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In this note, we investigate the regularity of the extremal solution u * for the semilinear elliptic equation -u + c(x) • ∇u = λf (u) on a bounded smooth domain of R n with Dirichlet boundary condition. Here f is a positive nondecreasing convex function, exploding at a finite value a ∈ (0, ∞). We show that the extremal solution is regular in the low dimensional case. In particular, we prove that for the radial case, all extremal solutions are regular in dimension two.

Introduction

We consider the elliptic problem

     -u + c(x) • ∇u = λf (u) in Ω, u > 0
in Ω, u = 0 on ∂Ω,

(P λ )
where λ > 0, Ω is a smooth bounded domain in R n (n ≥ 2), c(x) is a smooth vector field over Ω and f : [0, a) → R + with fixed a ∈ (0, ∞) satisfies the following condition (H):

f is C 2 , positive, nondecreasing and convex in [0, a) with lim

t→a - f (t) = ∞.
In the literature, f is refered as a singular nonlinearity. We say that u is a regular solution if u ∈ C 2 (Ω), and we also deal with solutions in the following weak sense.

Definition 1.1. We say that u is a weak solution of (P λ ) if 0 ≤ u ≤ a a.e. in Ω such that f (u)d(x, ∂Ω) ∈ L 1 (Ω) and

- Ω u∆φ - Ω udiv(φc) = λ Ω f (u)φ, ∀ φ ∈ C 2 (Ω) ∩ H 1 0 (Ω).
Moreover, u is a weak super-solution of (P λ ) if " = " is replaced by " ≥ " for all nonnegative functions φ ∈ C 2 (Ω) ∩ H 1 0 (Ω).

Clearly, a weak solution is regular if sup Ω u < a. For regular solutions, we introduce a notion of stability. Definition 1.2. A regular solution u of (P λ ) is said to be stable if the principal eigenvalue of the linearized operator L u,λ,c := -+ c • ∇ -λf (u) is nonnegative in H 1 0 (Ω).

Exploiting some ideas in [START_REF] Martel | Uniqueness of weak extremal solutions of nonlinear elliptic problems[END_REF][START_REF] Ghoussoub | On the partial differential equations of electro MEMS devices: stationary case[END_REF][START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF], the solvability of (P λ ) is characterized by a parameter λ * : Proposition 1.1. There exists λ * ∈ (0, ∞) such that • For 0 < λ < λ * , the problem (P λ ) has a minimal solution u λ , u λ is regular and the map λ → u λ is increasing. Moreover, u λ is the unique stable solution of (P λ ).

• For λ = λ * , (P λ * ) admits a unique weak solution u * := lim λ→λ * u λ , called the extremal solution.

• For λ > λ * , (P λ ) admits no weak solution.

Here the minimal solution means that u λ ≤ v for any solution v of (P λ ). We remark immediately a close similarity between (P λ ) and the Emden-Fowler equation with superlinear regular nonlinearity, that is

-∆u = λg(u) in Ω ⊂ R n ; u = 0 on ∂Ω, (1.1) 
with λ > 0 and g : [0, ∞) → (0, ∞) satisfies g is C 2 , nondecreasing, convex and lim

t→∞ g(t) t = ∞. (1.2) 
In fact, there exists also a critical parameter λ ∈ (0, ∞) for (1.1) such that all conclusions in the above proposition hold true by replacing λ * by λ (see [START_REF] Brezis | Blow up for u t -∆u = g(u) revisited[END_REF][START_REF] Martel | Uniqueness of weak extremal solutions of nonlinear elliptic problems[END_REF]). It is well known by classical examples as g(u) = (1 + u) p with p > 1 or g(u) = e u , the extremal solution u * can be either a regular solution or a real weak solution in the distribution sense with sup Ω u = ∞.

For general nonlinearity g satisfying (1.2), the regularity of the extremal solution u * to (1.1) is obtained by Nedev [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF] for any bounded smooth domain Ω ⊂ R n if n = 2, 3; by Cabré [START_REF] Cabré | Regularity of minimizers of semilinear elliptic problems up to dimension 4[END_REF] for convex domains in R 4 ; and for radial symmetry case in R n with n ≤ 9 by Cabré & Capella [START_REF] Cabré | Regularity of radial minimizers and extremal solutions of semilinear elliptic equations[END_REF]. In [START_REF] Ye | Boundedness of the extremal solution for semilinear elliptic problems[END_REF], it is proved that, under mild condition on g, the extremal solution u * is regular for any smooth bounded domain Ω ⊂ R n if n ≤ 9.

We can ask the same question about the problem (P λ ): For f verifying (H), is it true that the extremal solution to (P λ ) is regular for general vector field c and general domain Ω ⊂ R n with low dimensions n? We will partly answer this question. It is worthy to mention that for studying the explosion phenomena in a flow, Berestycki et al. [START_REF] Berestycki | The explosion problem in a flow[END_REF] have considered the problem (P λ ) with a general source f verifying (1.2).

Without loss of generality, fix a = 1 in the sequel. The problem (P λ ) can be linked to equation (1.1) up to the transformation v = -ln (1 -u). In fact, let u solve (P λ ), v verifies then

-v + |∇v| 2 + c(x) • ∇v = λe v f (1 -e -v ) := λg(v) in Ω, v = 0 on ∂Ω. (Q λ )
Therefore g verifies (1.2) and v * = -ln(1 -u * ) is the extremal solution for the problem (Q λ ). Thus the regularity of u * is equivalent to the boundedness of v * , however the situation could be very different with the presence of advection terms (see [START_REF] Cowan | Regularity of the extremal solution in a MEMS model with advection[END_REF][START_REF] Wei | On MEMS equation with fringing field[END_REF]). In last decade, a model describing the steady state of MEMS (Micro-Electro-Mechanical Systems) device given by Pelesko and Bernstein in [START_REF] Pelesko | Modeling MEMS and NEMS[END_REF], has drawn many attentions (see [START_REF] Esposito | Mathematical analysis of partial differential equations modeling electrostatic MEMS[END_REF] and the references therein).

-∆u = λ (1 -u) 2 in Ω ⊂ R n ; u = 0 on ∂Ω.
More generally, many precise studies have been done for the singular nonlinearities with negative exponent f (u) = (1 -u) -p (p > 0) in the advection-free situation, i.e. c ≡ 0. In that case, when Ω is moreover the unit ball in R n , it is known that u * is regular if and only if (see [START_REF] Mignot | Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe[END_REF][START_REF] Ghoussoub | On the partial differential equations of electro MEMS devices: stationary case[END_REF])

n < n p := 2 + 4p p + 1 + 4 p p + 1 . (1.3) 
Tending p → 0 + in (1.3), we see that n p → 2. Therefore we cannot expect in general better than dimension two to claim the regularity of u * .

For the radial case of (P λ ), equally when Ω is a ball and c(x) is the gradient of a smooth radial function, u λ is radial by uniqueness of the minimal solution. We obtain the following optimal results which are new even for the advection-free case.

Theorem 1.1. Assume that n = 2, Ω = B 1 . Let γ is a smooth radial function and c = ∇γ, then the extremal solution u * is regular for any f satisfying (H).

Theorem 1.2. For any f satisfying (H), Ω = B 1 and smooth radial function γ, there exists C > 0 such that for all λ ∈ (0, λ * ]

|u λ (r)| ≤ Cr -1 if n ≥ 10; Cr -n 2 +1+ √ n-1 if 3 ≤ n ≤ 9; ∀ r = |x| ∈ (0, 1]
where

| • | is the Euclidean norm in R n .
Remark 1.1. The above estimates are optimal. In fact, when f (u) = (1 -u) -p , p > 0, Ω = B 1 and c ≡ 0, it is well known that u * (x) = 1 -r 2 p+1 if n ≥ n p with n p given in (1.3), and we have

n ≥ n p iff n ≥ 10 or 3 ≤ n ≤ 9, 2 p + 1 ≤ - n 2 + 2 + √ n -1.
But is the extremal solution u * of (P λ ) regular with general singular nonlinearity f verifying (H), vector field c and smooth bounded domains in R 2 ? The answer is affirmative under some additional mild condition on f . Theorem 1.3. Assume that f satisfies conditions (H) and the additional conditions, (H1) lim sup

t→1 - f (t) f (t)(1 -t) ln 2 (1 -t) < 1 
and

(H2) lim inf t→1 - f (t)f (t) f 2 (t) > 0.
Then u * is regular solution to

(P λ * ) if n = 2, i.e. Ω ⊂ R 2 .
Under more precise conditions on the growth of f , the extremal solution can be showed to be regular in some higher dimensions.

Theorem 1.4. Let f verify (H) and g(v) = e v f (1 -e -v ). Assume that g satisfies

(H3) lim inf t→∞ g (t) g(t) = 1 + δ > 1 and ( H2) lim inf t→∞ g (t)g(t) g 2 (t) = µ > 1 1 + δ . Then v * = -ln(1 -u * ) is bounded (so u * is regular) when n < 2 + 4δ 1 + δ + 4 δ(µ + µδ -1) 1 + δ . (1.4)
Consequently, if µδ > 1, u * is regular for all n ≤ 6. Furthermore, if we can tend δ to ∞, which means g = o(g ) near ∞, then u * is regular for n < 6 + 4

√ µ with any µ > 0. However, we can never have µ > 1, since otherwise g blows up at finite value and contradicts (1.2), so the best result we can expect is for n ≤ 9. For example, if t) in (0, ∞), suppose there exists t 0 > 0 such that t 2 h (t) is nondecreasing for t ≥ t 0 , then for any bounded smooth domain Ω ⊂ R n with n ≤ 9, u * is a regular solution.

f (u) = e 1 1-u , then g(v) = e v+e v verifies δ = ∞ and µ = 1. Theorem 1.5. Let f verify (H) and g(v) = e v f (1 -e -v ). Assume that g = o(g ) near ∞. Rewrite g(t) = g(0) + te h(
Furthermore, when g = o(g ) near ∞, the condition ( H2) is just equivalent to (H2), since

f (t)f (t) f 2 (t) = (g -g ) g (g -g) 2 (s) = g g g 2 - g g × 1 - g g -2 (s), ∀ t = 1 -e -s .
It is also easy to see that (H3) is equivalent to the condition lim inf

t→1 - f (t)(1 -t) f (t) = δ > 0.
If the equality holds for the whole limit, we have the following optimal result. The case f (u) = (1 -u) -2 was obtained in [START_REF] Cowan | Regularity of the extremal solution in a MEMS model with advection[END_REF] with a different argument.

Theorem 1.6. Assume that

lim u→1 - f (u)(1 -u) f (u) = p > 0. (1.5)
Then u * is a regular solution if n < n p where n p is defined in (1.3).

One of the main difficulties here is due to the vector field c(x). When c = 0, the operator -∆ + c • ∇ is not self-adjoint, we use ideas from [START_REF] Cowan | Regularity of the extremal solution in a MEMS model with advection[END_REF] to get some energy estimates. However if c is a gradient, say c = -∇γ in Ω, then -∆ + c • ∇ can be rewritten as e -γ L γ where L γ = -div(e γ ∇) is a self-adjoint operator. In that case, (P λ ) admits a variational structure and we can expect more precise estimates of minimal solutions u λ , as in the radial case.

The paper is organized as follows: In section 2, we prove quickly Proposition 1.1 and show some general consequences of the stability of u λ . The section 3 is devoted to the proof of Theorems 1.3 to 1.6 for general domains. In section 4, we discuss the radial case. The norm • q denotes always the standard L q norm for any q ∈ [1, ∞]. The capital letter C denotes a generic positive constant independent of λ, it could be changed from one line to another.

Preliminaries

As mentioned above, -∆ + c • ∇ is not a self-adjoint operator for general vector field c. However using Lemma 1 in [START_REF] Cowan | Regularity of the extremal solution in a MEMS model with advection[END_REF], we have a kind of Hodge decomposition, which tells us that for any vector field c ∈ C ∞ (Ω, R n ), there exist a smooth scalar function γ and a

vector field b ∈ C ∞ (Ω, R n ) such that c = -∇γ + b and div(e γ b) = 0 in Ω. (2.1)
Therefore the problem (P λ ) can be rewritten as

-div(e γ ∇u) + e γ b • ∇u = λe γ f (u) in Ω. (P λ )
On the other hand, we don't have a suitable variational characterization in general to use the stability assumption. Fortunately, we can adopt an energy inequality as in [START_REF] Cowan | Regularity of the extremal solution in a MEMS model with advection[END_REF], which is derived from a generalized Hardy inequality of [START_REF] Cowan | Optimal Hardy inequalities for general elliptic operators with improvemnets[END_REF].

Proposition 2.2. Let u λ be minimal solution of (P λ ). For any 1 ≤ β < 2, we have

λ Ω e γ f (u λ )ψ 2 ≤ 2 β Ω e γ |∇ψ| 2 + b 2 ∞ 2(2 -β) Ω e γ ψ 2 , ∀ ψ ∈ H 1 0 (Ω). (2.2)
where b is the vector field in

(2.1), b ∞ = max Ω |b(x)|.
Proof. We use a Hardy type inequality given by Theorem 2 in [START_REF] Cowan | Regularity of the extremal solution in a MEMS model with advection[END_REF], which says that for a positive principal eigenfunction

ϕ of L u λ ,λ,c , for β ∈ [1, 2) and any ψ ∈ H 1 0 (Ω), λ Ω e γ f (u λ )ψ 2 ≤ 2 β Ω e γ |∇ψ| 2 + Ω - 2 -β 2 
|∇ϕ| 2 ϕ 2 + b • ∇ϕ ϕ e γ ψ 2 .
By Cauchy-Schwarz inequality, it is easy to see

- 2 -β 2 
|∇ϕ| 2 ϕ 2 + b • ∇ϕ ϕ ≤ |b(x)| 2 2(2 -β) ≤ b 2 ∞ 2(2 -β) ,
so we are done.

Another main ingredient of our approach is just the transformation v = -ln(1 -u). Let φ and ξ be nonnegative

C 1 functions satisfying φ(0) = ξ(0) = 0 and ξ = φ 2 . Define v λ = -ln(1 -u λ ) and g(v λ ) = e v λ f (1 -e -v λ ). Using (Q λ ), we get -div(e γ ∇v λ ) + e γ b • ∇v λ ≤ λe γ g(v λ ) in Ω. Let ψ = φ(v λ ) in (2.2), ∀ λ ∈ (0, λ * ), λ Ω e γ f (u λ )φ 2 (v λ ) ≤ 2 β Ω e γ |∇φ(v λ )| 2 + b 2 ∞ 2(2 -β) Ω e γ φ 2 (v λ ) = 2 β Ω e γ ∇ξ(v λ )∇v λ + C β Ω e γ φ 2 (v λ ) = - 2 β Ω div(e γ ∇v λ )ξ(v λ ) + C β Ω e γ φ 2 (v λ ) ≤ 2λ β Ω e γ g(v λ )ξ(v λ ) - 2 β Ω e γ b • ξ(v λ )∇v λ + C β Ω e γ φ 2 (v λ ) = 2λ β Ω e γ g(v λ )ξ(v λ ) + C β Ω e γ φ 2 (v λ ).
The last line is due to div(e γ b) = 0. We claim then

Proposition 2.3. Let 1 ≤ β < 2.
For any λ ∈ (0, λ * ) and any nonnegative C 1 test functions φ, ξ verifying φ(0) = ξ(0) = 0 and ξ = φ 2 , there hold

λ Ω e γ f (u λ )φ 2 (v λ ) ≤ 2λ β Ω e γ g(v λ )ξ(v λ ) + C β Ω e γ φ 2 (v λ ) (2.3) and λ Ω e γ f (u λ )φ 2 (u λ ) ≤ 2λ β Ω e γ f (u λ )ξ(u λ ) + C β Ω e γ φ 2 (u λ ). (2.4)
The proof of (2.4) is completely similar to (2.3) but using (P λ ) instead of (Q λ ).

We also make use the following behavior of f proved in [START_REF] Ye | On a general family of nonautonomous elliptic and parabolic equations[END_REF].

Lemma 2.1. For any f verifying (H), we have lim t→1 f (t)/f (t) = 0.

Choose first φ(u) = e u -1 in (2.4), then ξ(u) = e 2u -1

2 and λ Ω e γ f (u λ ) (e u λ -1) 2 ≤ λ β Ω e γ f (u λ ) e 2u λ -1 + C β Ω e γ (e u λ -1) 2 .
Fix β ∈ (1, 2). By Lemma 2.1,

λ Ω e γ f (u λ )e 2u λ ≤ C. Consequently f (u λ ) 1 is uniformly bounded, so is f (u λ ) 1 . Multiplying (P λ ) by u λ , Ω |∇u λ | 2 = Ω div(c) 2 u 2 λ + λ Ω f (u λ )u λ ≤ C,

which gives

Proposition 2.4. The family of minimal solutions {u λ } 0<λ<λ * is uniformly bounded in H 1 0 (Ω).

Remark 2.1. As far as we know, it is always an open question whether the similar H 1 energy estimation holds for minimal solutions of (1.1) with general regular nonlinearity satisfying (1.2) and general domain Ω when n ≥ 6 (see [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF] for n ≤ 5). For the advectionfree case c = 0, it was proved in [START_REF] Ye | On a general family of nonautonomous elliptic and parabolic equations[END_REF] that u * ∈ H 2 ∩ H 1 0 (Ω) under the condition (H), it is also true for the gradient case c = ∇γ (see Lemma 4.1).

Sketches of proof of Proposition 1.1. We follow the ideas coming from [START_REF] Berestycki | The explosion problem in a flow[END_REF][START_REF] Martel | Uniqueness of weak extremal solutions of nonlinear elliptic problems[END_REF][START_REF] Ghoussoub | On the partial differential equations of electro MEMS devices: stationary case[END_REF]. The main argument is the maximum principle for operators -∆ + c • ∇ and L γ under the Dirichlet boundary condition, we use also the super-sub solution method and monotone iteration.

Let w ∈ H 1 0 (Ω) be the regular solution of -∆w + c • ∇w = 1 in Ω and fix α > 0 such that α max Ω w < 1. It is easy to verify that αw is a supersolution of (P λ ) for λ > 0 small enough. As 0 is a subsolution and αw > 0 in Ω, (P λ ) admits a regular solution for λ > 0 small enough. As any regular solution u of (P λ ) is also a supersolution for (P µ ) if µ ∈ (0, λ), the set of λ for which (P λ ) admits a regular solution is just an interval. Moreover, for these λ, using (H) and the monotone iteration

v 0 = 0; -∆v n+1 + c • ∇v n+1 = λf (v n )
in Ω with v n+1 = 0 on ∂Ω for n ∈ N, we get the minimal solution u λ = lim n→∞ v n .

If we suppose that the principal eigenvalue of L u λ ,λ,c is negative, we can construct, as in [START_REF] Berestycki | The explosion problem in a flow[END_REF] another solution v ≤ u λ using the associated first eigenfunction, this is just impossible by the definition of u λ , hence u λ is stable. The uniqueness of stable solution comes from Lemmas 2.16 and 2.17 in [START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF]. Take a positive first eigenfunction ϕ of L γ with the Dirichlet boundary condition, by (P λ ),

λf (0) Ω e γ ϕ ≤ Ω λe γ f (u)ϕ = Ω λ 1 (L γ )uϕ - Ω div(e γ bϕ)u ≤ C.
So λ is upper bounded. Define the critical threshold λ * as the supermum of λ > 0 for which (P λ ) admits a regular solution, as u * is the monotone limit of u λ when λ → λ * , we deduce that u * ∈ H 1 0 (Ω) is a weak solution of (P λ ) by Proposition 2.4. Suppose that u is a weak solution to (P λ ). By the monotonicity of f , it is easy to verify that for any δ > 1, the function v = δ -1 u is a weak supersolution for (P λ/δ ), then the monotone iteration will enable us a weak solution w of (P λ/δ ) satisfying 0 ≤ w ≤ v ≤ δ -1 < 1. The regularity theory implies then w is a regular solution of (P λ/δ ). This means that λ/δ ≤ λ * . Let δ tend to 1, we get λ ≤ λ * . Therefore, no weak solution exists for λ > λ * .

The uniqueness of the weak solution can be proved in the very similar way as in [START_REF] Martel | Uniqueness of weak extremal solutions of nonlinear elliptic problems[END_REF] using the monotonicity and convexity of f , with the strong maximum principle for the operator -∆ + c • ∇ associated to Dirichlet boundary condition, so we omit the details.

Regularity of u * for general c and Ω

For proving our results, we will choose suitable functions φ to apply (2.3) or (2.4). We need also Lemma 3.1. For any q > n/2, there exists C > 0 such that the solution v of (Q λ ) satisfies 0 ≤ v ≤ C g(v) q in Ω.

Indeed, let w be the solution of L(w) := -∆w + c • ∇w = λg(v) in Ω with w = 0 on ∂Ω. By regularity theory and Sobolev embedding, w ∞ ≤ C w W 2,q (Ω) ≤ C λ * g(v) q because q > n/2 ≥ 1. Morover, as L(w -v) ≥ 0, the maximum principle implies then 0 ≤ v ≤ w ≤ C g(v) q .

Proof of Theorem 1.3

For simplicity, we omit the index λ for u λ or v λ . Let φ(u) = v = -ln(1-u) in (2.4), so ξ(u) = (1 -u) -1 -1. Fix β ∈ (1, 2) but very close to 2. Repeating the proof of Theorem 2 in [START_REF] Ye | On a general family of nonautonomous elliptic and parabolic equations[END_REF] with the assumption (H1), there exists C > 0 such that

λ Ω e γ f (u) 1 -u < C + CC β Ω e γ φ 2 (u). As φ 2 (u) = o(ξ(u)) = o(f ξ) when u → 1 -, λ Ω e γ f (u) 1 -u ≤ C.
Using the equation (Q λ ) and

∂ ν v ≤ 0 on ∂Ω, Ω |∇v| 2 = λ e v f (1 -e -v ) + ∂Ω ∂v ∂ν dσ - Ω c • ∇v ≤ λ Ω f (u) 1 -u + C ∇v 2 ≤ C + C ∇v 2 .
Therefore ∇v 2 ≤ C, the classical Moser-Trudinger inequality enables us, as n = 2 Ω e qv ≤ C q , ∀ q ≥ 1.

(3.1)

Take now φ(u) = f (u) -f (0) in (2.4), we need to estimate

ζ(u) := f (u)φ(u) - 2 β ξ(u) = f (u)φ(u) - 2 β u 0 f 2 (s)ds = f (u)f (u) - 2 β u 0 f 2 (s)ds -Cf (u) := I(u) - 2 β J(u) -Cf (u).
By (H2), there exists δ > 0 such that

I(u) -I(0) = u 0 f 2 (s) + f (s)f (s) ds ≥ (1 + δ)J(u) -Cf (u), ∀ u ∈ [0, 1) Let 4 2+δ < β < 2, we get ζ(u) ≥ CI(u) -C. Asserting this in (2.4), λ Ω e γ f (u)f 2 (u) ≤ C Ω e γ f 2 (u) + C.
Consequently, f (u)f 2 (u) 1 ≤ C. By Lemma 2.1, we deduce f (u) 3 ≤ C. Combining with (3.1), g(v) p ≤ C for any p < 3. The proof is completed by Lemma 3.1 as n = 2.

Proof of Theorem 1.4

Without loss of generality, we can assume that g(0) = 1. Let φ(t) = g α (t) -1 where α > 0 is a constant to be determined later. Then

ξ(t) = t 0 φ 2 (s)ds = α 2 t 0 g 2α-2 (s)g 2 (s)ds = α 2 2α -1 g 2α-1 (t)g (t) - α 2 2α -1 t 0 g 2α-1 (s)g (s)ds -C α . (3.2)
The condition ( H2) yields: Given any ∈ 0, µ -1 1+δ , there exists

C ≥ 0 such that g(t)g (t) ≥ (µ -)g 2 (t) -C in [0, ∞). Therefore - t 0 g 2α-1 (s)g (s)ds ≤ -(µ -) t 0 g 2α-2 (s)g 2 (s)ds + C ≤ - µ - α 2 ξ(t) + C. (3.3)
We divide the proof into two cases.

Case 1: δ > 1 and µ > 1 1+δ ; or δ ≤ 1 with µ > 1+δ 4δ . Take α > 1 2 . Combine (3.2) and (3.3),

1 + µ - 2α -1 ξ(t) ≤ α 2 2α -1 g 2α-1 (t)g (t) + C, consequently ξ(t) ≤ α 2 2α -1 + µ - g 2α-1 (t)g (t) + C, for any t ≥ 0. (3.4)
According to (H3), for any 0 < δ < δ, there exists C > 0 such that g (t) ≥ (1+δ )g(t)-C in [0, ∞). Setting these estimates in (2.3), omitting the index λ and recalling that f

(u) = g (v) -g(v), δ λ 1 + δ Ω e γ g (v)(g α (v) -1) 2 -Cλ Ω e γ (g α (v) -1) 2 ≤ λ Ω e γ f (u)(g α (v) -1) 2 ≤ 2α 2 λ β(2α -1 + µ -) Ω e γ g 2α (v)g (v) + Cλ Ω e γ g(v) + C Ω e γ (g α (v) -1) 2 .
Consequently,

δ 1 + δ - 2α 2 β(2α -1 + µ -) λ Ω e γ g (v)g 2α (v) ≤ 2δ C 1 + δ Ω e γ g (v)g α (v) + C Ω e γ g(v) + C Ω e γ (g α (v) -1) 2 .
Choose δ near δ such that either δ > 1 and µ >

1 1 + δ or δ < δ ≤ 1 with µ > 1 + δ 4δ .
Through direct computations, for > 0 sufficiently small and β = 2 -, there exists

α ∈ 1 2 , δ 1 + δ + δ (1 + δ )(µ -) -δ 1 + δ such that δ 1 + δ - 2α 2 β(2α -1 + µ -) > 0. ( 3.5) 
For such α, we obtain

λ Ω e γ g 2α (v)g (v) ≤ C, ∀ λ ∈ (0, λ * ). (3.6) 
Tending now δ to δ and to 0, (3.6) holds true provided that

α < δ 1 + δ + δµ(1 + δ) -δ 1 + δ . (3.7) 
Therefore

Ω e γ g 2α+1 (v) ≤ C Ω e γ g 2α (v)g (v) + C ≤ C,
which implies that g(v) 2α+1 ≤ C for α verifying (3.7). Applying Lemma 3.1, we conclude that for n < 2 + 4α with α verifying (3.7), v λ is uniformly bounded, hence u * is a regular solution if n satisfies (1.4).

Case 2: δ ≤ 1 and 1 1+δ < µ ≤ 1+δ 4δ . Now we take α ∈ 1 2 (1 -µ + ), 1 2 , the formulas (3.2) and (3.3) imply then

1 + µ - 2α -1 ξ(t) ≥ α 2 2α -1 g 2α-1 (t)g (t) + C.
The inequality (3.4) still holds true. Proceeding as for Case 1, we see that for δ < δ but nearby, > 0 small and β = 2 -, there exists

α ∈ 1 -µ + 2 , δ 1 + δ + δ (1 + δ )(µ -) -δ 1 + δ ⊂ 1 -µ + 2 , 1 2 
such that (3.5) is satisfied. Hence we conclude exactly as in Case 1.

Proof of Theorem 1.5

Without loss of generality, assume again g(0) = 1. Take now φ(t) = te αh(t) , where α > 0 is a constant to be determined, then

ξ(t) = t 0 [1 + sαh (s)]
2 e 2αh(s) ds

= t 0 [1 + 2sαh (s)] e 2αh(s) ds + t 0 α 2 s 2 h 2 (s)e 2αh(s) ds = te 2αh(t) + K(t).
Thus, for t ≥ t 0 ,

2K(t) α = 2α t 0 s 2 h 2 (s)e 2αh(s) ds = C + t t0 s 2 h (s)d e 2αh(s) ≤ C + t 2 h (t)e 2αh(t) - t t0 e 2αh(s) d s 2 h (s) ,
where the last integration is considered in the sense of Stieltjes. The monotonicity of

s 2 h in [t 0 , ∞) yields K(t) ≤ α 2 t 2 h (t)e 2αh(t) + C, ∀ t ≥ t 0 .
So we get

ξ(t) ≤ C + t + α 2 t 2 h (t) e 2αh(t) , ∀ t ≥ 0.
Using (2.3) (we drop the index λ), v) , By Young's inequality,

Ω e γ e h(v) + vh (v)e h(v) -ve h(v) -1 v 2 e 2αh(v) ≤ 2 β Ω e γ 1 + ve h(v) ξ(v) + C Ω e γ v 2 e 2αh(v) ≤ 2 β Ω e γ 1 + ve h(v) C + ve 2αh(v) + α 2 v 2 h (v)e 2αh(v) + C Ω e γ v 2 e 2αh(
1 - α β Ω e γ v 3 h (v)e (2α+1)h(v) ≤ C Ω e γ 1 + v 2 h (v)e 2αh(v) + v 3 e (2α+1)h(v) . (3.8) 
Moreover, g = o(g ) at infinity yields lim t→∞ h (t) = ∞, hence

t 2 h (t)e 2αh(t) + t 3 e (2α+1)h(t) t 3 h (t)e (2α+1)h(t) = 1 g(t) -1 + 1 h (t) → 0 as t → ∞.
Fix β ∈ (α, 2), the inequality (3.8) implies

Ω [g(v) -1] 2α+1 v 2α = Ω ve (2α+1)h(v) ≤ C + Ω v 3 h (v)e (2α+1)h(v) ≤ C.
Recall that g is superlinear, we obtain g(v) 1 ≤ C. Consider again w satisfying L(w) = λg(v) in Ω and w = 0 on ∂Ω, as v ≤ w in Ω by maximum principle,

Ω (g(v) -1) 2α+1 w 2α ≤ C.
Following the proof of Lemma 2.1 in [START_REF] Ye | Boundedness of the extremal solution for semilinear elliptic problems[END_REF] (we just need a minor adjustment, say define Ω 1 = {x ∈ Ω : g(v) > w T } instead, here T > 0 is a suitable constant), we can obtain that if 2α + 1 > n/2, w is uniformly bounded in L ∞ (Ω), so does v. Taking 2 > β > α > 7/4, the result holds for n ≤ 9.

Proof of Theorem 1.6

Here we choose φ(u) = (1 -u) -α -1 in (2.4). For 2λ > λ * and > 0, [START_REF] Berestycki | The explosion problem in a flow[END_REF] by (1.5). As > 0 is arbitrary,

p - 2α 2 β(2α + 1) -2 Ω e γ (1 -u) p+2α+1 ≤ C, ∀ β ∈ [1, 2). We have used f (u)(1 -u) ≥ (p -)f (u) -C in [0,
Ω 1 (1 -u) p+2α+1 ≤ C provided that p > α 2 2α + 1
, i.e. when α < p + p(p + 1).

Therefore (1 -u) -1 q ≤ C if q < 1 + 3p + 2 p(p + 1). For any > 0, as f (u)(1 -u) ≤ (p + )f (u) + C in [0, 1) by (1.5), we have f (u) ≤ C(1 -u) -p-, consequently

g(v) = e v f (1 -e -v ) = f (u) 1 -u ≤ C(1 -u) -1-p-, hence g(v) r ≤ C when r < 1 + 3p + 2 p(p + 1) p + 1 + .
According to Lemma 3.1, the proof is done by taking → 0 + .

Radial case

As we have mentioned, when c = -∇γ, the equation (P λ ) is rewritten as

-div(e γ ∇u) = λe γ f (u). (4.1) 
With the variational structure, the stability of minimal solutions u λ is equivalent to

Ω e γ |∇ψ| 2 ≥ λ Ω e γ f (u λ )ψ 2 , ∀ ψ ∈ H 1 0 (Ω). (4.2)
Moreover, for any C 1 functions φ and ξ satisfying φ(0) = ξ(0) = 0 and ξ = φ 2 , the estimate (2.4) is replaced by

Ω e γ f (u λ )φ 2 (u λ ) ≤ Ω e γ f (u λ )ξ(u λ ).
Taking now φ(t) = f (t) -f (0) and working as for Theorem 1 in [START_REF] Ye | On a general family of nonautonomous elliptic and parabolic equations[END_REF], we have 

* ∈ H 2 ∩ H 1 0 (Ω). More precisely, Ω f (u λ )f (u λ ) ≤ C, ∀ λ ∈ (0, λ * ]. (4.3) 
When Ω = B 1 is the unit ball, γ(x) = γ(r) with r = |x|, u λ is radial by uniqueness of the minimal solution and satisfies

-u - n -1 r u -γ u = λf (u) in (0, 1], (4.4) 
with u (0) = 0 and u(1) = 0. Our main result in this section is the regularity of the extremal solution u * for any f satisfying (H) provided n = 2 and the optimal estimate for u claimed in Theorem 1.2.

The method we use is similar to [START_REF] Cabré | Regularity of radial minimizers and extremal solutions of semilinear elliptic equations[END_REF][START_REF] Villegas | Shape estimates for semi-stable radial solutions of semilinear elliptic equations[END_REF], but the uniform boundedness of u λ C 1 is not enough to claim the regularity of u * , because a singular u * could be Lipschitz in many cases (see Remark 1.1). In fact, the estimate (4.3) is crucial for our proof.

As in [START_REF] Cabré | Regularity of radial minimizers and extremal solutions of semilinear elliptic equations[END_REF][START_REF] Villegas | Shape estimates for semi-stable radial solutions of semilinear elliptic equations[END_REF], since u λ (r) ≤ 0 by maximum principle or equation (4.4), the boundedness of u λ H 1 0 implies that for any k ∈ N, r > 0, u λ C k (B1\Br) ≤ C k,r , ∀ λ ∈ (0, λ * ]. So we concentrate our attention near the origin. Derivating the equation (4.4) or (4.1) with respect to r,

-div (e γ ∇u ) = e γ u λf (u) - n -1 r 2 + γ in (0, 1].
Using ψ = rη(r)u λ (r) as test function in (4.2) with η ∈ H 1 0 (B 1 ) ∩ C(B 1 ), by similar calculation as for Lemma 2.1 in [START_REF] Cabré | Regularity of radial minimizers and extremal solutions of semilinear elliptic equations[END_REF], we obtain For simplicity, we drop the index λ. All estimates below hold uniformly for λ. First as u λ is radial, by maximum principle, we see that u is decreasing in r. Since f and f are nondecreasing functions according to (H), the estimate (4.3) implies (as n = 2)

B1 e γ |∇(rη)| 2 -(n -1)η 2 + γ r 2 η 2 u 2 λ ≥ 0, ∀ λ ∈ (0, λ * ]. ( 4 
πr 2 f (u(r))f (u(r)) ≤ Br f (u)f (u) ≤ C, ∀ r ∈ (0, 1]. By Lemma 2.1, we have f (u(r)) ≤ C r for all r ∈ (0, 1]. ( 4.6) 
Let r 0 ∈ (0, 1 2 ]. Let η be a radial function in

H 1 0 (B 1 ) ∩ C 0 (B 1 ) such that η(r) = r -1 0 if r < r 0 ; r -1 if r 0 ≤ r ≤ 1 2 ,
and η be a fixed C 1 function in B 1 \ B 1/2 , independent of r 0 . The direct calculation yields

|∇(rη)| 2 -η 2 + γ r 2 η 2 = γ r 2 r -2 0 if r < r 0 ; γ -r -2 if r 0 < r ≤ 1 2 .
Using (4.5), as u is uniformly bounded in H 1 (B 1 ) by Proposition 2.4 and r 2 r -2 0 ≤ 1 in [0, r 0 ], we get There exists r 1 > 0 small enough such that Ψ ≥ 0 in [0, r 1 ] with λ ≥ λ * 2 . Using (4.4), (4.6) and (4.9), for λ ≥ λ 

Lemma 4 . 1 .

 41 When c = ∇γ, the extremal solution u
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7 ) 2 . 2 ,u

 722 Consider the following test function used in[START_REF] Villegas | Shape estimates for semi-stable radial solutions of semilinear elliptic equations[END_REF]: For any r ≤1 2 and 0 < r 0 < r,η(s) =    (rr 0 ) -1 if s < r 0 ; (rs) -1 if r 0 ≤ s < r; s -2 if r ≤ s ≤ 1Applying again (4.5) and combining with (4.7), we obtain finally (withr 0 → 0) γ ru ) = -λe γ rf (u) with n = 2, so e γ ru is nonincreasing in r. Then u (s) ≤ Cru (r)/s for s ∈ [r, 1], hence u (s) ≤ Cu (r) ≤ 0 for any s ∈ [r, 2r] if r ≤ 1 2 . By (4.8), for any 0 < r ≤ 1 (r) 2 ds = C 3 u (r) 2 .That means|u (r)| ≤ Cr in [0, 1].(4.9)However, we need to consider also u (r) as explained above. LetG(r) = e γ ru and Ψ(r) = -2G( √ r) -M r 0 (r -s)f u( √ s) dswhere M is a constant to be chosen. Using G = -λe γ rf (u),Ψ (r) = λe γ(s) f (u(s)) u (s) 2s + λe γ(s) f (u(s)) γ (s) 2s -M f (u(s)) s= √ r ≤ λe γ(s) f (u(s)) γ (s) 2s -M f (u(s)) s= √ r ≤ C 0 f u( √ r) -M f u( √ r) .For the last line, we used |γ (s)|/s ≤ C in [0, 1] since γ is a smooth function (so γ (0) = 0). Fix M > C 0 + 1, Ψ is then concave in [0, 1]. On the other hand, by (4≥ Cλf (0) -CM √ r.

* 2 and r ≤ r 1 ,u 2

 12 (r)r n-1 dr ≤ Cr 2+2 √ n-1 0 , ∀ r 0 ∈ [0, r 1 ].By the monotonicity of e γ r n-1 u , similarly as for (4.9), it holds|u (r)| ≤ Cr -n 2 +1+ √ n-1 , ∀ r ∈ [0, 1].Finally, combining with (4.10), we are done (in fact, -n 2 + 1 + √ n -1 ≤ -1 for n ≥ 10).
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Applying one more time (4.9), we see that u ( √ r) ≥ -C for any λ ≥ λ * 2 and r ≤ r 1 . Otherwise, by (4.4) and (4.9), u (r) ≤ -u (r)r -1 -γ (r)u (r) ≤ C, we claim then

Combining with (4.4) and (4.9), it means λf (u) ∞ ≤ C, no singularity will occur.

Proof of Theorem 1.2

As above, we drop the index λ and all estimations hold uniformly for λ. First, repeating the proof of Theorem 1.8, c) in [START_REF] Cabré | Regularity of radial minimizers and extremal solutions of semilinear elliptic equations[END_REF], we obtain

Let η be a radial function in

in B r1 and be a fixed C 1 function in B 1 \ B r1 , here r 0 is any constant in (0, r 1 ), r 1 > 0 is a small constant to be determined. Therefore

We fix r 1 > 0 small enough such that max

Tending r 0 to 0, we have

Now we take another test function used in [START_REF] Villegas | Shape estimates for semi-stable radial solutions of semilinear elliptic equations[END_REF],