the context of the KdV-type equations. There are various fourth order
ETD methods, which all showed a similar performance in our tests. As in [31], we apply the method by
Cox and Matthews [6] in the implementation described in [26, 29]. The accuracy of the time integration
scheme can be controlled via the conserved energy of the equation. Due to limitations in the accuracy
of numerical methods, the computed energy (again Fourier techniques are applied to (3)) will not be
exactly conserved. The quantity AE = |E(t)/E(0) — 1| can be used as discussed in [26, 29] as an
estimate of the numerical error. Typically, the accuracy of the numerical solution is by 1-2 orders of
magnitude worse than this estimator, i.e., the numerical error will at worst of the order of 10710 if the
relative mass conservation is of the order of 107'2, and if the Fourier coefficients decrease to the same
order.

Remark 2.1. Note that in this paper we approximate solutions on R? by simulations on the torus.
Within machine precision, this does not make a difference for rapidly decreasing solution, if sufficiently
large periods are chosen. This is, for instance, possible for stationary localized solutions as the solitons
of the ZK equation. However, if radiation appears in non-stationary solutions, one would have to
choose prohibitively large computational domains to avoid the reappearance of emitted radiation (always
emitted in the negative z-direction) for positive values of z, which is in practice impossible for 3D
computations. The reappearence of radiation is acceptable as long as it has much smaller amplitudes
than the studied bulk of the solution.
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2.3. Test. To test the time evolution code and the soliton solution at the same time, we consider
the ground state solution as the initial condition. For ¢ € [0, 1] we apply N; = 1000 time steps. The
numerically computed energy is conserved to the order of 1074, The difference between the numerically
computed solution and the soliton increases with time, but it is of the same order 1074 as in the energy
conservation. The code is thus able to propagate solitons on the considered time intervals, essentially
with machine precision.

3. SOLITON STABILITY AND SOLITON RESOLUTION

In this section we consider initial data with monotone decay and a single maximum value (though not
necessarily assumed at a single point) and investigate how the time evolution of such data resolve into
coherent structures (here, rescaled and shifted solitons) and radiation. We recall that the ZK equation
is not integrable, so we always expect some radiation to form unlike for integrable equations such as the
KdV equation. We first consider examples of perturbed soliton initial data and then examine various
other settings with different rates of decay and symmetry. Since the effects of the 3D setting are most
visible if there is no symmetry with respect to an exchange of y and z, we consider also initial data
without this symmetry.

3.1. Soliton Stability. We start with the investigation of the soliton stability. For that we consider
the following examples of initial data with perturbed solitons:
(a) a multiple of the soliton, u(z,y, 2,0) = AQ(z,y, ), A = 1; in particular, considering A 2 1 and
ASL
(b) a localized asymmetric perturbation of the soliton, u(x,y,z,0) = Q(z,y,2) + e~ @ty +a 22),
a#1l,a>0.
We work in this section with L, = L, = L, = 6 and N, = N, = N, = 28 Fourier modes and
N; = 10,000 time steps on the considered time intervals. In all studied cases the Fourier coefficients
decrease at least to the order of 10710, and the relative energy is conserved at least to the same order.
We use a co-moving frame (with the unperturbed soliton), i.e., we solve

ug + (Au 4 u? — vpu)y = 0 (16)
with v, = 1.

Case (a): multiple of a soliton with A\ > 1.

We begin with investigating the ZK time evolution for the initial data from the part (a) above
ug = MA@, A 2 1. The solution travels in the x-direction and increases its amplitude till it finds a
suitable rescaled soliton @, with ¢ > 1, while shedding some radiation in the negative x-axis direction.
An example of such an evolution with A = 1.1 at ¢ = 12 is shown on the top left of Fig. 2.

Since the perturbation of the original soliton @ is radially symmetric, the solution itself has a sym-
metry in y and z due to the corresponding symmetry of the ZK equation. In such cases one can plot
the solution either in the coordinates (z, p), where

p =y + 22, (17)
or in the plane z = 0 (which is equivalent), we will typically plot the snapshots of solutions as projections
onto the plane z = 0 as in the top left of Fig. 2; nevertheless, the computation is done in the full 3D
space without any assumption on symmetry.

The next important feature is tracking the L°° norm and its leveling off or saturation in time, if any,
which would indicate that the solution is asymptotically approaching the rescaled and shifted version
of the soliton Q. as in (6)-(7). The scaling parameter ¢ is defined as

t*)||
el

10~ (18)
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FIGURE 2. ZK solution with up = 1.1Q: solution (projected onto the z = 0 plane)
at t = 12 (top left), the time dependence of the L® norm (top right), the difference
between the solution and a rescaled soliton @), with ¢ = 1.3693 at ¢ = 12 (bottom left),
the Fourier coefficients at ¢ = 12 depending on k; and k, (the solution is symmetric in
ky and k., thus, we project onto k; = 0) (bottom right).

where ideally t* = oo but for numerical purposes t* is the time when the L® norm levels off (to
acceptable precision). The center of the shifted soliton can be easily identified (e.g., in MATLAB) by
getting the location coordinates of the local maximum. Both the scaling parameter and the shift is used
then to measure the difference between the solution and the rescaled and shifted soliton at that time ¢*
to check if that difference is on the order of the radiation or less (we can then call the time ¢* as the
‘final state’ time for numerical investigations).

The L* norm of the solution with data ug = 1.1Q is plotted in the top right of Fig. 2, saturating
at a slightly higher amplitude than the initial value. This seems to be typical: an initial condition that
is a multiple of the ground state with higher amplitude than the original soliton (A > 1) leads to a
rescaled version of @Q., defined in (7), with ¢ > 1, and thus, faster moving in the z-direction than the
original soliton with speed ¢ = 1. This can also be observed on the top left plot of Fig. 2, since the
location of the maximum is slightly shifted away from the origin in the positive a-direction (in other
words, its maximum does not stay at the origin in the co-moving frame (16) with v, = 1 and shifts
to the right). The difference between the solution at t = 12 and a rescaled soliton Q. is plotted on
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the bottom left of Fig. 2. One can notice that the difference is on the order of 107!, thus, confirming
the asymptotic shape of the solution as a rescaled and shifted soliton (plus radiation). There is some
radiation propagating into the negative z-direction. Since we work on a periodic domain, the radiation
cannot escape to (negative) infinity, and it reenters the domain on the opposite side, which leads to
a slightly noisy background (as we discussed in Remark 2.1). Therefore, it might be easier to see the
radiation on the right side of either top left or bottom left plots of Fig. 4. The Fourier coefficients at
t = 12 are shown in Fig. 2 on the bottom right. One can observe that an accuracy much better than
plotting accuracy is achieved.

Case (a): multiple of a soliton with A\ < 1.

Solutions of the ZK equation (1) with initial data from the part (a) up = AQ with A < 1 also
asymptotically approach solitons, with amplitudes or velocities as in (6)-(7), smaller than A in the
initial data (and hence, smaller than @ itself).

3 9
2.5 8
2 7

o

ul

0.06

0.04
0.02

F(u)

-0.02

-0.04

-0.06
20

F1GURE 3. ZK solution with uy = 0.9 Q: solution (projected onto z = 0) at ¢ = 12 (top
left), the L norm of the solution depending on time (top right), the difference between
the solution and a rescaled Q. with ¢ = 0.6965 at ¢ = 12 (bottom left), the Fourier
coefficients at ¢ = 12 depending on k, and k, (projected onto k, = 0).

An example with A = 0.9 is shown in Fig. 3. First, note that the peak moves to the left of the
origin in the co-moving frame (that is, in the negative a-direction), indicating that the resulting soliton
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has a slower speed and smaller amplitude than the soliton @ itself (and also, smaller than the initial
amplitude). This is also confirmed on the top right of Fig. 3, in the decay and then leveling off of the
L norm of this solution.

On the bottom left of Fig. 3 we show the difference between the solution at ¢ = 12 and a rescaled
soliton Q.., where ¢ is computed from (18); the difference is on the order of 1072, The Fourier coefficients,
plotted on the bottom right of the same figure, indicate the numerical resolution of the solution.

Case (b): asymmetric perturbations of a soliton.

The previous perturbations of the soliton-type initial data had the same symmetry as the unperturbed
soliton, and thus, led to a solution only depending on p defined in (17); we now look at the non-symmetric
(in y and z) localized perturbations. For example, one can consider

u(,y,2,0) = Q(a,y, 2) + e T a1 0> 0. (19)
10
6 9
5 8
4 7

|

0.05

F(u)

-0.05
20

FIGURE 4. ZK solution with asymmetric initial data (19), « = 4: solution (projection
onto z = 0) at ¢t = 12 (top left), the L norm of the solution depending on time (top
right), the difference between this solution and a rescaled soliton Q. with ¢ = 1.2494 at
t = 12, the Fourier coeflicients at ¢ = 12 with respect to k, and k, (the dependence on
k. is very similar to ky, and thus, not shown for the ease of presentation).

An example of the ZK solution with the initial data (19) and o = 4 is shown in Fig. 4. A snapshot of
the solution at ¢ = 12 is on the top left, and the time dependence of the L* norm is plotted on the top
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right of Fig. 4. Both show that this solution converges to a rescaled soliton with the amplitude slightly
higher than the initial one. Since the amplitude is higher than the original, the rescaled soliton, to which
the solution is converging asymptotically, is moving slightly faster than the original unperturbed soliton:
on the top left plot in Fig. 4 the location of the peak is slightly shifted in the positive x-direction; this
is also confirmed by the difference of this solution and a rescaled soliton (). on the bottom left of the
same figure. The Fourier coefficients on the bottom right show that the solution is numerically well
resolved.

For better understanding of this solution, we provide a 3D visualization in Fig. 5 by showing contour
plots on each of the coordinate plane slices through the solution.

One may notice that the initial data in this case are not spherically symmetric, nevertheless, the time
evolution leads to a more symmetric configuration. For that consider the top right 3D isocurves in Fig. 5
at the points where y = 0 and note that those curves are more flat compared with the corresponding
isocurves at y = 0 in the very bottom plot (of course, the solution has moved in a positive z-direction);
from ellipses the isocurves in the xy-plane become more circular, indicating a more symmetric solution.

Finally, we discuss the formation of radiation in this example. In Fig. 6 we show the development of
outgoing radiation in time (again projected onto z = 0). The radiation escapes to the left conic wedge
of the moving rightward solution at an angle of 30° with the negative x-axis (for a total opening of 60°).
This is in agreement with the 3D asymptotic stability result in [13] (in the 2D this angle was obtained
in [5], see also numerical confirmations in 2D, for example, in Fig 12 in [31]).

3.2. Soliton Resolution. We next study initial data with monotone decay, vanishing at infinity and
either a single maximum or a continuous interval of the same maximum. The goal here is to investigate
how the ZK evolution of such data resolves into solitons and radiation. Before we consider non-soliton-
like initial data, we mention that if ug = A @ with either A > 1 or A <« 1, then we typically observe that
the L norm saturates at a certain level (much faster for larger A and significantly slower for smaller
A). It is plausible to think that such data always asymptotically approach a rescaled and shifted soliton
(since the solitons can be of an arbitrary size in the ZK equation). The time of how fast the solution
resolves into the soliton and radiation is inversely proportional to the initial amplitude of the data.
We next consider initial data, which is different from a soliton, its multiple or a small perturbation.

The decay in space of the initial data, that we consider, is either faster than the exponential decay of
the soliton (for example, a Gaussian) or, slower, such as a polynomial decay. Namely, we examine the
following cases of initial data:

(a) Gaussian,

(b) flattened Gaussian,

(c) wall-type,

(d) fast algebraic decay, referred here to as ‘super-Lorenzian’.
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FIGURE 5. Snapshots of ZK solution with ug as in (19), a =4, at t = 1.2, 4.8, 8.4. Left:
solutions projected onto z = 0. Right: 3D isocurves on the slices of the coordinate
planes.

Case (a): Gaussian initial data.

11
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FI1GURE 6. Outgoing radiation in the asymmetric deformation of the initially perturbed
soliton ug = Q + e~ @y +42%) at ¢ = 0.12,0.24,0.36,0.48. White lines: the expected
wedge of the radiation front (13) forming a total angle of 7/3.

We start here with initial data of the form
u(z,y, 2,0) = Ae_(’”2+yz+zz), A>1, (20)

with sufficiently large A (so that the solution would not all disperse into radiation and could form
solitons). In Fig. 7 - 9 we discuss the solution with initial amplitude of the Gaussian A = 10.

As the solution evolves with time, a soliton appears to emerge. A snapshop of the solution at ¢t = 12
is shown on the top left of Fig. 7, on the top right we track the L° norm, which stabilizes around time
t = 3, approximately the time when the soliton Q. forms. To check the shape of the solution against
the rescaled soliton Q., we show the difference between the solution and . on the bottom left of Fig.
7, noting that the resulting profile differs from a soliton by less than 2%. This is roughly the size of
the radiation, which cannot escape to infinity (since we work on a periodic domain). Here, we use a
co-moving frame (16) with the speed v, = 2, which is slightly slower than the velocity of the resulting
soliton. The Fourier coefficients of the solution at the terminal computational time ¢ = 12 are plotted
on the bottom right of Fig. 7 and indicate the good numerical resolution of the solution.

To study further the soliton resolution in this example, we consider the initial stages of the time
evolution for these initial data more closely and see the formation of outgoing radiation.

The initial stages of the ZK time evolution are shown in Fig. 8. On the right there are the isocurves
of the solution in three coordinate planes, and as time increases one can clearly see that the radiation
is propagating in the negative direction of the z-axis, widening out in the y and z directions into a
cone-type region.

Since the solution is symmetric in the y and z coordinates, we suppress for a moment the z-coordinate,
and plot how the radiation develops in Fig. 9 for different times (¢ = 0.05, 0.15, 0.35 and 0.5). The
angle of the radiation is 30" from the negative z-axis (or the total opening angle is 60°) as shown by
the black lines, which corresponds to the cone C in (12)-(13), i.e., 60° to the y or z-axis.
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15

FIGURE 7. ZK solution with Gaussian initial data ug = 10e~@*+¥*+2%): solution (pro-
jected onto z = 0) at t = 12 (top left), the L> norm depending on time (top right), the
difference between the solution and a rescaled soliton @, with ¢ = 2.3123 (bottom left),
the Fourier coefficients at ¢ = 12 (bottom right).

Case (b): flattened Gaussian initial data.

We next examine a flattened (in the y and z directions) Gaussian of the form
u(z,y,z,0) = Ae*(z2+0'05p2), =y 422 A>1. (21)

We take A = 5 and plot the early stages (at times ¢ = 0.4, 1.6, 2.8) of the corresponding ZK evolution
in Fig. 10. Similar to the previous case, one can observe that the radiation is outgoing in the negative
z-direction (and due to the periodic domain, reappearing on the far right of the z-axis, which does not
interfere with the soliton formation until much later times). The isocurves on the right of Fig. 10 show
that the radiation does go out at some angle around the negative z-axis, though it is more challenging
to give a precise description of the radiation region.

The ZK solution of this flattened Gaussian data (with A = 5) at the time ¢t = 4 is plotted on the
top left of Fig. 11. Tracking the L norm of this solution on the top right of Fig. 11 shows that the
solution grows for some time (till about ¢ & 2.5) until it reaches the height of the appropriate rescaled
soliton while shedding some radiation. The oscillations in the L* height are due to the periodic domain
setting as well as the reappearence of the radiation on the right. The difference between this solution
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FIGURE 8. Snapshots of the ZK solution with Gaussian initial data ug = 10 e~ (@ +¥*+2%)
at ¢ = 0.05, 0.15, 0.35. Left: two dimensional projections onto z = 0. Right: 3D
isocurves on the slices of the coordinate planes.

and a rescaled soliton Q. on the bottom left of the same figure once more indicates that the solution
asymptotically approaches the soliton as its final state. The Fourier coefficients of the solution at ¢t = 4
are given on the bottom right of the same figure, showing that the solution is numerically well resolved.
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FIGURE 9. Detail view of the radiation developed in the ZK solution with Gaussian
initial data ug = 10 e~ (@Y gt ¢ = 0.05, 0.15, 0.35, 0.5. Two dimensional projections
onto z = 0 with black lines indicating the 7/3 total opening angle of the radiation cone.

Case (c): Wall-type initial data.

Instead of single maximum initial data, we consider a wall-like setup with the maximum value spread
out continuously over an interval (for instance —a < y + z < a), while still having a fast decay and
vanishing at infinity. For example, we take

Ae ly+ 2] <a
u(z,y,2,0) = { Ae~@+u+—a)®) o4 25 g (22)
Ae~@+y+ata)®) 4 o g

Our goal here is to study the time evolution of initial data that are not single peaked, but have the
same maximum along a certain set, for example, an interval or a curve. In the wall-type data above
(22) we have the maximum elongated in the y and z directions, and in the z-direction the maximum
is still localized in a single point (at x = 0). The ZK evolution for such data with A = 3.6, a = 1.5 at
t =0.05, 0.2, 0.35 is shown in Fig. 12.
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FiGURE 10. Snapshots of the ZK solution with flattened Gaussian initial data uy =
5e~(@+0.050%) ot t = 0.4, 1.6, 2.8. Projections onto the plane z = 0 (left), the 3D
isocurves on the slices of the coordinate planes (right).

Continuing tracking the time evolution of this solution, we observe that eventually it forms one single
peak, which then moves along the positive z-axis. The corresponding solution at time ¢t = 5 is plotted
on the top left of Fig. 13.
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FIGURE 11. ZK solution with flattened Gaussian initial data ug = 5 e—(@*+0.050%) ¢
t =4 (top left), the L> norm (top right), the difference of the solution (at ¢ =4) and a
rescaled soliton @), with ¢ = 6.9947 (bottom left), the Fourier coeflicients of the solution
at t =4 (bottom right). In all plots the presented solution is projected onto z = 0.

The L norm of the solution is given on the top right of Fig. 13, it shows that it is growing and
then stabilizes around time ¢ = 4. The difference of the solution at time ¢ = 5 and a rescaled soliton
Q. is shown on the bottom left of the same figure: it does indicate that the single peak bump, into
which the solution evolved thus far, is very close to a rescaled soliton, thus, showing that the solution
is asymptotically approaching as ¢ — oo a rescaled (and shifted) soliton. This, furthermore, confirms
the soliton resolution conjecture for initial data with non-single peaked maximum. We note that since
the initial condition is not very smooth (at the edges), the spatial resolution suffers, as indicated by the
Fourier coefficients of the solution at the final time on the bottom right of the same figure. Nevertheless,
this gives a positive confirmation to the soliton resolution conjecture.

We also comment on the radiation cone in this example: we observe that initially the angle 6 of the
radiation front with respect to the z-axis is such that tanf = 4, and as the wall narrows into a soliton
(for example, compare the top left and bottom left plots in Fig. 12), the angle gets closer to /6, which
is easier to see here than in the case of the flattened Gaussian example.
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FIGURE 12. Snapshots of the ZK solution with the wall-type initial data (22) at ¢ = 0.05,
0.2, 0.35. Projections onto the plane z = 0 (left), the 3D contour plots on the slices of
the coordinate planes (right).
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15

FIGURE 13. Soliton resolution and control parameters for the wall-type initial data (22).
The profile of the solution at ¢ = 5 (top left), time dependence of the L norm (top
right), the difference of the solution at ¢ = 5 and a rescaled soliton @, with ¢ = 3.0082
(bottom left), the Fourier coefficients at t = 5 (bottom right).
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Case (d): Algebraic decay initial data.

So far we have been studying data with exponential decay, either the same rate as the decay of a
soliton, or even faster such as a Gaussian. We now consider polynomial decay data. Currently, we are
able to consider sufficiently fast polynomial decay (such as |#|72%), that is, an algebraic decay
toward infinity is rapid enough so that Fourier methods could be used efficiently. We first take initial
data with the algebraic decay of the form

A
u(xayazao) = (1+1’2+y2+z2)10’ A>1 (23)

The corresponding solution, despite the significant mass, if we take A large (e.g. A = 10,20), appears
to disperse without forming a soliton. The snapshots of the solution with A = 20 at different times are
shown in Fig. 14.

We continue to track the solution even though the radiation keeps reappearing on the right as long
as it does not influence the solution too much, till ¢ = 0.5. The snapshot of that time is given on the
top of Fig. 15.

On the bottom left plot we track the L® norm in time, which appears to be monotonously decreasing,
thus, it is plausible to think that this solution appears to be purely radiative and no solitons would be
formed. The Fourier coefficients of the solution at ¢t = 0.5 decay considerably less than those for the
exponentially localized initial data, but still indicate a numerical resolution to the order of the plotting
accuracy. We also check the relative energy conservation, which is on the order of 10~7, indicating that
the resolution in time does not cause any concerns.

Qualitatively an identical result is obtained for the initial condition with faster algebraic decay:

20

(14 22 4 y? + 22)207

with all of the solution dispersing into the radiation. We note that since the above initial data do
not have exponential decay, the spatial resolution with Fourier methods is not on the same order as in
the exponentially decaying examples. Nevertheless, it still provides six orders of magnitude precision
in space. Temporal resolution is of the same order. We also note that as we compute on a finite
grid, the exponential decay should become indistinguishable from the algebraic decay at the order of
approximately N/2. The tested super-Lorentzian initial data (24) with the decay rate |z|™40 still
exhibits “not sufficiently compactified” behavior, and therefore, we conclude that the initial data of the
forms (23) and (24) of algebraic decay data do not form a soliton.

We next consider a more flat at the origin initial data with a similar decay rate

A

U(I7y7z’0)_ 1+($2+y2+2’2)10’ A>>1 (25)
We plot the ZK solution with the initial condition (25) and A = 10 at ¢ = 0.5 in the top left of Fig. 16
and the time dependence of the L° norm in the top right of the same figure. One can observe that
around t = 0.15 the L* norms starts to stabilize. The difference between the solution and a rescaled
and shifted soliton Q. is obtained in the bottom left of Fig. 16. The difference does confirm that this
solution forms a soliton. We conclude that it is not only the decay rate that affects the asymptotic

behavior of the solution but also the shape (flatness at the origin in this case) of the initial data.

u(z,y,z,0) = (24)

4. SOLITON INTERACTION

In this section we study the interaction of solitons. Since the ZK equation is not completely inte-
grable, there are no exact multi-soliton solutions known, as, for instance, in the KdV or mKdV equations.
However, since the soliton solutions are rapidly decaying as |(z,y, z)| — 0o, one can study their inter-
actions by considering initial data, that are composed as the sum of displaced solitons. Because of the
finite numerical precision, this gives multi-soliton initial data within the available accuracy. Indeed,
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FIGURE 14. Snapshots of the ZK solution with ug = 20/(1 + 22 4+ 32 + 22)19 at t = 0.05,
0.15, 0.25. Left: 2D projections onto z = 0 (note the changing scale for u). Right: 3D
isocurves on the slices of the coordinate planes.

since solitons have an exponential decay, their contribution to the locations that are far away from
their joint center of mass is zero within the numerical precision. Therefore, we consider initial data by
superimposing two one-soliton solutions that are sufficiently well separated.
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FIGURE 15. ZK solution with super-Lorentzian ug = 20/(1 + 22 + y? + 22)'%: the pro-
jection onto the plane z = 0 at ¢ = 0.5 (top); the L* norm depending on time (bottom
left), the Fourier coefficients at ¢ = 0.5 depending on k, and k, on the right (the depen-
dence on k, is suppressed due to the symmetry in y and z).

We study the following three scenarios:
(a) Head-on collision: a classical quasi one-dimensional interaction.
(b) Twin solitons: the interaction of two identical solitons that are separated only in y or in z

direction.
(c) Off-set solitons: the interaction of two solitons that are separated in z and y (or z) directions.

We show that in some cases the solitons can interact essentially elastically, although with radiation,
as the equation is not integrable, and in other cases the interaction is strong: the solitons can merge
into a single one (also with the outgoing radiation). We mention that the mass and energy conservation

that we obtain in the examples below are on the order of 10~® or smaller.
Case (a): Head-on collision.

We start with considering the initial data with two localized and sufficiently separated solitons: one
of them being a large soliton @Q., ¢ > 1, shifted away from the origin in the negative z-direction, and
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FIGURE 16. ZK solution for the more flat polynomial initial data (25) with A = 10:
solution (projected onto z = 0) at t = 0.5 (top left), time dependence of the L* norm
(top right), the difference of the solution at ¢ = 0.5 and a rescaled soliton Q. with
¢=5.9176 (bottom left), the Fourier coefficients at ¢t = 0.5 (bottom right).

another one is the soliton @) itself centered at the origin:

u(z,y,2,0) = Qc(z — a,y,2) + Q(z,y,2), c> 1. (26)

We show an example with ¢ = 2 centered at a = —10, that is, the larger soliton is behind the smaller
soliton on the z-axis, and we expect the larger one to travel twice as fast (at least in the beginning)
than the smaller one. In our simulations we actually solve

—0Q + Quz + Quy + Q. + Q° =0 (27)

with ¢ = 2 to obtain the appropriate soliton Q3. As an alternative, we could also use the scaling
property (7) to get the soliton with ¢ = 2.

It can be seen in Fig. 17 that the faster soliton will hit the slower soliton around ¢ = 10 (note that
we are still in a co-moving frame with v, = 1). The collision, while not really elastic, does preserve the
number of solitons, it also exchanges their features, though not exactly. The smaller soliton becomes
even smaller and (in a co-moving frame) shifts back (thus, the speed is slower than ¢ = 1), the faster
soliton grows, and thus, moves faster forward (in the positive z-direction), some radiation is emitted,
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FIGURE 17. Head-on soliton interaction for initial data ug = Q2(z+10,y, 2) + Q(z,y, )
at times ¢ = 6.0 (before the interaction), ¢ = 7.5, 10.5 (after the interaction), in a co-
moving frame with the soliton that is initially at the origin (i.e., v; = 1). Left: interaction
in 2D (projected onto the plane z = 0). Right: the corresponding 3D isocurves on the
slices of the coordinate planes.
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outgoing as before in a cone-type region around the negative xz-axis. We refer to this interaction as
quasi-elastic.

We continue the simulation till ¢ = 15 and plot the snapshot of that solution in the top left of Fig. 18,
again as the projection onto the z = 0 plane. The top right of the same figure shows the L> norm. The
appearance of the larger soliton can be seen in the time evolution of the L® norm around ¢t = 12. We
find the scaling parameter ¢ for that soliton from (18) using ¢ = 15. For the second soliton we find the
local maximum of the L norm, where the first soliton is not present. The difference of the solution
at t = 15 and the two rescaled and appropriately shifted solitons is shown on the bottom left of Fig. 18
and is less than 1071, The latter suggests that the asymptotic solution on R3 is a superposition of two
solitons (recall that we approximate this setting on the three-dimensional torus, where the radiation
cannot escape to infinity), thus, confirming the soliton resolution at the (numerical) final state. The
Fourier coefficients on the bottom right of Fig. 18 indicate that the solution is numerically well resolved.
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F1cure 18. ZK solution for initial data ug = Q2(x + 10,y,2) + Q(z,y, 2): solution
(projected onto z = 0) at ¢ = 15 (top left), time dependence of the L® norm (top
right), the difference of the solution with two fitted rescaled solitons Q., and Q., with
¢ = 2.2293 and ¢ = 0.6372 at t = 15 (bottom left), the Fourier coefficients at ¢ = 15,
projected onto k, = 0 (bottom right).

Case (b): Twin Solitons.




26 C. KLEIN, S. ROUDENKO, AND N. STOILOV

F1GURE 19. Snapshots of the ZK solution of strong soliton interactrion with uy =
Q(r,y —a,z) + Q(z,y + a,2), a = 7L/8 at t = 1.5,6.0,10.5. Left: 2D projections
(onto z = 0 plane). Right: 3D contour plots on the slices of the coordinate planes.

The next example that we consider has initial data of two solitons next to each other shifted sym-
metrically in one of the non-leading axis, either in the y-axis or in the z-axis, for instance,

u(z,y,2,0) = Q(z,y —a,2) + Q(z,y + a,2), a > 0. (28)
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L
In Fig. 19 we show the snapshots of the solution with initial data (28) and a = %, noting that the

periods are 27 L;, 2mL,, 2L, respectively in each direction, and L, = L, = L, = L. The two nearby
solitons clearly merge into a single soliton of larger velocity. We refer to this interaction as a strong
insteraction, since the number of solitons has changed.

Continuing tracking the solution up to t = 15, we show a projection onto the z-plane of the solution
at that time on the top left of Fig. 20. The difference with a rescaled soliton Q. is on the bottom left of
the same figure; this suggests that the final state in this interaction is indeed a soliton plus radiation.
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FIGURE 20. Soliton resolution for uy = Q(z,y — a,2) + Q(z,y + a,z), a = 7wL/8.
The solution (projection onto z = 0) for ¢ = 15 (top left), the L> norm (top right),
the difference between the resulting profile and a rescaled soliton Q. with ¢ = 2.1845
(bottom left), the Fourier coefficients at ¢ = 15 (bottom right).

This result is also confirmed by the time dependence of the L° norm of the solution on the top right
of Fig. 20 (from which we determined the scaling parameter ¢ for the rescaled soliton @.). The Fourier
coefficients on the bottom right of the same figure indicate that the solution is numerically well resolved.

Case (c): Off-set solitons.

Finally, we consider two identical solitons displaced in both z and y (or in x and z) directions to
break the symmetry in the interaction. Specifically, we study the initial data of the form

u(z,y,2,0) = Q(z,y,2) + Q(x +a,y +a,2), a>0. (29)
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FIGURE 21. Snapshots of ZK solution with off-set initial data ug(z,y, z) = Q(z,y, z) +
Qz+a,y+a,z),a=3/8n, at t =1.5,6.0,15.0. Left: 2D projections onto the z-plane.
Right: 3D contour plots on the coordinate plane slices.

3 . . . . . .
As an example, we take a = — 7. We observe a quasi-elastic soliton interaction: some mass is

transferred to the front soliton, the number of solitons remain the same, though their characteristics
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have changed: the back soliton is slower than the original () and the fast soliton is faster than @ after
the interaction. One can notice an increasing separation of them due to their different speeds.

10

lul,
\
\

F(u)

FIGURE 22. Soliton resolution for the off-set initial data (29), a = 27 final profile (at
t = 15), projected onto z = 0 (top left), the time dependence of the L norm (top
right), the difference between the solution at ¢ = 15 and two two fitted rescaled solitons
Qc, and Q, with ¢; = 1.4918 and ¢y = 0.7107 (bottom left), the Fourier coeflicients at
t = 15 (bottom right).

The projection of the solution at the ‘final’ time ¢ = 15 onto the z = 0 plane is shown on the top
left of Fig. 22. The difference of the solution at ¢ = 15 and the leading soliton is on the bottom left of
the same figure; it indicates that the final state can again be interpreted as a superposition of solitons.
This result is also confirmed by the L° norm of the solution on the top right of Fig. 22. The Fourier
coefficients on the bottom right of the same figure indicate that the solution is numerically well resolved.

We conclude that the soliton stability, soliton resolution hold for the 3D ZK equation as well as the
interaction of solitons in this equation can be quasi-elastic or strong.
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