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Abstract

In this note, we investigate the regularity of the extremal solution u∗ for the semilinear
elliptic equation −4u + c(x) · ∇u = λf(u) on a bounded smooth domain of Rn with
Dirichlet boundary condition. Here f is a positive nondecreasing convex function, ex-
ploding at a finite value a ∈ (0,∞). We show that the extremal solution is regular in
the low dimensional case. In particular, we prove that for the radial case, all extremal
solutions are regular in dimension two.

Keywords: singular nonlinearity, advection, extremal solution, regularity∗.

1. Introduction

We consider the elliptic problem
−4u+ c(x) · ∇u = λf(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Pλ)

where λ > 0, Ω is a smooth bounded domain in Rn (n ≥ 2), c(x) is a smooth vector field
over Ω and f : [0, a)→ R+ with fixed a ∈ (0,∞) satisfies the following condition (H):

f is C2, positive, nondecreasing and convex in [0, a) with lim
t→a−

f(t) =∞.

In the literature, f is refered as a singular nonlinearity. We say that u is a regular solution
if u ∈ C2(Ω), and we also deal with solutions in the following weak sense.
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Definition 1.1. We say that u is a weak solution of (Pλ) if 0 ≤ u ≤ a a.e. in Ω such
that f(u)d(x, ∂Ω) ∈ L1(Ω) and

−
∫

Ω

u∆φ−
∫

Ω

udiv(φc) = λ

∫
Ω

f(u)φ, ∀ φ ∈ C2(Ω) ∩H1
0 (Ω).

Moreover, u is a weak super-solution of (Pλ) if “ = ” is replaced by “ ≥ ” for all nonneg-
ative functions φ ∈ C2(Ω) ∩H1

0 (Ω).

Clearly, a weak solution is regular if supΩ u < a. For regular solutions, we introduce
a notion of stability.

Definition 1.2. A regular solution u of (Pλ) is said to be stable if the principal eigenvalue
of the linearized operator Lu,λ,c := −4+ c · ∇ − λf ′(u) is nonnegative in H1

0 (Ω).

Exploiting some ideas in [11, 10, 3], the solvability of (Pλ) is characterized by a
parameter λ∗:

Proposition 1.1. There exists λ∗ ∈ (0,∞) such that

• For 0 < λ < λ∗, the problem (Pλ) has a minimal solution uλ, uλ is regular and the
map λ 7→ uλ is increasing. Moreover, uλ is the unique stable solution of (Pλ).

• For λ = λ∗, (Pλ∗) admits a unique weak solution u∗ := limλ→λ∗ uλ, called the
extremal solution.

• For λ > λ∗, (Pλ) admits no weak solution.

Here the minimal solution means that uλ ≤ v for any solution v of (Pλ). We remark imme-
diately a close similarity between (Pλ) and the Emden-Fowler equation with superlinear
regular nonlinearity, that is

−∆u = λg(u) in Ω ⊂ Rn; u = 0 on ∂Ω, (1.1)

with λ > 0 and g : [0,∞)→ (0,∞) satisfies

g is C2, nondecreasing, convex and lim
t→∞

g(t)

t
=∞. (1.2)

In fact, there exists also a critical parameter λ ∈ (0,∞) for (1.1) such that all conclusions
in the above proposition hold true by replacing λ∗ by λ (see [2, 11]). It is well known
by classical examples as g(u) = (1 + u)p with p > 1 or g(u) = eu, the extremal solution
u∗ can be either a regular solution or a real weak solution in the distribution sense with
supΩ u =∞.

For general nonlinearity g satisfying (1.2), the regularity of the extremal solution u∗

to (1.1) is obtained by Nedev [13] for any bounded smooth domain Ω ⊂ Rn if n = 2, 3; by
Cabré [4] for convex domains in R4; and for radial symmetry case in Rn with n ≤ 9 by
Cabré & Capella [5]. In [17], it is proved that, under mild condition on g, the extremal
solution u∗ is regular for any smooth bounded domain Ω ⊂ Rn if n ≤ 9.
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We can ask the same question about the problem (Pλ): For f verifying (H), is it true
that the extremal solution to (Pλ) is regular for general vector field c and general domain
Ω ⊂ Rn with low dimensions n? We will partly answer this question. It is worthy to
mention that for studying the explosion phenomena in a flow, Berestycki et al. [1] have
considered the problem (Pλ) with a general source f verifying (1.2).

Without loss of generality, fix a = 1 in the sequel. The problem (Pλ) can be linked
to equation (1.1) up to the transformation v = − ln (1− u). In fact, let u solve (Pλ), v
verifies then {

−4v + |∇v|2 + c(x) · ∇v = λevf(1− e−v) := λg(v) in Ω,

v = 0 on ∂Ω.
(Qλ)

Therefore g verifies (1.2) and v∗ = − ln(1− u∗) is the extremal solution for the problem
(Qλ). Thus the regularity of u∗ is equivalent to the boundedness of v∗, however the
situation could be very different with the presence of advection terms (see [7, 16]). In
last decade, a model describing the steady state of MEMS (Micro-Electro-Mechanical
Systems) device given by Pelesko and Bernstein in [14], has drawn many attentions (see
[9] and the references therein).

−∆u =
λ

(1− u)2
in Ω ⊂ Rn; u = 0 on ∂Ω.

More generally, many precise studies have been done for the singular nonlinearities with
negative exponent f(u) = (1− u)−p (p > 0) in the advection-free situation, i.e. c ≡ 0. In
that case, when Ω is moreover the unit ball in Rn, it is known that u∗ is regular if and
only if (see [12, 10])

n < np := 2 +
4p

p+ 1
+ 4

√
p

p+ 1
. (1.3)

Tending p → 0+ in (1.3), we see that np → 2. Therefore we cannot expect in general
better than dimension two to claim the regularity of u∗.

For the radial case of (Pλ), equally when Ω is a ball and c(x) is the gradient of a
smooth radial function, uλ is radial by uniqueness of the minimal solution. We obtain
the following optimal results which are new even for the advection-free case.

Theorem 1.1. Assume that n = 2, Ω = B1. Let γ is a smooth radial function and
c = ∇γ, then the extremal solution u∗ is regular for any f satisfying (H).

Theorem 1.2. For any f satisfying (H), Ω = B1 and smooth radial function γ, there
exists C > 0 such that for all λ ∈ (0, λ∗]

|u′λ(r)| ≤
{
Cr−1 if n ≥ 10;

Cr−
n
2 +1+

√
n−1 if 3 ≤ n ≤ 9;

∀ r = |x| ∈ (0, 1]

where | · | is the Euclidean norm in Rn.
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Remark 1.1. The above estimates are optimal. In fact, when f(u) = (1− u)−p, p > 0,

Ω = B1 and c ≡ 0, it is well known that u∗(x) = 1 − r
2
p+1 if n ≥ np with np given in

(1.3), and we have

n ≥ np iff n ≥ 10 or 3 ≤ n ≤ 9,
2

p+ 1
≤ −n

2
+ 2 +

√
n− 1.

But is the extremal solution u∗ of (Pλ) regular with general singular nonlinearity
f verifying (H), vector field c and smooth bounded domains in R2? The answer is
affirmative under some additional mild condition on f .

Theorem 1.3. Assume that f satisfies conditions (H) and the additional conditions,

(H1) lim sup
t→1−

f(t)

f ′(t)(1− t) ln2(1− t)
< 1

and

(H2) lim inf
t→1−

f(t)f ′′(t)

f ′2(t)
> 0.

Then u∗ is regular solution to (Pλ∗) if n = 2, i.e. Ω ⊂ R2.

Under more precise conditions on the growth of f , the extremal solution can be showed
to be regular in some higher dimensions.

Theorem 1.4. Let f verify (H) and g(v) = evf(1− e−v). Assume that g satisfies

(H3) lim inf
t→∞

g′(t)

g(t)
= 1 + δ > 1

and

(H̃2) lim inf
t→∞

g′′(t)g(t)

g′2(t)
= µ >

1

1 + δ
.

Then v∗ = − ln(1− u∗) is bounded (so u∗ is regular) when

n < 2 +
4δ

1 + δ
+

4
√
δ(µ+ µδ − 1)

1 + δ
. (1.4)

Consequently, if µδ > 1, u∗ is regular for all n ≤ 6. Furthermore, if we can tend
δ to ∞, which means g = o(g′) near ∞, then u∗ is regular for n < 6 + 4

√
µ with any

µ > 0. However, we can never have µ > 1, since otherwise g blows up at finite value
and contradicts (1.2), so the best result we can expect is for n ≤ 9. For example, if

f(u) = e
1

1−u , then g(v) = ev+ev verifies δ =∞ and µ = 1.

Theorem 1.5. Let f verify (H) and g(v) = evf(1 − e−v). Assume that g = o(g′) near
∞. Rewrite g(t) = g(0) + teh(t) in (0,∞), suppose there exists t0 > 0 such that t2h′(t) is
nondecreasing for t ≥ t0, then for any bounded smooth domain Ω ⊂ Rn with n ≤ 9, u∗ is
a regular solution.
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Furthermore, when g = o(g′) near ∞, the condition (H̃2) is just equivalent to (H2),
since

f ′′(t)f(t)

f ′2(t)
=

(g′′ − g′) g
(g′ − g)

2 (s) =

(
g′′g

g′2
− g

g′

)
×
(

1− g

g′

)−2

(s), ∀ t = 1− e−s.

It is also easy to see that (H3) is equivalent to the condition

lim inf
t→1−

f ′(t)(1− t)
f(t)

= δ > 0.

If the equality holds for the whole limit, we have the following optimal result. The case
f(u) = (1− u)−2 was obtained in [7] with a different argument.

Theorem 1.6. Assume that

lim
u→1−

f ′(u)(1− u)

f(u)
= p > 0. (1.5)

Then u∗ is a regular solution if n < np where np is defined in (1.3).

One of the main difficulties here is due to the vector field c(x). When c 6= 0, the
operator −∆+c ·∇ is not self-adjoint, we use ideas from [7] to get some energy estimates.
However if c is a gradient, say c = −∇γ in Ω, then −∆ + c · ∇ can be rewritten as e−γLγ
where Lγ = −div(eγ∇) is a self-adjoint operator. In that case, (Pλ) admits a variational
structure and we can expect more precise estimates of minimal solutions uλ, as in the
radial case.

The paper is organized as follows: In section 2, we prove quickly Proposition 1.1 and
show some general consequences of the stability of uλ. The section 3 is devoted to the
proof of Theorems 1.3 to 1.6 for general domains. In section 4, we discuss the radial case.
The norm ‖ · ‖q denotes always the standard Lq norm for any q ∈ [1,∞]. The capital
letter C denotes a generic positive constant independent of λ, it could be changed from
one line to another.

2. Preliminaries

As mentioned above, −∆ + c · ∇ is not a self-adjoint operator for general vector field
c. However using Lemma 1 in [7], we have a kind of Hodge decomposition, which tells
us that for any vector field c ∈ C∞(Ω,Rn), there exist a smooth scalar function γ and a
vector field b ∈ C∞(Ω,Rn) such that

c = −∇γ + b and div(eγb) = 0 in Ω. (2.1)

Therefore the problem (Pλ) can be rewritten as

−div(eγ∇u) + eγb · ∇u = λeγf(u) in Ω. (P ′λ)

On the other hand, we don’t have a suitable variational characterization in general to use
the stability assumption. Fortunately, we can adopt an energy inequality as in [7], which
is derived from a generalized Hardy inequality of [6].
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Proposition 2.2. Let uλ be minimal solution of (Pλ). For any 1 ≤ β < 2, we have

λ

∫
Ω

eγf ′(uλ)ψ2 ≤ 2

β

∫
Ω

eγ |∇ψ|2 +
‖b‖2∞

2(2− β)

∫
Ω

eγψ2, ∀ ψ ∈ H1
0 (Ω). (2.2)

where b is the vector field in (2.1), ‖b‖∞ = maxΩ |b(x)|.

Proof. We use a Hardy type inequality given by Theorem 2 in [7], which says that for a
positive principal eigenfunction ϕ of Luλ,λ,c, for β ∈ [1, 2) and any ψ ∈ H1

0 (Ω),

λ

∫
Ω

eγf ′(uλ)ψ2 ≤ 2

β

∫
Ω

eγ |∇ψ|2 +

∫
Ω

[
−2− β

2

|∇ϕ|2

ϕ2
+
b · ∇ϕ
ϕ

]
eγψ2.

By Cauchy-Schwarz inequality, it is easy to see

−2− β
2

|∇ϕ|2

ϕ2
+
b · ∇ϕ
ϕ

≤ |b(x)|2

2(2− β)
≤ ‖b‖2∞

2(2− β)
,

so we are done. �

Another main ingredient of our approach is just the transformation v = − ln(1 − u).
Let φ and ξ be nonnegative C1 functions satisfying φ(0) = ξ(0) = 0 and ξ′ = φ′2. Define
vλ = − ln(1− uλ) and g(vλ) = evλf(1− e−vλ). Using (Qλ), we get −div(eγ∇vλ) + eγb ·
∇vλ ≤ λeγg(vλ) in Ω. Let ψ = φ(vλ) in (2.2), ∀ λ ∈ (0, λ∗),

λ

∫
Ω

eγf ′(uλ)φ2(vλ)

≤ 2

β

∫
Ω

eγ |∇φ(vλ)|2 +
‖b‖2∞

2(2− β)

∫
Ω

eγφ2(vλ)

=
2

β

∫
Ω

eγ∇ξ(vλ)∇vλ + Cβ

∫
Ω

eγφ2(vλ)

= − 2

β

∫
Ω

div(eγ∇vλ)ξ(vλ) + Cβ

∫
Ω

eγφ2(vλ)

≤ 2λ

β

∫
Ω

eγg(vλ)ξ(vλ)− 2

β

∫
Ω

eγb · ξ(vλ)∇vλ + Cβ

∫
Ω

eγφ2(vλ)

=
2λ

β

∫
Ω

eγg(vλ)ξ(vλ) + Cβ

∫
Ω

eγφ2(vλ).

The last line is due to div(eγb) = 0. We claim then

Proposition 2.3. Let 1 ≤ β < 2. For any λ ∈ (0, λ∗) and any nonnegative C1 test
functions φ, ξ verifying φ(0) = ξ(0) = 0 and ξ′ = φ′2, there hold

λ

∫
Ω

eγf ′(uλ)φ2(vλ) ≤ 2λ

β

∫
Ω

eγg(vλ)ξ(vλ) + Cβ

∫
Ω

eγφ2(vλ) (2.3)

and

λ

∫
Ω

eγf ′(uλ)φ2(uλ) ≤ 2λ

β

∫
Ω

eγf(uλ)ξ(uλ) + Cβ

∫
Ω

eγφ2(uλ). (2.4)
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The proof of (2.4) is completely similar to (2.3) but using (P ′λ) instead of (Qλ).

We also make use the following behavior of f proved in [18].

Lemma 2.1. For any f verifying (H), we have limt→1 f(t)/f ′(t) = 0.

Choose first φ(u) = eu − 1 in (2.4), then ξ(u) = e2u−1
2 and

λ

∫
Ω

eγf ′(uλ) (euλ − 1)
2 ≤ λ

β

∫
Ω

eγf(uλ)
(
e2uλ − 1

)
+ Cβ

∫
Ω

eγ (euλ − 1)
2
.

Fix β ∈ (1, 2). By Lemma 2.1,

λ

∫
Ω

eγf ′(uλ)e2uλ ≤ C.

Consequently ‖f ′(uλ)‖1 is uniformly bounded, so is ‖f(uλ)‖1. Multiplying (Pλ) by uλ,∫
Ω

|∇uλ|2 =

∫
Ω

div(c)

2
u2
λ + λ

∫
Ω

f(uλ)uλ ≤ C,

which gives

Proposition 2.4. The family of minimal solutions {uλ}0<λ<λ∗ is uniformly bounded in
H1

0 (Ω).

Remark 2.1. As far as we know, it is always an open question whether the similar H1

energy estimation holds for minimal solutions of (1.1) with general regular nonlinearity
satisfying (1.2) and general domain Ω when n ≥ 6 (see [13] for n ≤ 5). For the advection-
free case c = 0, it was proved in [18] that u∗ ∈ H2 ∩H1

0 (Ω) under the condition (H), it
is also true for the gradient case c = ∇γ (see Lemma 4.1).

Sketches of proof of Proposition 1.1. We follow the ideas coming from [1, 11, 10].
The main argument is the maximum principle for operators −∆ + c ·∇ and Lγ under the
Dirichlet boundary condition, we use also the super-sub solution method and monotone
iteration.

Let w ∈ H1
0 (Ω) be the regular solution of −∆w + c · ∇w = 1 in Ω and fix α > 0 such

that αmaxΩ w < 1. It is easy to verify that αw is a supersolution of (Pλ) for λ > 0 small
enough. As 0 is a subsolution and αw > 0 in Ω, (Pλ) admits a regular solution for λ > 0
small enough. As any regular solution u of (Pλ) is also a supersolution for (Pµ) if µ ∈
(0, λ), the set of λ for which (Pλ) admits a regular solution is just an interval. Moreover,
for these λ, using (H) and the monotone iteration v0 = 0; −∆vn+1 + c · ∇vn+1 = λf(vn)
in Ω with vn+1 = 0 on ∂Ω for n ∈ N, we get the minimal solution uλ = limn→∞ vn.

If we suppose that the principal eigenvalue of Luλ,λ,c is negative, we can construct,
as in [1] another solution v ≤ uλ using the associated first eigenfunction, this is just
impossible by the definition of uλ, hence uλ is stable. The uniqueness of stable solution
comes from Lemmas 2.16 and 2.17 in [8].
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Take a positive first eigenfunction ϕ of Lγ with the Dirichlet boundary condition, by
(P ′λ),

λf(0)

∫
Ω

eγϕ ≤
∫

Ω

λeγf(u)ϕ =

∫
Ω

λ1(Lγ)uϕ−
∫

Ω

div(eγbϕ)u ≤ C.

So λ is upper bounded. Define the critical threshold λ∗ as the supermum of λ > 0 for
which (Pλ) admits a regular solution, as u∗ is the monotone limit of uλ when λ→ λ∗, we
deduce that u∗ ∈ H1

0 (Ω) is a weak solution of (Pλ) by Proposition 2.4.

Suppose that u is a weak solution to (Pλ). By the monotonicity of f , it is easy to
verify that for any δ > 1, the function v = δ−1u is a weak supersolution for (Pλ/δ), then
the monotone iteration will enable us a weak solution w of (Pλ/δ) satisfying 0 ≤ w ≤ v ≤
δ−1 < 1. The regularity theory implies then w is a regular solution of (Pλ/δ). This means
that λ/δ ≤ λ∗. Let δ tend to 1, we get λ ≤ λ∗. Therefore, no weak solution exists for
λ > λ∗.

The uniqueness of the weak solution can be proved in the very similar way as in [11]
using the monotonicity and convexity of f , with the strong maximum principle for the
operator −∆ + c · ∇ associated to Dirichlet boundary condition, so we omit the details.�

3. Regularity of u∗ for general c and Ω

For proving our results, we will choose suitable functions φ to apply (2.3) or (2.4). We
need also

Lemma 3.1. For any q > n/2, there exists C > 0 such that the solution v of (Qλ)
satisfies 0 ≤ v ≤ C‖g(v)‖q in Ω.

Indeed, let w be the solution of L(w) := −∆w + c · ∇w = λg(v) in Ω with w = 0 on
∂Ω. By regularity theory and Sobolev embedding, ‖w‖∞ ≤ C‖w‖W 2,q(Ω) ≤ C ′λ∗‖g(v)‖q
because q > n/2 ≥ 1. Morover, as L(w − v) ≥ 0, the maximum principle implies then
0 ≤ v ≤ w ≤ C‖g(v)‖q.

3.1. Proof of Theorem 1.3

For simplicity, we omit the index λ for uλ or vλ. Let φ(u) = v = − ln(1−u) in (2.4), so
ξ(u) = (1− u)−1 − 1. Fix β ∈ (1, 2) but very close to 2. Repeating the proof of Theorem
2 in [18] with the assumption (H1), there exists C > 0 such that

λ

∫
Ω

eγ
f(u)

1− u
< C + CCβ

∫
Ω

eγφ2(u).

As φ2(u) = o(ξ(u)) = o(fξ) when u→ 1−,

λ

∫
Ω

eγ
f(u)

1− u
≤ C.

Using the equation (Qλ) and ∂νv ≤ 0 on ∂Ω,∫
Ω

|∇v|2 = λ

∫
evf(1− e−v) +

∫
∂Ω

∂v

∂ν
dσ −

∫
Ω

c · ∇v ≤ λ
∫

Ω

f(u)

1− u
+ C‖∇v‖2

≤ C + C‖∇v‖2.
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Therefore ‖∇v‖2 ≤ C, the classical Moser-Trudinger inequality enables us, as n = 2∫
Ω

eqv ≤ Cq, ∀ q ≥ 1. (3.1)

Take now φ(u) = f(u)− f(0) in (2.4), we need to estimate

ζ(u) := f ′(u)φ(u)− 2

β
ξ(u) = f ′(u)φ(u)− 2

β

∫ u

0

f ′2(s)ds

= f ′(u)f(u)− 2

β

∫ u

0

f ′2(s)ds− Cf ′(u)

:= I(u)− 2

β
J(u)− Cf ′(u).

By (H2), there exists δ > 0 such that

I(u)− I(0) =

∫ u

0

[
f ′2(s) + f ′′(s)f(s)

]
ds ≥ (1 + δ)J(u)− Cf ′(u), ∀ u ∈ [0, 1)

Let 4
2+δ < β < 2, we get ζ(u) ≥ CI(u)− C. Asserting this in (2.4),

λ

∫
Ω

eγf ′(u)f2(u) ≤ C
∫

Ω

eγf2(u) + C.

Consequently, ‖f ′(u)f2(u)‖1 ≤ C. By Lemma 2.1, we deduce ‖f(u)‖3 ≤ C. Combining
with (3.1), ‖g(v)‖p ≤ C for any p < 3. The proof is completed by Lemma 3.1 as n = 2.
�

3.2. Proof of Theorem 1.4

Without loss of generality, we can assume that g(0) = 1. Let φ(t) = gα(t)− 1 where
α > 0 is a constant to be determined later. Then

ξ(t) =

∫ t

0

φ′2(s)ds

= α2

∫ t

0

g2α−2(s)g′2(s)ds

=
α2

2α− 1
g2α−1(t)g′(t)− α2

2α− 1

∫ t

0

g2α−1(s)g′′(s)ds− Cα.

(3.2)

The condition (H̃2) yields: Given any ε ∈
(

0, µ− 1
1+δ

)
, there exists C ≥ 0 such that

g(t)g′′(t) ≥ (µ− ε)g′2(t)− C in [0,∞). Therefore

−
∫ t

0

g2α−1(s)g′′(s)ds ≤ −(µ− ε)
∫ t

0

g2α−2(s)g′2(s)ds+ C

≤ −µ− ε
α2

ξ(t) + C.

(3.3)
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We divide the proof into two cases.

Case 1: δ > 1 and µ > 1
1+δ ; or δ ≤ 1 with µ > 1+δ

4δ .

Take α > 1
2 . Combine (3.2) and (3.3),(

1 +
µ− ε

2α− 1

)
ξ(t) ≤ α2

2α− 1
g2α−1(t)g′(t) + C,

consequently

ξ(t) ≤ α2

2α− 1 + µ− ε
g2α−1(t)g′(t) + C, for any t ≥ 0. (3.4)

According to (H3), for any 0 < δ′ < δ, there exists C > 0 such that g′(t) ≥ (1+δ′)g(t)−C
in [0,∞). Setting these estimates in (2.3), omitting the index λ and recalling that f ′(u) =
g′(v)− g(v),

δ′λ

1 + δ′

∫
Ω

eγg′(v)(gα(v)− 1)2 − Cλ
∫

Ω

eγ(gα(v)− 1)2

≤ λ
∫

Ω

eγf ′(u)(gα(v)− 1)2

≤ 2α2λ

β(2α− 1 + µ− ε)

∫
Ω

eγg2α(v)g′(v) + Cλ

∫
Ω

eγg(v) + C

∫
Ω

eγ(gα(v)− 1)2.

Consequently, [
δ′

1 + δ′
− 2α2

β(2α− 1 + µ− ε)

]
λ

∫
Ω

eγg′(v)g2α(v)

≤ 2δ′C

1 + δ′

∫
Ω

eγg′(v)gα(v) + C

∫
Ω

eγg(v) + C

∫
Ω

eγ(gα(v)− 1)2.

Choose δ′ near δ such that

either δ′ > 1 and µ >
1

1 + δ′
or δ′ < δ ≤ 1 with µ >

1 + δ′

4δ′
.

Through direct computations, for ε > 0 sufficiently small and β = 2− ε, there exists

α ∈

(
1

2
,

δ′

1 + δ′
+

√
δ′(1 + δ′)(µ− ε)− δ′

1 + δ′

)
such that [

δ′

1 + δ′
− 2α2

β(2α− 1 + µ− ε)

]
> 0. (3.5)

For such α, we obtain

λ

∫
Ω

eγg2α(v)g′(v) ≤ C, ∀ λ ∈ (0, λ∗). (3.6)

10



Tending now δ′ to δ and ε to 0, (3.6) holds true provided that

α <
δ

1 + δ
+

√
δµ(1 + δ)− δ

1 + δ
. (3.7)

Therefore ∫
Ω

eγg2α+1(v) ≤ C
∫

Ω

eγg2α(v)g′(v) + C ≤ C̃,

which implies that ‖g(v)‖2α+1 ≤ C for α verifying (3.7). Applying Lemma 3.1, we
conclude that for n < 2 + 4α with α verifying (3.7), vλ is uniformly bounded, hence u∗ is
a regular solution if n satisfies (1.4).

Case 2: δ ≤ 1 and 1
1+δ < µ ≤ 1+δ

4δ .

Now we take α ∈
(

1
2 (1− µ+ ε), 1

2

)
, the formulas (3.2) and (3.3) imply then(

1 +
µ− ε

2α− 1

)
ξ(t) ≥ α2

2α− 1
g2α−1(t)g′(t) + C.

The inequality (3.4) still holds true. Proceeding as for Case 1, we see that for δ′ < δ but
nearby, ε > 0 small and β = 2− ε, there exists

α ∈

(
1− µ+ ε

2
,

δ′

1 + δ′
+

√
δ′(1 + δ′)(µ− ε)− δ′

1 + δ′

)
⊂
(

1− µ+ ε

2
,

1

2

)
such that (3.5) is satisfied. Hence we conclude exactly as in Case 1. �

3.3. Proof of Theorem 1.5

Without loss of generality, assume again g(0) = 1. Take now φ(t) = teαh(t), where
α > 0 is a constant to be determined, then

ξ(t) =

∫ t

0

[1 + sαh′(s)]
2
e2αh(s)ds

=

∫ t

0

[1 + 2sαh′(s)] e2αh(s)ds+

∫ t

0

α2s2h′2(s)e2αh(s)ds

= te2αh(t) +K(t).

Thus, for t ≥ t0,

2K(t)

α
= 2α

∫ t

0

s2h′2(s)e2αh(s)ds = C +

∫ t

t0

s2h′(s)d
(
e2αh(s)

)
≤ C + t2h′(t)e2αh(t) −

∫ t

t0

e2αh(s)d
(
s2h′(s)

)
,

where the last integration is considered in the sense of Stieltjes. The monotonicity of s2h′

in [t0,∞) yields

K(t) ≤ α

2
t2h′(t)e2αh(t) + C, ∀ t ≥ t0.
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So we get

ξ(t) ≤ C +
[
t+

α

2
t2h′(t)

]
e2αh(t), ∀ t ≥ 0.

Using (2.3) (we drop the index λ),∫
Ω

eγ
[
eh(v) + vh′(v)eh(v) − veh(v) − 1

]
v2e2αh(v)

≤ 2

β

∫
Ω

eγ
(

1 + veh(v)
)
ξ(v) + C

∫
Ω

eγv2e2αh(v)

≤ 2

β

∫
Ω

eγ
(

1 + veh(v)
) [
C + ve2αh(v) +

α

2
v2h′(v)e2αh(v)

]
+ C

∫
Ω

eγv2e2αh(v),

By Young’s inequality,(
1− α

β

)∫
Ω

eγv3h′(v)e(2α+1)h(v)

≤ C
∫

Ω

eγ
[
1 + v2h′(v)e2αh(v) + v3e(2α+1)h(v)

]
.

(3.8)

Moreover, g = o(g′) at infinity yields limt→∞ h′(t) =∞, hence

t2h′(t)e2αh(t) + t3e(2α+1)h(t)

t3h′(t)e(2α+1)h(t)
=

1

g(t)− 1
+

1

h′(t)
→ 0 as t→∞.

Fix β ∈ (α, 2), the inequality (3.8) implies∫
Ω

[g(v)− 1]2α+1

v2α
=

∫
Ω

ve(2α+1)h(v) ≤ C +

∫
Ω

v3h′(v)e(2α+1)h(v) ≤ C.

Recall that g is superlinear, we obtain ‖g(v)‖1 ≤ C. Consider again w satisfying L(w) =
λg(v) in Ω and w = 0 on ∂Ω, as v ≤ w in Ω by maximum principle,∫

Ω

(g(v)− 1)2α+1

w2α
≤ C.

Following the proof of Lemma 2.1 in [17] (we just need a minor adjustment, say define
Ω1 = {x ∈ Ω : g(v) > wT } instead, here T > 0 is a suitable constant), we can obtain that
if 2α+ 1 > n/2, w is uniformly bounded in L∞(Ω), so does v. Taking 2 > β > α > 7/4,
the result holds for n ≤ 9. �

3.4. Proof of Theorem 1.6

Here we choose φ(u) = (1− u)−α − 1 in (2.4). For 2λ > λ∗ and ε > 0,(
p− 2α2

β(2α+ 1)
− 2ε

)∫
Ω

eγ

(1− u)p+2α+1
≤ C, ∀ β ∈ [1, 2).

We have used f ′(u)(1− u) ≥ (p− ε)f(u)− C in [0, 1) by (1.5). As ε > 0 is arbitrary,∫
Ω

1

(1− u)p+2α+1
≤ C

12



provided that

p >
α2

2α+ 1
, i.e. when α < p+

√
p(p+ 1).

Therefore ‖(1− u)−1‖q ≤ C if q < 1 + 3p+ 2
√
p(p+ 1). For any ε > 0, as f ′(u)(1− u) ≤

(p+ ε)f(u) + Cε in [0, 1) by (1.5), we have f(u) ≤ C(1− u)−p−ε, consequently

g(v) = evf(1− e−v) =
f(u)

1− u
≤ C(1− u)−1−p−ε,

hence ‖g(v)‖r ≤ C when

r <
1 + 3p+ 2

√
p(p+ 1)

p+ 1 + ε
.

According to Lemma 3.1, the proof is done by taking ε→ 0+. �

4. Radial case

As we have mentioned, when c = −∇γ, the equation (Pλ) is rewritten as

−div(eγ∇u) = λeγf(u). (4.1)

With the variational structure, the stability of minimal solutions uλ is equivalent to∫
Ω

eγ |∇ψ|2 ≥ λ
∫

Ω

eγf ′(uλ)ψ2, ∀ ψ ∈ H1
0 (Ω). (4.2)

Moreover, for any C1 functions φ and ξ satisfying φ(0) = ξ(0) = 0 and ξ′ = φ′2, the
estimate (2.4) is replaced by∫

Ω

eγf ′(uλ)φ2(uλ) ≤
∫

Ω

eγf(uλ)ξ(uλ).

Taking now φ(t) = f(t)− f(0) and working as for Theorem 1 in [18], we have

Lemma 4.1. When c = ∇γ, the extremal solution u∗ ∈ H2 ∩H1
0 (Ω). More precisely,∫

Ω

f ′(uλ)f(uλ) ≤ C, ∀ λ ∈ (0, λ∗]. (4.3)

When Ω = B1 is the unit ball, γ(x) = γ(r) with r = |x|, uλ is radial by uniqueness of the
minimal solution and satisfies

−u′′ − n− 1

r
u′ − γ′u′ = λf(u) in (0, 1], (4.4)

with u′(0) = 0 and u(1) = 0. Our main result in this section is the regularity of the
extremal solution u∗ for any f satisfying (H) provided n = 2 and the optimal estimate
for u′ claimed in Theorem 1.2.
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The method we use is similar to [5, 15], but the uniform boundedness of ‖uλ‖C1 is not
enough to claim the regularity of u∗, because a singular u∗ could be Lipschitz in many
cases (see Remark 1.1). In fact, the estimate (4.3) is crucial for our proof.

As in [5, 15], since u′λ(r) ≤ 0 by maximum principle or equation (4.4), the boundedness
of ‖uλ‖H1

0
implies that for any k ∈ N, r > 0, ‖uλ‖Ck(B1\Br) ≤ Ck,r, ∀ λ ∈ (0, λ∗]. So

we concentrate our attention near the origin. Derivating the equation (4.4) or (4.1) with
respect to r,

−div (eγ∇u′) = eγu′
[
λf ′(u)− n− 1

r2
+ γ′′

]
in (0, 1].

Using ψ = rη(r)u′λ(r) as test function in (4.2) with η ∈ H1
0 (B1) ∩ C(B1), by similar

calculation as for Lemma 2.1 in [5], we obtain∫
B1

eγ
[
|∇(rη)|2 − (n− 1)η2 + γ′′r2η2

]
u′2λ ≥ 0, ∀ λ ∈ (0, λ∗]. (4.5)

4.1. Proof of Theorem 1.1

For simplicity, we drop the index λ. All estimates below hold uniformly for λ. First
as uλ is radial, by maximum principle, we see that u is decreasing in r. Since f and f ′

are nondecreasing functions according to (H), the estimate (4.3) implies (as n = 2)

πr2f ′(u(r))f(u(r)) ≤
∫
Br

f ′(u)f(u) ≤ C, ∀ r ∈ (0, 1].

By Lemma 2.1, we have

f(u(r)) ≤ C

r
for all r ∈ (0, 1]. (4.6)

Let r0 ∈ (0, 1
2 ]. Let η be a radial function in H1

0 (B1) ∩ C0(B1) such that

η(r) =

{
r−1
0 if r < r0;
r−1 if r0 ≤ r ≤ 1

2 ,

and η be a fixed C1 function in B1 \B1/2, independent of r0. The direct calculation yields

|∇(rη)|2 − η2 + γ′′r2η2 =

{
γ′′r2r−2

0 if r < r0;
γ′′ − r−2 if r0 < r ≤ 1

2 .

Using (4.5), as u is uniformly bounded in H1(B1) by Proposition 2.4 and r2r−2
0 ≤ 1 in

[0, r0], we get ∫ 1
2

r0

u′(r)2

r
dr ≤ C.

Tending r0 to 0, there holds ∫ 1

0

u′(r)2

r
dr ≤ C. (4.7)
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Consider the following test function used in [15]: For any r ≤ 1
2 and 0 < r0 < r,

η(s) =

 (rr0)−1 if s < r0;
(rs)−1 if r0 ≤ s < r;
s−2 if r ≤ s ≤ 1

2 .

Applying again (4.5) and combining with (4.7), we obtain finally (with r0 → 0)∫ r

0

u′(s)2

s
ds ≤ Cr2, ∀ r ≤ 1. (4.8)

As (eγru′)
′

= −λeγrf(u) with n = 2, so eγru′ is nonincreasing in r. Then u′(s) ≤
Cru′(r)/s for s ∈ [r, 1], hence u′(s) ≤ Cu′(r) ≤ 0 for any s ∈ [r, 2r] if r ≤ 1

2 . By (4.8),
for any 0 < r ≤ 1

2 ,

C1r
2 ≥

∫ 2r

0

u′(s)2

s
ds ≥

∫ 2r

r

u′(s)2

s
ds ≥ C2

r

∫ 2r

r

u′(r)2ds = C3u
′(r)2.

That means

|u′(r)| ≤ Cr in [0, 1]. (4.9)

However, we need to consider also u′′(r) as explained above. Let

G(r) = eγru′ and Ψ(r) = −2G(
√
r)−M

∫ r

0

(r − s)f
(
u(
√
s)
)
ds

where M is a constant to be chosen. Using G′ = −λeγrf(u),

Ψ′′(r) =

[
λeγ(s)f ′ (u(s))

u′(s)

2s
+ λeγ(s)f (u(s))

γ′(s)

2s
−Mf (u(s))

] ∣∣∣
s=
√
r

≤
[
λeγ(s)f (u(s))

γ′(s)

2s
−Mf (u(s))

] ∣∣∣
s=
√
r

≤ C0f
(
u(
√
r)
)
−Mf

(
u(
√
r)
)
.

For the last line, we used |γ′(s)|/s ≤ C in [0, 1] since γ is a smooth function (so γ′(0) = 0).
Fix M > C0 + 1, Ψ is then concave in [0, 1]. On the other hand, by (4.6)

Ψ′(r) = λeγ(
√
r)f
(
u(
√
r)
)
−M

∫ r

0

f
(
u(
√
s)
)
ds ≥ Cλf(0)− CM

√
r.

There exists r1 > 0 small enough such that Ψ′ ≥ 0 in [0, r1] with λ ≥ λ∗

2 . Using (4.4),

(4.6) and (4.9), for λ ≥ λ∗

2 and r ≤ r1,

− eγ(
√
r)

[
u′′(
√
r) +

u′(
√
r)√
r

+ γ′u′(
√
r)

]
− CM

√
r

≤ Ψ′(r) ≤ Ψ(r)

r
≤ −2eγ(

√
r)u
′(
√
r)√
r
≤ C.
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Applying one more time (4.9), we see that u′′(
√
r) ≥ −C for any λ ≥ λ∗

2 and r ≤ r1.
Otherwise, by (4.4) and (4.9), u′′(r) ≤ −u′(r)r−1 − γ′(r)u′(r) ≤ C, we claim then

‖u′′‖∞ ≤ C, ∀ λ ≥ λ∗

2
.

Combining with (4.4) and (4.9), it means ‖λf(u)‖∞ ≤ C, no singularity will occur. �

4.2. Proof of Theorem 1.2

As above, we drop the index λ and all estimations hold uniformly for λ. First, repeat-
ing the proof of Theorem 1.8, c) in [5], we obtain f ′(u(r)) ≤ Cr−2 in (0, 1]. Using Lemma
2.1 with (4.5), f(u(r)) ≤ Cr−2 in (0, 1]. Consequently, by (4.4), for n ≥ 3,

0 ≤ −eγrn−1u′(r) =

∫ r

0

eγ(s)sn−1f(u(s))ds ≤ C
∫ r

0

sn−3ds ≤ Crn−2.

Hence

|u′(r)| ≤ C

r
. (4.10)

Let η be a radial function in H1
0 (B1) ∩ C0(B1) such that

η(r) =

{
r−
√
n−1

0 if r < r0;

r−
√
n−1 if r0 ≤ r ≤ r1.

in Br1 and be a fixed C1 function in B1 \ Br1 , here r0 is any constant in (0, r1), r1 > 0
is a small constant to be determined. Therefore

|∇(rη)|2 − (n− 1)η2 + γ′′r2η2 =

{ (
γ′′r2 + 2− n

)
r−2
√
n−1

0 if r < r0;(
γ′′r2 − 2

√
n− 1 + 1

)
r−2
√
n−1 if r ∈ [r0, r1].

We fix r1 > 0 small enough such that

max
r∈[0,r1]

{
γ′′r2

}
< min

(
n− 2, 2

√
n− 1− 1

)
.

By (4.5), as |∇(rη)|2 − (n− 1)η2 + γ′′r2η2 ≤ 0 for r ∈ [0, r0],∫ r1

r0

u′2(r)rn−1−2
√
n−1dr ≤ C.

Tending r0 to 0, we have ∫ r1

0

u′2(r)rn−1−2
√
n−1dr ≤ C. (4.11)

Now we take another test function used in [15],

η(r) =

{
r−
√
n−1−1

0 if r < r0;

r−
√
n−1−1 if r0 ≤ r ≤ r1.
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Combining (4.5) and (4.11), we conclude then∫ r0

0

u′2(r)rn−1dr ≤ Cr2+2
√
n−1

0 , ∀ r0 ∈ [0, r1].

By the monotonicity of eγrn−1u′, similarly as for (4.9), it holds

|u′(r)| ≤ Cr−n2 +1+
√
n−1, ∀ r ∈ [0, 1].

Finally, combining with (4.10), we are done (in fact, −n2 + 1 +
√
n− 1 ≤ −1 for n ≥ 10).

�
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[4] X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension
4, Comm. Pure Appl. Math. 63(10), 1362-1380, (2010).
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