
HAL Id: hal-03303057
https://hal.science/hal-03303057v1

Preprint submitted on 31 Jan 2020 (v1), last revised 27 Jul 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lp-asymptotic stability analysis of a 1D wave equation
with a boundary nonmonotone damping

Swann Marx, Guilherme Mazanti

To cite this version:
Swann Marx, Guilherme Mazanti. Lp-asymptotic stability analysis of a 1D wave equation with a
boundary nonmonotone damping. 2020. �hal-03303057v1�

https://hal.science/hal-03303057v1
https://hal.archives-ouvertes.fr


Lp-asymptotic stability analysis of a 1D wave
equation with a boundary nonmonotone

damping

Swann Marx1 and Guilherme Mazanti2

January 31, 2020

Abstract

This paper is concerned with the asymptotic stability analysis of a one dimensional
wave equation with a nonlinear non-monotone damping acting at a boundary. The
study is performed in an Lp-functional framework, p ∈ [1,∞]. Some well-posedness
results are provided together with exponential decay to zero of trajectories, with an
estimation of the decay rate. The well-posedness results rely mainly on some results
collected in [7]. Asymptotic behavior results are obtained by the use of a suitable
Lyapunov functional if p is finite and on a trajectory-based analysis if p =∞.
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1 Problem statement

In this paper, we focus on the following boundary control wave equation
ztt = zxx, (t, x) ∈ R+ × [0, 1],

z(t, 0) = 0, zx(t, 1) = u(t), t ∈ R+,

z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ [0, 1].

(1)
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It is well known that choosing a feedback of the form u(t) = −αzt(t, 1) with α > 0
allows one to exponentially stabilize the equilibrium point 0. We refer to [8] for the
complete analysis.

Our aim in this article is to focus on the case of a non-linear feedback law, that is,

u(t) = −σ(zt(t, 1)), ∀t ≥ 0, (2)

leading to the nonlinear system
ztt(t, x) = zxx(t, x), (t, x) ∈ R+ × [0, 1],

z(t, 0) = 0, zx(t, 1) = −σ(zt(t, 1)), t ∈ R+,

z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ [0, 1].

(3)

The nonlinearity under consideration is given by the following definition.

Definition 1 (Nonlinear damping). A continuous function σ : R 3 s 7→ σ(s) ∈ R is
called a nonlinear damping if the following properties are satisfied:

1. For all s ∈ R such that s 6= 0, σ(s)s > 0.

2. One has that

0 < σ− = lim inf
s→0

σ(s)

s
≤ lim sup

s→0

σ(s)

s
= σ+ < +∞. (4)

We will also sometimes assume in addition the following property.

3. For all distinct real numbers s1, s2, one has

σ(s1)− σ(s2)

s1 − s2
> −1. (5)

It is clear from Definition 1 that the nonlinearity σ is not necessarily a monotone
function. Note moreover that this definition is that of [7], except for the additional
second item, which is inspired by the definition given in [4,5]. As clearly explained in [7],
the first item of the definition is used to ensure the well-posedness of (3) (in particular
existence of solutions) while the additional item given in (5) insures uniqueness of the
solution.

We aim at obtaining decay rate estimates of the trajectories in Lp-spaces, p ∈ [1,∞],
as done in [2, 3] for a 1D wave equation subject to distributed (nonlinear) damping.
Lp-spaces, p ∈ [1,∞], are defined as

Hp(0, 1) := W 1,p
∗ (0, 1)× Lp(0, 1), (6)

where W 1,p
∗ (0, 1) = {u ∈ Lp(0, 1) | u′ ∈ Lp(0, 1) and u(0) = 0}, and equipped with the

norms

‖(u, v)‖Hp(0,1)
:=

(∫ 1

0
(
∣∣u′∣∣p + |v|p)dx

) 1
p

, p ∈ [1,∞),

‖(u, v)‖H∞(0,1) := ‖u′‖L∞(0,1) + ‖v‖L∞(0,1).

(7)

As explained in [6], the semigroup generated by the D’Alembertian �z := ztt − ∆z
associated with an open bounded subset in Rn, n ≥ 2, with Dirichlet boundary condi-
tions is not defined in general for any suitable generalization for higher dimension of
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Hp(0, 1). This is why the study of issues involving Lp spaces is only meaningful in the
one-dimensional case.

In order to introduce a notion of weak solution of (3) adapted both to Lp spaces
and to the one-dimensional case, let us recall the following classical result on regu-
lar solutions to the one-dimensional wave equation, which corresponds to d’Alembert
decomposition into travelling waves.

Proposition 2. Let z : R+ × [0, 1] → R be such that z ∈ C2(R+ × [0, 1]). Then z
satisfies zxx = ztt in R+ × [0, 1] if and only if there exist functions f ∈ C1([0,+∞))
and g ∈ C1([−1,+∞)) such that

z(t, x) = z(0, 0) +

∫ t+x

0
f(s)ds+

∫ t−x

0
g(s)ds. (8)

Proof. Assume that z satisfies zxx = ztt in R+ × [0, 1] and let u, v : R+ × [0, 1]→ R be
given by

u(t, x) =
1

2
[zt(t, x) + zx(t, x)] ,

v(t, x) =
1

2
[zt(t, x)− zx(t, x)] .

(9)

Then u, v ∈ C1(R+ × [0, 1]) and ut = ux, vt = −vx in R+ × [0, 1]. One immediately
verifies that, for every (t, x) ∈ R+ × [0, 1], the functions h 7→ u(t + h, x − h) and
h 7→ v(t + h, x + h) are constant in their domains. Letting f : [0,+∞) → R and
g : [−1,+∞)→ R being defined by

f(s) = u(s, 0), g(s) =

{
v(s, 0) if s ≥ 0,

v(0,−s) if −1 ≤ s < 0,

one can easily check that f ∈ C1([0,+∞)), g ∈ C1([−1,+∞)), and u(t, x) = f(t + x)
and v(t, x) = g(t − x) for every (t, x) ∈ R+ × [0, 1]. In particular, it follows from (9)
that

zt(t, x) = f(t+ x) + g(t− x),

zx(t, x) = f(t+ x)− g(t− x).

Hence

z(t, x) = z(0, 0) +

∫ x

0
zx(0, s)ds+

∫ t

0
zt(s, x)ds

= z(0, 0) +

∫ x

0
f(s)ds−

∫ x

0
g(−s)ds+

∫ t

0
f(s+ x)ds+

∫ t

0
g(s− x)ds

= z(0, 0) +

∫ t+x

0
f(s)ds+

∫ t−x

0
g(s)ds,

as required. Conversely, if z is given by (8), it is easy to see that ztt = zxx.

The functions f and g from Proposition 2 are also called Riemann invariants in the
classical literature of hyperbolic PDEs (see, for instance, [1]). Proposition 2 motivates
the following definition of weak solution to (3).
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Definition 3. Let (z0, z1) ∈ Hp(0, 1). We say that z : R+ × [0, 1]→ R is a weak global
solution of (3) in Hp(0, 1) with initial condition (z0, z1) if there exist f ∈ Lploc(0,+∞)
and g ∈ Lploc(−1,+∞) such that

z(t, x) =

∫ t+x

0
f(s)ds+

∫ t−x

0
g(s)ds for all (t, x) ∈ R+ × [0, 1],

z(t, 0) = 0, zx(t, 1) = −σ(zt(t, 1)), for a.e. t ∈ R+,

z(0, x) = z0(x), zt(0, x) = z1(x), for a.e. x ∈ [0, 1].

Note that, if z is a weak global solution of (3) in Hp(0, 1), then (z(t, ·), zt(t, ·)) ∈
Hp(0, 1) for every t ∈ R+ and ztt = zxx is satisfied in R∗+ × (0, 1) in the sense of
distributions. In the sequel, we refer to weak global solutions of (3) simply as solutions.

Letting f and g be as in Definition 3, one has, for a.e. (t, x) ∈ R+ × [0, 1],

zx(t, x) = f(t+ x)− g(t− x),

zt(t, x) = f(t+ x) + g(t− x).
(10)

By rewriting the boundary and initial conditions of (3) in terms of the functions f and
g, one obtains the following characterization of solutions to (3).

Proposition 4. Let (z0, z1) ∈ Hp(0, 1), f ∈ Lploc(0,+∞), and g ∈ Lploc(−1,+∞). The
function z : R+ × [0, 1]→ R defined by

z(t, x) =

∫ t+x

0
f(s)ds+

∫ t−x

0
g(s)ds (11)

is a solution of (3) in Hp(0, 1) with initial condition (z0, z1) if and only if

f(s) =
1

2

(
z1(s) + z′0(s)

)
, for a.e. s ∈ [0, 1], (12a)

g(s) =
1

2

(
z1(−s)− z′0(−s)

)
, for a.e. s ∈ [−1, 0], (12b)

f(s) = −g(s), for a.e. s ≥ 0, (12c)

f(s)− g(s− 2) = −σ(f(s) + g(s− 2)), for a.e. s ≥ 1. (12d)

2 Main results

A first result we present in this paper is the well-posedness of (3) in the functional
space Hp(0, 1). The proof of this result was provided in [7] in the case p = 2 and, as we
detail below, the same line of proof can be adapted to our setting. Our first theorem
also states that the trace zt(t, 1) is bounded almost everywhere by the initial conditions
of (3).

Theorem 5 (Well-posedness and strong stability). Let p be any number in the interval
[1,∞] and assume that σ satisfies 1 from Definition 1. Then, for any (z0, z1) ∈ Hp(0, 1),
there exists a solution z of (3) in Hp(0, 1) with initial condition (z0, z1). Moreover,
one has the following properties.

1. If σ also satisfies 3 from Definition 1, then the above solution is unique.

4



2. For every solution z of (3) in Hp(0, 1) with initial condition (z0, z1), one has

‖(z(t, ·), zt(t, ·))‖Hp(0,1)
≤ ‖(z0, z1)‖Hp(0,1)

, for all t ≥ 0. (13)

3. If (z0, z1) ∈ H∞(0, 1), then, for a.e. t ∈ R+,

|zt(t, 1)| ≤ ‖(z0, z1)‖H∞(0,1). (14)

4. If p ∈ [1,+∞), then all solutions z of (3) tend to zero in Hp(0, 1), i.e.,

lim
t→+∞

‖(z(t, ·), zt(t, ·))‖Hp(0,1)
= 0. (15)

In the result we state next, we provide some estimations of the decay rate of the
solution. These estimations are however not uniform, since they depend on the H∞-
norm of the initial condition. This implies therefore to consider solutions more regular
than in the case investigated in [7], but, in that paper, the authors do not provide any
analysis about the decay rate of the solution.

Theorem 6 (Exponential decay rates). Consider (3) and assume that σ is a nonlinear
damping, satisfying Items 1 and 2 of Definition 1. Let M > 0 and (z0, z1) ∈ H∞(0, 1)
satisfying ‖(z0, z1)‖H∞(0,1) ≤ M . Then, for any p ∈ [1,∞], there exist positive con-
stants C := C(M,p) and µ := µ(M,p) such that any solution of (3) satisfies

‖(z, zt)‖Hp(0,1)
≤ Ce−µt‖(z0, z1)‖Hp(0,1)

, ∀t ≥ 0. (16)

3 Proof of Theorem 5

Several parts of the proof of Theorem 5 already appear in [7] but, in order to make
this paper self-contained, we will provide the main lines of arguments. We start with
the following technical lemmas.

Lemma 7 ( [7, Lemma 1]). Let σ : R→ R be a continuous function satisfying σ(s)s ≥ 0
for all s ∈ R. Then,

1. for every real number A, the equation

X +A+ σ(X −A) = 0 (17)

with real unknown X, has a solution S(A) of smallest absolute value and the map
A 7→ S(A) is lower-semi-continuous on R.

2. Any solution X to (17) satisfies

|X| ≤ |A|. (18)

3. Moreover, if the function σ satisfies (5), then there exists a unique solution to
(17).
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Lemma 8. Consider a trajectory of (3) associated with an initial condition (z0, z1) ∈
Hp(0, 1) for some p ∈ [1,∞). For t ≥ 0, set

Ep(t) =
1

2p

∫ 1

0

(
|zx(t, x) + zt(t, x)|p + |zx(t, x)− zt(t, x)|p

)
dx. (19)

Then, there exists positive constants Cp, C
′
p (only depending on p) so that, for every

pair of times 1 ≤ T1 ≤ T2, it holds

− Cp
∫ T2

T1

|zt(t, 1)|pMp(δt)dt ≤ Ep(T2)− Ep(T1) ≤ −C ′p
∫ T2

T1

|zt(t, 1)|pMp(δt)dt, (20)

where δt is defined for a.e. t ∈ [T1, T2] by δt = σ(zt(t,1))
zt(t,1)

> 0 if zt(t, 1) 6= 0 and δt = σ−
otherwise and Mp is the function defined for ξ ≥ 0 by Mp(ξ) = ξ if ξ ∈ [0, 1] and
Mp(ξ) = ξp−1 if ξ > 1.

Remark 9. The choice that δt = σ− when zt(t, 1) = 0 is arbitrary and the value
σ− could be replaced by any other (fixed) real number in [σ−, σ+] (so as to make δ
continuous if σ is continuous at 0).

The functional Ep was introduced in [3], where it is shown that it is non-increasing
along trajectories of 1D wave equations with Dirichlet boundary conditions and with
distributed nonlinear damping. Here, we provide a more quantitative estimate of the
time derivative of Ep in the situation of interest.

Proof of Lemma 8. Along any trajectory of (3) with initial condition in Hp(0, 1) for
some p ∈ [1,∞], one deduces from (10) that, for t ≥ 1,

Ep(t) =

∫ 1

0

(
|f(t+ x)|p + |g(t− x)|p

)
dx

=

∫ t+1

t
|f(ξ)|p dξ +

∫ t

t−1
|g(ξ)|p dξ.

(21)

One deduces at once that, for t ≥ 1,

dEp
dt

= |f(t+ 1)|p − |g(t− 1)|p

= |zx(t, 1) + zt(t, 1)|p − |zx(t, 1)− zt(t, 1)|p,
(22)

where we have used (12c) in the first line. It follows that, for every 1 ≤ T1 ≤ T2,

Ep(T2)− Ep(T1) = −
∫ T2

T1

(
|zx(t, 1)− zt(t, 1)|p − |zx(t, 1) + zt(t, 1)|p

)
dt. (23)

We now use the boundary condition given in (3) to deduce that

Ep(T2)− Ep(T1) = −
∫ T2

T1

|zt(t, 1)|p
(
|1 + δt|p − |1− δt|p

)
dt.

Since there exists Cp, C
′
p > 0 depending on p such that

C ′pMp(δ) ≤ |1 + δ|p − |1− δ|p ≤ CpMp(δ), for every δ ≥ 0,

one concludes the proof of the lemma.
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We are now ready to prove Theorem 5 by extending the proof from [7] in the case
p = 2 to other values of p ∈ [1,∞].

Proof of Theorem 5. Let f and g be defined in [0, 1] and [−1, 0], respectively, from
z0 and z1 by (12a) and (12b). We extend f to R+ by setting X = f(x) to be
the solution of X = S(A), where S is defined as in Lemma 7, A = −g(x − 2) =
−1

2 (z1(2− x)− z′0(2− x)) for x ∈ [1, 2], and A = f(x − 2) for x ≥ 2. These two
equations define inductively a unique measurable function f on R+ and then a unique
measurable function g on [−1,∞) with (12c). Letting z(·, ·) be defined by (11), in
order to conclude the proof that z is indeed a solution of (3), it remains to verify that
it belongs to the appropriate functional space in accordance with its initial condition.
Note also that, thanks to Item 3 of Lemma 7, this solution will be unique as soon as σ
satisfies Item 3 from Definition 1.

For that purpose, first note that, with Item 2 of Lemma 7, one has

|f(x)| ≤ 1

2

(
|z1(2− x)|+

∣∣z′0(2− x)
∣∣), for a.e. x ∈ [1, 2], (24)

and
|f(x)| ≤ |f(x− 2)|, for a.e. x ≥ 2. (25)

We now split the proof into two cases: the case where p = ∞ and the case where
p 6=∞.

First case: p =∞. Assume that (z0, z1) ∈ H∞(0, 1). Combining (12a) and (24), it is
easy to see that, for a.e. x ∈ [0, 2],

|f(x)| ≤ 1

2

(∣∣z′0(ξx)
∣∣+ |z1(ξx)|

)
, (26)

where ξx = x if x ∈ [0, 1] and ξx = 2 − x if x ∈ [1, 2]. Then, using (25), one trivially
shows that (26) actually holds for a.e. x ≥ 0 after replacing ξx by ξx−2k, where k is the
integer part of x/2. Using (12c), we deduce a similar estimate for g, namely, for a.e.
x ≥ −1

|g(x)| ≤ 1

2

(∣∣z′0(ηx)
∣∣+ |z1(ηx)|

)
, (27)

where ηx = −x if x ∈ [−1, 0] and ηx = ξx−2k with k the integer part of x/2 for x ≥ 0.
It is immediate to deduce that both |f(x)| for x ≥ 0 and |g(x)| for x ≥ −1 are smaller
than 1

2‖(z0, z1)‖H∞(0,1), which implies (13) for p = ∞ and (14) by using (10). That
concludes the proof of Theorem 5 in the case where p =∞.

Second case: p ∈ [1,∞). We suppose now that the initial conditions (z0, z1) belong
to the space Hp(0, 1) for some p ∈ [1,∞). Since x 7→ |x|p is convex, one deduces from
the previous equations that

|f(x)|p ≤ 1

2p
(∣∣z′0(ξx−2k)∣∣p + |z1(ξx−2k)|p

)
, x ≥ 0,

|g(x)|p ≤ 1

2p
(∣∣z′0(ηx)

∣∣p + |z1(ηx)|p
)
, x ≥ −1,

(28)

where ξx−2k and ηx have been defined above. Using the above equations and (10), one
obtains that, for every t ≥ 0,

‖h‖Lp(0,1) ≤ ‖f(t+ ·)‖Lp(0,1) + ‖g(t− ·)‖Lp(0,1) ≤
∥∥z′0∥∥Lp(0,1)

+ ‖z1‖Lp(0,1),
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where h ∈ {zx(t, ·), zt(t, ·)}. Then (13) follows readily, which achieves the proof of the
first part of Theorem 5.

Let us now prove Item 4. The proof of (15) that we present here is inspired by that
of [7] for p = 2. Notice first that, thanks to Lemma 8, Ep is decreasing and thus there
exist L = limt→∞Ep(t). In particular, limn→∞Ep(2(n + 1)) − Ep(2n) = 0 and thus,
by taking T2 = 2(n+ 1) and T1 = 2n in (20), one concludes that

lim
n→∞

∫ 2(n+1)

2n
|zt(t, 1)|pMp(δt)dt = 0.

This means that

lim
n→∞

∫ 2

0
|zt(t+ 2n, 1)|pMp(δt+2n)dt = 0.

Note that

|zt(t+ 2n, 1)|pMp(δt+2n)

=

{
|zt(t+ 2n, 1)|p−1|σ(zt(t+ 2n, 1))| if |σ(zt(t+ 2n, 1))| ≤ |zt(t+ 2n, 1)|,
|zt(t+ 2n, 1)||σ(zt(t+ 2n, 1))|p−1 otherwise

and thus

|zt(t+ 2n, 1)|pMp(δt+2n) ≥ min (|σ(zt(t+ 2n, 1))|p, |zt(t+ 2n, 1)|p) ,

Hence

lim
n→∞

∫ 2

0
min (|σ(zt(t+ 2n, 1))|p, |zt(t+ 2n, 1)|p) dt = 0,

which can be rewritten as

lim
n→∞

∫ 1

−1
min (|σ(zt(t+ 2n+ 1, 1))|p, |zt(t+ 2n+ 1, 1)|p) dt = 0, (29)

In order to simplify the notations, let us define, for n ∈ N∗, the function Fn : [−1, 1]→
R by Fn(t) = f(t+ 2n). Note that, using (10), (12c), and (12d), one gets

zt(t+ 2n+ 1, 1) = f(t+ 2n+ 2) + g(t+ 2n) = Fn+1(t)− Fn(t),

σ(zt(t+ 2n+ 1, 1)) = −f(t+ 2n+ 2) + g(t+ 2n) = − (Fn+1(t) + Fn(t)) ,

and in particular
Fn+1(t) + Fn(t) = −σ(Fn+1(t)− Fn(t)). (30)

Hence (29) is equivalent to

lim
n→∞

∫ 1

−1
min (|Fn+1(t) + Fn(t)|p, |Fn+1(t)− Fn(t)|p) dt = 0.

For n ∈ N∗ and ρ > 0, let

In = {t ∈ [−1, 1] | |Fn+1(t) + Fn(t)| ≤ |Fn+1(t)− Fn(t)|},
Jn(ρ) = {t ∈ [−1, 1] | min (|Fn+1(t) + Fn(t)|, |Fn+1(t)− Fn(t)|) ≥ ρ}.
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Given a set A ⊂ [−1, 1], we denote A = [−1, 1] \ A. Denoting by L the Lebesgue
measure in R, we have L(Jn(ρ))→ 0 as n→∞ for every ρ > 0, since

ρpL(Jn(ρ)) ≤
∫
Jn(ρ)

min (|Fn+1(t) + Fn(t)|p, |Fn+1(t)− Fn(t)|p) dt −−−→
n→∞

0.

Moreover, from (28), there exists H ∈ L1(−1, 1) depending only on (z0, z1) such that

|Fn+1(t)± Fn(t)|p ≤ H(t) for every n ∈ N∗ and a.e. t ∈ [−1, 1]. (31)

We claim that

lim
n→∞

∫ 1

−1
|Fn+1(t) + Fn(t)|pdt = 0. (32)

Indeed, let ε > 0. Since σ is continuous, there exists η > 0 such that, if |ξ| < η, then
|σ(ξ)| < ε. We write∫ 1

−1
|Fn+1(t) + Fn(t)|pdt =

∫
In

|Fn+1(t) + Fn(t)|pdt

+

∫
In∩Jn(η)

|Fn+1(t) + Fn(t)|pdt+

∫
In∩Jn(η)

|Fn+1(t) + Fn(t)|pdt (33)

We have∫
In

|Fn+1(t) + Fn(t)|pdt =

∫
In

min (|Fn+1(t) + Fn(t)|p, |Fn+1(t)− Fn(t)|p) dt −−−→
n→∞

0.

Since L(Jn(η))→ 0 as n→∞, it follows from (31) that∫
In∩Jn(η)

|Fn+1(t) + Fn(t)|pdt ≤
∫
In∩Jn(η)

H(t)dt −−−→
n→∞

0.

Finally, if t ∈ In ∩ Jn(η), then |Fn+1(t) − Fn(t)| < η and thus, by (30), one has
|Fn+1(t) + Fn(t)| < ε, implying that∫

In∩Jn(η)
|Fn+1(t) + Fn(t)|pdt < 2εp.

It now follows from (33) that

lim sup
n→∞

∫ 1

−1
|Fn+1(t) + Fn(t)|pdt ≤ 2εp

and, since ε is arbitrary, one obtains (32).
We now claim that

lim
n→∞

∫ 1

−1
|Fn+1(t)− Fn(t)|pdt = 0. (34)

For k > 1, let us partition the interval [−1, 1] as

L1,n(k) = {t ∈ [−1, 1] | |Fn+1(t)− Fn(t)|p ≤ 1/k},
L2,n(k) = {t ∈ [−1, 1] | 1/k < |Fn+1(t)− Fn(t)|p < k},
L3,n(k) = {t ∈ [−1, 1] | |Fn+1(t)− Fn(t)|p ≥ k}.
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Then ∫
L1,n(k)

|Fn+1(t)− Fn(t)|pdt ≤ 2

k
.

Letting
L̃3(k) = {t ∈ [−1, 1] | H(t) ≥ k},

it follows immediately from (31) that L3,n(k) ⊂ L̃3(k) for every n ∈ N∗ and k > 1.

Moreover, since H ∈ L1(−1, 1), one has L(L̃3(k))→ 0 as k →∞, and we estimate∫
L3,n(k)

|Fn+1(t)− Fn(t)|pdt ≤
∫
L̃3(k)

H(t)dt.

In L2,n(k), we decompose∫
L2,n(k)

|Fn+1(t)− Fn(t)|pdt

=

∫
L2,n(k)∩In

|Fn+1(t)− Fn(t)|pdt+

∫
L2,n(k)∩In

|Fn+1(t)− Fn(t)|pdt

We have∫
L2,n(k)∩In

|Fn+1(t)− Fn(t)|pdt

=

∫
L2,n(k)∩In

min(|Fn+1(t) + Fn(t)|p, |Fn+1(t)− Fn(t)|p)dt −−−→
n→∞

0

Let

Ck = min
1/k≤|ξ|≤k

∣∣∣∣σ(ξ)

ξ

∣∣∣∣ > 0

and notice that, for every t ∈ L2,n(k) ∩ In, one has

1

Cpk

|Fn+1(t) + Fn(t)|p

|Fn+1(t)− Fn(t)|p
≥ 1,

which shows that∫
L2,n(k)∩In

|Fn+1(t)− Fn(t)|pdt ≤ 1

Cpk

∫
L2,n(k)∩In

|Fn+1(t) + Fn(t)|pdt

=
1

Cpk

∫
L2,n(k)∩In

min(|Fn+1(t) + Fn(t)|p, |Fn+1(t)− Fn(t)|p)dt −−−→
n→∞

0.

Hence, one deduces that

lim sup
n→∞

∫ 1

−1
|Fn+1(t)− Fn(t)|pdt ≤ 2

k
+

∫
L̃3(k)

H(t)dt.

Since k is arbitrary and the right-hand side of the above formula tends to 0 as k →∞,
one obtains (34).

One now deduces from (32) and (34) that Fn → 0 in Lp(−1, 1) as n→∞. From the
definition of Fn, (12c), and (10), one deduces that zt(2n, ·) → 0 and zx(2n, ·) → 0 in
Lp(0, 1) as n → ∞, which shows that limn→∞Ep(2n) = 0. Since Ep is nonincreasing,
we conclude that limt→∞Ep(t) = 0, yielding (15).
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4 Proof of Theorem 6

The proof of the theorem relies on properties satisfied by the reflection coefficient R,
defined as follows.

Definition 10. Let σ be a nonlinear damping function satisfying 1 and 2 from Defi-
nition 1 and z be a solution of (3) in Hp(0, 1). The reflection coefficient R : R+ → R
corresponding to z is the measurable function given by

R(t) =


zt(t, 1)− σ(zt(t, 1))

zt(t, 1) + σ(zt(t, 1))
, if zt(t, 1) 6= 0,

2− σ− − σ+
2 + σ− + σ+

, otherwise,

(35)

where σ− and σ+ are the numbers defined in (4).

A first immediate property of the reflection coefficient is the following.

Lemma 11. The reflection coefficient R takes values in (−1, 1).

Proof. The result is immediate once one writes the reflection coefficient as

R(t) =
1− δt
1 + δt

, (36)

where δt = σ(zt(t,1))
zt(t,1)

for zt(t, 1) 6= 0 and δt = σ−+σ+
2 if zt(t, 1) = 0.

Remark 12. The choice of the value of R(t) when zt(t, 1) = 0 is arbitrary and has no
effect in the arguments of the proof of Theorem 6. The choice in (35) corresponds to
the choice δt = σ−+σ+

2 in (36) and is motivated by (4).

A major property satisfied by the reflection coefficient is the following.

Lemma 13. Let z be a solution of (3), f and g be as in Definition 3, and R be as in
Definition 10. Then

f(t+ 1) =

{
R(t)g(t− 1) for a.e. t ∈ [0, 1],

−R(t)f(t− 1) for a.e. t ≥ 1.
(37)

Proof. Notice first that, if t ≥ 0 is such that zt(t, 1) = 0, then, by the boundary
condition in (3), one also has zx(t, 1) = 0, and thus, by (10), one also has f(t + 1) =
g(t−1) = 0, with also f(t−1) = 0 in the case t ≥ 1 by (12c), and thus (37) is satisfied.

In the case zt(t, 1) 6= 0, from (35) and (10), one deduces that R(t) = f(t+1)
g(t−1) , and

thus (37) follows using (12c).

We also need to have to suitable bounds on this reflection coefficient in the case
where the initial conditions are in H∞(0, 1).

Lemma 14. Assume that, given a positive constant M , the initial conditions (z0, z1)
are in H∞(0, 1) and satisfy

‖(z0, z1)‖H∞(0,1) ≤M. (38)

We assume furthermore that the nonlinearity σ satisfies properties 1 and 2 from Def-
inition 1. Then, there exists a positive constant r ∈ (0, 1) depending on M , such that
the reflection coefficient defined in (35) satisfies, for all t ≥ 0,

|R(t)| ≤ r. (39)
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Proof of Lemma 14. Note that, by (14), one has, for a.e. t ∈ R,

|zt(t, 1)| ≤M. (40)

As a consequence of properties 1 and 2 from Definition 1, the function ξ 7→ σ(ξ)
ξ defined

over R∗ is continuous, strictly positive, and its limit points as ξ → 0 belong to [σ−, σ+].
Letting

δ− = inf
ξ∈[−M,M ]\{0}

σ(ξ)

ξ
, δ+ = sup

ξ∈[−M,M ]\{0}

σ(ξ)

ξ
, (41)

one has thus 0 < δ− ≤ δ+ < +∞. Then, using (36), one deduces that, for all t ≥ 0,

1− δ+
1 + δ+

=: R− ≤ R(t) ≤ R+ :=
1− δ−
1 + δ−

. (42)

Clearly, R− and R+ belong to (−1, 1), and then it follows that there exists r ∈ (0, 1)
such that |R(t)| ≤ r for t ≥ 0.

As said above, this lemma is instrumental to give estimates of the decay rates of
(3). To be more precise, these decay rates will depend on the bounds of the reflection
coefficient R defined in (35). From the proof of Lemma 14, it is clear that these bounds
are difficult to obtain without assuming the initial conditions (z0, z1) to be in H∞(0, 1).

We are now in position to provide the proof of Theorem 6.

Proof of Theorem 6. All along this proof, given a positive constant M , we assume that
the initial conditions (z0, z1) are in H∞(0, 1) and satisfy

‖(z0, z1)‖H∞(0,1) ≤M. (43)

Our proof is divided into two steps: the first one deals with the case where p ∈ [1,∞)
and the second one with the case where p = ∞. The strategies for these proofs are
different: we tackle the first case by introducing a candidate Lyapunov functional
inspired by [1, 3], and we treat the second case with the characteristics method.

First case: p ∈ [1,∞). Let us consider the following Lyapunov functional along any
trajectory of (3),

Vp(t) =

∫ 1

0
eµxF (zx(t, x) + zt(t, x))dx+

∫ 1

0
e−µxF (zx(t, x)− zt(t, x))dx, t ≥ 0, (44)

where µ is a positive constant and F (s) =
∣∣ s
2

∣∣p for s ∈ R. We first provide another
expression for Vp before taking its time derivative along trajectories of (3). From (44),
(10), and (12c), one gets, for t ≥ 1, that

Vp(t) = e−µt
∫ t+1

t−1
eµs|f(s)|p ds. (45)

The time derivative of Vp along the trajectories of (3) satisfies

dVp
dt

=− µVp + eµ|f(t+ 1)|p − e−µ|g(t− 1)|p

=− µVp + eµF (zt(t, 1)− σ(zt(t, 1)))− e−µF (zt(t, 1) + σ(zt(t, 1)))

=− µVp + e−µF (zt(t, 1) + σ(zt(t, 1)))
[
|R(t)|pe2µ − 1

]
,

(46)
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where we have used (12c) and (35). Invoking Lemma 14, since the initial conditions
(z0, z1) ∈ H∞(0, 1) are bounded as in (43), we can conclude that, for any t ≥ 0,
|R(t)|p ≤ rp, Then, setting µ := −p

2 ln (r), one obtains that

dVp
dt
≤ −µVp, t ≥ 1 (47)

which implies the exponential convergence of the trajectories of (3) with a decay rate
depending on the H∞-bounds of the initial conditions (z0, z1).

Second case: p = ∞. The proof of this result is different from the other case, but
relies on the properties of the reflection coefficient given by Lemmas 13 and 14. Notice
first that, by (12a) and (12b), one has

‖f‖L∞(0,1) ≤
1

2
‖(z0, z1)‖H∞(0,1),

‖g‖L∞(−1,0) ≤
1

2
‖(z0, z1)‖H∞(0,1).

(48)

From the above, (37), and (39), one also deduces that

‖f‖L∞(1,3) ≤
r

2
‖(z0, z1)‖H∞(0,1).

Moreover, (37) and (39) also imply that, for every n ∈ N∗,

‖f‖L∞(2n+1,2n+3) ≤ r‖f‖L∞(2n−1,2n+1),

and thus an immediate induction shows that, for every n ∈ N∗,

‖f‖L∞(2n−1,2n+1) ≤
rn

2
‖(z0, z1)‖H∞(0,1).

One deduces that, for t ≥ 2,

‖f‖L∞(t,t+1) ≤
1

2
rbt/2c‖(z0, z1)‖H∞(0,1),

‖g‖L∞(t−1,t) ≤
1

2
rbt/2c‖(z0, z1)‖H∞(0,1),

and these inequalities also hold for t ∈ [0, 2) using (48), (37), and the fact that |R(t)| ≤
1 for a.e. t ≥ 0. Hence, by (10), one deduces that, for every t ≥ 0,

‖(z, zt)‖H∞(0,1) ≤ 2rbt/2c‖(z0, z1)‖H∞(0,1),

and hence (16) holds with C = 2
r and µ = −1

2 ln r.
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