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We consider the MEMS equation with fringing field

.

Introduction

We consider the following elliptic equation

(E λ ) -∆u = λ(1 + δ|∇u| 2 ) (1 -u) 2
in Ω, u = 0 on ∂Ω, where δ, λ are positive constants, and Ω is a bounded smooth domain in R n (n ≥ 2).

Problem (E λ ) arises in the study of electrostatic Micro-Electromechanical System (MEMS) device. We refer to [START_REF] Flores | Dynamics and touchdown in electrostatic MEMS[END_REF] and the book [START_REF] Pelesko | Modeling MEMS and NEMS[END_REF] for detailed discussions on MEMS devices modeling. The parameter λ is called the voltage and the term δ|∇u| 2 is called a fringing field (cf. [START_REF] Pelesko | The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models[END_REF][START_REF] Lindsay | Asymptotics of nonlinear eigenvalue problems modeling a MEMS capacitor: Part I: Fold point asymptotics[END_REF]). The eventual singular set {x ∈ Ω, u(x) = 1} is called rupture set. When δ = 0, problem (E λ ) becomes (S λ )

-∆u = λ (1 -u) 2 in Ω, u = 0 on ∂Ω.

Recently there have been many studies on (S λ ). We summarize some of the results here:

• There exists a critical number λ * > 0 such that for 0 < λ < λ * problem (S λ ) has a minimal stable solution u λ , while for λ > λ * there are no solutions to (S λ ) (see [START_REF] Ghoussoub | On the partial differential equations of electrostatic MEMS devices: stationary case[END_REF]).

• Either the solution branch stops at λ * and lim λ→λ * u λ ∞ = 1 (if Ω is a ball in R n with n ≥ 8 for example); or the solution branch bends back, we could have another critical parameter 0 < λ * < λ * (when Ω is a ball in R n with 2 ≤ n ≤ 7; or convex domain with two axes of symmetry in R 2 ) such that the solution branch takes infinitely many turns and converges to a rupture solution of (S λ * ) (see [START_REF] Esposito | Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity[END_REF][START_REF] Guo | Asymptotic Behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity[END_REF][START_REF] Guo | Infinitely many turning points for an elliptic problem with a singular nonlinearity[END_REF]).

• For general strictly convex domains with n ≥ 2, it can be shown that for λ > 0 small, the minimal solution is the unique one for (S λ ) (see [START_REF] Esposito | Uniqueness of solutions for an elliptic equation modeling MEMS[END_REF][START_REF] Schaaf | Uniqueness for semilinear elliptic problems: supercritical growth and domain geometry[END_REF]). So we must have a family of solutions (u k , λ k ) such that lim k→∞ λ k = λ > 0 and lim k→∞ u k ∞ = 1.

In this short note, we show that the fringing field dramatically changes the structure of solutions of (E λ ) (see Theorem 5 below): we prove that there exists a critical parameter λ * δ such that for λ > λ * δ there are no solutions to (E λ ); for 0 < λ < λ * δ there are at least two solutions; and when λ = λ * δ there exists a unique solution. Furthermore, for any fixed µ > 0, all solutions to (E λ ) with λ ≥ µ are below C µ < 1, i.e. no ruptures can occur by using solutions with λ tending to some λ > 0. Our study holds for any dimension and confirms the numerical results obtained in [START_REF] Pelesko | The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models[END_REF][START_REF] Lindsay | Asymptotics of nonlinear eigenvalue problems modeling a MEMS capacitor: Part I: Fold point asymptotics[END_REF]. Here all solutions considered are classical solutions.

The results of this paper are also true for the generalized MEMS equation

(E λ,p ) -∆u = λ(1 + δ|∇u| 2 ) (1 -u) p
in Ω, u = 0 on ∂Ω where p > 1.

A Key Transformation

To study the structure of solutions for (E λ ), we present a suitable transformation, which leads to considering a semilinear equation. More precisely, we have

Lemma 1 Let v = ζ λ (u) = u 0 e λδ 1-s ds, ∀ u ∈ [0, 1), (1) 
then u : Ω → [0, 1) is a solution (resp. supersolution, subsolution) of (E λ ) if and only if v is a solution (resp. supersolution, subsolution) for

(F λ ) -∆v = ρ λ (v), v > 0 in Ω, v = 0 on ∂Ω
where ρ λ is a smooth increasing function from R + into (0, ∞), defined by

ρ λ (v) = ξ λ • ζ -1 λ with ξ λ (u) = λe λδ 1-u (1 -u) 2 . ( 2 
)
Proof. As ξ λ , ζ λ are increasing in [0, 1) and lim

u→1 -ζ λ (u) = ∞, so is ρ λ in R + . By direct calculus, v = ζ λ (u) satisfies -∆v = -e λδ 1-u ∆u - λδe λδ 1-u (1 -u) 2 |∇u| 2 ,
all conclusions are straightforward.

Otherwise, it is not difficult to prove Theorem 1 Fix δ > 0, there exists λ * δ ∈ (0, ∞) such that for any λ < λ * δ , the equation (E λ ) has a minimal solution u λ , while for any λ > λ * δ , no solution exists for (E λ ). Moreover λ → u λ is increasing for λ ∈ (0, λ * δ ).

Here the minimal solution means that for any solution u to (E λ ), we have u λ ≤ u in Ω.

Proof. The result is a direct consequence of the following claims:

(i) If (E λ ) is solvable with λ > 0, then (E λ ) is solvable for any λ ∈ (0, λ).
(ii) The equation (E λ ) has no solution for λ sufficiently large.

(iii) For λ > 0 small enough, we have a solution to (E λ ).

(iv) If (E λ ) is solvable, then there exists a minimal solution u λ .

If u is a solution to (E λ ), it is clearly a supersolution to (E λ ), so v = ζ λ (u) is a supersolution to (F λ ) by Lemma 1. As ρ λ (0) = λ e λ δ > 0, 0 is always a subsolution. Moreover ρ λ is locally Lipschitz in R + , so we have a solution to (F λ ), which yields the claim (i).

The claim (ii) comes from the fact that any solution of (E λ ) is a supersolution for the equation (S λ ), which has no solution for large λ. Let -∆ξ = 1 in Ω and ξ = 0 on ∂Ω, fix c > 0 such that c ξ ∞ < 1. We can check that for cξ is a supersolution of (E λ ) if λ > 0 is small enough, this leads to the claim (iii).

The last claim is due to the monotonicity of ρ λ (cf. (4) below), ζ λ and the monotone iteration for (F λ ) as -∆v n+1 = ρ λ (v n ) with Dirichlet boundary condition and v 0 ≡ 0.

Remark 1 Of course, the transformation v = ζ λ is not really necessary for the above proof. Thanks to the monotonicity of function g(u) = (1 -u) -2 , we can consider directly the following iteration operator w = T u, the unique solution of

-∆w = λ(1 + δ|∇u| 2 ) (1 -u) 2
in Ω, w = 0 on ∂Ω.

Stability of Minimal Solutions

The minimal solution for (E λ ) will ensure some stability properties, even though the equation (E λ ) does not have a variational structure. First, for the linearized operator of (E λ ): 2 , we can define the principal eigenvalue µ 1 of L λ , associated to the Dirichlet boundary condition (cf. [START_REF] López-Gomez | The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems[END_REF]). Then a solution u of (E λ ) is said to be stable if and only if µ 1 (L λ ) ≥ 0. Another idea is to use the transformation v = ζ λ (u) and the corresponding linearized operator. Following the ideas in [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF], we obtain

L λ ϕ = -∆ϕ - 2λ(1 + δ|∇u| 2 ) (1 -u) 3 ϕ - 2λδ∇u∇ϕ (1 -u)
Theorem 2 Let λ ∈ (0, λ * δ ), the minimal solution v λ of (F λ ) satisfies Ω |∇ϕ| 2 ≥ Ω ρ λ (v λ )ϕ 2 dx, ∀ ϕ ∈ H 1 0 (Ω). (3) 
Furthermore, v λ is the unique solution of (F λ ) verifying (3) and u λ is the unique stable solution of (E λ ).

Moreover,

u = ζ -1 λ (v) implies ρ λ (v) = ξ λ • ζ -1 λ (v) = ξ λ ζ λ • ζ -1 λ (v) = λ 2 δ (1 -u) 4 + 2λ (1 -u) 3 > 0. ( 4 
)
As the minimal solution u λ of (E λ ) is just ζ -1 λ (v λ ), we conclude then Theorem 3 For λ ∈ (0, λ * δ ), the minimal solution u λ is the unique solution of (E λ ) verifying the following stability condition:

Ω |∇ϕ| 2 ≥ Ω λ 2 δ (1 -u λ ) 4 + 2λ (1 -u λ ) 3 ϕ 2 dx, ∀ ϕ ∈ H 1 0 (Ω). ( 5 
)

Bifurcation and Uniform Estimate

Using the equation (F λ ) and the standard bifurcation theory of Rabinowitz (section 3 of [START_REF] Rabinowitz | Some global results for nonlinear eigenvalue problems[END_REF]), we can say that, a solution curve (λ, v) exists in R + × C(Ω), it goes from (0, 0) to the "infinity". By Theorem 1, the only possibility is that v ∞ tends to ∞. For (F λ ), when v ∞ → ∞, we show that λ must tend to 0 by the following result.

Theorem 4 For any µ > 0, there exists a constant C µ > 0 such that any solution of (F λ ) with λ ≥ µ verifies v ∞ < C µ . Consequently, there exists c µ ∈ (0, 1) such that any solution u of (E λ ) with λ ≥ µ verifies u ≤ c µ < 1.

Proof. In fact, using integration by parts, we can see that

v = ζ λ (u) ∼ (1 -u) 2 λδ e λδ 1-u as u → 1 -.
Hence for µ ∈ (0, λ * δ ) fixed, there exist positive constants C, C such that

Cv(ln v) 4 ≤ ρ λ (v) ≤ C v(ln v) 4 ∀ (λ, v) ∈ [µ, λ * δ ) × [2, ∞).
We have also the uniform estimate [START_REF] Brezis | On a class of superlinear elliptic problems[END_REF] holds and shows that there exists

ρ λ (v) ≥ Cv + µ for (λ, v) ∈ [µ, λ * δ ) × R + , the proof of Theorem 2.1 in
C µ > 0 such that v ∞ < C µ < ∞.
The conclusion for u is an immediate consequence.

An important consequence is just the uniqueness of solution for (E λ * δ ). We shall use the problem (F λ ). Now v * = lim λ→λ * δ v λ is a smooth solution for the limit problem (F λ * δ ), we claim that µ 1 -∆-ρ λ * δ (v * ) = 0. In fact, the stability of v * (in the sense of (3)) means that 4), the strong maximum principle implies that φ > 0 in Ω. Remarking also that ρ λ > 0 in R + for any λ > 0, then -∆φ -ρ λ * δ (v * )φ > 0 in Ω. By multiplying with ϕ 1 and integrating by parts, we get immediately a contradiction.

µ 1 -∆ -ρ λ * δ (v * ) ≥ 0, while the definition of λ * δ prevents to have µ 1 -∆ -ρ λ * δ (v * ) > 0. Hence we get a positive eigenfunction ϕ 1 satisfying -∆ϕ 1 -ρ λ * δ (v * )ϕ 1 = 0 in Ω and ϕ 1 = 0 on ∂Ω. If we have a solution v of (F λ * δ ) such that v = v * , we know that v ≥ v * as v ≥ v λ for any λ < λ * δ . Let φ = v -v * , so -∆φ = ρ λ * δ (v) -ρ λ * δ (v * ) ≥ 0 by (
Another consequence is that v * is a bifurcation point for the solution curve, which will continue with v ∞ tending to ∞ and the associated λ must go to zero. So we get at least two solutions to (F λ ) for any λ ∈ (0, λ * δ ). Coming back to u, we obtain the main theorem of this paper.

Theorem 5 If a family of solutions {u k } of (E λ k ) verifies lim k→∞ u k ∞ = 1, then lim k→∞ λ k = 0. Furthermore, u * = lim λ→λ * δ u λ is the unique solution of the limit equation (E λ * δ ) while for any λ ∈ (0, λ * δ ), the equation (E λ ) has at least two solutions.

Estimate of λ * δ

Here we compare λ * δ with λ * in lower dimension situation.

Theorem 6 For n < 8 and δ > 0, we have

λ * 1 + δ ∇u * 2 ∞ ≤ λ * δ ≤ λ * (6)
where λ * is the critical value for the problem (S λ ) and u * is the unique solution of (S λ * ).

Proof. As any solution of (E λ ) is supersolution of (S λ ), it is clear that λ * δ ≤ λ * . On the other hand, when n < 8, u * is a smooth function with u * ∞ < 1 (see [START_REF] Esposito | Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity[END_REF]). Obviously u * is a supersolution for (E λ ) with

λ = λ * 1 + δ ∇u * 2 ∞
, so we get the lower bound.

Therefore λ * δ = λ * + O(δ) in dimension two, this confirms somehow the formal result in [START_REF] Lindsay | Asymptotics of nonlinear eigenvalue problems modeling a MEMS capacitor: Part I: Fold point asymptotics[END_REF] (see also another bound of λ * δ in section 5 of [START_REF] Pelesko | The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models[END_REF]).

Remarks and Open Questions

As we have seen in Theorem 5, the introduction of fringing field basically destroys the infinite fold point structure of the basic membrane problem (S λ ) for any smooth domain.

There are still some interesting questions:

• Do we have some weak solutions with u ∞ = 1 for (E λ )? We turn to conjecture that no weak solution exists for the fringing field model. In fact, using Sobolev embedding and boot-strap argument, any weak solution of (F λ ) satisfying ρ λ (v) ∈ L 1 (Ω) is indeed smooth. However, if u is a just weak solutions for (E λ ), it is not clear that v = ρ λ (u) is then a weak solution for (F λ ).

• In [START_REF] Lindsay | Asymptotics of nonlinear eigenvalue problems modeling a MEMS capacitor: Part I: Fold point asymptotics[END_REF], Lindsay and Ward derived the following asymptotic behavior of λ * δ :

λ * δ = λ * -Cδ + O(δ 2 ) (7)
in the case of a unit disk or a slab in R 2 , where C > 0 is a constant depending on u * of the unit disk or slab without the fringing field. Can we prove rigorously this first order expansion (7)? A key point seems to prove a uniform upper bound for v * as δ tends to zero.

• In nice domains (disks, convex domains with two axes of symmetry in R 2 ), it has been shown that for the problem (S λ ), there exists a λ * > 0 such that the solution branch has infinitely many turns as λ crosses λ * (see [START_REF] Guo | Asymptotic Behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity[END_REF][START_REF] Guo | Infinitely many turning points for an elliptic problem with a singular nonlinearity[END_REF]). On the other hand, in the presence of fringing field, there are at most finitely many turns. What is the asymptotic behavior of the solutions near λ * as δ → 0 + ?

• It seems that there are no studies on the corresponding parabolic equation

u t -∆u = λ(1 + δ|∇u| 2 ) (1 -u) 2 . ( 8 
)
What is the effect of the fringing field on (8)? Can we establish results similar to [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF][START_REF] Ghoussoub | Estimates for the quenching time of a parabolic equation modeling electrostatic MEMS[END_REF][START_REF] Guo | Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties[END_REF]]?
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