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Abstract

This paper is concerned with the analysis of a one dimensional wave equation
21t — Zzz = 0 on [0, 1] with a Dirichlet condition at = 0 and a damping acting at = = 1
which takes the form (z:(¢,1), —2,(¢,1)) € X for every ¢t > 0, where ¥ is a given subset
of R%. The study is performed within an LP functional framework, p € [1,400]. We
aim at determining conditions on Y ensuring existence and uniqueness of solutions of
that wave equation as well as strong stability and uniform global asymptotic stability
of its solutions. In the latter case, we also study the decay rates of the solutions and
their optimality. We first establish a one-to-one correspondence between the solutions
of that wave equation and the iterated sequences of a discrete-time dynamical system
in terms of which we investigate the above mentioned issues. This enables us to provide
a simple necessary and sufficient condition on ¥ ensuring existence and uniqueness of
solutions of the wave equation as well as an efficient strategy for determining optimal
decay rates when Y verifies a generalized sector condition. As an application, we
solve two conjectures stated in the literature, the first one seeking a specific optimal
decay rate and the second one associated with a saturation type of damping. In case
the boundary damping is subject to perturbations, we derive sharp results regarding
asymptotic perturbation rejection and input-to-state issues.
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1 Introduction

In this paper, we focus on the following wave equation

2u(t, ) = 2z2(t, ), (t,z) € Ry x [0,1],

2(t,0) =0, t € Ry,

(z(t, 1), —2,(t,1)) € &, teRy, (1)
2(0,2) = zo(z), z € [0,1],

2¢(0,2) = 2z1(x), x € 10,1],

where Y C R2%. The immense majority of works on that subject (see for instance [1,26]
for an overview of the subject) assumes that ¥ is the graph of a function o : R — R



and hence the corresponding condition on z,(t, 1) and z(t, 1) reduces to
2z(t,1) = —o(2(t, 1)), Vit >0, (2)

which can be interpreted as a feedback law prescribing z,(t,1) in terms on z:(¢,1) at
the boundary x = 1 for every ¢t > 0. Note that considering ¥ more general that the
mere graph of a function is a possible alternative to model the fact that the function
o is subject to uncertainties or discontinuities, as in the case, for instance, where ¥ is
equal to the graph of the sign set-valued map sgn : R = R defined by sgn(s) = {s/|s|}
for nonzero s and sgn(0) = [—1, 1], cf. [27].

The use of a set ¥ in (1) can also model switching boundary conditions, such as
those considered in [3,8,12,16]. In this setting, the boundary condition is usually
written as

Zﬂc(t’ 1) = _Ua(t)(zt(tv 1))a (3)

where a(-) is piecewise constant and takes values in a given (possibly infinite) index
set Z and 0; : R — R for i € Z. Defining ¥ as the set of pairs (z,y) € R? such
that y € o;(x) for some i € Z, one obtains that any solution of the wave equation
with the boundary condition (3) is a solution of (1). This construction is the analogue
of the classical transformation of finite-dimensional switched systems into differential
inclusions (see, e.g., [4,11,18]).

1.1 Existing results

The standard issues addressed for solutions of (1) (either with (2) or ¥ equal to the
graph of sgn) may be divided into three main questions: find conditions on o so that
(Q1) for every initial condition, there exists a global and possibly unique solution of
(1), (Q2) in case solutions of (1) tend to zero as the time ¢ tends to infinity, one can
characterize their decay rates, and (@Q3) one can try to establish optimality of these
decay rates, where optimality is defined more precisely below as in [26].

Question (Q1) is usually addressed within a Hilbertian framework, i.e., (weak)
solutions of (1) belong to Xo = W;"*(0,1) x L2(0,1) where W;}2(0,1) is the Hilbert
space made of the absolutely continuous functions u : [0,1] — R so that u’ € L?(0,1)
and u(0) = 0. Functional analysis arguments are then used, typically by considering
appropriate unbounded operators and their associated C° semigroups. Most of the
time, the function o is assumed to be locally Lipschitz, nondecreasing and subject to
the classical damping condition, i.e., so(s) > 0 for every s € R, which allows one to
get a maximal monotone operator, and hence bringing a positive answer to (Q1).

Let us emphasize on the damping condition, since not only it helps to address (Q1)
but it is also a first step to handle (Q2). Indeed, such a condition on ¢ makes the
natural energy E(t) of (1) defined by E(t) = fol (|22 (t, ©)[* + |2¢(t, 2)|?) dz nonincreas-
ing along trajectories of (1). This is why one usually refers to such a function o as a
damping function. Note that [25] (as other few earlier works mentioned in that refer-
ence) assumes o to be a damping function not necessarily monotone. Addressing (Q1)
in that case relies instead on the d’Alembert decomposition of solutions of (1).

Other functional frameworks have been considered recently [2,7,14], where the
functional spaces are of LP-type, p € [1,4+0c], but these works consider 1D wave equa-
tions with localized distributed damping, i.e., 2y — 2z = —a(z)o(2¢). Recall that the
semigroup generated by the D’Alembertian Oz := z; — Az with Dirichlet boundary



conditions on an open bounded subset in R™, n > 2, is not defined for any suitable
extension of the Hilbertian framework to LP-type spaces for p # 2, as explained in [24].
This is why the study of issues of asymptotic behavior involving LP spaces with p # 2
makes sense only in the one-dimensional case.

Regarding more precisely results obtained for (Q2), there exist two main concepts
of convergence of solutions of (1) to zero: the basic one referred to as strong stability,
which says that the Xo-norm of every solution of (1) tends to zero as t tends to infinity
and a stronger notion, that of uniform globally asymptotic stability (UGAS for short),
which says that there exists a KL-function 5 : Ry x Ry — R such that ||z(t)]|x, <
B(||z(0)]|x,,t) for every t > 0 and solution z(-) of (1). Recall that a KL-function (or
a function of class KL) /3 is continuous with 3(0,-) = 0, increasing with respect to its
first argument and, for every s > 0, t — [(s,t) is decreasing and tends to zero as t
tends to infinity. One may interpret the function 3 as a generalized rate of convergence
to zero of solutions of (1) and one may even ask what could be the “best” KL function
B for which UGAS holds true. After [26] a reasonable definition that we will adopt in
the paper goes as follows: we say that a ICL function f is optimal for (1) if the latter
is UGAS with rate § and there exists an initial condition in Xy yielding a nontrivial
solution z of (1) so that ||z(t)||x, > €B8(||z(0)||x,,t) for some positive constant £ and
every t > 0.

With the exception of [25], results on strong stability rely on a LaSalle argument and
assume that ¢ is nondecreasing and locally Lipschitz: strong stability is first established
for a dense and compactly embedded subset of Xy made of regular solutions of (1) and
then it is extended to the full Xy by a density argument, cf. [1]. As regards UGAS, it
can be shown that, under the damping assumption and a linear cone condition (i.e.,
there exist positive a,b such that as? < so(s) < bs? for every s € R), the stability
is exponential, i.e., one can choose 3(s,t) = Cse #! for some positive constants C, u,
cf. [26] for instance. If the linear cone condition only holds in a neighborhood of zero
then exponential stability cannot hold in general, as shown in [26] where o is chosen as
a saturation function, i.e., such as o(s) = arctan(s). Besides the linear cone condition,
several results establishing UGAS have been obtained, cf. [17,19,20,27] where o verifies
a linear cone condition for large s and is either of polynomial type or weaker than any
polynomial in a neighborhood of the origin, see also [26] for a extensive list of references.
It has to be noticed that many of these studies deal with wave equations in dimension
not necessarily equal to one and, for all of them, the estimates are obtained by refined
arguments based on the multiplier method or highly nontrivial Lyapunov functionals.

Finally, for results handling (Q3), most of the existing results are gathered in [26]
and [1] (cf. Theorems 1.7.12, 1.7.15 and 1.7.16 in the last reference) where several of
the above mentioned upper estimates (of UGAS type) are shown to be optimal in the
sense defined previously and more particularly in the case where the damping function
o in (4) is of class C! and verifies ¢/(0) = 0. In particular, a list of examples for which
optimality is shown is provided in [1, Theorem 1.7.12] while an example is also given
(Example 5 in that list) for which only an upper estimate is given and it is stated
in [1] that the general case (even under the condition ¢/(0) = 0) is still open. In these
references, the upper estimates are derived by delicate manipulations of Lyapunov
functions relying on the multiplier method and lower estimates results are obtained
with appropriate solutions of (1) with piecewise constant Riemann invariants, where
the computations are actually similar in spirit to those of [25].



1.2 Discrete-time dynamical system

The approach proposed in this paper is inspired by [25], since, as in that reference, we
focus on the Riemann invariants of a solution of (1). To describe our basic finding on
the matter of interest, let us consider the discrete-time dynamical system S defined on
the Hilbert space Yy = L?(—1,1) which associates with every h € Y3 the subset S(h)
of Y5 made of the functions j so that

S: (h(s),j(s)) € RY, for a.e. se[—1,1], (4)

where R is the planar rotation of angle —m /4. One should notice that a related discrete-
time dynamical system has been first characterized in [25] (see also Remark 9 below).

We show that there exists an isometry of Hilbert spaces J : Xo — Y5 such that,
for every (z0,21) € X2, (1) admits a (global in time) weak solution z in Xy starting
at (z0,21) if and only if there exists a sequence (g,)nen of elements in Yo with gy =
J(z0, z1) such that g,+1 € S(gn) for n € N. The concatenation of the g,’s, which yields
an element of L? (—1,+400), is exactly the Riemann invariant Zt*;I associated with z.

It is immediate that the previously described correspondence between (1) and (4) can
be adapted for any p € [1,+o0] after replacing Yo by Y, = LP(—1,1) and X3 by X,
defined as

X, := WP(0,1) x LP(0,1), (5)

where WiP(0,1) = {u € L?(0,1) | v/ € L”(0,1) and u(0) = 0}, and equipped with the
norms

I, ), -—/ (| + of” + [ — ") da p el +o0), o
6

[ (u, ) lIx, \/imax(Hu + 0l Lo 0,1): 1v” = vl Lo (0,1)) -

The norm ||-[|x,, previously used, for instance, in [14], is equivalent to the standard
norm in X,, but it has the advantage of being well-adapted to the analysis of wave
equations, since it is expressed in terms of Riemann invariants and it is nonincreasing
as soon as X satisfies a damping condition (see Proposition 27). In addition, with
this choice of norm, the mapping (still denoted by) J : X, — Y, becomes an isometry
between Banach spaces.

One can reformulate appropriately the definition of S by considering the set-valued
map S : R = R whose graph is RY. C R?. For instance (4) reads j(s) € S(h(s)) for a.e.

€ [—1,1]. A first interesting application of this formalism concerns the case where %
is equal to the graph of the sign set-valued map. Then the set-valued map S becomes
single-valued and equal to the odd function defined on R by S(s) = s for s € [0,1/v/2]
and S(s) = v/2—s for s > 1/4/2. We also show how one can easily adapt the previously
described approach to the case where the Dirichlet boundary condition at z = 0 in (1)
is replaced by the more general boundary condition (z:(t,0), 2z,(¢,0)) € X', ¢ > 0, where
¥ CR%

By using the one-to-one correspondence between (global in time) solutions of (1)
and iterated sequences of (4), we can translate the previously described issues of (Q1)—
(Q3) associated with the original 1D wave equation (1) into the study of equivalent
questions in terms of S. Question (Q1) of existence and uniqueness of solutions of (1)
in X,, for every initial condition is equivalently restated as follows: determine conditions



on X so that, for every h € Y, there exists some (possibly unique) j € Y, such that
j € S(h). Similarly, questions regarding the decay rates, i.e. (Q2) and (Q3), can
be equivalently simply expressed as questions regarding the asymptotic behavior of
iterated sequences (g, )nen associated with S.

1.3 Main results

Concerning the question of existence of (global in time) solutions of (1) for every initial
condition in X,, we provide a sufficient condition in terms of > which turns out to be
also necessary in case S is single-valued. The condition reads differently whether p is
finite or not but, in both cases, S must contain the graph of a universally measurable
function, cf. [6,9,23] and Definition 74 in Appendix A for a definition of the latter
concept.

As regards the asymptotic behavior of solutions of (1) we always work under the
assumption that 3 is a damping set, i.e., for every (z,y) € X, it holds zy > 0. We
also refer to a strict damping set in case the previous inequality is strict for (z,y) €
¥\ {(0,0)}. These conditions generalize the case where ¥ is the graph of a damping
function o : R — R. Note that the damping assumption on ¥ translates to |y| < |z
for (z,y) € RY and to the corresponding strict inequality for (z,y) € RX \ {(0,0)}.

Our first main result says that the asymptotic behavior of solutions of (1) in X, (and
hence of iterated sequences (gn)nen for S in Y,) is governed by the asymptotic behavior
of real iterated sequences (zy)nen for S, i.e., real sequences such that x,11 € S(zy,),
for every n € N. In particular, strong stability in X, for p finite is equivalent to the fact
that every real iterated sequence (x,)nen for S converges to zero, while for p = 400,
strong stability and UGAS are equivalent, themselves holding true if and only if real
iterated sequences (z,)nen for S converge to zero, uniformly with respect to compact
sets of initial conditions xy. Moreover, if the set-valued map S o S has a closed graph,
then strong stability holds true in X, p € [1,+o0], if and only if S o S is a strict
damping. This greatly generalizes a result of [25] where strong stability in Xy has been
established in the case where S is a (single-valued) continuous function on R. For
UGAS with p € [1,+00), we characterize two conditions on ¥ ensuring, for the first
one (see (H6) below), that UGAS does not hold true (cf. Proposition 35) while, on the
opposite, the second one (see (H8) below) combined with UGAS in X is sufficient for
UGAS in X, to hold true (see Theorem 37).

As far as decay rates of solutions of (1) are concerned, we consider damping sets X
subject to two generalized sector conditions describing the behavior of the set RY in
some neighborhood of the origin as follows: for points (x,y) in that neighborhood, the
first condition (Hypothesis (H9) below) assumes that |y| < Q(|x|), whereas the second
one (see Hypothesis (H10) below) assumes that |y| > Q(|z|), where Q € C'(Ry,R})
with Q(0) =0, 0 < Q(z) < z, and Q'(z) > 0 for every x > 0. These two conditions are
inspired from [26] where they are only expressed in terms of ¥ as the graph of a contin-
uous function (see also Hypotheses (H9) and (H10) below). Thanks to our approach,
the decay rate issue amounts to study real iterated sequences (zy)nen verlfymg either
|Zn11] < Q(|xn|) when (H9) holds or |zp4+1| > Q(|z,|) when Hypothesis (HlO) holds.

As for the optimality issue, it is now reduced to the determination of equivalents
in terms of a function of n € N, as it tends to infinity, for the real iterated sequences
(zn)nen verifying |x,41| = Q(|x,|) for n > 0. We provide precise asymptotic results on



the decay of solutions of (1) depending on the value of Q'(0) € [0, 1]. First of all, we are
able to recover all the cases listed in [1, Theorem 1.7.12], even for Example 5, which was
left open, all of them corresponding to situations where Q'(0) = 1. Note that we obtain
the previously known cases with simpler arguments and we also characterize the largest
possible sets of initial conditions admitting optimal decay rates. If Q’(0) € (0, 1), one
has (local) exponential stability, a decay rate which is optimal. The handling of this
case is rather elementary and is known in the literature, as least in the Hilbertian case
p = 2. In the particular case where Q(s) = us for every s > 0 for some p € (0,1), we
provide alternative arguments for exponential stability and also give a necessary and
sufficient and condition in terms of S only for exponential stability to hold true. Our
results concerning the case @Q'(0) = 0 seem to be new and exhibit convergence rates
faster than any exponential ones.

We close the set of our findings on decay rates with the solution of a conjecture
formulated in [26] asking whether arbitrary slow convergence is possible in case ¥ is a
damping set of saturation type, i.e., the values of |y| for (z,y) € ¥ and |z| large remain
bounded by a given positive constant. We bring a positive answer for the possible
occurrence of such an arbitrarily slow convergence in any space X, p € [1,400).

We also have sharp results when the wave equation (1) is subject to boundary
perturbations, i.e., the condition (z(t,1),—z,(¢t,1)) € X for t € Ry is replaced by
(2(t,1), —2(t, 1)) € X +d(t) for t € Ry, where d : R, — R? is a measurable function
representing the perturbation. We provide two sets of results, the first one dealing with
asymptotic perturbation rejection (i.e., conditions on d and ¥ so that solutions of (1)
converge to zero despite the presence of d) and another set of results proposing sufficient
conditions on ¥ ensuring input-to-state stability for the perturbed wave equation (cf.
[21] for a definition of input-to state-stability).

Finally, we revisit the case where 3 is equal to the graph of the sign set-valued map
sgn and extend all the results obtained in [27] regarding this question. In particular,
we provide optimal results for existence and uniqueness of solutions of (1) in any X,,
p € [1,+o0] without relying on semigroup theory and we characterize the w-limit set
of every solution of (1) in an explicit manner in terms of the initial condition.

1.4 Structure of the paper

The paper is organized in six sections and four appendices. After the present introduc-
tion describing the contents of our paper and gathering the main notations, Section 2
is devoted to the description of the precise correspondence between the wave equation
described by (1) and the discrete-time dynamical system given in (4), as well as the list
of meaningful hypotheses one can assume on Y and auxiliary results on the set-valued
map S. Section 3 provides results on the existence and uniqueness of solutions of (1).
Section 4 gathers results dealing with stability concepts, asymptotic behavior, decay
rates, and their optimality for solutions of both iterated sequences of S and solutions
of (1). Section 5 treats the case of boundary perturbations. Section 6 addresses the
situation where X is equal to the graph of the sign set-valued map sgn. The four
appendices collect lemmas and technical arguments used in the core of the text.



1.5 Notations

The sets of integers, nonnegative integers, real numbers, nonnegative real numbers,
and nonpositive real numbers are denoted in this paper respectively by Z, N, R, R,
and R_. For A € {Z,N,R,R;,R_}, we use A* to denote the set A\ {0}.

For x € R, we use |z and [z] to denote, respectively, the greatest integer less than
or equal to = and the smallest integer greater than or equal to z. The set R¢, d € N*,
is assumed to be endowed with its usual Euclidean norm, denoted by |-|, and, given
M >0, B(0, M) denotes the ball of R? centered at zero and of radius M. If A C R, we
define ||A|| = sup,e4lal. All along the paper, we use the letter R to denote the matrix

corresponding to the plane rotation of angle —7%, i.e.,

11
(%)
V2 V2
The identity function of R is denoted by Id and, for ¥ C R? and d € R?, we define the
sum ¥ + d as the set {x +d | x € ¥}.

A set-valued map F': R = R is a function that, with each x € R, associates some
(possibly empty) F(z) C R, and its graph is the set {(x,y) € R? | y € F(x)}. A
set-valued map F' is said to be multi-valued if F(x) # (0 for every = € R, i.e., the graph
of F' contains the graph of a function ¢ : R — R. It is said to be single-valued when
F(z) is a singleton for every x € R, i.e., the graph of F' is the graph of a function
¢ : R — R. In that case, we usually make the slight abuse of notation of considering
F =

The composition of two set-valued maps S and T is the set-valued map So7T : R = R
which, to each z € R, associates the set of points z € R such that there exists y € R
for which z € S(y) and y € T'(z).

Consider a function f : R — R. Then, for n € N, the n-th iterate of f, i.e.,
the composition of f with itself n times, is denoted by f, with the convention that
fI9 = 1d. This notation is extended in a straightforward manner to set-valued functions
F:R=R: ye F[”](a:) if and only if there exists xg,...,x, € R such that xg = z,
Tn =y, and z;41 € F(z;) for every i € {0,...,n —1}.

Several notions of measurability are used in some parts of the paper (see Ap-
pendix A). Unless otherwise specified, the word “measurable” means “Lebesgue mea-
surable”. For an interval I C R, d € N*, and p € [1,+o0], the space LP(I,R?) is
endowed with the norm defined by

[l 1 = [ . if p < +oo,

[l oo (1) = ess sup|u(t)].
tel

The space R? is omitted from the notation when d = 1. We use Y, to denote the space
LP(—1,1) and we write its norm simply by ||-||,.

A function v : Ry — Ry is said to be of class K if - is continuous, increasing, and
v(0) = 0. If moreover lim,_,~ () = +00, we say that 7 is of class K.

A function 8 : Ry x Ry — Ry is said to be of class KL if it is continuous, £(-,t)
is of class K for every ¢t € Ry, and, for every z € Ry, 3(z,-) is decreasing and



2 Description of the model

2.1 Equivalent discrete-time dynamical system

In order to introduce a notion of weak solution of (1) adapted both to LP spaces
and to the one-dimensional case, let us recall the following classical result on regular
solutions to the one-dimensional wave equation, which corresponds to its d’Alembert
decomposition into traveling waves (see, e.g., [10, Section 2.4.1.a]).

Proposition 1. Let z € C?(Ry x [0,1]). Then z satisfies zzx = 2z in Ry x [0,1] if
and only if there exist functions f € C1([0,+00)) and g € C*([~1,+0o0)) such that

2t 2) = 2(0,0) + /tﬂf ds+/H (1)

Proof. Assume that z satisfies z;, = 2z in Ry x [0,1] and let u,v : Ry x [0,1] = R

satisfy
<1%29 R(ﬂﬁﬁﬂ ®)

Then u,v € CY(Ry x [0,1]) and uy = ug, vy = —v, in Ry x [0,1]. One immediately
verifies that, for every (¢,z) € Ry x [0,1], the functions h — u(t + h,z — h) and
h + v(t + h,z + h) are constant in their domains. Letting f : [0,4+00) — R and
g : [—1,+00) — R being defined by

v(s,0) ifs>0,

7(8) = u(s,0), “Q:{ma—@ P l<sco Q

one can easily check that f € C!([0,4+)), g € C}([~1,+00)), and u(t,z) = f(t + )
and v(t,x) = g(t — z) for every (t,xz) € Ry x [0,1]. In particular, it follows from (8)

that t.2) ( )
2t @ 1 gt —x
= . 1
(Zem) =7 () 1o
Hence
T t
z(t,x) = 2(0,0) +/ 22(0,s) ds+/ z(s, x) ds
0
2(0,0) +/ f(s g(—s)ds
t
+/ f(s+x)ds+/ g(s—x)ds
Va3 Jo V3
1 t+x t—x
z(0,0)+/ f(s) ds+/
V2 Jo
as required. Conversely, if z is given by (7), it is easy to see that zy = 2z4,. O

The functions f and g from (9) are called Riemann invariants in the classical
literature of hyperbolic PDEs (see, for instance, [5]). Proposition 1 motivates the
following definition of weak solution to (1).



Definition 2. Let (29,21) € X,. We say that z : Ry x [0,1] = R is a weak global (in

time) solution of (1) in X, Wlth initial condition (29, z1) if there exist f € L} (0,+00)
and g € LY (—1,+00) such that
1 t+x t—x
z(t,x):/ f(s) ds+/ for all (t,z) € Ry x [0,1],
V2 Jo (1)
z(t,0) =0, (z(t,1), —2z,(t,1)) € for a.e. t € Ry,

2(0,2) = zo(x), 2(0,2) = zl(:r;), for a.e. x € [0,1].

In that case, we use e,(2)(t) to denote the X, norm of the weak global solution z of
(1) at time ¢t € Ry, defined by

ep(2)(t) = [I(2(t;-), 2e(, )|, -

Note that, if z is a weak global solution of (1) in X,, then (z(t,-), (¢, -)) € X, for
every t € Ry and 2z = 2., is satisfied in R¥ x (0,1) in the sense of distributions. In
the sequel, we refer to weak global solutions of (1) simply as solutions or trajectories
of (1) and, by a slight abuse of expression, we refer to e,(2)(t) as the energy of z at
time t.

By rewriting the boundary and initial conditions of (1) in terms of the functions f
and g from Definition 2, one obtains at once the following characterization of solutions
of (1), when they exist.

Proposition 3. Let z : Ry x [0,1] — R be a solution of (1) with initial condition
(z0,21) € Xp and f € L} (0,+00) and g € LY (—1,+00) be the corresponding functions
from Deﬁmtzon 2. Then f and g satisfy

<‘Ci(f_(2) —R <_Z;§fi)) for a.e. s € 0,1], (12a)

f(s) = —g(s), for a.e. s >0, (12b)
(9(s —2),9(s)) € RY, for a.e. s > 1. (12¢)

Conversely, consider g € L} (—1,+00) verifying (12¢) and let f € L, (0, +00) be
given by (12b). Then the function z : Ry x [0,1] — R defined by the integral formula
from (11) is a solution of (1) whose initial condition (zo,z1) € X, is the unique couple
of functions satisfying (12a).

The main technique underlying all the results of our paper consists in establishing
links between trajectories of (1) and trajectories of discrete-time dynamical systems
which are defined next.

Definition 4. Let S : R = R be a set-valued map. We refer to the inclusion
Tpt1 € S(zy), neN, z, €R,

as the discrete-time dynamical system associated with S on R and its corresponding
trajectories (x,)nen are called real iterated sequences for S.
Similarly, we refer to the inclusion

In+1(8) € S(gn(s)), n €N, ae se[-1,1], (13)
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as the discrete-time dynamical system associated with S on the space of real-valued
measurable functions defined on [—1,1] and its corresponding trajectories (gn)nen are
called iterated sequences for S. For p € [1,+o0|, the discrete-time dynamical system
associated with S on Y, is defined as the restriction of the above dynamical system to
sequences (gn)nen in Yp.

In the sequel of the paper, we will connect solutions of (1) and solutions of (13)
with S being the set-valued map whose graph is RY, in which case (13) is another way
of writing (12c). For that purpose, we need to introduce some additional notations. In
the following definition, we use YE to denote the set of sequences taking values in Y.

Definition 5. Let p € [1, +00].

(a) We use Seq : LI (—1,+00) — YET to denote the bijection which associates, with

loc

each g € L (—1,+00), the sequence (gn)nen in Y, defined by g,(s) = g(s + 2n)

loc

for n € N and a.e. s € [-1,1].

(b) We use J : X, = Y, to denote the isometry which associates, with each (zo, 21) €
Xy, the element gg € Y, defined by

(g}}é@;)) =R <_Z;£2)> ., forae. se0,1].

As a consequence of Proposition 3 and the above definitions, one immediately ob-
tains the following one-to-one correspondence between solutions of (1) in X, and tra-
jectories of the dynamical system (13) in Y.

Proposition 6. Let p € [1,+00], ¥ C R?, and S : R = R be the set-valued map whose
graph is RY.
(a) Let z be a solution of (1) with initial condition (z0,21) € Xp, g € LP (—1,400)

loc

be the corresponding function from Definition 2, and (gn)nen = Seq(g). Then
(gn)nen is an iterated sequence for S on Y, starting at go = JI(zo0,21).

OoNnverseLy, e n)neN 0€ an iteratea sequence jor on starting at some
b) C ly, let (gn)nen b iterated S on Y, starting at

90 € Yp. Let g = Seq™ ' ((gn)nen), f € LE, (0,400) be given by f(s) = —g(s) for
a.e. s >0, and z be defined from f and g as in the first equation of (11). Then
z is a solution of (1) in X, with initial condition (z9,21) = I (go)-

(c) Let z, g, and (gn)nen be as in (a) or (b). Then
ep(2)(t) = [lg(t + ) llp, for allt € Ry (14)
and, in particular,

ep(2)(2n) = [lgnllp, for alln € N. (15)

Proof. Items (a) and (b) are reformulations of Proposition 3. As for (14), it follows
from the definition of ey, (10), and (12b). O

Saying that (gn)nen is an iterated sequence for the set-valued map S given in the
statement of Proposition 6 is equivalent to

(9n(8), gn+1(s)) € RE, neN, ae. s e [-1,1], (16)
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which is nothing but (12c) rewritten in terms of the sequence (g, )nen-

It is now clear, at the light of what precedes, that addressing standard issues for
solutions of (1) such as existence, uniqueness, and decay rates and their optimality
is completely equivalent to addressing the same issues for sequences (gn)nen in Y,
verifying (16). This is the point of view that we will adopt all along the paper.

Remark 7. Thanks to the iterative nature of discrete-time dynamical systems in Y,
Proposition 6 reduces the issue of existence (resp. existence and uniqueness) of solutions
of (1) in X,, for every initial condition in X, to the following equivalent statement in
terms of S: for every g € Y,,, there exists (resp. there exists a unique) h € Y, such that
h(s) € S(g(s)) for a.e. s € [—-1,1]. o

Remark 8. For p < 400, one deduces from (14) that, for every ¢ > 0,
t4+1
B0 = [ lals)r s
t—1
and hence ¢t — eh(z)(t) is absolutely continuous and

d%eg(z)(t) —lg(t+ 1P — |g(t — D), for ace. ¢ > 0. (17)

o
Remark 9. When 3 is the graph of a function ¢ : R — R, the set-valued map

S : R = R whose graph is RY. can be described as follows: for x € R, S(x) is the set
of solutions y € R of the equation

. (m — y> Tty
V2 V2o
A similar equation has been given in [25] but, instead of working with a set-valued map

S, the authors consider instead solutions y of the above equation of minimal absolute
value. °

2.2 Hypotheses on X

To prepare for the sequel of the paper, we provide a list of assumptions on X that will be
useful to characterize existence, uniqueness, or asymptotic behavior of (1). The results
of this paper will require subsets of these assumptions, which are explicitly stated in
each result. We stress the fact that we do not assume all these assumptions on X at
the same time, since most of our results do not require all of them. Note that we will
use the two notions of universally measurable function (whose definition is recalled in
Appendix A) and function with linear growth, i.e., functions ¢ : R — R for which there
exist a,b € Ry such that

lo(x)| < alz| + b, Vz € R.

Hypotheses 10. The following hypotheses concern a set ¥ C R? and the set-valued
map S whose graph is R>.

(H1)  (0,0) € X.

12



(H2) RY contains the graph of a universally measurable function ¢ with linear
growth.

(H2)ss RY contains the graph of a universally measurable function ¢ mapping boun-
ded sets to bounded sets.

(H3) RY: is equal to the graph of a universally measurable function ¢ with linear
growth.

(H3)oo RX is equal to the graph of a universally measurable function ¢ mapping
bounded sets to bounded sets.

(H4)  For every (z,y) € X, one has zy > 0.
(H5)  For every (z,y) € ¥\ {(0,0)}, one has zy > 0.
(H6)  One has
lim  min (x, y) = 0.
|(z,y)|—=+o0 y x
(z,y)ex

(HT7) ¥ satisfies (H4) and there exist positive constants M, a, b such that
alz] < ly| < blz, for every (x,y) € XN B(0, M).

(H8) Y satisfies (H4) and there exist positive constants M, a, b such that
alz| < |y| < blz, for every (z,y) € ¥\ B(0, M).

(H9) Y satisfies (H4) and there exist a positive constant M and a function ¢ €
CHRy,Ry) with ¢(0) =0, 0 < g(z) < z, and |¢'(z)| < 1 for every x > 0 such
that

q(lz]) <yl and q(ly]) <[z[,  for every (z,y) € XN B(0, M).

(H10) X satisfies (H4) and there exist a positive constant M and a function ¢ €
CHRy,Ry) with ¢(0) =0, 0 < g(z) < z, and |¢'(z)| < 1 for every = > 0 such
that

lyl < q(lz]) or |z] <q(ly]), for every (z,y) € ¥ N B(0, M).

Throughout the paper we will often assume 3 to be a damping set, whose definition
is given next.

Definition 11 (Damping set). A set ¥ C R? is called a damping set (or simply
damping) if it satisfies (H1), (H2), and (H4). It is said to be strict when one requires
(H5) to be satisfied instead of (H4).

By a slight abuse of notation, we will also refer to the set-valued function .S whose
graph is RY. as a (resp. strict) damping when ¥ is a (resp. strict) damping.

Assumption (H1) is used to guarantee that z = 0 is a solution of (1). When X is
the graph of a function o, then (H1) reduces to ¢(0) = 0.

In the case where ¥ is the graph of a linear function o(z) = az, it is standard that
a necessary and sufficient condition for the existence of solutions of (1) is a@ # —1,

13



i.e., that RY is not the vertical axis + = 0. Hypotheses (H2)-(H3)s prevent this
phenomenon of nonexistence of solutions of (1) by imposing a positive distance between
the vertical axis x = 0 and some points of R outside of a neighborhood of 0. Moreover,
we will show in Theorem 20 that (H2) (resp. (H2)) is a sufficient condition for the
existence of solutions of (1) in X,, for p finite (resp. p = +00) and the necessity of the
linear growth condition (resp. the condition of mapping bounded sets to bounded sets).

Regarding uniqueness, we have a more precise result, namely that (H3) (resp.
(H3)) is necessary and sufficient for p finite (resp. for p = +00), as shown in The-
orem 21. Note that a standard assumption in the literature for obtaining uniqueness
of solutions of (1) is that o or Id +¢ are monotone, cf. for instance [25, Proposition 1]
and also Proposition 19 below. Either of these properties implies conditions (H3) and
(H3)oo on X.

Condition (H4) is a generalization of the damping assumption on a function o,
which states that so(s) > 0 for every s € R, and which implies that the X3 norm
of solutions of (1) is nonincreasing. Similarly, (H5) is a strict version of (H4) and
generalizes the condition of strict damping for a function o, i.e., so(s) > 0 for every
s € R*.

Hypothesis (H6) is used in the sequel to show that the stability concept of UGAS
does not hold in general in X, for finite p and it can be restated, in the case where
is the graph of a continuous function ¢ : R — R, as

lim min <J(S) 3) =0.

|s]—=+o0 s’ 0'(8)

In particular, Hypothesis (H6) is verified if o is either a saturation function (see Figure 3
below) or has a superlinear growth at infinity.

Hypotheses (H7) and (H8) are generalizations of linear sector conditions in neigh-
borhoods of the origin and infinity respectively, which are classical in the case where
Y is the graph of a continuous function ¢ : R — R and which can be stated in that
case respectively as

o(s) a(s)

0 < liminf —= <limsup —= < 400
s—0 S s—0 S
and
o(s o(s
0 < liminf () < limsup (5) < +00.
|s|>+o0 S |s| 5400 S

We next translate these hypotheses in equivalent statements when one replaces X
by R and get the following proposition.

Proposition 12. Let ¥ C R? and consider the list given in Hypotheses 10. Then
Hypothesis (H1) is equivalent to the same statement when replacing ¥ by RY. As for
(H4), (H5), (H6), (H7), (H8), (H9), and (H10) they can be expressed in terms of R
(or, equivalent, of S) respectively as follows:

(H4)  For every x € R and y € S(x), one has |y| < |z|,
(H5)  For every x € R and y € S(x) with (z,y) # (0,0), one has |y| < |z|,
(H6)  One has
lim ‘Q‘ =1.
|(z,y)|=>+ool T
yeS(z)
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(H7) X satisfies (ﬁl) and there exist M > 0 and p € (0,1) such that

yl < ulal,  for every (z,y) € RSN B(0, M).

(H8) X satisfies (/Pﬂ) and there exist M > 0 and p € (0,1) such that

lyl < plzl,  for every (x,y) € RE\ B(0, M).

(H9) X satisfies (H4) and there exist a positive constant M and a function QQ €
CL(R4,Ry) with Q(0) =0, 0 < Q(z) < z, and Q'(x) > 0 for every x > 0 such
that

lyl < Q(|z|), for every (z,y) € RN B(0,M).

(H10) X satisfies (H4) and there exist a positive constant M and a function QQ €
CH R, R,) with Q(0) =0, 0 < Q(x) <, and Q' (x) > 0 for every x > 0 such
that

lyl > Q(|z|), for every (z,y) € RE N B(0, M).

Proof. This proposition follows after immediate computations, after noticing though

that the equivalences between (H9) and (H9) and between (H10) and (H10) are ob-
tained via the follow explicit relation between the functions ¢ and Q:

Qz) = 2(q +1d) " (V22) - V22, (18)
where indeed x — = + ¢(x) is an increasing bijection from R to Ry when (H9) or
(H10) holds true. O

Remark 13. Hypotheses (H9) and (H10) are borrowed from [26], where they are only
considered in the case where 3 is the graph of a function. These hypotheses can be seen
as nonlinear sector conditions, which can be clearly understood when written in terms
of RY., see Figure 2 below. Indeed, these conditions naturally arise when one considers,
instead of 3, the set ¥~ = {(y, ) | (z,y) € X}, which generalizes the situation where
¥ is the graph of an invertible function ¢ and in which case ¥~! becomes the graph
of 0~ and is obtained from ¥ by the symmetry with respect to the diagonal line
y = x. Instead, R ! is obtained from RY. by the symmetry with respect to the axis
y = 0 which corresponds to a simple sign change for S. Hence, all the issues related
to iterated sequences associated with S (such as existence, uniqueness and asymptotic
behavior) remain unchanged when they are considered for —S. o

We next provide figures illustrating the region RY for different choices of 3. The
first one, provided in Figure 1, is an example of a set ¥ satisfying (H4) together with
the corresponding set RY, which satisfies (H4).

Figure 2 provides the regions where a set ¥ must be included in order to satisfy
either (H9) (in light blue) or (H10) (in light red). The figure also represents the
corresponding regions for RY. to satisfy (H9) or (H10).

We represent in Figure 3 a set X as a saturation-type sector, i.e., a region comprised
between the graphs of two piecewise linear saturation functions. The latter are defined
as functions f of the form f(z) = Az for |z| < M and f(z) = )\Mé—‘ for |x| > M,
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Figure 1: A set ¥ satisfying (H4) and the corresponding set RY. satisfying (H4).

/ N

o

Figure 2: Regions for generalized sector conditions for ¥ and RX..

for some positive constants A and M. More generally, we call saturation function any

continuous function whose graph is contained in a saturation-type sector.

Finally, Figure 4 represents the set 57, M > 0, given by the graph of the sign

set-valued map sgn,; : R = R defined by
{—M}, ifx <0,
sgny(z) =< [-M, M|, ifz=0,
{M}, ifx >0,

i.e.,

Sar = (Re x {=M}) U ({0} x [-M, M) U (R x {M}).

Note that ¥,/ is not the graph of a single-valued function, but R¥,; is.
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Figure 3: Saturation-type sectors.

p N\

Figure 4: Sign function.

2.3 Other models of wave equations with set-valued boun-
dary damping

The flexibility of the viewpoint consisting of translating the study of solutions of (1) into
that of iterated sequences of the set-valued map S is well illustrated when considering
the wave equation

(241 (t, @) = 2pa(t, 2), (t,x) € Ry x [0,1],
(2(¢,0), 22(t,0)) € 2o, teRy,
(2¢(t,1), —22(t,1)) € X4, teRy, (21)
2(0,x) = zo(x), x € [0,1],

L 2¢(0,2) = 21(x), x € [0,1],

where g and X1 are subsets of R2. We have taken this example from [26] where precise
decay rates of solutions of (21), as time tends to infinity, have been given in the case
where both ¥ and X; are graphs of functions sgn(z)|z[**®, a > 0.

17



Similarly to Proposition 6, we aim at characterizing a correspondence between the
solutions of (21) and the iterated sequences of a discrete-time dynamical system. For
that purpose, we first provide the appropriate counterpart to Definition 5.

Definition 14. For p € [1,+o0], set Z, = LP(—1,0).

(a) We use Seqq : L} (—1,+00) — Z§ to denote the bijection which associates, with
each h € L} (—1,400), the sequence (hp)nen in Z, defined by hy,(s) = h(s+n)

for n € N and a.e. s € [-1,0].

(b) We use Jz : X, = Z, x Z,, to denote the isometry which associates, with each
(20, 21) € Xp, the element (hg, go) € Zp x Z,, defined by

(L)) =r(0). e

We also assume in the sequel of this subsection that Definition 2 is suitably modified
in order to take into account the new boundary condition at x = 0 and the fact that
2(0,0) is not necessarily zero, and that the contents of Definition 4 are extended to
set-valued maps defined on R? in order to deal with discrete-time dynamical systems
on R? and L, X Zp.

Proposition 15. Let p € [1,+00], Xo, 31 be two subsets of R?, and S; : R = R be the
set-valued map whose graph is equal to RY; for i € {0,1}. Define the set-valued map

S on R? which associates with every (z,y) € R2 the Cartesian product of the subsets
(=S1)(y) and (—=So)(x) of the real line.

(a) Let z be a solution of (21) with initial condition (z9,21) € X, f € LV (0,+00)

loc

and g € LF (—1,400) be the corresponding functions from Definition 2, and the

loc
sequences (hp)nen = Seqo(f(-+ 1)) and (gn)nen = Seqy(g). Then (hn, gn)nen is
an iterated sequence for S on Z, x Z,, starting at (ho, go) = J2(20, 21).

(b) Conversely, let (hy,gn)nen be an iterated sequence for S on Z, x Z, starting at

some (ho, go) € Z, X Zp,. Let f(-+1) = Seqal((hn)neN) and g = Seq ((gn)nen)-
Then f € LY (0,4+00), g € LY (—1,+00) and, if z is defined from f and g as in

loc loc

the first equation of (11), one gets that z is a solution of (21) in X, with initial
condition (20, 21) = J5*(ho, go)-

(c) Let z, f, g, and (hp, gn)nen be as in (a) or (b). Then, for allt € Ry,
W = IfE+1+ )8 +lgt+ B, ifp<-+oo,
€oo(2)(t) = max([[f(t + 1+ )|z, l9(t +-)llz.0);
and, in particular, for alln € N,
(2)0) = Il +llgalls, i < +oo,
eoo(2)(n) = max(|[hn|z.., |9nllz.)-

Proof. The proof for the proposition exactly follows the line of arguments that led to
Proposition 6. The only difference appears when replacing the Dirichlet boundary con-
dition at z = 0 in (1) by the boundary condition at = = 0 given by (z(t,0), 2,(¢,0)) €
Yo in (21). One then replaces by (12b) and (12c) by the equations

—g) € Solf(1), —f(t+1) € Si(glt—1)), foreveryt=0,  (22)
respectively. O
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At the light of the above proposition, one can see that the issues of existence and
uniqueness of solutions of (21) boil down to the study of the set-valued map S, the
latter question being equivalent to the separate study of Sy and S;. On the other hand,
asymptotic stability of solutions of (21) and related issues are addressed through the
study of iterated sequences associated with S in R?. Due to the structure of S, the
latter question can be reduced to the study of real iterated sequences associated with
the set valued maps (—S7) o (—Sp) or (—Sp) o (—S1) since, combining the two equations
of (22) yields that (hy,)nen is an iterated sequence for (—S7)o(—5p) in Z,, while (gn)nen
is an iterated sequence for (—Sp) o (—S1) in Z,.

When Sy is single-valued, the sequence (hy,)nen suffices to describe solutions z of
(21), since the corresponding sequence (g,)nen is uniquely determined by the first
relation of (22) and the second relation in (22) can be expressed solely in terms of
(hn)nen. If moreover the single-valued map Sy is invertible, we may alternatively
describe solutions z of (21) in terms of (g, )nen only, since (hy)nen can be computed
using the first relation of (22). This is precisely what is done for (1) in this paper, in
which case Sy = Id and we can use this simple expression of Sy to further simplify the
relation between ep(z)(-) and the norms of the elements of the sequence (gn)nen. A
similar remark applies when Sy is single-valued.

Remark 16. Any boundary condition involving only z; and z, at the same endpoint
can be recovered by our formalism. Indeed, an homogeneous Neumann condition reads
¥ equal to the horizontal axis R x {0}, while an homogeneous Dirichlet condition can
be seen as taking ¥ equal to the vertical axis {0} x R. For instance, proceeding in
such a way at the extremity x = 0 with an homogeneous Dirichlet boundary condition
yields that Sy = Id, from which we recover the set-valued map S of Proposition 6 as
equal to Sj. )

2.4 Additional auxiliary results

We now present some important auxiliary results providing properties of the solutions
of (1) and of the set ¥ that will be used several times in the paper. We start with the
following result on a decomposition of solutions of (1), whose proof is immediate.

Proposition 17. Let p € [1,+00], ¥ C R?, and S be the set-valued function whose
graph is RY. Assume that S(0) = {0}.

Let (f(k))keN be a sequence in Y, so that %) and &) have disjoint supports for
every integers k # k' and assume moreover that f = >, <, %) belongs to Y,. Hence,
for every n > 0, -

S(f(s)) =D _SM(fP(s)),  for ae. s € [-1,1]. (23)

k>0

Moreover, if (fn)n>0 is any iterated sequence for S starting at f, then, for every k >
0, there exists an iterated sequence (f,gk))neN for S starting at f*) such that f, =
> k>0 fék) for every n > 0. In particular, if p is finite, it holds

108 =S IAP e, (24)

k>0
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and, if p = +00, one has
1 £alloo = supll £ oo (25)
k>0

The next proposition gathers some elementary properties of set-valued dampings,
as given in Definition 11.

Proposition 18. Let S : R = R be a damping.
(a) S(0) = {0} and, if S is a strict damping, then x € S(x) if and only if x = 0.
(b) For every x € R, S(x) is nonempty.
(¢) If S is closed, then S(x) is compact for every x € R.

(d) If T is a damping, then SoT is also a damping, and it is strict if S or T is strict.
In particular, the iterates S, n e N*, are also dampings, and they are strict if
S is strict.

(e) Assume that, for every real iterated sequence (xp)nen in R for S which is not
identically zero, there exists n € N such that |x,| < |zo|. Then S is a strict
damping.

(f) SP s a strict damping if and only if there does not exist x € R* such that either
(i) x € S(z) or (i1) —x € S(z) and x € S(—x).

Proof. By (H1), one has (0,0) € RY and thus 0 € S(0) since the graph of S is RY.
One can deduce easily that (H4) implies S(0) = {0}. The second part of (a) follows

immediately from (H5). The fact that RX contains the graph of a function, which is a
consequence of (H2), also immediately implies (b). The closedness of S implies that,

for every x € R, ({z} x R)NRY is closed, and (H4) yields that this set is also bounded,
showing that it is compact. Then S(x) is compact as the image of ({z} x R) N RY
through the projection onto the second coordinate, proving (c).

To prove (d), notice that S o T trivially satisfies (H1), and (H4) for S o T follows
immediately from the corresponding properties for S and 7', with S o T" satisfying
(H5) as soon as one of S or T satisfies this assumption. Finally, if g : R — R
and 7 : R — R are universally measurable functions with linear growth contained
in the graphs of S and T, respectively, one immediately verifies that g o o is a
function with linear growth contained in the graph of S o 7. This function is also
universally measurable as the composition of two universally measurable functions (see
Proposition 77 in Appendix A), showing that S o T" also satisfies (H2), as required.

Let us show (e) by contraposition. By (d), S is a damping and, if it is not strict,
then there exists z € R*, y € S(z), and z € S(y) such that |z| = |y| = |z]. f z =y or
y = z, then the sequence (z,)nen defined by z, = y for every n € N is a real iterated

sequence for S with |z, | = |xo| for every n € N. Otherwise, one has z = —y = = and
we define the sequence (x,)neny by ©n, = (—1)"x for n € N. It is then clearly a real
iterated sequence for S with |z,| = |zo| for every n € N, leading thus to the proof of

the desired result.
Finally, to prove (f), notice that, if the damping S? is not strict, then, letting z, y,
be as in the proof of (e), the previous argument shows that one has either y € S(y)

or z = —y = x, in which case —x € S(z) and = € S(—z), as required. Conversely, if
there exists € R* such that x € S(x), or such that —x € S(x) and = € S(—=z), then,
in both cases, z € S (z), showing that S| is not a strict damping. O
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In the case where ¥ is the graph of a continuous function, items (a)—(c) have been
already obtained in [25, Lemma 1].

We conclude this section with a technical result providing a necessary and sufficient
condition on the set-valued map S to be the graph of a continuous function when . is
the graph of a continuous function.

Proposition 19. Assume that 3 is the graph of a continuous function o : R — R.
Then the set-valued function S is single-valued and continuous if and only if Id +o :
R — R is a bijection. Moreover, if o is a damping function, then S is single-valued
and continuous if and only if Id +o0 is strictly monotone.

Proof. Since ¥ = {(z,0(x)) | x € R}, one gets that

RY. = {(T(w),T(m) - \/5:1:) ’ x € R}

with T’ = 102,

If Id 40 is a bijection, then T is invertible and thus R is the graph of the continuous
function z + = — v/27 () defined on R. Conversely, assuming that RY is the graph
of a single-valued function ¢ : R — R, one immediately deduces that T': R — R is
surjective. If 21, 79 € R are such that T'(z1) = T(x2), then T'(z1) — V211 = o(T(x1)) =
©(T(x2)) = T(x2) — V22, implying that 21 = 2. Thus, T is also injective. Hence T
is bijective, as required.

The last assertion of the proposition follows from the fact that, if ¢ is a damping
function, then

sl}r_noo(ld +0o)(s) = —o0 and sginoo(ld +0)(s) = +o0,
showing that Id +o is surjective. Hence Id 4o is bijective if and only if it is strictly
monotone. O

3 [Existence and uniqueness of solutions in X,

In this section, we will show that the hypotheses (H2)-(H3) introduced in Hypotheses
10 actually yield necessary and sufficient conditions for existence and uniqueness of
solutions of (1) in X,, p € [1,+00]. We start with the following existence result.

Theorem 20. Let ¥ C R? and p € [1, +00].

(a) If (H2) holds and p < +oo, or if (H2)s holds and p = +oo, then, for every
(20, 21) € Xy, there exists a solution of (1) in X, with initial condition (zo, 21).

(b) Assume that, for every (z9,z1) € Xp, there exists a solution of (1) in X, with
initial condition (zo,z1). Then RY contains the graph of a Lebesgue measurable
function. Moreover, RY also contains the graph of a function with linear growth
if p < +o00 or the graph of a function mapping bounded sets to bounded sets if
p = +0o0.

Proof. According to Remark 7, the existence, for every initial condition (zo,21) € X,
of a solution of (1) in X, with initial condition (zp, 21), is equivalent to the following
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statement: for every g € Y, there exists h € Y, such that h(s) € S(g(s)) for a.e.
s € [—1,1], where S denotes the set-valued map whose graph is RY.

We start by showing Item (a). It is clear that (H2) (resp. (H2)s) is sufficient
to get the statement for p finite (resp. for p = +00) by taking h = ¢ o g, where ¢
is the function whose existence is asserted in (H2) (resp. (H2)s). Indeed, since ¢
is universally measurable and using Proposition 78 in Appendix A, one gets that h
is measurable, and the linear growth assumption (resp. the assumption of mapping
bounded sets to bounded sets) on ¢ guarantees that h € Y),.

We next turn to an argument for Item (b). Assume that, for every g € Yy, there
exists h € Y, such that h(s) € S(g(s)) for a.e. s € [—1,1]. Notice first that, for every
x € R, S(x) is nonempty. Indeed, given = € R, consider ¢ identically equal to z and
apply the working hypothesis on g. Then clearly h(s) € S(z) for a.e. s € [—1,1], and
hence S(z) is nonempty.

Let g : (—1,1) — R be a diffeomorphism. Thanks to Lemma 80 in Appendix D,
there exists a measurable function h : (—1,1) — R such that h(s) € S(g(s)) for a.e.
s € [-1,1]. Let ¢ = hog~!, which is measurable since g is a diffeomorphism. Then
o(z) € S(x) for a.e. z € R, and this inclusion can be made to hold everywhere up to
modifying ¢ on set of measure zero.

We finally prove the last parts of the statement regarding linear growth for 1 <
p < 400 and the condition of mapping bounded sets to bounded sets for p = 4o0.
Reasoning by contradiction yields the existence of a sequence (x,)nen such that, for
p < 400, one has

lyl > n(|zn] + 1) for every n € N and y € S(x), (26)
while, for p = 400, (25 )nen is bounded and
ly| >n for every n € N and y € S(xzy). (27)

Let {A,, },en be a family of disjoint measurable subsets of [—1, 1] of positive Lebesgue
measure a,. In the case p < +oo, we further require that o, = m, which
is possible since Y 2 oy, < 2. Consider the measurable function g = > >° jznXa4, .

Since one has that

o0
lglly = anlaa? if p < 400 and 9lloc = sup|zn,
n=0 neN
then g € Y,. Let h € Y, be such that h(s) € S(g(s)) for a.e. s € [-1,1]. Then, for

p < 400, one deduces by (26) that |h(s)| > n(|x,|+1) for every n € N and a.e. s € 4,
and therefore

00 00 e

nP n
h p > o np €T —|— ]_ p = —_— > -5 — +OO,
H Hp = nEZO n (‘ n’ ) n§:0: (n 4 1)2 - 1;:0: (n + 1)2

which contradicts the fact that h € Y,. Similarly, for p = 400, one gets by (27) that
|h(s)| > n for every n € N and a.e. s € A,, and, since A,, has positive measure for every
n € N, one has ||h|lcc = 00, yielding the required contradiction also in that case. [J

We next provide our result on the uniqueness of solutions of (1).
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Theorem 21. Let ¥ C R? and p € [1,+0c]. Then, for every (20,21) € X,, there exists
a unique solution of (1) in X, with initial condition (z9,z1) if and only if either (H3)
holds and p < +o00, or (H3)s holds and p = +oo.

Proof. As in the proof of Theorem 20, we use Remark 7 to equivalently reformulate
the existence and uniqueness, for every initial condition (29, 21) € X, of a solution of
(1) in X, with initial condition (2, z1), as the following statement: for every g € Y,
there exists a unique h € Y, such that h(s) € S(g(s)) for a.e. s € [-1,1].

We first suppose that (H3) or (H3). holds. Notice that (H3) implies (H2) and
(H3)s implies (H2)o and hence, assuming either (H3) and p < +oo or (H3)s and
p = +00, one has, from Theorem 20, existence of solutions to (1). Moreover, both
(H3) and (H3). imply that S is the graph of a function ¢ : R — R and hence having
h(s) € S(g(s)) for a.e. s € [—1,1] is equivalent to having h = ¢ o g, which uniquely
determines h.

Conversely, by Theorem 20(b), RY contains the graph of a measurable function
p: R — R. If RY were not equal to the graph of ¢, there would exist x € R such that
S(z) contains more than one element, and thus, by considering the initial condition g
constant equal to z, one would construct two different solutions to (1), contradicting
the uniqueness assumption. Hence RY is equal to the graph of ¢. Applying once again
Theorem 20(b), one deduces that ¢ is necessarily a function with linear growth in the
case p < +oo or a function mapping bounded sets to bounded sets in the case p = 400.

One is left to show that ¢ is universally measurable. This follows by first using
Lemma 80 from Appendix D to conclude that ¢ preserves Lebesgue measurability by
left composition and then Proposition 78 from Appendix A. O

Remark 22. It is clear from Theorems 20 and 21 that existence and uniqueness of
solutions of (1) in X, solely depends on the fact that the set RY contains (or is equal to)
the graph of a function with appropriate properties. Thanks to this fact, it is possible
to obtain existence and uniqueness of solutions of (1) for a large variety of sets X. For
instance, this allows us to consider ¥ as graphs of discontinuous functions completed
by vertical segments at jump discontinuities without facing the usual issues addressed
in [11,27]. An example of the above discussion is the sign function, illustrated in
Figure 4 and treated in more details in Section 6. o

Remark 23. Hypothesis (H2) falls short of being necessary for existence of solutions
of (1) in X, for p finite. Indeed, it would be the case if not only the measurable
function and that of linear growth provided by Theorem 20(b) would be equal to the
same function ¢, but also if this function ¢ were universally measurable. Note that
the further assumption of uniqueness of solutions of (1), together with Proposition 78,
implies such properties on ¢ and yields Theorem 21. We conjecture that (H2) is actually
necessary for the existence of solutions of (1) in X, for p finite. Similar comments can
be made on (H2)s in the case p = +o0. o

Remark 24. The notion of solution of (1) introduced in Definition 2 covers only the
case of solutions which are global in time. One can easily adapt Definition 2 to allow
for solutions of (1) defined locally in time: given 7' > 0, it suffices to require that
felLl (0,7+1)and g € L (0,7) and that (11) is satisfied for ¢ € [0,T) instead
of for t € Ry. The local formulation allows one to also consider solutions of (1) that
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blow up in finite time, but this topic is outside the scope of the present paper, which
focuses instead on the convergence to zero of solutions as time tends to infinity.
Theorem 20 concerns the existence of global solutions of (1), but, since one does not
necessarily have uniqueness of solutions, there may also exist local solutions blowing up
in finite time under the assumptions of Theorem 20(a). For finite p, one may prevent
the existence of such local solutions by requiring the linear growth assumption on S
instead of only on the universally measurable function ¢ from (H2), i.e., by requiring
that there exist a,b € Ry such that ||S(z)|| < alx| + b for every x € R. Under this
assumption, any local solution of (1) in X, can be extended to a global solution. A
similar remark holds in the case p = 400 by requiring | J,c 4 S(x) to be bounded for
every bounded set A C R (which is in particular satisfied when S has linear growth).
Notice that the linear growth condition on S is satisfied under (H3) (and, similarly,
in the case p = 400, the condition of S being bounded on bounded sets is satisfied
under (H3) ), meaning that, given an initial condition, the unique solution of (1) from
Theorem 21 is unique not only on the class of global solutions, but also on the class of
local solutions. In the sequel of the paper, we will mostly often work with sets ¥ C R?
which are dampings, in which case (H3) or (H3), are not necessarily satisfied, but the

linear growth assumption trivially holds due to (H4). o

Remark 25. Since (H3) is independent of p, it follows from Theorem 21 that existence
and uniqueness of solutions of (1) in X,, for any initial condition in X, for some finite
p is equivalent to having the same property for every finite p. However, existence and
uniqueness in the case p = +oo are equivalent to the weaker assumption (H3)». A
way to interpret this fact is to remark that the linear growth assumption from (H3)
is designed to avoid blow-up in finite time of solutions of (1) in LP norm for finite p,
but, for bounded initial conditions, this blow-up phenomenon can be prevented with
the weaker assumption from (H3). o

Remark 26. If gy is a simple function (i.e., a function whose range is a finite set), one
may wonder whether there exists a solution of (1) with initial condition J=%(go). It
turns out that a necessary and sufficient condition for the existence of such a solution
for every simple function g is that S is a multi-valued function (i.e., S(x) # (0 for every
x € R). Indeed, in this case, starting from a simple function gg, one builds at once a
sequence (gn)nen satisfying (16) where, for every n > 0, g, is a simple function which
is constant on every set on which g is constant.

The same question may be asked in the more general case where gy € Y, has
countable range. The necessary and sufficient condition for the existence of solutions
of (1) starting at J71(go) for every such gg is simply now that RY contains the graph
of a function with linear growth in the case p < 400 or that of a function mapping
bounded sets to bounded sets in the case p = +oc.

Both statements follow immediately from the arguments provided in the proof of
Theorem 20. o

4 Asymptotic behavior

After having provided a suitable notion of weak solution of (1) and established con-
ditions for existence and uniqueness of corresponding solutions, we consider in this
section their asymptotic behavior. We start in Subsection 4.1 by identifying (H4) as
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a necessary and sufficient condition for the energy of a solution to be nonincreasing
and providing suitable definitions of stability. We then provide necessary and sufficient
conditions for these notions of stability in Subsection 4.2 in terms of the behavior of
real iterated sequences for the set-valued map S whose graph is RY, and relate them
to properties of S/ in Subsection 4.3. A detailed study of the decay rates of solutions
of (1) and their optimality is then presented in Subsection 4.4, and the section is con-
cluded in Subsection 4.5 by an example showing that the decay of solutions can be
arbitrarily slow when ¥ is of saturation type, answering a conjecture of [26].

4.1 Basic results and definitions

We start with the following basic property of a damping set 3 as regards the behavior
of e, along solutions of (1). When X is the graph of a function, this result is classical for
p = 2 and has been essentially given for p € [1,400] in the case of internal distributed
damping in [14].

Proposition 27. Let ¥ C R%, p € [1,+0o0], S be the set-valued map whose graph is
R, and assume that S is a multi-valued function. Then t — ey(2)(t) is nonincreasing
for every solution z of (1) in X, if and only if (H4) holds.

Proof. Assume that (H4) holds and recall that it is equivalent to (H4). Let z be a
solution of (1) in X, and g be as in Definition 2. By (H4) and (12c), one deduces that
lg(t + 1)| < |g(t — 1)| for every ¢t > 0, and the result follows immediately in the case
p < +oo by (17). If p = 400, notice that e (2)(t) = limg—, 400 €4(2)(t) for every ¢ > 0.
Since e4(z)(+) is nonincreasing for every ¢ € [1, +00), the same holds true for e (2)(:).

Conversely, reasoning by contraposition, assume that (H4) does not hold. There-
fore, there exist (z,y) € RY with |y| > |z|. Fix p € [1,+00] and let go, g1 in Y}, be the
constant functions equal to z and y, respectively. Let (g,)n>1 be the sequence in Y,
defined in Proposition 6 corresponding to a solution of (1) in X, with initial condition
37 %(g1), which exists thanks to Remark 26 since g; is a simple function. Then the
sequence (gn)n>0 corresponds, in the sense of Proposition 6, to a solution z of (1) in
X, with initial condition 371(gg). Using (15), one has

ep(2)(2) — ep(2)(0) = lgully — llgolly = 27 (ly] - |2]) > 0,

1
where 27 = 1 for p = 4o00. This shows that the function ¢ — e,(2)(t) is not nonin-
creasing, concluding then the proof of our result. O

For the rest of the section, ¥ will be assumed to be a damping set (recall Defini-
tion 11) and we aim at understanding the asymptotic behavior of solutions of (1) in X,
for p € [1,400]. Taking into account the previous proposition, we next aim at provid-
ing necessary and sufficient conditions on ¥ so that all solutions of (1) in X, converges
to zero as t — +o0o. Since we are in an infinite-dimensional setting, there are several
meaningful definitions of convergence to zero, and we state in the next definition the
ones that will be of interest in this paper.

Definition 28. Let ¥ C R? satisfy (H1), p € [1,400], and assume that, for every
initial condition (zp,21) € X, there exists a solution z of (1) starting at (zo, 21).
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Strong stability The wave equation defined by (1) in X, is said to be strongly stable
if, for every (29,21) € X, and any solution z of (1) starting at (zo, 21), one has
Jim_e,(2)(1) = 0.
UGAS The wave equation defined by (1) in X, is said to be uniformly globally asymp-

totically stable (UGAS) if there exists § € ICL such that, for every (zo,21) € X,
and any solution z of (1) starting at (zo, 21), one has

ep(2)(1) < Bleyp(2)(0),0), 20, (28)

GES The wave equation defined by (1) in X,, is said to be globally exponentially stable
(GES) if it is UGAS with B(£,t) = C1&e 2 for some positive constants C1, Cs.

The definition of strong stability is classical in the context of stabilization of PDEs
(see, e.g., the survey [1]), while that of UGAS stems from control theory (see, e.g., [22]).

Note that, thanks to Proposition 6, these stability concepts in X, admit equivalent
statements in terms of the sequences (gn)nen in Y, corresponding to solutions of (1).
The function 8 € KL from the definition of UGAS can be interpreted as a rate of
decrease for solutions of (1) in X,. In the sequel, we will hence say that (1) is UGAS
in X, with rate 3.

As a first step towards the characterization of the asymptotic behavior of (1), it is
useful to consider real iterated sequences for S since they provide particular solutions
of (1) whose corresponding sequence (gn)nen in the sense of Proposition 6 is made of
constant functions. Thanks to (H4) from Proposition 12, all real iterated sequences
are nonincreasing in absolute value as soon as ¥ is a damping, and we seek extra
conditions on ¥ so that these real iterated sequences converge to 0. One might think
that a natural sufficient condition for that purpose would be that ¥ is a strict damping
set, i.e., it satisfies (H5), but this is not the case, as shown by the following example.

Example 29. Let X be a strict damping set, p € [1, +0o0], and (ay,)nen be a decreasing
sequence in R converging to a limit a, > 0. Let X be the set such that

RY. = RYyU{(an,ant+1) | n € N},

i.e., the sequence (ay,)nen becomes a real iterated sequence for the set-valued map whose
graph is RY. Clearly, ¥ is still a strict damping set since, for every (z,y) € RY with
(z,y) # (0,0), one has either (z,y) € RXg, in which case |y| < |z| since ¥ is a strict
damping, or (z,y) = (an,an+1) for some n € N, in which case |y| = ap+1 < an, = |7]
since (an)nen is decreasing.

Consider the sequence (gn)nen in Yy, such that, for every n € N, g, is constant and
equal to a,. Since this sequence clearly satisfies (16), Proposition 6 ensures that this
sequence corresponds to a solution z of (1) in X,. The sequence (gn)nen converges
in Y, to the constant function equal to a, > 0, and thus, in particular, z does not
converge to 0 in X,,. o

The previous example furnishes an instance of a set ¥ which is a strict damping
but for which there exists a real iterated sequence not converging to 0. Conversely, we
next provide an example of a set ¥ which is a nonstrict damping set for which every
real iterated sequence converges to 0.
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Example 30. Let ¥ C R? be the graph of the function ¢ : R — R given by o(x) =
min(0,z) for x € R. Then ¥ is a nonstrict damping set with the corresponding set-
valued map S given by S(x) = {—max(z,0)} for z € R. It is immediate to check that
every iterated sequence converges to 0 since S?(z) = {0} for every = € R. o

4.2 Real iterated sequences and stability

In order to present our results, we introduce the following convergence properties for
real iterated sequences.

Definition 31. Let S: R = R be a set-valued map.

(a) We say that real iterated sequences for S converge simply to zero if every real
iterated sequence converges to zero.

(b) We say that real iterated sequences for S converge to zero uniformly (on compact
sets) if, for every r > 0 and € > 0, there exists N € N such that, for every z € R
satisfying |z| < r and every real iterated sequence (x,)nen for S starting from z,
one has |z,| < € for every n > N.

Our first result provides necessary and sufficient conditions for the strong stability
of (1) in X, in terms of convergence properties of real iterated sequences.

Proposition 32. Let ¥ C R? be a damping set and p € [1,4+00].

(a) If p < +o00, then the wave equation (1) is strongly stable in X, if and only if real
iterated sequences for S converge simply to zero.

(b) For p = +o0, the following statements are equivalent:
(b-i) The wave equation (1) is UGAS in X .
(b-ii) The wave equation (1) is strongly stable in Xo.

(b-ii1) Real iterated sequences for S converge uniformly to zero.

Proof. To prove (a), notice first that real iterated sequences for S provide particular
solutions of (1) for which the corresponding iterated sequence (g, )nen from Proposi-
tion 6 is made of constant functions (cf. also Remark 26). Hence, convergence of all
such sequences to zero is a necessary condition for the strong stability of (1).

Conversely, assume that real iterated sequences for S converge simply to zero. Let
z be a solution of (1) in X, and consider the corresponding sequence (g, )nen in Yy, from
Proposition 6. Then (g, (s))nen is a real iterated sequence for S for a.e. s € [—1,1] and
hence (g, )nen converges pointwise to zero almost everywhere. Since ¥ is a damping
set, one has |gn(s)| < |go(s)| for every n € N and a.e. s € [—1, 1], and one concludes by
the dominated convergence theorem that g, — 0 in Y, as n tends to infinity.

Let us now prove (b). The implication (b-i) = (b-ii) is trivial by definition. We
prove that (b-ii) = (b-iii) reasoning by contraposition. Hence, assume that real
iterated sequences for S do not converge uniformly to zero. This implies that there
exists 7 > 0 and € > 0 such that, for every k € N, there exists (¥ € [—r, 7] and a real
iterated sequence (xﬁf))neN for S starting at 2(®) for which ]xxzzl > ¢ for some Nj, > k.
Without loss of generality, one can assume N = k by possibly replacing the initial

value z(*) by xg\lz_k, which still belongs to [—r,7]. Let {4, }nen be a family of disjoint

27



measurable subsets of [—1, 1] of positive Lebesgue measure. Consider the sequence of
functions (gn)nen defined by
gn =Y @ xa,.

k>0

Then, by construction, for every n € N, one has g, € Yo and gny1(s) € S(gn(s)) for
a.e. s € [—1,1]. By Proposition 17, one gets that ||gn||c > € for every n € N, and thus,
using Proposition 6, the corresponding solution of (1) starting from 3=!(gy) does not
converge to 0 in X.

Let us finally prove that (b-iii) == (b-i). Assume that (b-iii) holds and let
Bo : Ry x Ry — R4 be defined by

Bo(r,t) = sup{|zy| | n >t and (x)ren is a real iterated

sequence for S with |zg| < r}.

One can verify that £y(0,-) = 0, fo(-,t) is nondecreasing for every ¢ > 0, fo(r,-) is
nonincreasing for every r > 0, and fSy(r,t) < r for every (r,t) € Ry x R;y. The
statement of (b-iii) exactly says that, for every r > 0, fo(r,t) — 0 as t — +o0.
Moreover, for every real iterated sequence (x,)nen for S, one has |z, | < Bo(|zol, t) for
n > t.

Let z be a solution of (1) in X, and consider the corresponding sequence (g, )neN
in Yo from Proposition 6. For a.e. s € [—1,1], (gn($))nen is a real iterated sequence
for S starting from go(s), and thus

lgn(s)] < Bo(lgo(s)], n) for a.e. s € [-1,1] and every n € N.

Using the fact that £y is nondecreasing with respect to its first argument, we deduce
that, for every n € N,

lgnlloo < Bo(llgolloo, m)-

From Propositions 6 and 27, one has

eo(2)(t) < eo(2) (2[t/2]) = ||g11/21]| o, < Bo (exs(2)(0), [t/2]) for every t > 0.

One concludes the proof by applying Lemma 81 from Appendix D to the function
(Tv t) = 50(1", I_t/QJ) ]

Remark 33. Since the notion of real iterated sequences of S converging simply to zero
is independent of p, it follows from Proposition 32(a) that the convergence of solutions
of (1) to 0 for p finite is independent of p: if solutions of (1) converge to 0 in some X,
with p finite, then solutions will converge to 0 in every X, with p finite. The situation
is different for p = +oo, in which case one must require a uniformity property on the
convergence to zero of real iterated sequences for S in order to obtain convergence in
the strong topology of X,,. By adapting the proof of Proposition 32(a), one can show
that simple convergence to zero of real iterated sequences for S is also a necessary and
sufficient condition for the convergence to 0 of solutions of (1) in X in the weak-x
topology of X. o

Recall the obvious fact that, for every solution z of (1) in X, p € [1,+0o0], and
t > 0, one has
ep(2)(1) < 2Pen(2) (1),
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with the convention that 1/p = 0 for p = +o00. In case the wave equation (1) is UGAS
in Xo, one deduces at once a UGAS-like estimate of ej,(2)(t) for every finite p, involving
however, as regards the dependence with the respect to the initial condition, its X
norm e (z)(0) only. In the next result, we refine the above mentioned trivial estimate
of e,(z)(t), with another one involving the X, norm of the initial condition.

Proposition 34. Let ¥ C R? be a damping set and p € [1,+00). Assume that the
wave equation (1) associated with ¥ is UGAS in X with rate B. Then, for every
solution z of (1) in X, one has, for everyt >0,

ep(2)(t) < 2178 (eff2(2)(0), 2[4] ) + ef/2(2)(0)8 (max(e ()(0), e/ 2(2) (0)), 2( £ )
(29)

Proof. Let z be a solution of (1) in X and consider the corresponding sequence (g, )neN
in Yo in the sense of Proposition 6. Let us denote Z; = e4(2)(0) for ¢ € {p,o0}.
Consider the partition of [—1,1] in the disjoint subsets

B ={s€[-1,1] | lgo(s)| < Z,/*},
By ={s€[-1,1] | lgo(s)| = Z,/*}.

Let x; and «;, @ € {1,2}, be the characteristic functions and Lebesgue measures
associated with E;, respectively. One clearly has, for every n € N,

In = InX1 T InX2,
gnlly = llgnxallh + llgnx2ll5-

Let i € {1,2}. Then
lgn(s)xi(s)] < xi(s)B(llgoXillo, 212), for a.e. s € [-1,1].
For i = 1, since [3(+,t) is increasing for all ¢ > 0, one deduces that
lgwxally < 2(8(23/2,2m))", (30)
and, for ¢ = 2, one gets

lgnxally < a2 (B(max(Zeo, Z3/%), 20) ). (31)

By Chebyshev’s inequality, it follows that ag < Zg/ 2, Putting together (30), (31) and
the above estimate of a9, one obtains

lgnll, < (25(25/2, 2n)P + Z2/2B(max(Zoo, ZY/2), zn)p); .
Since p > 1, one deduces that
lgnlly < 2'778(Z)/%,2n) + Z)/*B(max(Zso, Z)/?), 2n). (32)
We conclude using the fact that ¢ — ej(2)(t) is nonincreasing. O
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At the light of the equivalence between (b-i) and (b-ii) from Proposition 32, one
may wonder if such an equivalence holds in X, with p finite. The answer is negative,
which is a consequence of the next proposition.

Proposition 35. Let ¥ C R? be a damping set and p € [1,+o0). If (H6) holds, then
the wave equation (1) is not UGAS in X,.

Proof. We prove that (1) is not UGAS in X, reasoning by contradiction. Assume then
that (1) is UGAS in X, with rate f3, i.e., there exists some 3 € KL such that, for every
solution z of (1), one has

ep(2)(t) < Blep(2)(0), ), for every t > 0. (33)

Since f € KL, there exists N € N such that 5(1,2N) < 1/2.
Assumption (H6) implies that there exists M > 1 such that, for every (z,y) € R?,
if |(z,y)] > M and y € S(z), then |%| > 21/N Let 9 € R be such that |zo| > 2M

and consider a real iterated sequence (x,)nen for S starting from zy. Then, for every
n € {0,..., N}, one has

T 1
— > S (34)
Indeed, (34) trivially holds for n = 0. If n € {0,...,N — 1} is such that (34) holds,
then |z,| > 2'5?)\, > M and thus, since z,4+1 € S(:Un) we deduce that x";“ > 211/1\/’
yielding that )x”“‘ = x;—zl o) > 2(n+1 7 » showing that (34) holds for n + 1. Hence,

by induction, (34) is established for every n € N.
Consider now the iterated sequence of functions (g )nen for S in Y, such that g, =

In
o

ZTnXA, where A C [—1,1] is an interval of length 1/|zo[P. Then clearly | gy, =

Letting z be the solution of (1) corresponding to (g )nen in the sense of Proposition 6,
one deduces from (15) that
TN

WDEN) = lgwlp = [ 2] > 5.

This is a contradiction since, from (33), one also has that

l\.’)\r—t

ep(2)(2N) < B(ep(2)(0),2N) = B(1,2N) <
This contradiction establishes the desired result. O

Remark 36. A particular instance of the above proposition has been established
in [26, Theorem 4.1.1] where it is shown that (1) is not GES in the case p = 2 and ¥
is the graph of a saturation function. o

Proposition 35 raises the question of whether one can provide conditions on ¥ under
which (1) is UGAS for finite p. Our next result identifies the assumption (H8) as such
a condition.

Theorem 37. Let ¥ C R? be a damping satisfying (H8) and p € [1,+00). Assume
moreover that the wave equation defined in (1) is UGAS in Xoo with rate 3. Then it
is also UGAS in X,.

30



Proof. Let M > 0 and p € (0,1) be given by (H8) and set n = 1/u. Let z be a solution

of (1) in X, and denote by (gn)nen the corresponding sequence in Y), in the sense of

Proposition 6. For simplicity of notation, we set g = go, Z, = ||9l|p, Z = max(M, Z;/Q).

Consider the partition of [—1, 1] in disjoints subsets defined by
E={se[-1,1]]]g(s)| < Z,/*},
F={se[-1,1] Z)/? <|g(s)| < Z},

By ={s e [-1,1]|7*Z <|g(s)| <n"*'Z}, k>0,

Let xg and ag, xr and ap, xx and ag, k > 0, be the characteristic functions and
Lebesgue measures associated with F, F' and Ej, k > 0, respectively. One clearly has

9=9XE+9xXP+ Y 9Xk
k>0

70 = llgxellh + lgxrlb + Y ongl,  where & € [n*Z,n**1 Z] for k > 0.
k>0

Moreover, for every n € N, one has

lgnlly = llgnxelh + lgaxelh + D lgnxslb- (35)
k>0

Note that, for every set S € {E,F,Ey, E1,...}, the sequence (gnXs)neN corre-
sponds, in the sense of Proposition 6, to a solution zg of (1) with initial condition
3 Ygxs). In particular, since gxs € Yoo, 2s is a solution of (1) in X, and one has,
for every n € N,

gn(s)xs(s)] < xs(s)B(ll9xslloo, 2n), for a.e. s € [-1,1]. (36)
since (1) is UGAS in X with rate 3.
One deduces for § = F that
P
lgnxsll} < am(B(Z3/ 2n)) (37)
and, for S = F
» p
lgnxelly < ar(5(2,20))"
Zy
p/

e < Z5/2. Then, we obtain
P

By Chebyshev’s inequality, we have that ap <

lonxrlly < 22 (8(2,2m))" (38)

We next estimate the sum appearing in the right-hand side of (35). For k& > 0
and s € Ej, by applying (H8), it holds that ||S(g(s))|| < n*Z and, more generally, an

immediate inductive argument using (HS8) shows that || S[(g(s))|| < nmax(Ok+1-n) 7
for every n > 0. Then, for every k£ € N and n € N, one has

P
P pmax(0,k+1—n) 7p aké.k
”anka < o) s np(k:—max(&k-i—l—n)) ’
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For k > [n/2] + 1, it follows that k — max(0,k + 1 — n) > 251 and hence

)

\/ﬁp(nfl) '

lgnxkllh <

Since Y 4wo aréh < Zp, we deduce that

o0 Zp
lgnxkllh < —L—5- (39)
k=LnZ/;J+1 vy

For k € {0,...,|n/2]} and n > 1, note that, since gpy1(s) € S¥+(g(s)), one has
|gk+1(8)] < Z for s € Ej. Using the facts that (gr+145Xk)jen is an iterated sequence
for S in X4 and that (1) is UGAS in X, we deduce that ||gx+14; Xkl < B(Z,25) for
every j € N, and thus

lgxlly < o (82,20 = 1= k)" < o (8(Z.n - 1)),

since 3(Z,-) is nonincreasing. Using the facts that & > n*Z and that >, -, &} < Z5,
one deduces that

Ln/2] ooV 2
3 ey < L) S g
k=0 o (40)

< 22 <7z (8(zn-1)"

7P

Putting together (37), (38), (39), and (40), and using the fact that ag < 2, one deduces
that

_Zy
\/ﬁp(n—l) )

We conclude using the fact that ¢ — e,(z)(t) is nonincreasing and by Lemma 81 as in
the proof of Proposition 32. 0

lgnll? < 2(5(2;/2, 2n))p + 7/ (5(2, 2n))p + 782 (/3(2, n— 1))” +

Note that Proposition 34 and Theorem 37 both assume that (1) is UGAS in X, this
property being characterized in terms of real iterated sequences for .S in Proposition 32.
Proposition 38(e) in the next subsection provides an easy to check sufficient condition
to have the latter property.

4.3 Stability properties based on properties of S

Proposition 32 provides necessary and sufficient conditions for the strong stability of
(1) in X,, in terms of convergence to zero of real iterated sequences for the multi-valued
map S : R = R. These necessary and sufficient conditions are not yet satisfactory
because they are difficult to verify. Instead, we provide in the sequel necessary or
sufficient conditions on S that are simpler to check. For that purpose, we introduce
the function p : Ry — R4 defined next which will be useful for several results in the
sequel of the paper.
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Proposition 38. Let ¥ C R? be a damping set. Let p : Ry — R, be the function
defined by
p(r) = L sup [|SE ()] (41)
N=0F Jz|<r4n

Then the following properties hold.

(a) p(0) =0, p is nondecreasing, and p(r) < r for every r € R,.
(b) p is upper semi-continuous.

(c) Assume that S s closed. Then p(r) <r for every r > 0 if and only if S s a
strict damping.

(d) For everyn € N and r € Ry, one has

sup || ()| < pl*/2](r). (42)

|lz|<r
In particular, for every real iterated sequence (xy)nen for S, one has
ja| < pl"72(|ag)). (43)

(e) If p(r) <r for every r > 0, then real iterated sequences for S converge uniformly
to zero.

Proof. Since ¥ is a damping, one has at once that ||S1(z)|| < |z| for every z € R and
hence (a) follows at once.

To prove (b), notice that, by definition of p, for every r € Ry and ¢ > 0, there
exists § > 0 such that

sup [|SP(z)[| < p(r) +e,
|z|<r+d
implying that, for every n € (0,6), p(r +n) < p(r) +¢. This shows that lim, o+ p(r +
n) < p(r) for every r € R, which is equivalent to the upper semi-continuity of p since
p is nondecreasing.

Let us now prove (c¢). The only nontrivial implication is that p(r) < r for every
r > 0 as soon as S is closed and a strict damping. Fix r > 0. By definition of
p(r), there exist sequences (x,)neny and (yn)neny with y, € SB(z,) for every n € N
and such that, up to extracting subsequences, (x,)nen converges to some z, € [—r, 7]
and (yn)nen converges to some y, € R with p(r) = |y.]. Since S is closed, one
has y. € SP(x,), which implies, using the fact that S is a strict damping, that
(x4, yx) = (0,0) or |y«| < |z«|. In both cases, one deduces that p(r) < r.

To prove (d), notice that it suffices to prove (42) for even integers since ||.S(z)|| < |z|
for every x € R, and that (42) is trivially true for n = 0 and n = 2. The argument
goes on by induction: let n > 4 be an even integer so that (42) holds for even integers
m < n and set k = 2. For every r > 0, y € [~r,7], and z € SE*=Yl(y), one has

IS < pl]) < o (ISEED)) < ol U(1g)) < pH 0,

where we used the definition of p in the first inequality, the fact that p is nondecreasing
in the second, third, and fourth inequalities, and the induction hypothesis in the third
inequality. Hence (42) follows at once. It is clear that (43) is an immediate consequence
of (42).
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Let us finally prove (e). By taking into account (43), it is enough to prove that,
for every r > 0, pl"l(r) converges to 0 as n — +o0. Since p(z) < x for every = € R,
(p™ (r))nen is nonincreasing, and hence it admits a limit 7, € R,. Since pl"*1(r) =
p(p!™(r)) for every n € N, one deduces, letting n — +oco and using the upper semi-
continuity of p, that r, = lim,_, s p(pl" (1)) < p(ry) < ry, showing that p(r,) = r,.
Since p(x) < x for every x > 0, one then has necessarily that r, = 0. O

Remark 39. Notice that, if S is closed, then Sl is closed, and therefore the conclusion
of item (c) holds true. This is the case, in particular, if S is the graph of a continuous
function. o

We can now state necessary and sufficient conditions on S only (and not relying on
real iterated sequences) for strong stability of (1) in X,.

Theorem 40. Let ¥ C R? be a damping set and p € [1,+oc]. If (1) is strongly stable
in Xp, then S is a strict damping.

Conversely, assume that S'? is a strict damping and that p defined in Proposition 38
satisfies p(r) < r for every r > 0. Then (1) is strongly stable in X,.

Proof. The first part of the statement follows immediately from Propositions 18(e)
and 32, while the second part is an immediate consequence of Propositions 38(e) and
32. O

Remark 41. In the case where the damping set ¥ is the graph of a function o : R — R,
the second part of Theorem 40 has been essentially already obtained in [25] in the case
p = 2 under the assumption that either o(s) > 0 for all s > 0 or o(s) < 0 for all
s < 0 (referred to in that reference as a unilateral condition), which is stronger than
requiring S 2 to be a strict damping. o

Remark 42. Recall that, for p = 400, Proposition 32 ensures that strong stability
and UGAS are equivalent and (43) immediately implies that, for every solution z of
(1) in Xs, the corresponding sequence (gn)nen in Yoo from Proposition 6 satisfies, for
every n > 0,

lgnlloo < P21 ([lgo]lo0), (44)

which yields
eoo(2)(t) < eoo(2)(211/2]) < p* (e (2)(0))- (45)

If now p verifies that p(r) < r for every r > 0, we have UGAS for solutions of (1) in
X~ and one can build a corresponding KL function 8 by applying Lemma 81 to the
function (r,t) — pllt/4](r). o

Remark 43. One could have replaced S by S for n > 1 in Proposition 38 to
define functions p,, similar to p (= p2) satisfying the same properties. Note that
(pn)nen+ is a nonincreasing sequence of functions. We focus on the case n = 2 due
to Proposition 18(e) as well as to the fact that, from Theorem 40, SI? being a strict
damping is a necessary condition for the strong stability of (1), which is not the case
for S due to Example 30.

An ultimate justification for sticking to n = 2 is the fact that we were not able
to come up with a result interesting enough to justify the use of p, with n > 2, even
though, for n > 3, the condition p,(r) < r for every r > 0 is strictly weaker than the
corresponding condition with n = 2. o
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As an immediate consequence of Proposition 38(c) and Theorem 40, one deduces
the following result.

Corollary 44. Let ¥ C R? be a damping set, p € [1,+o0|, and assume that S is
closed. Then (1) is strongly stable in X, if and only if S is a strict damping.

4.4 Decay rates and their optimality

In the previous sections, we have considered the convergence to zero of solutions of (1)
and the speed of convergence to zero (or decay rate) was in some cases upper bounded
by a KL function 8 arising from the stability concept of UGAS. In this section, we
intend to be more explicit on the dependence in time of 5 and also to provide lower
bounds for the decay rate in some cases. More precisely, we say that a L function
is optimal for (1) if the latter is UGAS with rate /5 and there exists a nonzero initial
condition (zp, 21) € X, such that

o NG D,

H+oo B(ll(20, 21)lIx,+ )

> 0. (46)

In the sequel, we will essentially work with Hypotheses (H9) or (H10). Our results
in this section are decomposed in two parts: first, in Section 4.4.1, we present some
preliminary results concerning the decay rates of real iterated sequences, and then, in
Section 4.4.2, we apply these results to solutions of (1).

4.4.1 Decay rates for real iterated sequences

The main results of this section are the next two propositions dealing with real iterated
sequences for S. They will be crucial in order to establish our subsequent results for
decay rates of solutions of (1) and their optimality in X,, p € [1,4o00]. The first

proposition translates (H9) and (HlO) in terms of upper and lower bounds, respectlvely,
on real iterated sequences for S, relying on iterates of the function Q from (H9) and
(HlO) Its proof is an immediate consequence of the formulation of (H9) and (Hl())

Proposition 45. Let ¥ C R? be a damping set and S be the corresponding set-valued
map whose graph is equal to RY.

(a) Assume that (H9) holds and let Q be as in (ﬁg) Then, for every real iterated
sequence (T )nen for S with |xo| < M/\/2, one has

|z, | < Q[n}(|x0|), for every n € N. (47)

(b) Assume that (H10) holds and let Q be as in (ITHVO) Then, for every real iterated
sequence (T )nen for S with |zo| < M/\/2, one has

2] > QM (|zo)), for every n € N. (48)
The next proposition provides an explicit asymptotic behavior for the sequence

(Q™(|zo|))nen, which serves as either an upper or a lower bound in the previous
proposition.
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Proposition 46. Let ¢ € C'(Ry,Ry) be as in (H9) or (H10), i.e., q(0) = 0, 0 <
q(z) < z, and |¢'(x)| < 1 for every x > 0, and Q be defined from q as in (18). Let
xo € Ri.

(a) Assume that ¢'(0) =0 and let F : (0,z9] — Ry be the diffeomorphism defined by

e ode
re = | 7’

where G(s) = 2q(v/2s) for s € R.. Then F(QM(xg)) ~ n as n — +oco. If

moreover there exists C > 0 such that
<C, for every z € (0, zg], (49)

then
QI (z0) ~ F~Y(n) as n — +oo.

(b) Assume that ¢'(0) € (0,1) and let X = 2artanh(¢’(0)). Then In Q™ (z¢) ~ —An
as n — +oo. If moreover one has

S w(e k) < oo, (50)

k=0

where P(r) = SUDse(0,r]
n €N,

@ _ q/(o)’, then there exists C > 1 such that, for every

C—le—/\n < Q[n](xo) < Ce—)\n.

(c) If ¢'(0) = 1, then for every C > 0, lim,_, o e“™Q (z0) = 0. If moreover, there
exist positive constants Cs, v, T, such that Co.x® < 1 and |q(z)—z| < C,27 2 x|t
for |z| <z, then there exists a positive constant u, such that

1 n
Q[n] (5UO) <C. ae—M*(l'i‘Oé) s
for n large enough.

Proof. By (18), one immediately gets that

! 1- q/(O)
For n € N, set z, = Q" (zp) and remark that (z,)nen is a sequence of positive real
numbers decreasing to zero.

We start by establishing Item (a). Notice that g is of class C' and one has g(0) =
7 (0) = 0. Set p(z) = z — Q(z) and notice that ¢ is C' and verifies ¢(0) = ¢/(0) = 0
and 0 < ¢(z) < z for every x > 0. The sequence (z,)nen is then solution of the
recurrence relation z,41 = x, — p(x,) for n € N. Moreover, for z > 0 and setting
y = (g +1d)~1(x), one has

Az y+q(y)
;1)((3})) _ Q(y(;zyfl)(y)) :1+q<1y)/ d(6)dé >0  asy—0,
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implying that ¢(x) ~ g(x) as = — 0.
For n € N, define t,, = F(x,). We first prove that ¢, ~ n as n — +oo. Notice that,
for n > 1, one has

tn _ Flwa) 15~ [™ dE
D )

hence, by Cesaro’s theorem, the claim follows if one shows that

lim ’ 46
a—0 a—p(a) 6(5)

1 g g
ig% q(a) /a—ap(a) q 6) €=

L,

i.e., that

which would follow if

lim max

=0. 51
a—0 ¢cfa—p(a).al 5D

Notice that, since, for every £ € [a — ¢(a),al, (&) = q(a) + (£ — a)7'(&,), for some
&q € [€, a], one gets that

2(a) — 76)] < () max [7(O)], q@>z¢@o(qm

¢€[0,a]

o) T <<>’> ~

One deduces that, for every £ € [a — ¢(a), a],

30 mosenalt O]
q(8) N WZ) — maxce(o,q][7'(¢)]

Since max ¢(oq]|7'(¢)| tends to 0 as a — 0, one immediately deduces (51).

Let us now show that, under (49), one has the stronger conclusion that x,, ~ F~1(n)
as n — +oo. Notice that z, = F~(t,) = F~1(n) — (t, — n)g(F~1(&,)) for some &,
between n and t,. Set z, = F~1(£,), which tends to zero as n — 4oo. Then, for
n €N,

T Zn . F(z,)q(zn) th —
=1t th pn = .
F*l(n) P Fﬁl(n) e Zn n

In addition, one has that

tn—n| _ (maX(tmn) B 1> min(t,,n) < (maX(tm”) _ 1> '

fn min(tna n) gn min(tna n)

Since t, ~ n as n — +oo and using (49), one deduces that p, — 0 as n — +o0.
Moreover, since F'~! is decreasing, for every n € N, there exists o, € [0,1] such that
zn = (1—a,)F~Y(n)+a,x,. Then, for n large enough, one deduces, after an elementary
computation, that

T, _ 1_p'fl(1_a”)
F~1(n) 1+ ppov,

yielding that z,, ~ F~1(n) as n — +oc.

37



We next turn to an argument for Item (b). Notice first that A = —1In@’(0). For
n € N, one has

Tnt1 = Q' (0)zn (1 + Q1(zn))),
where Q1 (z) = x%(%) —1 for x > 0. Notice that Q1(x) tends to zero as z tends to zero

since @ is differentiable at zero. Moreover, there exists ng € N so that |Q1(z,)| < 1
for n > ng. One deduces that, for n > ny,

n—1

wne = Clwo,no) ] (14 Qi(zr)),

k=ng

where C'(xg,n9) > 0 only depends on zy and ng. Hence,

n—1
In C(z0,n0) + % > In(1 + Q1 (aw)). (52)

k=ng

In(zy,) .
n n

Since Q1(zy,) — 0 as n tends to infinity, the first part of Item (b) follows at once. In
particular, it implies that, for n large enough, one has the estimate

e 2 < g, < eI (53)

Assume moreover that (50) holds true. Notice that, for  small enough, one has

'@m B on)‘ - 2’q<yy> _ q/@)‘ < 29(v2x), (54)

z =

where y = (Id +¢) 7' (v/22) < v/22. Indeed, for z > 0, one has

Q(x) / . Y 1
. d0=2 <y+Q(y) - 1+Q’(0)>

_ 2 / (v)
1+ 92) 1+ ¢(0)) <q o= q;/) ’

and (54) follows since (H9) or (H10) are supposed to hold true.

The second part of Item (b) is equivalent to the fact that In(x,) + An remains
bounded as n tends to infinity. By (52), it is then enough to prove that the series of
general term |Q1(xy,)| is convergent. By (53) and (54), for n large enough, one has

20(VZrn) _ 20(v2e" M) _ 2(e ")
QO - QO T QO
where we also use the fact that 1 is nondecreasing. The conclusion follows from (50).

We finally prove Item (c). Note that Q'(0) = 0 and hence x;—:l tends to zero as n
tends to infinity. Fix C' > 0. For every n > 0, one has

|Q1($n)| S

= eanH .

n—1
C .
rn =m0 [T yn:
Tn
k=0

The first part of Item (c) immediately follows since lim,_, y~ yn = 0. For the second
part, we start by noticing that, for every = > 0, one has Q(z) = % (y — q(y)) with
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y = (Id +q)_1(ﬂx). For z < f/*i and since one has y < v/2z < z, one deduces by

assumption that
C a
x)| < =22 2|y < O, |z
1Q( )\_\/§ ly| 7 < Cilz|

Let no € N be such that z,, < \x/*i for n > no. Then one has, for n > no,

Tpy1 < C’*x,lfo‘.

By setting z,, = In (xnCi / a) , an elementary computation yields that z,+1 < (1+a)zp,

hence, for n > ng, one has z, < (1 + a)" "2z,, and one gets the desired conclusion
after setting

ln(x*Ci/ 9
“Ota

= O

Remark 47. Note that F~1 : R, — (0,z0] is equal to the solution V of the Cauchy

problem

SV =-av@), V()=

This is how F'~! is introduced in [26]. We postpone to Remark 55 a comparison of our
results from Proposition 46(a) with the corresponding ones of [26].

Condition (49) is satisfied in several cases considered in the literature (see, e.g., [1,
Theorem 1.7.12, Examples 1 to 4] and [26]), such as polynomial feedbacks of the form
q(s) = s|s|P~! for p > 1, or when ¢ is an odd function given for s > 0 by ¢(s) = e ()
with B(s) = 1/sP for p > 0 or B(s) = e!/*.

Concerning (50), it holds true if for instance there exist positive C,« such that
ld'(x) — ¢'(0)] < C|z|* in a neighborhood of zero. Moreover one has quasi-optimality
of (50) in the following sense: if the series of general term Q;(x;,) is unbounded, then
lim sup,,_, ;o € QM (20) = 400 or liminf,_ ;o QM (20) = 0. o

Remark 48. In the case where ¢'(0) = 0 but (49) is not satisfied, Proposition 46
ensures that F(Q[(zg)) ~ n as n — 400 but no direct information is provided on
the asymptotic behavior of Q" (z0). On the other hand, the techniques used in the
proof of Proposition 46, together with standard techniques in analysis, propose a simple
strategy to derive the asymptotic behavior of Q™ (z() for any choice of ¢ with ¢/(0) = 0,
especially when (49) is not satisfied. To illustrate that strategy, consider the case of
the function ¢(z) = (_l%z)p for z € (0, M], where p, M > 0 and 0 < ¢(z) < = and
|¢'(x)] <1 for every & > 0, which appears in [1, Theorem 1.7.12, Example 5|. In that
reference, the optimality of the decay rate associated with such a function ¢ is left open,
as discussed in [1] after its Theorem 1.7.16. In Appendix B, we provide an answer to
that open problem, by determining the precise decay rate of the corresponding the
sequence QU (). o

The next proposition gathers some useful additional properties of Q" (o) under
the assumptions of Proposition 46(a).

Proposition 49. Let g € C* (R4, R, ) be as in the statement of Proposition 46(a), i.e.,
q(0) =¢'(0) =0, 0 < q(z) <z, and |¢'(x)| < 1 for every x > 0. Let zg € R and Q be
defined from q as in (18).
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(a) For every ng € N, one has Q" (x0) ~ Q™ (z¢) as n — +oo.
(b) For every yo € R, one has Q" (z0) ~ QM (yo) as n — +oc.

(c) For every e > 0, we have

lim e"Q () = +o0.

n—-+4o0o
Proof. To show (a), note that, for n € N,

Q[nJrnO] Jj=no—1

Q"™ (x0)) p(Q" (o))
QMl(zo) H QI (zg) 13 ( Q1 (z) )

where ¢ is defined as in the proof of Proposition 46(a). Since Q"*7(z9) — 0 as
n — 4o for every j € {0,--- ,ng — 1} and ¢(0) = ¢’(0) = 0, one gets the conclusion.
In order to prove (b), assume, with no loss of generality, that yo < zp. Then there
exists ng € N such that Qo (zg) < yo < QI"(xp), yielding that QM+t (zy) <
QM (y) < QI**t0l(xy), and one gets the conclusion from (a).
Finally, to show (c), let F' and g be defined as in the statement of Proposition 46(a).
Since §'(0) = 0, one has 0 < g(s) < §s for every s € (0, s0), for some so > 0. Hence

F(z) > 2In (m) Since F(QM(z9)) ~ n and Q™ (29) — 0 as n — +oo, one

deduces that, for n large enough, n > % In <m>, which is equivalent to Q" (zg) >

e 7, yielding the conclusion. O

A quick look at the argument in Proposition 46(c) for the decrease of (z,)nen faster
than any exponential in the case ¢’(0) = 1 may let one think that more precise decay
rates can be obtained. However, it is not really the case, as explained in the following
proposition, whose proof is given in Appendix C.

Proposition 50. Let ¢ : Ry — Ry be an increasing function such that limy,_ 4o @()
= +o00. Then there exists ¢ € C1(Ry,Ry) satisfying ¢(0) =0, 0 < q(z) < z, |¢'(z)] < 1
for every x > 0, and ¢'(0) = 1, such that, for every xg > 0,

lim inf €™ Q" () > 0, (55)

n—-+o0o

where @Q is defined from q as in (18).

4.4.2 Decay rates for solutions

We now use Section 4.4.1 to derive results regarding decay rates for solutions of (1).
We start with the following consequence of Proposition 45.

Theorem 51. Let ¥ C R? be a damping set.

(a) Suppose that ¥ satisfies (H9). Let My > 0 and Q be the constant and the function

whose existences are asserted in (H9).
(a-1) For gy € Yoo satisfying ||gollcc < %, one has that, every solution z of (1)
starting at 371 (go),

eoo(2)(t) < QU (en(2)(0)),  VEZ0, (56)
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and, forp € [1,400),
ep(2)(t) < Q%Q[Wﬂl(zg/?) +2)2QUW M (max(Z, Z3/?)),  Vt>0, (57)

where Zy = eq(2)(0) for g € {p,o0}.
(a-ii) Assume that the wave equation defined in (1) is UGAS in X« with rate B.
Then, for every solution z of (1) in X, one has

t—ty

eco(2)(t) < QU] <min<eoo(z)(0),MO

V2

where t, > 0 is the first nonnegative time so that

)> Vt>t.,  (58)

M,
%)

(a-iii) Assume that (H8) holds and that the wave equation defined in (1) is UGAS
in Xoo. Then, for every p € [1,+00]| and every solution z of (1) in X,, one
has, fort large enough,

Bleao(2)(0), 1) = min eac(2)(0),

N[

ep(2)(t) < 2QU=N(Z12) 2z QU= (7) 7,573, (59)

where Z, = e,(2)(0), Z = max(M, Z;/Q), M and p are provided by (i—I\S/),
and the times t1,t2 only depend on Z, and Z.
(b) Suppose that ¥ satisfies (H10). Let p € [1,400] and z be a nontrivial solution
of (1) in X, starting at 3=1(go) for some go € Y. Assume moreover that either
the Lebesgue measure of {s €[-1,1] ‘ 0 < |go(s)] < %} is positive or YN A =

{(0,0)}, where A = {(z,x) | = € R}. Then there exists positive constants Cy,Ca
only depending on the initial condition such that

ep(2)(t) > C1QI2AN(Cy), vt >o0. (60)
Proof. To get the first part of Item (a-i), simply notice by Proposition 27 that

eoo(2)(t) < €0o(2)(2[1/2]) = ||912/2)[| -
and, by (47),
lgn(s)] < Q™ (|go(s))), for n € N and a.e. s € [-1,1]. (61)

The conclusion follows at once since Q™ is increasing for every integer n. As regards
the second part of Item (a-i), we simply follow the argument of Proposition 34 replacing
the bounds using the KL function (-, ) by QIl*/2(.) and the conclusion follows from
(32).

Since e (2)(t;) < %, Item (a-ii) follows immediately by applying Item (a-i) to
9o = j(z(tZ’ ')’ Zt(tZ7 ))

As regards Item (a-iii), the argument consists in reproducing the proof of Theo-
rem 37 with modifications taking into account Item (a-ii). In the sequel, we use the

41



notations of the proof of Theorem 37. Thanks to Item (a-ii), one can replace the

estimate (37) by
1/ 2n—tq . 1/92 MO
el < i@l (min (2272 ).

where t; > 0 only depends on Z,. We use again Item (a-ii) to replace equations (38)

and (40) by
lgwxrl, < 20Ul ] (min (z Af;)) |

L"z/%JHanka < 7p/? ( oll=2]] <min (Z’ ]\f;)))?

where to > 0 only depends on Z. Putting together (39) and the previous inequalities,
and up to increasing ¢, and 2, we deduce (59).

We finally provide an argument for Item (b). Denote by (g )nen the sequence in Y,
corresponding to the solution z in the sense of Proposition 6. For every n € N, define
the measurable set F,, C [—1,1] by

and

M
Assume first that Fj, is of zero Lebesgue measure for every n € N. In particular,
YNA ={(0,0)}, ie, 0 ¢ S(x) for every x € R*. Let E = {s € [-1,1] | go(s) #
0}. Since z is nontrivial, the Lebesgue measure ap of E is positive. Moreover, our
assumption on the sets F), and the fact that ¥ N A = {(0,0)} yield that, for almost

. 1
every s € E and every n € N, one has [g,(s)| > % In particular, || gy, > aE/p%,

and the conclusion follows with C'; = ajlg/p %, (5 =1, and by using Propositions 6 and
27 and the fact that Q(x) < z for every z > 0.

If now there exists ng € N so that F,,, has positive Lebesgue measure, then there
exists C, > 0 and a subset G, of F,, of positive measure o such that C, < |gn,(s)| <

% for s € G,. By Proposition 45(b) and by using the fact that @ is increasing, it

follows, for n > ng, that |g.(s)] > Q" ™l(|g.(s)]) > Q"(C.) for s € G.. Thus
lgnllp > ai/pQ[”}(Cz) and, from Propositions 6 and 27, one deduces that ep(z)(t) >
91¢/2)+1llp = ai/pQ“t/QHH(C’Z), whence the conclusion with €y = a2/? and Cp =

Q(Cz). H

Remark 52. If we assume in (a-iii) that (H8) holds with a constant M > 0 equal to
the constant Mo > 0 from (H9), then necessarily (1) is UGAS in Xo. Indeed, in that
case, by combining the bounds from (H8) and (H9) we deduce that p(r) < r for every
r > 0, where p is given by (41). The fact that (1) is UGAS in X then follows from
Propositions 32(b) and 38(e). o

Remark 53. It is useful to notice that, for p = 400, we have deduced the estimate
(56) immediately from (61). One may wonder whether it is possible to deduce from
(61) a similar estimate replacing e, by e, for finite p. This is indeed the case under the
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extra assumption that @ is concave (or, equivalently, that ¢ is convex): one deduces
from Lemma 82 in Appendix D that

ep(2)(t) < 2/PQI2I (27 e, (2)(0)), (63)

as soon as ex(2)(0) < % Note that (63) holds true for every solution of (1) in X, as
soon as one assumes that (H9) holds globally, i.e., M = +o0 in its definition. In that

case, the wave equation in (1) is UGAS in X,,. This is in accordance with Theorem 37
since (H8) holds if @ is concave in R} and (H9) holds globally. o

Theorem 51 together with Propositions 46 and 49 provide accurate estimates for
the behavior of trajectories of (1) as time tends to +oo. Moreover, the optimality
of such estimates can be addressed using Theorem 51(b). Even though this can be
done in full generality in the case where ¥ is the graph of a function ¢ or ¢!, with
q € C1(Ry,R,) satisfying the statements in (H9) or (H10), we only focus in the sequel
on the case where ¢/(0) = 0 since it is the one usually addressed in the literature (see,
e.g., [1,26]). More precisely, we have the following result.

Corollary 54. Let ¥ C R? be a damping set satisfying (H8) and M > 0 be the constant
from (H8). Assume moreover that

(a) ENA={(0,0)}, where A = {(z,z) | x € R}; and

(b) there exists a function q € C*(Ry,Ry) with ¢(0) = ¢'(0) =0, 0 < q(z) < z, and
|d'(z)| < 1 for every x > 0 such that

lyl =q(z]) or |z|=q(ly]), for every (z,y) € XN B(0, M).

Then, for every p € [1,400] and every nontrivial solution z of (1) in X,, there exist
positive constants C, Co such that, for every t > 0,

Q1) < ey(2)(1) < CoQIZ(1),
where @ is the function defined from q in (18).

Proof. Note that assumption (b) implies that both (H9) and (H10) are satisfied with
the same function g and the same M > 0. Moreover, as noticed in Remark 52, (b) and
(H8) imply that (1) is UGAS in X. Then, by Theorem 51(a-iii) and (b), one deduces
that (59) and (60) hold, and the conclusion follows by Proposition 49. O

Remark 55. Our results given in Proposition 46(a), Theorem 51 (equations (56),
(58), and (60) with p = +00), and Corollary 54 are directly inspired by a string of
results of [26], namely Theorem 2.1 and all the results from Section 3 of that reference.
Because of the flexibility of our approach, we provide simpler proofs and we are able
to relax some assumptions on the function ¢ and the set of initial conditions for which
the appropriate estimates hold true.

Note that Theorem 51 (a-iii), together with the assumption that the function ¢ from
(H9) satisfies ¢’(0) = 0 and (49), yields the estimate

ep(2)(t) < 3(1+ ep(2)(0)*)F~H(t/2)

for every p € [1,+00], every solution z of (1) in X,, and ¢ large enough, where F is as in
Proposition 46(a). Indeed, this follows from (59), Proposition 46(a), and manipulations
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similar to those in the argument of Corollary 54. This estimate can be compared to
that of [28, Theorem 2.1(b)], which obtains a similar estimate for wave equations in
space dimension up to 3 but with stronger assumptions on gq. o

An interesting instance of the preceding results is the classical linear case, which
corresponds to X satisfying (H7). As a consequence of the above results and remarks,
we have the following.

Corollary 56. Let X C R? be a damping set.
(a) If 3 satisfies (H7) and (1) is UGAS in X, then there exists X\ > 0 such that,

for every p € [1,+00] and every initial condition (z9,21) € X0, every solution z
of (1) starting at (z0,21) satisfies

ep(2)(t) < Ce™Mey(2)(0), for every t >0, (64)

where the constant C > 0 depends only on A and ||(20, 21)||x__ -

(b) If there exist positive constants a,b such that a|x| < |y| < b|z| for every (z,y) € X,
then (1) is GES in X, for every p € [1,400]. More precisely, there exist C > 0 and
A > 0 such that, for every p € [1,400] and every initial condition (zg,z1) € Xp,
every solution z of (1) starting at (29, z1) satisfies

ep(2)(t) < CeMey(2)(0), for every t > 0. (65)

Proof. Ttem (a) can be deduced by combining the previous results and remarks and
noticing that (H7) is a particular case of (H9) with a linear function ¢q. We choose
however to provide the following direct ad hoc argument.

Let M > 0 and p € (0,1) be as in (H7) and 5 be the KL function provided by
the UGAS assumption in X.. Let z be a solution of (1) in X and consider the
corresponding sequence (gn)nen in Yoo from Proposition 6. Set R = ||go]| oo, let tg >0
be such that 3(R,tg) < 2L and define ng = [tr/2]. For n > ng and a.e. s € [~1,1],

%7
one has M
|gn(s)| < €xc(2)(2n) < B(R,2n) < (R, tR) < —=.
V2
It follows from (ﬁ?) that, for n > ng, one has
lgnllp < 1" " llgngll, < £ " lgoll,- (66)
The previous inequality still holds for n € {0, ...,ng—1} since (g, )nen is nonincreasing.
One immediately gets the conclusion with A\ = —lnT” using Propositions 6 and 27.
Part (b) follows immediately since, from its assumptions, one deduces that (66)
holds for every n € N with ng = 0. O

We next provide an alternative proof to Corollary 56(a) at the price of strengthening
Hypothesis (H7) to the following hypothesis on a damping set ¥ C R?:

(H7). For every M > 0, there exists p € (0,1) such that |y| < p|z| for every (z,y) €
RX N B(0, M).
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It is immediate to see that, under (H7),, real iterated sequences for S converge uni-
formly to zero and hence (1) is UGAS in X, therefore (H7), is stronger than the
assumptions of Corollary 56(a).

Nevertheless, we can prove Corollary 56(a) under (H7), for p finite with an argument
having its own interest, which is given next. Consider the Lyapunov function V,,, based
on a variant of e), and defined, for a solution z of (1) in X, by

1 1
Vp(t):/o e”"”F(f(t—i—a:))dx%—/o e ""F(g(t—z))dz, t>0, (67)

where f and ¢ are the functions associated with z from Definition 2, v is a positive
constant to be chosen later, and F(s) = |s|” for s € R. Note that V), coincides with
eb(z) if v = 0. In the case p = 2, the corresponding Lyapunov function V5 has been
extensively used in the literature of hyperbolic systems of conservation laws, as detailed
in [5].

We first provide another expression for V), before taking its time derivative along
trajectories of (1). From (67) and (12b), one gets for ¢ > 0 that

t+1
Vit =t [ e F(gls) s (68)

Hence V), is absolutely continuous and its time derivative along the trajectories of (1)
satisfies

dvp
dt
Since g(t+1) € S(g(t—1)) for t > 0, we deduce from (H7), that [g(t+1)| < plg(t—1)],

where p € (0,1) is obtained by taking M = ||(z0,21)|x., in (H7),. and (29, 21) is the
initial condition of z. Then, from (69), one deduces that

() = —oVp(t) + " Flg(t +1)) — e "F(g(t — 1)),  t>0. (69)

d
Yoty < v (1) + e F(g(t - 1))(MP62V - 1), t>0.
dt
Setting v = —Z In(p), one obtains that
dV,
T O ==, =1,

which implies the exponential convergence of trajectories of (1) with a decay rate
depending on ||(20, 21)||x.,- It is now standard to obtain (64) with v independent of
the initial condition, cf. [13].

Remark 57. Note that the previous argument stills works without considering the
parameter v in the definition of V,, in (67), in which case V,, = e(z). Equation (69)
becomes, after taking into account (H7)s.,

av,

E(75) < —(1—=pP)F(g(t—1)), for a.e. t > 0.

Integrating between t — 1 and t + 1 for ¢ > 1, one gets that
ep(2)(t+1) < pep(2)(t — 1),
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which yields exponential decay. More generally, at the light of Remark 8 and without
assuming necessarily (H7),, one can follow a reasoning relying on a Lyapunov function
of the form (67) with any positive definite function F' with no additional regularity
assumption on the solution z € X, of (1), as soon as a damping and sector conditions
are satisfied. o

We close this section by providing a necessary and sufficient condition of GES.

Corollary 58. Let ¥ C R? be a damping set, p € [1,+00], and S be the set-valued
map whose graph is RY. Then (1) is GES in X, if and only if there exists p € (0,1)
and ng € N* such that, for every x € R, one has ||S")(z)| < plz|.

Proof. Assume that there exists p € (0,1) and ng € N* such that, for every = € R,
one has ||S["0)(z)|| < plz|. Let z be a solution of (1) in X, and consider the sequence
(gn)nen in Y, corresponding to z according to Proposition 6. Then, for every k € N,
one has

gm0 llp < 1" 1lg0llps

and, by using Propositions 6 and 27, one gets that (1) is GES.

Conversely, assume that (1) is GES and let C, A be positive constants such that
ep(2)(t) < Ce *Me,(2)(0) for every t > 0 and every solution z of (1) in X,. Let ng € N*
be such that Ce 20 < 1. By considering constant initial conditions, one gets the
conclusion with = Ce™2 0, O

4.5 Arbitrary slow convergence

In this subsection, we positively answer a conjecture posed in [26, Theorem 4.1, Re-
mark 2] regarding the worst possible decay rate of solutions of (1) when ¥ is of satu-
ration type.

Theorem 59. For C > 0, define Re = {(x,y) € R? | |z| < C/V2 or |y| < C/V2}.
Let ¥ C R? be a damping set such that ¥ C R¢ for some C > 0. Then, for every
p € [1,+00) and every decreasing function ¢ : Ry — R% tending to 0 as t — +oo0,
there exists (zo,z1) € Xp such that every solution z of (1) with initial condition (zo, z1)
satisfies, for everyt > 0,

ep(2)(1) = (D).

A graphical representation of the region R and the rotated region RR ¢ is provided
in Figure 5. The darker shade represents the intersection between R and the damping
region {(z,y) € R? | zy > 0}.

Proof. Let S be the set-valued map whose graph is RY. The assumptions on 3, namely
the fact that ¥ is a damping set and that > C R, imply that, for every x € R and
y € S(x), one has |z| — C < |y| < |z|.

From Propositions 6 and 27, it is enough to construct go € Y, such that, for every
iterated sequence (g )nen in Y), for S starting at go, one has

lgnllp = ¢(2(n = 1)), Vn €N (70)

Up to dividing the sequence (g, )nen and the function ¢ by C, we assume with no loss
of generality that C' = 1.
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Figure 5: Regions R¢ and RR¢.

Let Cp, = 3,,%1 and ¢ : Ry — Ry be a decreasing function such that ¢(t) =

C%)gop@(% — 1)) for every t > 3P. Note that Cp¢(3PnP) = ¢P(2(n — 1)) for every
n € N*. Let (ap)nen and (by,)nen be the sequences obtained by applying Lemma 85 in
Appendix D to ¢. Define go : [-1,1] — R4 by

go(s) = Z kl/pX(ak+1,ak] (8), (71)
k=0

and consider an iterated sequence (gn)nen for S starting at go. Using the fact that the
sequence (by,)nen converges to 0 and the relationship between the sequences (ay,)nen
and (by,)nen, it is easy to see that

oo o0
lgolls = k(ak — ars1) =D ar = by < +00,
k=0 k=1

and thus gy € Y, which implies that g,, € Y,, for every n € N. Moreover, Proposition 17
shows that, for every n > 1, one has

gn(s) = Zak,nx(akﬂ,ak](s), with oy, € SI(KYP) for k € N.
k=0

Notice that, for every n € N and k > nP, one has |y, | > kY/P —n. Then, for every
n € N, one has

||gn”£ > Z (kl/p —n)P(ar — ax+1)

k>nP

(72)
= [ L (k—l)l/p—npa.
2 L) )]
We next prove that, for every n € N* and k& > 3Pn?, one has
(kl/p _ n)p . <(k e n)” > (. (73)
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To see that, we rewrite the left-hand side of (73) as k(AP — BP) with

n 1\ /7 n

Using that k£ > 3PnP, one deduces at once that % < B < A <1. On the other hand,

there exists I' € [B, A] C [3,1] such that A? — BP = p(A — B)I"?~!. Since

NN 1
A—le—(l—) > — for every k € N*|
k pk
one concludes that (73) holds.
It now follows from (72), (73), and the expression of the sequence (ag)reny with
respect to (bg)ren that

lgnlly = Cpbraen—1 2 Cpp(3°nP) = pP(2(n - 1)),  n=1,
as required. O

Remark 60. Note that Theorem 59 does not hold for p = +oo. Indeed, assume
that ¥ C R? is the graph of the piecewise linear saturation function o defined by
o(x) = x for || < 1 and o(x) = % for |x|] > 1. Then RY is the graph of the

||
function S given by S(z) = 0 for |z| < v/2 and S(z) = —z + \/ﬁli—‘ for |z| > V2. A
straightforward computation using Proposition 6 shows that, for every (2o, z1) € Xoo,
we have e (2)(t) = 0 for every t > 2[es(2)(0)/v2], and thus an estimate such as that

of Theorem 59 cannot hold. o

5 Boundary perturbations

In this section, we show that the framework developed previously to address the sta-
bility of (1) can also be applied to handle wave equations with disturbances in the
boundary condition (z:(t,1), —2,(¢,1)) € X. More precisely, the disturbed version of
(1) we consider in this section is

(244 (t, 2) = 2pu(t, ), (t,z) € Ry x [0,1],
2(t,0) =0, teR,,
(2¢(t,1), —2,(t,1)) € X+ d(t), teRy, (74)
2(0,2) = zo(z), x € [0,1],
2t(0,2) = 21 (x), x € 10, 1],

where d : R, — R? is a measurable function representing the disturbance.

Given p € [1,400] and a disturbance d as above, solutions of (74) in X, can be
defined with an obvious modification of Definition 2, consisting in replacing the set X
in the boundary condition at x = 1 in (11) by ¥ + d(t). Proposition 3 still holds for
(74) after replacing (12c) by

(9(s —2),9(s)) € RE+ Rd(s — 1), for a.e. s > 1. (75)
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One may use the one-to-one correspondence Seq from Definition 5 between elements

g € Lt (—1,+00) and sequences (gn)nen in Y, to rewrite (75) as

(gn(8), gn+1(5)) € RE + dn(s), neN, ae se[-1,1], (76)
where the sequence of measurable functions (0, )necn is defined from d by
on(s) = Rd(s+2n+1) for every n € N and s € [—1,1]. (77)

As regards existence and uniqueness of solutions of (74), similarly to Theorems 20
and 21, we deduce in a straightforward manner the following result.

Theorem 61. Let ¥ C R? and p € [1, +00].

(a) If (H2) holds and p < +oo, or if (H2)s holds and p = +oo, then, for every
(20,21) € Xp and every d € LY (Ry,R?), there exists a solution of (74) in X,
with initial condition (zo, z1).

(b) For every (20,21) € X, and every d € Lt (Ry,R?), there exists a unique solution

of (74) in X, with initial condition (29, 21) if and only if either (H3) holds and
p < 400, or (H3)s holds and p = 0.

We now turn to the issue of asymptotic behavior of solutions of (74). Before
stating our results, we need to introduce, for every damping set ¥ C R2, the function
Ry — R, defined by

p(r) = lim  sup [[S(z)l|, (78)
107 |z|<r
where we recall that S is the set-valued map whose graph is RY. Similarly to the
function p introduced in (41), the function p satisfies the properties stated in Propo-
sition 38, with S replaced by S in (c) and p[l"/2}] replaced by u™ in (d). We also
need to introduce the space of disturbances Dj, p € [1,+00), given by

oo
D, := {d : Ry — R? is measurable | D(-) := Y _|d(- +2n +1)| € Y,,} : (79)
n=0
Note that D, C LP(Ry,R?) with equality if and only if p = 1.
We shall use the next definition of input-to-state stability for (74), which can can

be seen as a generalization of the UGAS property in presence of disturbances (see, for
instance, [22]).

Definition 62. Let p € [1,+00]. We say that the dynamical system (74) is input-
to-state stable (ISS) with respect to the state space X, and the disturbance space
LP(Ry,R?) if there exist a KL function 8 and a K function v such that, for every
trajectory z of (74) associated with an initial condition (2o, 21) € X, and a disturbance
d € LP(R,,R?), one has

ep(2)(t) < Blep(2)(0),1) + v(lldll ro(r, r2)), ¢ =0. (80)

The main result of this section is the next theorem, which provides conditions on
w ensuring that (74) is either strongly stable or ISS.

Theorem 63. Let p € [1,+00], ¥ C R? be a damping set, and p be the corresponding
function defined in (78). Assume that u(r) < r for every r > 0.
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(a) Let d € LY (Ry,R?) and z be a solution of (74) with disturbance d. Then

loc

ep(2)(t) = 0 as t — +oo if one of the following conditions holds.

(a-i) p < 400 and d € Dy,
(a-1i) d(t) — 0 as t — +o0 and, for every € > 0, one has

inf r — p(r) > 0.
r>e

(b) The dynamical system (74) is ISS with respect to X, and LP(R,R?) if one of the
following conditions holds.

(b-i) p =400 and lim,_ o0 r — p(r) = +00.
(b-i3) p < +oo and (HY) is satisfied.

Proof. Let d : Ry — R? be measurable, z be a trajectory of (74), and (g, )nen and
(6n)nen be the sequences corresponding to z and d according to Proposition 6 and
(77), respectively. For n € N and s € [—1,1], denote 8,(s) = (n.1(8),0n2(s)) € R?
and set hy,(s) = gn(s) — dn,1(s). Then, using (76), one deduces that, for n € N and a.e.
s € [-1,1],

g1 (8)] < p(lhn($)]) + 0n11,1(s) — On2(s)]. (81)

We first prove (a) under the assumption (a-i). One deduces from (81) that, for
n € N and a.e. s € [—1,1],

[hin(8)] < |ho(s)| +2D(s), (82)

where D is the function in Y, associated with d € D, in the sense of (79). Hence
(hn)nen is a sequence in Y, and it is dominated by the function |hg| + 2D, which also
belongs to Y,. In addition, d,(s) tends to 0 as n — +oo for a.e. s € [—1,1] since
D €Y,. Then, in order to obtain the conclusion of (a), it suffices to show that (hy)nen
tends to zero almost everywhere.

Let s € [—1,1] be such that the series of general term |0,41,1(s) — dn2(s)| is con-
vergent. The sequence (|hy(s)|)nen being bounded thanks to (82), it is enough to
prove that its only limit point is zero. Reasoning by contradiction, assume that
there exists a subsequence (|hy, (s)|)ken converging to some r, > 0. Then, for ev-
ery € > 0, there exists kg € N such that thk(s)\ - r*| < ¢ for every k > ko and
Zzoznko“snﬂ,l(s) — 0n2(s)| < e. Using (81) and the fact that p is increasing, one
deduces that

TLk+1—1

re =& < iy ()] < 1l () + D7 1n41,1(8) = Sn2(s)] < pulre +€) + e

n=ng

Hence 7 < u(r. +¢)+ 2¢e and, since p is upper semi-continuous and € > 0 is arbitrary,
we deduce that u(ry) > 7., yielding the desired contradiction.

We next prove (a) under the assumption (a-ii), which amounts to prove that (h,)nen
tends to 0 in Y. For every € > 0, let = min (£/2,inf,>. o7 — pu(r)) > 0. Let ng € N
be such that |0p41,1(8) — dn2(s)| < n/2 for every n > ng and s € [—1,1]. It follows
from (81) that, for n > ng and s € [—1, 1], one has

|2 ()]

<e = |hpn1(s)] <,
|hn(s)| >

n
= [ ()] < n(5)] — 2.

[NCRIORNCN
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For n > nyg, let x,, denote the characteristic function of the set {s € [—1,1] | |h,(s)| <
e}. Then the sequence (h,Xn)nen takes values in Y, and, for n > ng, one has
|hnXnll, < 2'/Pe (with the convention that 1/p = 0 for p = +00). On the other
hand, for a.e. s € [—1,1], the sequence (|h,(s)[(1 — xn(S)))nen is nonincreasing for
n > ng and converges in a finite number of steps to zero. In particular, by the domi-
nated convergence theorem, |||h,|(1— x»)||p tends to zero as n — +oo. The conclusion
follows.

We next turn to (b). Notice first that eh(z)(t) < eb(2)(2n) + eb(2)(2(n + 1))
for p < +00 and ex(2)(t) < max(es(2)(2n),ex(2)(2(n + 1))) for every n € N and
t € [2n,2(n + 1)]. Hence, using also Lemma 81 in Appendix D, it is enough to show
that the inequality in (80) holds for ¢t = 2n for every n € N to obtain that (74) is ISS.
Moreover, notice that (H8) implies that lim, 4o r — p(r) = +o0.

First of all, one obtains from Lemma 84 given in Appendix D that there exists
a Koo function ¢ lower bounding the function r +— r — p(r) and such that Id —¢p is
nondecreasing. In particular, one then has that ¢! : R, — R, is K. Moreover, if
(H8) holds true, one has in addition that Id —¢ is concave. From (76), one deduces
that, for every n € N and s € [—1, 1], one has

|9n+1(s)| < (Id =) (|gn ()] + [0n,1(5)]) + [0n2(5)],

and thus

|9n+1(5)] < (Ad=@)([gn(s)]) + [0n,1(5)] 4 [0n2(s)],
since, by an immediate computation using the fact that ¢ is nondecreasing, for every
a,b € Ry, one has (Id —¢)(a+b) < (Id —¢)(a) + b. Since Id —¢ is nondecreasing and
it is concave when p is finite, one deduces, applying Lemma 82 in Appendix D in the
case p < +oo, that, for every n € N,

lgn+1llp < 2/7(1d =) (277 llgnll,) + 2116allp,

with the convention that 1/p = 0 for p = 4o0. It follows that ||gy|/, < ky, where
(kn)nen is the trajectory of the one-dimensional discrete-time control system defined
by

kni1 = 2YP(Ad =) (27 Plknl) + Jun],  nEN, (83)

with initial condition and control given respectively by

ko = [|g0llp,
tn = 26allyy  meEN.

To obtain the conclusion, it is enough to prove that the control system (83) is ISS
according to the standard definition of ISS for finite-dimensional control systems as
given in [15]. Indeed, in this case, one will deduce that there exist a KL function
and a K function ~ such that

ol < ko < Ako, ) +7(su11§ u) — Bllgollysm) + 7(2 suguanup)
ne ne

and the conclusion follows by noticing that sup,enl[dnll, < [|dll 1rr . r2)-
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Thanks to [15, Theorem 1], the proof of ISS for (83) is reduced to establishing the
existence of three K functions 7, 01, 02 such that, for every trajectory (ky)nen of (83)
starting at kg € R and corresponding to a control (u,)nen, one has

lim sup|k,| < 70 (lim sup|un|> (84)
n—-+o0o n—-+o00
and
sup|ky| < max <01(]k0]),02 (sup|un|>) ) (85)
neN neN

From (83) and the fact that Id —¢ is continuous and nondecreasing, it is immediate
to derive that

lim sup|ky,| < 2Y/7(1d —¢)(27Y/? lim sup|ky,|) + lim sup|u,|,

n—-+4o0o n—-+00 n—-+4o00o

yielding (84) with vo(r) = 2/Po=1(271/Pr) for r € R,
Finally, (85) follows by proving that, for every n € N,

in] < max ([kol, U + 279~ (2770 )

where U = sup,,cy|un|. Indeed, using an inductive argument, the above inequality
holds trivially for n = 0, while the induction step follows by considering separately the
cases where |k,| < 21/Po=1(271/PU) or not. O

Remark 64. Consider a damping set X verifying the following generalized sector
condition, which is a global version of (H9): there exist a positive constant M and
a function ¢ € CY(Ry,Ry) with ¢(0) = 0, 0 < ¢(x) < =, and |¢/(x)] < 1 for every
x > 0 such that ¢(Jz|) < |y| and q(|Jy|) < |z| for every (z,y) € X. In that case,
the function p defined in (78) satisfies 1 < @, where the function @ is defined from
q as in (18). Moreover, conditions on p expressed in (a-ii) and (b-1) are satisfied if
liminf, 4o ¢(x) > 0 and lim,—, 1~ q(z) = +00, respectively. o

Remark 65. One can weaken the assumption in (b-i) to p = 400 and lim inf, o r—
wu(r) =: £ > 0 and obtain an ISS-type result under additional assumptions on the L
norm of the disturbance d. More precisely, in that case, one can adapt the proof of
Lemma 84 in Appendix D to provide a K function ¢ lower bounding Id —p such that
Id —¢ is nondecreasing, but whose range is [0, ¢) instead of R, . By following the same
lines of the arguments of Item (b-i), one deduces an ISS-type estimate for trajectories
of (74) associated with disturbances d in L= (R, R?) with ||d|| =~ < /2, i.e., one has
an estimate of the form (80) but the function +y is defined only on [0,¢/2). o

Remark 66. To the best of our knowledge, few results on (74) have been obtained
and the most precise ones can be found in [27], which considers the case where ¥ is
the graph of a saturation function and essentially deals with disturbance rejection.
Theorem 63(a) improves the results of that reference since the disturbance there is
assumed to be matching and regular (both d(-) and d’(-) belong to D;) and Remark 65
shows that we can achieve ISS-type of results in X. )
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6 Application to the case of the sign function

In this section, we apply the framework introduced in the paper to the particular
choice of ¥ as the graph of the sign multi-valued function defined in (19), which is
not the graph of a function ¢ : R — R and which is not a strict damping. We will
illustrate how our techniques easily handle this case, obtaining in particular existence
and uniqueness of solutions of (1) and the precise characterization of their asymptotic
behavior. This boundary condition has been previously considered in the literature,
for instance in [27].

We then consider that ¥ = X, where ¥, is defined in (20), and, for sake of
simplicity, we assume in the sequel that M = /2. All the results that we will present
in this section in that case readily extend to the general case of ¥, for any M > 0 by
simply remarking that z is a solution of (1) associated with the set 3 if and only if
V/22/M is a solution of (1) associated with the set 25

A straightforward computation shows that RY is the graph of a function (which
we denote by S in a slight abuse of notation) given by

x, if |z| <1,
S(x)=<2—-=z, ifzx>1, (86)
22—z, ifzx<-1.

Note that this set satisfies both (H3) and (H3). and thus, as an immediate consequence
of Theorem 21, we obtain the following.

Proposition 67. Let p € [1,400]| and consider the wave equation (1) with the set ¥
given by (20). Then, for every (zo,21) € Xp, there exists a unique solution of (1) in
Xp with initial condition (zo, 21).

Remark 68. In [27], the sign function has been introduced as the limit of linear sat-
urated feedbacks, and the existence and uniqueness result therein, [27, Lemma 3], is
shown in the Hilbertian framework of X, by proving that the generator of the corre-
sponding equation in X, is a maximal monotone nonlinear operator. With respect to
that framework, our techniques allow one to consider solutions of (1) in X, for any
p € [1,+o0]. o

We now turn to the asymptotic behavior of trajectories of (1) in X, for p € [1, +o0]
with ¥ given by (20) and M = /2. It is immediate to see that ¥ is a damping set and
hence, by Proposition 27, the energy e,(z)(+) is nonincreasing along trajectories z. On
the other hand, S is continuous, and hence its graph is closed, as well as the graphs of
its iterates S for n € N. Since S(x) = x for = € [-1,1], S is not a strict damping,
and thus Corollary 44 immediately implies that (1) is not strongly stable in X, for any
p € [1,+00]. A more direct way to see that, which is similar to the argument provided
in [27, Lemma 4], consists of considering a constant function g in Y, whose constant
value belongs to [—1,1]. The corresponding solution z of (1) with initial condition
37 Y(go) corresponds to the sequence (gn)nen which is constant and equal to go.

We next characterize the limits of solutions of (1). We start with the following
preliminary result dealing with limits of real iterated sequences for S, which is obtained
by straightforward computations.

Lemma 69. Let S be given by (86).
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(a) For everyn € N, one has S"(0) = 0 and, for = # 0,

Sl () = (—1)’“% (2| —2k), k= min <n W; 1J) 8D

(b) Let (zn)nen be a real iterated sequence for S starting at xo # 0 and denote

ko = [%J Then (xy)n>k, i constant and

Zn = (—1) 2% (Jzg| — 2kg),  forn > ko.
| ol
For sake of simplicity and using an abuse of notation, we will write the right-hand
side of (87) also when = = 0, and it should be considered as being equal to zero in that
case.
As an immediate consequence of Lemma 69, we have the following.

Proposition 70. Let go : [—1,1] — R be measurable and consider the iterated sequence
(gn)nen for S starting at go. Let K : [—1,1] = N and g : [-1,1] — R be defined by

K(s) = {MJ and

oS
o) = (~1/ 20 (1g05)] — 21¢(s)).

|90(s)]
Then S0 goo = Goos gn converges to goo a.e. on [—1,1], and |gn| < |go|. In particular, if
go € Yp for some p € [1,400), then g, converges to goo in Y,. In addition, if go € Yoo,
then gn = goo for every n > || K||co-

Translating the above result in terms of solutions of (1), one immediately gets the
following.

Theorem 71. Let p € [1,+00|, (20,21) € Xp, and consider the solution z of (1) with X
given by (20) with M = /2 and with initial condition (20, 21). Let go = J(20,21) € Yp,
Joo be defined from gy as in Proposition 70, and z~ be the solution of (1) starting at
37Y(goo). Then 2o is 2-periodic and z(t) — zoo(t) converges to 0 in X, as t — +oo.
Moreover, if p = +00, the convergence takes place in finite time less than or equal to
T = Q{WJ ,de., 2(t) = 200(t) fort > T.

Proof. We only provide an argument for the 2-periodicity of zo,. Indeed, recall that,
by Proposition 6(b), the Riemannian invariants of z., are built after the S-iterates of
Jo- The latter being a fixed point of S, the Riemannian invariants of z., are then
2-periodic. One derives the 2-periodicity of zo, by using the first equation of (11). [

Remark 72. Theorem 71 improves the result [27, Theorem 6] in the following direc-
tions: firstly, Theorem 71 applies to solutions of (1) with initial conditions in X, for
some p € [1,400], whereas the main convergence result in [27, Theorem 6] only consider
regular solutions of (1) in the Hilbertian setting. Secondly, thanks to Theorem 71, we
provide an expression for the limit z,, which is more explicit than the one based on
Fourier series provided in [27, Theorem 6]. o

Remark 73. At the light of the finite-time convergence in X, in Theorem 71, one
may wonder whether uniform bounds on the convergence rate can also be obtained for
finite p. Unfortunately, the answer turns out to be negative, since, by Theorem 59, the
energy of solutions of (1) in X, for finite p may decrease arbitrarily slow. o
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A Universally measurable functions

Hypotheses (H2)—(H3) used throughout this paper use the notion of universally mea-
surable functions. This appendix provides the definition of this class of functions
together with their main properties used in this paper. Interested readers may find
further properties of universally measurable sets and functions and their applications
in analysis in [6,9,23]. For sake of simplicity, we only consider here real-valued uni-
versally measurable functions defined on a (possibly unbounded) interval I C R, since
this particular setting is the only one used in the paper. We denote by B and £ the
o-algebras of Borel and Lebesgue measurable subsets of R, respectively.

Definition 74. Let § be a o-algebra on R.

(a) Let p be a nonnegative measure on (R, F). A set M C R is said to be u-measurable
if there exist A, B in § with A C M C B such that pu(B\ A) = 0.

(b) A set M C R is said to be universally measurable with respect to § if, for every
probability measure p on (R, §), M is u-measurable. The family of all universally
measurable subsets of R with respect to § is denoted by §.

When § is the o-algebra 5 of Borel subsets of R, we define 3 = 95, and we say
that the elements of i are the universally measurable subsets of R.

(¢c) Let I C R be an interval and f : I — R. We say that f is an universally
measurable function if, for every A € B, one has f~1(A) € 4.

For every og-algebra § of R, the set §. is also a o-algebra and one has further that
(§+)« = §«. In particular, 4, = 4. The o-algebra il is called the universal o-algebra of
R. Using the fact that the Lebesgue measure is complete with respect to the o-algebra
£, one also immediately checks that £, = £.

The above definition implies that B C 4 C £, and classical counterexamples pre-
sented in [6,9,23] show that these inclusions are strict. One deduces from these inclu-
sions that every Borel measurable function is universally measurable and that every
universally measurable function is Lebesgue measurable. Note that, as stated, e.g.,
n [23], the requirement on p to be a probability measure in Definition 74(b) may be
replaced with the requirement on p being finite or also o-finite with no change in the
definition.

A classical result on universal measurability is the following property, whose proof
can be found, for instance, in [9, Lemma 8.4.6].

Proposition 75. Let § and & be o-algebras on R, I C R be an interval, and f : I — R.
Assume that f~1(A) € § for every A € &. Then f~1(A) € F. for every A € &,.

As an immediate consequence of Proposition 75, one obtains the following alterna-
tive characterizations of Lebesgue and universally measurable functions.

Corollary 76. Let I C R be an interval and f: I — R.
(a) The function f is Lebesque measurable if and only if f~1(A) € £ for every A € 4.

(b) The function f is universally measurable if and only if f~1(A) € U for every
Aedl.

Corollary 76(b) implies in particular that universal measurability of functions is
preserved under composition, as we state next.
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Proposition 77. Let f : R — R and g : R — R be universally measurable functions.
Then f o g is also universally measurable.

The major result on universally measurable functions that we need in this paper is
the following, which characterizes the set of universally measurable functions as those
which preserve Lebesgue measurability by left composition. The statement and the
proof presented below were communicated to the authors! by Mateusz Kwagnicki.

Proposition 78. Let f : R — R. Then f is universally measurable if and only if, for
every Lebesque measurable function g : (—1,1) — R, f o g is Lebesgue measurable.

Proof. Assuming first that f is universally measurable, one immediately obtains from
the characterizations in Corollary 76 that f o g is Lebesgue measurable for every
Lebesgue measurable function g : (—1,1) — R.

Let us now assume that f is not universally measurable. We will construct a
continuous function g : (—1,1) — R such that f o g is not Lebesgue measurable.

Since f is not universally measurable, there exists B € B such that A = f~1(B) ¢
4. Thus, there exists a probability measure p on (R,®B) such that A is not u-
measurable. Let A be the standard Gaussian probability measure on R, i.e., d\(z) =
ﬁe_ﬁ/ 2 dx, and consider the probability measure vy = % W+ %)\ on (R,B). Clearly,
A is not vp-measurable either. Let v be the probability measure obtained from 1y by
removing its atoms and renormalizing the resulting measure, and notice that A is not
v-measurable.

Let h : R — R be the cumulative distribution function of v, defined for x € R
by h(x) = v((—o0,x]). Then, by construction of v, one deduces that h is continuous,
increasing, h(z) € (0,1) for every z € R, lim,_,_ h(z) = 0, and lim,_, 1 h(z) = 1.
In particular, 4 admits an inverse A~ : (0,1) — R which is continuous and increasing.
Recall also that v(E) = m(h(E)) for every E € B, where m denotes the Lebesgue
measure on (0,1).

We claim that h(A) is not Lebesgue measurable. Indeed, if it were not the case,
there would exist two Borel subsets F1, F» of (0,1) such that Fy C h(A) C F; and
m(Fy \ Fi) = 0. Then, letting E; = h™1(F)) for i € {1,2}, we would have that F;
and Fy are Borel sets (since h is continuous) with £y C A C Ey and v(Es2 \ E1) =
m(h(E2 \ E1)) = m(Fy \ F1) =0, implying that A is v-measurable, a contradiction.

Let T : (—1,1) — (0, 1) be the linear map defined by T'(z) = Zt. Then T-1(h(A))
is not Lebesgue measurable. Let g : (—1,1) — R be the continuous function defined
by g =h toT. Then (fog) '(B) = g }(A) = T7(h(A)) and, since B € B and
T~Y(h(A)) ¢ £, one deduces that f o g is not Lebesgue measurable, as required. O

B An optimal decay rate

This appendix proves the following result, which identifies the optimal decay rate of
Q" (z0) when ¢(z) = ﬁ for x > 0 small enough and @ is defined from ¢ as in
(18) (cf. Remark 48).

Theorem 79. Let p > 0, M € (0,1), ¢ € C*(R4,R) be given by q(x) = Chop
for x € (0,%), and assume further that 0 < q(z) < x and |¢'(z)] < 1 for every

!See https://mathoverflow.net/questions/366953/.

56


https://mathoverflow.net/questions/366953/

x> 0. Let z9 € RY, Q be defined from q by (18), and the sequence (x,)nen be given
by &, = Q" (xg) forn > 0.

Set N = [ﬁJ Then there exist N + 1 real numbers oy, k € {0,..., M}, with
ap = (2(p+ 1))1T1H, such that, as n — +o00, one has

1 1 J2;11)k:
Ty ~ —=e” Zhmokn P (88)

Proof. Notice first that ¢/(0) = 0. Thanks to the assumptions on ¢, (z)nen is a

decreasing sequence of positive real numbers with x,, — 0 as n — 400 and we assume

that x,, € (0, %) for every n > 0 with no loss of generality (cf. Proposition 49(a)).

Let F be the diffeomorphism defined in Proposition 46(a). One computes that, for

z € (0, 0], it holds

(— In(v/22))*!
2(p+1)

where C' is a positive constant. In particular, ¢ does not satisfy (49).
We start the argument for the theorem by setting some notations for the subsequent

F(z) = +C, (89)

computations

R S S
“In(y)’ T TIn(z/2)

It follows at once that all the sequences defined above are positive, decreasing, and
tend to zero as n tends to infinity. By manipulating their definitions and using also
(18), the explicit expression of ¢, and the fact that x,11 = Q(z,,) for n € N, we deduce
that, for n € N and a € R,

Yn = V2, 2n = 2q +1d) " Hyn), & = for n € N.

1 1+ pn
§n+1 gn |:1 * gn hl( 1- /LIT)L>:| 7 (90)
and Y
& =, <1 up“ln(llj M")> : (91)

For the rest of the argument, we also use the standard symbols ~, O(-) and o(:) as n
tends to infinity without writing the latter fact.
By (91), one has that &, ~ p, and it follows from (89) and Proposition 46(a) that

(;)pﬂ ~ aﬁ“n. (92)

Moreover, since 0 < p, < 1 for every n € N, one has

1+ /an 2pk
In ( ) i 93
A DI 1 (93)
k>0
Using (93) in (90), one gets for n € N that
1 1 uipk
= — |14 2¢H! ( ) : 94
fn-‘rl fn E gn >0 2k +1 ( )

57



On the other hand, one deduces from (91), (92), and the fact that &, ~ pup, that
'U/n ~ aonl}(p"rl)’

— ¢ (1 +0(nY) ) (95)
and
Mipk _2p
— 1
D 1+0(n p+). (96)

The above equation yields, together with (95), that (94) can be written, after taking
its (p + 1)-th power, as

51714—1 - §p+1 [1+2§p+1<1+0( ))(1+O (nfp%) )}pﬂj

n+1
- gl eran (1o <o () )

+ ap+1 +0(n Y +0 (n_%) . (97)

= 5’2"1‘1
By summing up the above equations between 1 and n, one deduces that

1 — 2 In(n _2p
ngl = Ctg+1n + O(ln(n)) + O <n1 pf1> = ag+1n (1 + O < fl )> + [0) (n Pfl)) ,
(98)

which implies that

1 L In(n) —2e N\ L l2p In(n)
f:_aonp+ <1+O<n>+0<n p+ ))—aon“ —I—O<n?+ )—I—O( -

By taking the exponential of the above relation, the theorem is proved in the case
p>3.
We next suppose that p € (0, %] and in that case N = L%J > 1. By using (95), one

rewrites (96) as

2pk (N+1)
T Z 5 <n <l+p+1>> v (n-%;ﬁl ) S
k>0

One then rewrites (97) as

1 1 b1, prine G -1 —2p(A41)
@it = g o g 22k+1+0(n )+O0 (n r ). (100)
n+1 n k=1

We next prove that there exists N real numbers 7, for k € {1,..., N} such that

N
1 _2pk _2p(N+1)
arl = o/é“n—i— E en' P40 <ln(n) ! ) . (101)
n k=1

To see that, we set vg = ozg+ and we will prove by induction on j € {0,..., N} the

following property: there exist N + 1 real numbers vy for k € {0,..., N} so that, for
every j € {0,..., N}, setting

J 2t
=> wn' TP and  Fj(n) = o — fi(n),
=0 én



one has
2p(j+1) )

Fj(n) = O(ln(n) + ! (102)

Note that f;(n) ~ fo(n) = ongr n and the property is clearly true for j = 0 by (98).
For the inductive step, assume the property holds for some j € {0,..., N — 1} and let
us establish it for j + 1. It amounts to prove that there exists a real number 7,41 such
that

(103)

2p(G+1) 72P(j+2)>

Fj(n) = 'yj+1n17 Pl 4 O(ln(n) + T e
Using the induction assumption (102) and the definition of Fj(n), we have

and, since 7 < N—1, we have 2’?151:1) % < 1, showing that, for every k € {1,..., N},
_ 2pk _2p(+1)
20k — fi(n) pi1 (1 +0 (n P ) ) (104)
Moreover, we also have the estimate
2pk. 1 2pk 2pk ) 2p
n+ 1) e e = (1 P nP+1<1+O ) 105
(n+1)"" (1- 2% () (105)
We inject the expression —t £ = fj(n)+ Fj(n) into (100) and, after computations using

(104) and (105), one obtalns that

j
2pk _2pk
Fin+1) - Z’yk <1—p>n s

=1 p+1

2pk

p+1 fj(n) »H1 _2p(j+2) -1
Z %H O(n T ) (106)

Denoting the second sum by T}(n), one has that
N 2pk 2pk 2pk
. ao n T ptl 2pl T
Tj(”); TEmEt +Zi” )
_ 2pk

. 1
Let ;1(Z) = (1 + 39 aZﬁl Z€> " and write its Taylor expansion around Z = 0
0

2
as pjk(Z2) = 1+ 3 5 rjykngZ. Then, letting Z = n”#T in the previous expression,
one gets

N o=k, = _2pt
i) = 3 S (1 Xrawen o)

k=1 o>1
N  _opk —2pk —2pk
RN, -2t
= T k,‘ gn P
2k +1 2%k +1 7%
k=1 T 1<k<N,>1 +

= D Fun vk FganT o 00T e
1<6<j

2pl _ 2p(j+1) _ 2p(i+2)
( ) (107)
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for suitable coefficients 7., £ € {1,...,5 + 1}. The key point is to notice that, for

¢ e {1,...,7}, the coefficients r; ¢ only depend on 7,...,v, and not on s for s > £
nor on j. As a consequence, the coefficients 7; , only depend on ~,...,7—1 and not
on y; nor j. Hence, v, for £ € {0,..., N}, is chosen according to the relation
1~
ap T
Ve = 2pl
- ptl

which is possible since the right-hand side only involves 7g,...,7_1 and does not

depend on j > [. In other words, 7, is determined exactly at step £ of the induction.
Gathering (106) and (107), one obtains

Pl - _2p(+1) 1 _2p(+2)
Fi(n+1) = Fj(n) = af ' figan~ ## +0(n~ a7 i)

p+1ls
Setting vj41 = %, one gets (103) after summation of the previous equation

+1
between one and n lgrge. The induction step has been established, which concludes
the proof of (101).
One deduces from (101) that

1
N p+1
Ve 20k In(n)  _z(0V+D)
1+ 321 ?n 1 + O <TL +n p+1 . (108)

_ 2pk < 1. . .
Since the term S & | —2::n 7+ can be seen as a polynomial in the indeterminate
k=1 a§+
_2 o . .
Z =n r+1 with zero constant term, it is clear that there exist N real numbers «y, with

ke {1,...,N} such that

1

N T

(N+1)

1+ T 0 <1n(n) +n2pp+1+1>
= a0 "

N
( )
1+ X L0 (m(n) o ) .
ap n
k=1
Plugging the above equation in (108), one gets that

1 N 1—2pk 1n(n) 1—2p(N+1)
— = apn r+H1 4+ [0) —+n pH ,
&n k=0

n17p+l

for n large enough. Taking the exponential yields (88). O

C Proof of Proposition 50

Proof. If (55) holds true for some ¢ as in the statement, then it still holds true for any
function satisfying the same assumptions and which is larger than ¢ on any interval
[0, +00), ¢ > 0. By using Lemma 83, it is therefore enough to prove the proposition
for ¢ which, in addition to the above mentioned hypotheses, is also C2, with ¢’ > 0,
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¢" <0, p(0) > 0, and such that 0 < % <land0< —% < 2 for every z > 0,
which we assume in the sequel.
We first note that, for every C' > 0, one has

lim 7('0(37 +C)

Jm =2 =1 (109)

since, for > 0, one has

(0| [ ()

which tends to zero as x tends to infinity, yielding (109).

Notice that it suffices to construct the functions ¢ and @ in a neighborhood of zero
(in Ry) and to prove (55) for zp > 0 in a neighborhood of zero (in Ry). Indeed,
if that is done, one can immediately extend ¢ and @ to Ry in such a way that the
assumptions from the statement are satisfied and, in this case, for any x¢y > 0, the
sequence (Q™(z0))nen is decreasing and converging to zero, showing that Q™ (zg) is
in a neighborhood of zero for every n large enough. Hence, in the sequel, we only
construct ¢ and @ in a neighborhood of zero and we only show (55) for zp € (0,1)
belonging to that neighborhood.

If ¢ and @ are defined in a neighborhood of zero as in the statement, zo € (0,1)
belongs to that neighborhood, and we let y,, = —m for n > 0, then one verifies

from straightforward computations that the sequence (y,)necn satisfies the recurrence
relation

p(s) s

/x—i-C' s¢'(s) ds

Yn+1 = Yn — U(yn)v neN, (110)
where U is defined in a neighborhood of zero by U(0) = 0 and

_ Phn(y(e)
1— yln(¢(e‘1/y)) ’

and 1) is defined in a neighborhood of zero by ¥ (0) = 0 and ¥(z) = @ for x > 0.
Conversely, given a function U, defining v in a neighborhood of zero in such a way
that (111) holds, setting Q(x) = zt(z) and defining ¢ from @ using (18), any sequence
(Yn)nen starting in a neighborhood of zero and satisfying (110) is of the form y, =

Uly) = y >0, (111)

—m for some suitable zp € (0, 1) in a neighborhood of zero. Moreover, in terms
of the sequence (yn)nen, (55) reads

o 1

légirolfnw(n) o > —00. (112)

Hence, constructing ¢ and @) as in the statement is equivalent to constructing a function
U such that the functions ¢ and @) defined from it as above satisfy the properties of
the statement and such that any sequence (y,)nen satisfying (110) and starting in a
neighborhood of zero verifies (112).

2

Define ¥(z) = ] for z > 0. Then VU realizes a C? diffeomorphism from R* to

R% , mapping a neighborhood of +o0 to a neighborhood of 0. Moreover, for x > 0, one

has
Ve = ot () = () (113)
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and

() = 2‘1’(2:v) (1 L) x2¢’(f62)2 B xQ@”(fﬂ)) '
x p(x) p(x) 2¢(x)
In particular, one has ¥/ < 0 and ¥” > 0 on R*.. Straightforward computations also

a0 (z) 2y
show that 0 < T (x) o) U—1(y)p(T—1(y))

y — 0T. Using the above bound on V() and reasoning as in the argument to obtain
(109), one deduces that, for every C' > 0,

< 4 for every x > 0 and yU~!(y) = — 0 as

!
lim V(x4 C)

= =1. (114)

We claim that the function U defined by U(0) = 0 and U = —3 0’0 ¥~! in R* meets
all the requirements. Indeed, U is of class C! in R* and, since U(y) = % (1 + Z@,(Z)>

©(2)
with Z = ¥~!(y), one deduces that U is continuous at 0, 0 < U(y) < y for every y > 0,

U'(0) = limy,_,o+ % = 0, and, using that y¥~!(y) — 0 as y — 0%, we also deduce

that lim,_,+ Uy(é’) = 400. Moreover, one has
v )__E\If"olll_l(y) _11+A+A*+B
V=9 Wwou-1(y) 2z 1+4
where Z = W (y), A = 265 € [0,1], and B = ~Z2 %) € [0,1], yielding that

Uy) - 0asy— 0t.
Let ¢ be defined by 1(0) = 0 and

B U (—%x) (Inx)?
() = exp <_ 1+ Ul(—li) lnx>

nx

for = in a neighborhood (0, z,) of 0 with z, € (0,1), in such a way that (111) holds for
y in a neighborhood of 0. Using the above properties on U, one deduces that 1 is of
class C! in (0, z,), continuous at 0, and ¥ (z) € (0,1) for = € (0, ).
We claim that, up to reducing ., one has z¢’'(x) > 0 for z € (0, z.) and z¢'(z) — 0
as x — 07. Indeed, notice that 1 can be written for x € (0, ) as
2
Vi) = eplV(U o L), L)), Lia) =~y Viwy) = L

lna’

l—u/y y y—u

Hence, for z € (0, z), we have z¢'(z) = x¢p(x)W (x)L'(x), where
W(z) =8,V (U o L(z), L(z))U’ o L(z) + 8,V (U o L(z), L(z)).
A straightforward computation yields that

, 1-U'oL
2 (2) :w<x>1_UoL(Cff)7

L(z)

and the above properties of U show that z¢)'(x) > 0 for 2 small enough and x¢’(x) — 0
as x — 0T,
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We finally define @ in the neighborhood [0, z.) by Q(z) = zy(x). The above
properties of 1) immediately yield that Q(0) = 0 and 0 < Q(z) < = for z € (0, ).
Moreover, @ is clearly continuous in [0, z,) and of class C! in (0,z,). One has Q'(0) =
lim, o+ @ = 0 and, using that Q'(z) = ¥ (z) + 2¢/(z) for z > 0, one also deduces
from the above properties of 1 that @ is of class C' in [0,z,) and that Q'(z) > 0
for z € (0,z,). Finally, defining ¢ from @ using (18), one immediately verifies that ¢
satisfies the assumptions from the statement.

We are now left to prove (112) for every sequence (y,)nen satisfying (110) and
with yo > 0. Fix such a sequence (yp)nen and notice that, since U is continuous and
0 < U(y) <y for every y € R%, (yn)nen is a decreasing sequence of positive numbers
converging to 0. We claim that there exists ng € N such that, for every n € N, one has

Yn > ¥(n +np). (115)

Indeed, since U’(0) = 0, the function Id —U is increasing in (0, ys) for some y, > 0,
and we take ng € N such that y,, € (0,y.) for every n > ng. Using that ¥(z) — 0 as
x — 400 and (114), increasing ny if necessary, we also have that ¥(ng) < yo and that

V(e+1) _ 1

V) > for every x > ng. (116)

DN |

We prove (115) by induction on n. By construction of ng, (115) is satisfied for
n = 0. Assume now that n € N is such that (115) holds. Using the fact that Id —U
is increasing in (0, y4), the induction assumption, and the definition of U, we deduce
that

Yn+1 = Yn — U(yn) = ¥(n +ng) — U(¥(n +np)) = ¥(n +no) + %‘I’/(n + no).

Applying the mean value theorem and using (116) and the fact that ¥’ is negative and
increasing, we get that ¥(n+ng) — ¥U(n+ng+1) > =¥ (n+ng+1) > -3V (n+n),
yielding that yn+1 > ¥(n + ng + 1), as required. Hence (115) is established for every
n € N by induction.

By (109), we have that % — 1 as n — 400, and thus one deduces from
(115) that, for n large enough, one has y,, > m, which finally implies (112), yielding
the result. O

D Technical lemmas

This appendix provides a series of technical results used in the paper. The first one is
useful for establishing existence and uniqueness results for solutions of (1) in Section 3.

Lemma 80. Let p € [1,+00], S : R = R, and assume that, for every g € Yy, there
exists h € Yy, such that h(s) € S(g(s)) for a.e. s € [—=1,1]. Then, for every measurable
function g : [-1,1] — R, there exists a measurable function h : [—1,1] — R such that
h(s) € S(g(s)) for a.e. s € [—1,1].

Proof. Let g : [~1,1] — R be measurable. Let 49 = g~ '([-1,1]) and, for n € N*,
let A, = g7 '([-n — 1,—n) U (n,n + 1]). Then clearly A, is measurable for every
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n € N and the sequence (Ap)nen is a partition of [—1,1]. For each n € N, define
gn ¢ [-1,1] = N by g, = gxa,,, where x4, denotes the characteristic function of A,,.
Then g,, is measurable and bounded, and hence g, € Y,. Hence, there exists a sequence
(hn)nen in Y, such that hy(s) € S(gn(s)) for every n € N and a.e. s € [—1,1]. Let
h =377 ghnxa,, which is measurable as the countable sum of measurable functions.
For every n € N and a.e. s € A, one has h(s) = hy(s) € S(gn(s)) = S(g(s)), and thus
h(s) € S(g(s)) for a.e. s € [-1,1], as required. O

The definition of uniform global asymptotic stability of (1) requires (28) to be
satisfied for some KL function 8. Our next lemma provides sufficient conditions under
which a function can be upper bounded by a KL function, and it is thus useful in
several proofs of UGAS results.

Lemma 81. Let f: Ry x Ry — Ry be a function so that
(a) f(0,-) =0;
(b) for everyt >0, x — f(x,t) is nondecreasing and tends to zero as x tends to 0;
(c) for every x > 0, t — f(x,t) is nonincreasing and tends to zero as t tends to
nfinity.
Then there exists a ICL function 8 such that

f(z,t) < B(x,t), Vt>0. (117)

Proof. The issue here arises from the fact that f is not necessarily continuous. Define
Bo : Ry x Ry — Ry as follows: for z € Ry and ¢ € [0,1], Bo(z,t) = f(x,0) and, for
x€Ry, neN and t € [n,n+ 1],

Bo(x,t) = f(x,n— 1)+ (1 —ay) f(x,n),

where oy € [0, 1] is uniquely defined by the relation ¢t = ayn + (1 — a;)(n +1). Then Sy
verifies the three items (a), (b), and (c), f(z,t) < Bo(z,t) for every (z,t) € Ry x Ry,
and, by construction, ¢ — Sy(x,t) is continuous for every = > 0.

We next define 8 : Ry x Ry — Ry as follows: for every t € Ry, n € Z, and
x € [27127], we set 51(0,t) = 0 and

Bi(w,t) = azfo(2",t) + (1 — az)Bo(2", 1),

where a, € [0,1] is uniquely defined by the relation = ;2" ! + (1 — a,)2". It
is immediate to check that (1 is continuous, satisfies (a), (b), and (c¢), and f(z,t) <
Bi(z,t) for every (x,t) € Ry x Ry. We conclude by taking 8(z,t) = p1(z,t) +ze™ for
(z,t) € Ry x Ry 0

The next result, used in Remark 53 and in the proof of Theorem 63, is a general-
ization of Jensen’s inequality to LP norms. Its proof follows closely the classical proof
of Jensen’s inequality and is provided here for sake of completeness.

Lemma 82. Let (2,2, 1) be a measure space with 0 < pu(2) < +o00. Let f: Ry — Ry
be a nondecreasing concave function. Then, for every p € [1,4+00) and every real-valued
function g € LP(Q), 1), one has

1F o lglll oy < VP £ ()P llgl Lo pm)-
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Proof. We assume, with no loss of generality, that (€2) = 1, since, once the result
is proved in this case, one retrieves the general case by applying it to the measure
v() = 2.

Fix p € [1,400) and g € LP(Q, ). Since f is concave, there exist A, B € R
such that f(t) < At + B for every t € Ry and f(||9l|r(,u) = Allgllir@pn + B- In
particular, f o|g| < Alg| + B. Moreover, since f is nondecreasing, one has A > 0 and,
since f(0) > 0, one has B > 0. Then, using Minkowski inequality, one deduces that

1f o lglllra,m < IAlgl + Bllr < Algllr@.u + B = flgllr@w),

as required. ]

The next two lemmas provide suitable constructions of functions and are used,
respectively, in the proofs of Proposition 50 and Theorem 63.

Lemma 83. Let ¢ : Ry — Ry be an increasing function such that lim,_, 4 p(z) =
+00. Then there exists a C* function ¢ : Ry — Ry satisfying lim, o ¥(x) = 400
such that ¥' > 0, ¥" <0, ¥(0) > 0, ¥(x) < p(z) for x large enough, and such that

0< 2 <1 and 0 < -2 <2 for every v € Ry

Proof. It suffices to prove the result with the additional assumptions that ¢ is also
continuous and piecewise affine with positive constant derivative on every interval of
the form (n,n+1). Indeed, when this is not the case, one can easily construct a function
¢ using a procedure similar to that of Lemma 81 in such a way that ¢(z) < ¢(x) for
x large enough and ¢ satisfies the assumptions of the theorem as well as the previous
additional assumptions. We then assume these additional assumptions in the sequel.

For n € N, let ¢,, = ¢(n) and denote by ¢, > 0 the constant value of the derivative
of ¢ in the interval (n,n+1). One has that ¢, = o+ ZZ;& Pk, which is an increasing
sequence tending to infinity. Also note that we can assume with no loss of generality
that ¢ and @ are both positive.

We first construct a continuous increasing piecewise affine function ' : Ry — Ry
with F < 4, xgrfoo F(z) = 400, and such that its derivative f = F” is nonincreasing

and constant at every interval of the form (n,n + 1). For that purpose, it is sufficient
to construct the sequence (F),)nen of the values of F'(x) at the points x = n and the
sequence (f,)nen of the constant values of f on the intervals (n,n + 1).

We define (F),)nen recursively as follows: Fy = @9 > 0, fo = ¢o > 0, and, for
neN* F,=F+ ZZ;& frand f, = fo—1 if Fiy + fno1 < py1 or fr, = @, otherwise.
We easily show by induction that F,, < ¢, for n > 0 and (f,)nen is & nonincreasing
positive sequence. Indeed, Fy = g, fo = Po, F1 = @1, and one has either F1 + fo < 9,
in which case f1 = fo, or F1 + fo > 9, in which case fo > @9 — F1 = @9 — 1 = ¢4,
yielding that f1 = ¢1 < fp, so that fo > f1 > 0 in both cases. Assume now that n € N*
is such that F, < ¢, and f,_1 > fr, > 0. If B+ fro1 < @na1, then f, = f,_1, implying
that Fip1 = Fp+ fn < @nt1. Ifnow Fo,+ fn—1 > @pyt1, one deduces from that equation
that f,—1 > @n = fn, yielding that F,11 = F, + fn < on + fo = o0 + $n = ©ny1 by
the induction hypothesis. If F},+1+ fn > @nt2 one deduces that f,, > ¢py1 = fr41 >0
and otherwise f, = fn4+1 > 0. This concludes the induction argument.

It remains to prove that F,, tends to infinity as n tends to infinity. Arguing by
contradiction yields that both sequences (F),)nen and (fy)nen are bounded. Hence
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there exists an integer ng so that F,, + f,—1 < @ny1 for every n > ng, since (¢n)nen
tends to infinity. Therefore, by definition, (fy)n>n, i constant and equal to some
f >0, yielding that F,, = F,,, + f(n — ng) for n > ng, which contradicts the fact that
(Fy)nen is bounded, establishing this the result.

To obtain the required function ¢, we define ¢(z) = F(z) for = € [0, 3] and we
regularize the function F' in a neighborhood of each positive integer as follows: for
n € N* and s € [0,1], we set

f n - f n—1 92

Y(n—F+s) ="+ fois+ Fy —

fnfl
5 .

2

Note that v and ¢’ coincide with F' and f, respectively, at all points of the form n + %
for n € N, and that 1)/ is positive, continuous, and nonincreasing. In particular, from
the latter fact, we get

b(a) = ¥(0) + / W(s)ds > 9(0) + (@), x>0,

which implies that 0 < % < 1. Moreover, for every xz > %, there exist n € N* and

s € [0,1] such that © =n — % + s, and one has

fmﬁ"(iﬂ) z(fnfl - fn) l‘fnfl 2(” - %)1//(” - %)
0<— = < < <2,
T (=) Yl@) T Ple) T »(n —3) -
which concludes the proof. ]

Lemma 84. Let p : Ry — Ry be an upper semi-continuous nondecreasing function
with u(0) =0, 0 < u(r) < r forr >0, and such that r— u(r) tends to +00 asr — +00.
Then there exists a Ko function ¢ such that Id —p is nondecreasing and p < Id —¢.
Moreover, if there exist a € (0,1) and M > 0 such that u(r) < ar for every r > M,
then ¢ can in addition be chosen convex.

Proof. Let us first consider the function ¢ : Ry — R defined by
wo(s) = inf r — p(r).
r>s

Then g is nondecreasing, ¢o(0) = 0, 0 < pg(r) < r for every r > 0, u < Id —¢pg, and
wo(r) — 400 as r — +o0.

We construct the required function ¢ by an argument similar to that of Lemma 83.
Choose an increasing sequence (p, )nez in Ry with lim,,—,_ o 2, = 0 and limy, 4 o0 T, =
~+o0o such that the sequence (po(z,))nez is increasing, and, for n € Z, let 6, = zp4+1 —
Ty > 0 and f, = W”)_é—fo(mm > 0. We now define a sequence (F),)nez as follows:

for n < 0, we set
n—1

Fp= ) min(1, f)o,
k=—o0
and we remark that, for every n < 0, one has 0 < F,, < Zz;ioo ok < wo(xn-1),
F, > F,_1, and % = min(1, f,—1) < 1. For n > 0, we define F,, inductively by
F,, = min(F,_1+ 0p—1,v0(xn—1)). Clearly, for every n > 0, we have F,, < ¢o(z,—1) by

construction, and one easily shows by induction that F;, > F,,_1 and % <1
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Define ¢ : Ry — Ry by setting ¢(0) = 0 and ¢(z) = azFy + (1 — agz)Frq
for n € Z and x € [xy,Zn41], Where o, € [0,1] is the unique value such that x =
azTp + (1 — ag)zpt1. Clearly, ¢ is continuous and increasing. For n € Z, ¢ is affine
in [Zn, Tpt+1] with (constant) derivative F"%n_F” € (0,1] in (zp,xn+1). In particular,
¢'(z) € (0,1] for almost every x > 0, and thus Id —¢ is nondecreasing. For n € Z and
T € [T, Tpt1], one has p(z) < Fi1 < wo(zn) < po(x), which implies that p < Id —¢.

We are only left to prove that ¢(z) — +00 as © — 400 or, equivalently, that F,, —
+00 as n — +00. Reasoning by contradiction yields that, since (F,),cz is increasing,
there exists Fi > 0 such that F,, — F, as n — 400 and F,, < F} for every n € Z. Let
ng € N be such that ¢g(x,) > F for every n > ng, which exists since pg(r) — +00o as
r — +oo. Hence, for every n > ng, we have F,, < ¢o(2,,—1), and the inductive definition
of F}, implies that F}, = F_1+0,—1. Thus Fj, = Foy + Y p_p 0k = Fug +Tn — @, and,
as n — 400, one has z,, — +oo, implying that F;, — 400 and yielding the required
contradiction.

Finally, we turn to the second part of the statement, namely that, under the extra
assumption of the existence of a € (0,1) and M > 0 such that pu(r) < ar for every
r > M, one may construct ¢ to be convex. With no loss of generality, we assume
1—a)M
(so(ﬂ/)f )
01 : Ry = Ry by ¢1(z) = Ap(x) for x € [0, M] and ¢1(z) = p1(M)+(1—a)(z—M) for
x > M. Then, by construction, ¢; is a Ko function such that Id —¢; is nondecreasing
and 1 < Id —p. Let h : R} — Ry be the nondecreasing function given by h(x) =
essinf,>, ¢} (r) for every & > 0. Since ¢ is piecewise affine with finitely many affine
pieces on every interval of the form [z,+00) with z > 0, ¢} takes a finite number of
values in each such interval, and thus h(z) > 0 for every x > 0. Moreover, h(z) < ¢} (z)
for a.e. z € Ry and h(z) =1 — a for z > M. We define

that M > 0. Let ¢ be constructed from p as above, A = min (1, ), and define

o) = [ h)an,

which is clearly a convex K function such that Id —¢, is nondecreasing and @, <
1 < Id —pu, as required. ]

Our final technical result in this appendix is the following lemma, used in the proof
of Theorem 59.

Lemma 85. Let ¢ : Ry — R be a decreasing function such that lim;_, o ¢(t) = 0.
Define the sequence (bn)nen inductively by by = ¢(0), by = max(by — 1,¢(1)), and, for
n>2,

by, = max(2b,—1 — bp—2, d(n)),

and let (ap)nen be given by ap = 1 and ap = by—1 — by, for n > 1. Then the sequence
(an)nen is nonincreasing, the sequence (by)nen is decreasing, and both are sequences
of positive numbers converging to 0.

Proof. Notice first that b, > 0 for every n € N since b, > ¢(n) > 0.

To prove that (b,)nen is decreasing, we prove that b, < b,_1 for every n > 1 by
induction. One has either by = by —1 < by or by = ¢(1) < ¢(0) = bo, and hence by < by.
Now, let n > 2 be such that b, 1 < b,_o. If b, = 2b,_1 — b,_2, then b, — b,_1 =
bp—1—bp—2 < 0, and thus b, < b,_1. Otherwise, one has b, = ¢(n) < p(n—1) < b,_;.
Hence, in all cases, b, < b,—1. Thus, by induction, (by),en is decreasing.
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It now follows that a,, > 0 for every n € N, since a9 = 1 and, for n > 1, a, =
bp—1 — by, and (by,)nen is decreasing.

Let us now show that (a,)pen is nonincreasing. One has by > by — 1, and thus
ap =byg—by <1 =ag. For n > 2, one has b, > 2b,_1 — b,_2, which implies that
bn — bp_1 > by_1 — b,,_2, and hence a,, < a,_1, as required.

Since (by,)nen is decreasing, this sequence admits a limit b, € [0,bp). Then

lim a, = lim (by,—1—by) =0y — b, =0.
n—-+o0o n—-+o0o

Assume, to obtain a contradiction, that b, > 0. Using also the fact that ¢(t) — 0
as t — 400, one deduces that there exists N > 2 such that, for every n > N, one has
by, > %* and ¢(n) < %*. Hence, one has necessarily b, = 2b,_1 — b,,_o for every n > N,
which implies that b,_1 — b, = b,_o — b,_1, and thus a,, = a,_1 for every n > N.
Since a, — 0 as n — 400, this implies that a,, = 0 for every n > N, which contradicts
the fact that a,, > 0 for every n € N. This contradiction establishes that b, = 0, as
required. ]
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