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ONE-DIMENSIONAL WAVE EQUATION WITH SET-VALUED

BOUNDARY DAMPING: WELL-POSEDNESS, ASYMPTOTIC

STABILITY, AND DECAY RATES

Yacine Chitour1,*, Swann Marx2 and Guilherme Mazanti3

Abstract. This paper is concerned with the analysis of a one dimensional wave equation ztt− zxx = 0
on [0, 1] with a Dirichlet condition at x = 0 and a damping acting at x = 1 which takes the form
(zt(t, 1),−zx(t, 1)) ∈ Σ for every t ≥ 0, where Σ is a given subset of R2. The study is performed within
an Lp functional framework, p ∈ [1,+∞]. We aim at determining conditions on Σ ensuring existence and
uniqueness of solutions of that wave equation as well as strong stability and uniform global asymptotic
stability of its solutions. In the latter case, we also study the decay rates of the solutions and their
optimality. We first establish a one-to-one correspondence between the solutions of that wave equation
and the iterated sequences of a discrete-time dynamical system in terms of which we investigate the
above mentioned issues. This enables us to provide a simple necessary and sufficient condition on Σ
ensuring existence and uniqueness of solutions of the wave equation as well as an efficient strategy for
determining optimal decay rates when Σ verifies a generalized sector condition. As an application, we
solve two conjectures stated in the literature, the first one seeking a specific optimal decay rate and the
second one associated with a saturation type of damping. In case the boundary damping is subject to
perturbations, we derive sharp results regarding asymptotic perturbation rejection and input-to-state
issues.
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1. Introduction

In this paper, we focus on the following wave equation

ztt(t, x) = zxx(t, x), (t, x) ∈ R+ × [0, 1],

z(t, 0) = 0, t ∈ R+,

(zt(t, 1),−zx(t, 1)) ∈ Σ, t ∈ R+,

z(0, x) = z0(x), x ∈ [0, 1],

zt(0, x) = z1(x), x ∈ [0, 1],

(1.1)
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where Σ ⊂ R2. The immense majority of works on that subject (see for instance [1, 26] for an overview of the
subject) assumes that Σ is the graph of a function σ : R→ R and hence the corresponding condition on zx(t, 1)
and zt(t, 1) reduces to

zx(t, 1) = −σ(zt(t, 1)), ∀t ≥ 0, (1.2)

which can be interpreted as a feedback law prescribing zx(t, 1) in terms on zt(t, 1) at the boundary x = 1 for
every t ≥ 0. Note that considering Σ more general that the mere graph of a function is a possible alternative
to model the fact that the function σ is subject to uncertainties or discontinuities, as in the case, for instance,
where Σ is equal to the graph of the sign set-valued map sgn : R ⇒ R defined by sgn(s) = {s/|s|} for nonzero
s and sgn(0) = [−1, 1], cf. [27].

The use of a set Σ in (1.1) can also model switching boundary conditions, such as those considered in
[3, 8, 12, 16]. In this setting, the boundary condition is usually written as

zx(t, 1) = −σa(t)(zt(t, 1)), (1.3)

where a(·) is piecewise constant and takes values in a given (possibly infinite) index set I and σi : R → R
for i ∈ I. Defining Σ as the set of pairs (x, y) ∈ R2 such that y ∈ σi(x) for some i ∈ I, one obtains that any
solution of the wave equation with the boundary condition (1.3) is a solution of (1.1). This construction is the
analogue of the classical transformation of finite-dimensional switched systems into differential inclusions (see,
e.g., [4, 11, 18]).

1.1. Existing results

The standard issues addressed for solutions of (1.1) (either with (1.2) or Σ equal to the graph of sgn) may
be divided into three main questions: find conditions on σ so that (Q1) for every initial condition, there exists
a global and possibly unique solution of (1.1), (Q2) in case solutions of (1.1) tend to zero as the time t tends
to infinity, one can characterize their decay rates, and (Q3) one can try to establish optimality of these decay
rates, where optimality is defined more precisely below as in [26].

Question (Q1) is usually addressed within a Hilbertian framework, i.e., (weak) solutions of (1.1) belong to
X2 = W 1,2

∗ (0, 1) × L2(0, 1) where W 1,2
∗ (0, 1) is the Hilbert space made of the absolutely continuous functions

u : [0, 1] → R so that u′ ∈ L2(0, 1) and u(0) = 0. Functional analysis arguments are then used, typically by
considering appropriate unbounded operators and their associated C0 semigroups. Most of the time, the function
σ is assumed to be locally Lipschitz, nondecreasing and subject to the classical damping condition, i.e., sσ(s) ≥ 0
for every s ∈ R, which allows one to get a maximal monotone operator, and hence bringing a positive answer
to (Q1).

Let us emphasize on the damping condition, since not only it helps to address (Q1) but it is also a first
step to handle (Q2). Indeed, such a condition on σ makes the natural energy E(t) of (1.1) defined by E(t) =∫ 1

0

(
|zx(t, x)|2 + |zt(t, x)|2

)
dx nonincreasing along trajectories of (1.1). This is why one usually refers to such

a function σ as a damping function. Note that [25] (as other few earlier works mentioned in that reference)
assumes σ to be a damping function not necessarily monotone. Addressing (Q1) in that case relies instead on
the d’Alembert decomposition of solutions of (1.1).

Other functional frameworks have been considered recently [2, 7, 14], where the functional spaces are of
Lp-type, p ∈ [1,+∞], but these works consider 1D wave equations with localized distributed damping, i.e.,
ztt−zxx = −a(x)σ(zt). Recall that the semigroup generated by the D’Alembertian �z := ztt−∆z with Dirichlet
boundary conditions on an open bounded subset in Rn, n ≥ 2, is not defined for any suitable extension of the
Hilbertian framework to Lp-type spaces for p 6= 2, as explained in [24]. This is why the study of issues of
asymptotic behavior involving Lp spaces with p 6= 2 makes sense only in the one-dimensional case.

Regarding more precisely results obtained for (Q2), there exist two main concepts of convergence of solutions
of (1.1) to zero: the basic one referred to as strong stability, which says that the X2-norm of every solution of (1.1)
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tends to zero as t tends to infinity and a stronger notion, that of uniform globally asymptotic stability (UGAS
for short), which says that there exists a KL-function β : R+ ×R+ → R such that ‖z(t)‖X2

≤ β(‖z(0)‖X2
, t) for

every t ≥ 0 and solution z(·) of (1.1). Recall that a KL-function (or a function of class KL) β is continuous with
β(0, ·) ≡ 0, increasing with respect to its first argument and, for every s ≥ 0, t 7→ β(s, t) is decreasing and tends
to zero as t tends to infinity. One may interpret the function β as a generalized rate of convergence to zero of
solutions of (1.1) and one may even ask what could be the “best” KL function β for which UGAS holds true.
After [26] a reasonable definition that we will adopt in the paper goes as follows: we say that a KL function
β is optimal for (1.1) if the latter is UGAS with rate β and there exists an initial condition in X2 yielding a
nontrivial solution z of (1.1) so that ‖z(t)‖X2 ≥ εβ(‖z(0)‖X2 , t) for some positive constant ε and every t ≥ 0.

With the exception of [25], results on strong stability rely on a LaSalle argument and assume that σ is
nondecreasing and locally Lipschitz: strong stability is first established for a dense and compactly embedded
subset of X2 made of regular solutions of (1.1) and then it is extended to the full X2 by a density argument, cf.
[1]. As regards UGAS, it can be shown that, under the damping assumption and a linear cone condition (i.e.,
there exist positive a, b such that as2 ≤ sσ(s) ≤ bs2 for every s ∈ R), the stability is exponential, i.e., one can
choose β(s, t) = Cse−µt for some positive constants C, µ, cf. [26] for instance. If the linear cone condition only
holds in a neighborhood of zero then exponential stability cannot hold in general, as shown in [26] where σ is
chosen as a saturation function, i.e., such as σ(s) = arctan(s). Besides the linear cone condition, several results
establishing UGAS have been obtained, cf. [17, 19, 20, 27] where σ verifies a linear cone condition for large s
and is either of polynomial type or weaker than any polynomial in a neighborhood of the origin, see also [26]
for a extensive list of references. It has to be noticed that many of these studies deal with wave equations in
dimension not necessarily equal to one and, for all of them, the estimates are obtained by refined arguments
based on the multiplier method or highly nontrivial Lyapunov functionals.

Finally, for results handling (Q3), most of the existing results are gathered in [26] and [1] (cf. Theorems 1.7.12,
1.7.15 and 1.7.16 in the last reference) where several of the above mentioned upper estimates (of UGAS type)
are shown to be optimal in the sense defined previously and more particularly in the case where the damping
function σ in (1.4) is of class C1 and verifies σ′(0) = 0. In particular, a list of examples for which optimality is
shown is provided in Theorem 1.7.12 of [1] while an example is also given (Example 5 in that list) for which only
an upper estimate is given and it is stated in [1] that the general case (even under the condition σ′(0) = 0) is
still open. In these references, the upper estimates are derived by delicate manipulations of Lyapunov functions
relying on the multiplier method and lower estimates results are obtained with appropriate solutions of (1.1)
with piecewise constant Riemann invariants, where the computations are actually similar in spirit to those of
[25].

1.2. Discrete-time dynamical system

The approach proposed in this paper is inspired by [25], since, as in that reference, we focus on the Riemann
invariants of a solution of (1.1). To describe our basic finding on the matter of interest, let us consider the
discrete-time dynamical system S defined on the Hilbert space Y2 = L2(−1, 1) which associates with every
h ∈ Y2 the subset S(h) of Y2 made of the functions j so that

S : (h(s), j(s)) ∈ RΣ, for a.e. s ∈ [−1, 1], (1.4)

where R is the planar rotation of angle −π/4. One should notice that a related discrete-time dynamical system
has been first characterized in [25] (see also Remark 2.9).

We show that there exists an isometry of Hilbert spaces I : X2 → Y2 such that, for every (z0, z1) ∈ X2, (1.1)
admits a (global in time) weak solution z in X2 starting at (z0, z1) if and only if there exists a sequence (gn)n∈N
of elements in Y2 with g0 = I(z0, z1) such that gn+1 ∈ S(gn) for n ∈ N. The concatenation of the gn’s, which
yields an element of L2

loc(−1,+∞), is exactly the Riemann invariant zt−zx√
2

associated with z. It is immediate

that the previously described correspondence between (1.1) and (1.4) can be adapted for any p ∈ [1,+∞] after
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replacing Y2 by Yp = Lp(−1, 1) and X2 by Xp defined as

Xp := W 1,p
∗ (0, 1)× Lp(0, 1), (1.5)

where W 1,p
∗ (0, 1) = {u ∈ Lp(0, 1) | u′ ∈ Lp(0, 1) and u(0) = 0}, and equipped with the norms

‖(u, v)‖pXp :=
1

2
p
2

∫ 1

0

(
|u′ + v|p + |u′ − v|p

)
dx, p ∈ [1,+∞),

‖(u, v)‖X∞ :=
1√
2

max
(
‖u′ + v‖L∞(0,1), ‖u′ − v‖L∞(0,1)

)
.

(1.6)

The norm ‖·‖Xp , previously used, for instance, in [14], is equivalent to the standard norm in Xp, but it has the
advantage of being well-adapted to the analysis of wave equations, since it is expressed in terms of Riemann
invariants and it is nonincreasing as soon as Σ satisfies a damping condition (see Prop. 4.1). In addition, with
this choice of norm, the mapping (still denoted by) I : Xp → Yp becomes an isometry between Banach spaces.

One can reformulate appropriately the definition of S by considering the set-valued map S : R ⇒ R whose
graph is RΣ ⊂ R2. For instance (1.4) reads j(s) ∈ S(h(s)) for a.e. s ∈ [−1, 1]. A first interesting application of
this formalism concerns the case where Σ is equal to the graph of the sign set-valued map. Then the set-valued
map S becomes single-valued and equal to the odd function defined on R+ by S(s) = s for s ∈ [0, 1/

√
2] and

S(s) =
√

2 − s for s ≥ 1/
√

2. We also show how one can easily adapt the previously described approach to
the case where the Dirichlet boundary condition at x = 0 in (1.1) is replaced by the more general boundary
condition (zt(t, 0), zx(t, 0)) ∈ Σ′, t ≥ 0, where Σ′ ⊂ R2.

By using the one-to-one correspondence between (global in time) solutions of (1.1) and iterated sequences
of (1.4), we can translate the previously described issues of (Q1)–(Q3) associated with the original 1D wave
equation (1.1) into the study of equivalent questions in terms of S. Question (Q1) of existence and uniqueness
of solutions of (1.1) in Xp for every initial condition is equivalently restated as follows: determine conditions on
Σ so that, for every h ∈ Yp, there exists some (possibly unique) j ∈ Yp such that j ∈ S(h). Similarly, questions
regarding the decay rates, i.e. (Q2) and (Q3), can be equivalently simply expressed as questions regarding the
asymptotic behavior of iterated sequences (gn)n∈N associated with S.

1.3. Main results

Concerning the question of existence of (global in time) solutions of (1.1) for every initial condition in Xp,
we provide a sufficient condition in terms of Σ which turns out to be also necessary in case S is single-valued.
The condition reads differently whether p is finite or not but, in both cases, S must contain the graph of a
universally measurable function, cf. [6, 9, 23] and Definition A.1 in Appendix A for a definition of the latter
concept.

As regards the asymptotic behavior of solutions of (1.1) we always work under the assumption that Σ is
a damping set, i.e., for every (x, y) ∈ Σ, it holds xy ≥ 0. We also refer to a strict damping set in case the
previous inequality is strict for (x, y) ∈ Σ \ {(0, 0)}. These conditions generalize the case where Σ is the graph of
a damping function σ : R→ R. Note that the damping assumption on Σ translates to |y| ≤ |x| for (x, y) ∈ RΣ
and to the corresponding strict inequality for (x, y) ∈ RΣ \ {(0, 0)}.

Our first main result says that the asymptotic behavior of solutions of (1.1) in Xp (and hence of iterated
sequences (gn)n∈N for S in Yp) is governed by the asymptotic behavior of real iterated sequences (xn)n∈N for
S, i.e., real sequences such that xn+1 ∈ S(xn), for every n ∈ N. In particular, strong stability in Xp for p finite
is equivalent to the fact that every real iterated sequence (xn)n∈N for S converges to zero, while for p = +∞,
strong stability and UGAS are equivalent, themselves holding true if and only if real iterated sequences (xn)n∈N
for S converge to zero, uniformly with respect to compact sets of initial conditions x0. Moreover, if the set-
valued map S ◦ S has a closed graph, then strong stability holds true in Xp, p ∈ [1,+∞], if and only if S ◦ S is a
strict damping. This greatly generalizes a result of [25] where strong stability in X2 has been established in the
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case where S is a (single-valued) continuous function on R. For UGAS with p ∈ [1,+∞), we characterize two
conditions on Σ ensuring, for the first one (see (H6)), that UGAS does not hold true (cf. Prop. 4.9) while, on
the opposite, the second one (see (H8)) combined with UGAS in X∞ is sufficient for UGAS in Xp to hold true
(see Thm. 4.11).

As far as decay rates of solutions of (1.1) are concerned, we consider damping sets Σ subject to two generalized
sector conditions describing the behavior of the set RΣ in some neighborhood of the origin as follows: for points

(x, y) in that neighborhood, the first condition (Hypothesis (̃H9)) assumes that |y| ≤ Q(|x|), whereas the second

one (see Hypothesis ˜(H10)) assumes that |y| ≥ Q(|x|), where Q ∈ C1(R+,R+) with Q(0) = 0, 0 < Q(x) < x, and
Q′(x) > 0 for every x > 0. These two conditions are inspired from [26] where they are only expressed in terms
of Σ as the graph of a continuous function (see also Hypotheses (H9) and (H10)). Thanks to our approach, the

decay rate issue amounts to study real iterated sequences (xn)n∈N verifying either |xn+1| ≤ Q(|xn|) when (̃H9)

holds or |xn+1| ≥ Q(|xn|) when Hypothesis ˜(H10) holds.
As for the optimality issue, it is now reduced to the determination of equivalents in terms of a function of

n ∈ N, as it tends to infinity, for the real iterated sequences (xn)n∈N verifying |xn+1| = Q(|xn|) for n ≥ 0. We
provide precise asymptotic results on the decay of solutions of (1.1) depending on the value of Q′(0) ∈ [0, 1].
First of all, we are able to recover all the cases listed in Theorem 1.7.12 of [1], even for Example 5, which was
left open, all of them corresponding to situations where Q′(0) = 1. Note that we obtain the previously known
cases with simpler arguments and we also characterize the largest possible sets of initial conditions admitting
optimal decay rates. If Q′(0) ∈ (0, 1), one has (local) exponential stability, a decay rate which is optimal. The
handling of this case is rather elementary and is known in the literature, as least in the Hilbertian case p = 2.
In the particular case where Q(s) = µs for every s ≥ 0 for some µ ∈ (0, 1), we provide alternative arguments for
exponential stability and also give a necessary and sufficient and condition in terms of S only for exponential
stability to hold true. Our results concerning the case Q′(0) = 0 seem to be new and exhibit convergence rates
faster than any exponential ones.

We close the set of our findings on decay rates with the solution of a conjecture formulated in [26] asking
whether arbitrary slow convergence is possible in case Σ is a damping set of saturation type, i.e., the values of
|y| for (x, y) ∈ Σ and |x| large remain bounded by a given positive constant. We bring a positive answer for the
possible occurrence of such an arbitrarily slow convergence in any space Xp, p ∈ [1,+∞).

We also have sharp results when the wave equation (1.1) is subject to boundary perturbations, i.e., the
condition (zt(t, 1),−zx(t, 1)) ∈ Σ for t ∈ R+ is replaced by (zt(t, 1),−zx(t, 1)) ∈ Σ + d(t) for t ∈ R+, where
d : R+ → R2 is a measurable function representing the perturbation. We provide two sets of results, the first one
dealing with asymptotic perturbation rejection (i.e., conditions on d and Σ so that solutions of (1.1) converge
to zero despite the presence of d) and another set of results proposing sufficient conditions on Σ ensuring
input-to-state stability for the perturbed wave equation (cf. [21] for a definition of input-to state-stability).

Finally, we revisit the case where Σ is equal to the graph of the sign set-valued map sgn and extend all
the results obtained in [27] regarding this question. In particular, we provide optimal results for existence and
uniqueness of solutions of (1.1) in any Xp, p ∈ [1,+∞] without relying on semigroup theory and we characterize
the ω-limit set of every solution of (1.1) in an explicit manner in terms of the initial condition.

1.4. Structure of the paper

The paper is organized in six sections and four appendices. After the present introduction describing the
contents of our paper and gathering the main notations, Section 2 is devoted to the description of the precise
correspondence between the wave equation described by (1.1) and the discrete-time dynamical system given in
(1.4), as well as the list of meaningful hypotheses one can assume on Σ and auxiliary results on the set-valued
map S. Section 3 provides results on the existence and uniqueness of solutions of (1.1). Section 4 gathers results
dealing with stability concepts, asymptotic behavior, decay rates, and their optimality for solutions of both
iterated sequences of S and solutions of (1.1). Section 5 treats the case of boundary perturbations. Section 6
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addresses the situation where Σ is equal to the graph of the sign set-valued map sgn. The four appendices collect
lemmas and technical arguments used in the core of the text.

1.5. Notations

The sets of integers, nonnegative integers, real numbers, nonnegative real numbers, and nonpositive real
numbers are denoted in this paper respectively by Z, N, R, R+, and R−. For A ∈ {Z,N,R,R+,R−}, we use A∗
to denote the set A \ {0}.

For x ∈ R, we use bxc and dxe to denote, respectively, the greatest integer less than or equal to x and
the smallest integer greater than or equal to x. The set Rd, d ∈ N∗, is assumed to be endowed with its usual
Euclidean norm, denoted by |·|, and, given M > 0, B(0,M) denotes the ball of Rd centered at zero and of
radius M . If A ⊂ R, we define ‖A‖ = supa∈A|a|. All along the paper, we use the letter R to denote the matrix
corresponding to the plane rotation of angle −π4 , i.e.,

R =

(
1√
2

1√
2

− 1√
2

1√
2

)
.

The identity function of R is denoted by Id and, for Σ ⊂ R2 and d ∈ R2, we define the sum Σ + d as the set
{x+ d | x ∈ Σ}.

A set-valued map F : R ⇒ R is a function that, with each x ∈ R, associates some (possibly empty) F (x) ⊂ R,
and its graph is the set {(x, y) ∈ R2 | y ∈ F (x)}. A set-valued map F is said to be multi-valued if F (x) 6= ∅ for
every x ∈ R, i.e., the graph of F contains the graph of a function ϕ : R→ R. It is said to be single-valued when
F (x) is a singleton for every x ∈ R, i.e., the graph of F is the graph of a function ϕ : R→ R. In that case, we
usually make the slight abuse of notation of considering F = ϕ.

The composition of two set-valued maps S and T is the set-valued map S ◦ T : R ⇒ R which, to each x ∈ R,
associates the set of points z ∈ R such that there exists y ∈ R for which z ∈ S(y) and y ∈ T (x).

Consider a function f : R→ R. Then, for n ∈ N, the n-th iterate of f , i.e., the composition of f with itself
n times, is denoted by f [n], with the convention that f [0] = Id. This notation is extended in a straightforward
manner to set-valued functions F : R ⇒ R: y ∈ F [n](x) if and only if there exists x0, . . . , xn ∈ R such that
x0 = x, xn = y, and xi+1 ∈ F (xi) for every i ∈ {0, . . . , n− 1}.

Several notions of measurability are used in some parts of the paper (see Appendix A). Unless otherwise
specified, the word “measurable” means “Lebesgue measurable”. For an interval I ⊂ R, d ∈ N∗, and p ∈ [1,+∞],
the space Lp(I,Rd) is endowed with the norm defined by

‖u‖p
Lp(I,Rd)

=

∫
I

|u(t)|p dt, if p < +∞,

‖u‖L∞(I,Rd) = ess sup
t∈I

|u(t)|.

The space Rd is omitted from the notation when d = 1. We use Yp to denote the space Lp(−1, 1) and we write
its norm simply by ‖·‖p.

A function γ : R+ → R+ is said to be of class K if γ is continuous, increasing, and γ(0) = 0. If moreover
limx→+∞ γ(x) = +∞, we say that γ is of class K∞.

A function β : R+ × R+ → R+ is said to be of class KL if it is continuous, β(·, t) is of class K for every
t ∈ R+, and, for every x ∈ R+, β(x, ·) is decreasing and limt→+∞ β(x, t) = 0.
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2. Description of the model

2.1. Equivalent discrete-time dynamical system

In order to introduce a notion of weak solution of (1.1) adapted both to Lp spaces and to the one-dimensional
case, let us recall the following classical result on regular solutions to the one-dimensional wave equation, which
corresponds to its d’Alembert decomposition into traveling waves (see, e.g., [10], Sect. 2.4.1.a).

Proposition 2.1. Let z ∈ C2(R+ × [0, 1]). Then z satisfies zxx = ztt in R+ × [0, 1] if and only if there exist
functions f ∈ C1([0,+∞)) and g ∈ C1([−1,+∞)) such that

z(t, x) = z(0, 0) +
1√
2

∫ t+x

0

f(s) ds+
1√
2

∫ t−x

0

g(s) ds. (2.1)

Proof. Assume that z satisfies zxx = ztt in R+ × [0, 1] and let u, v : R+ × [0, 1]→ R satisfy(
v(t, x)
−u(t, x)

)
= R

(
zt(t, x)
−zx(t, x)

)
(2.2)

Then u, v ∈ C1(R+ × [0, 1]) and ut = ux, vt = −vx in R+ × [0, 1]. One immediately verifies that, for every
(t, x) ∈ R+ × [0, 1], the functions h 7→ u(t + h, x − h) and h 7→ v(t + h, x + h) are constant in their domains.
Letting f : [0,+∞)→ R and g : [−1,+∞)→ R being defined by

f(s) = u(s, 0), g(s) =

{
v(s, 0) if s ≥ 0,

v(0,−s) if −1 ≤ s < 0,
(2.3)

one can easily check that f ∈ C1([0,+∞)), g ∈ C1([−1,+∞)), and u(t, x) = f(t+ x) and v(t, x) = g(t− x) for
every (t, x) ∈ R+ × [0, 1]. In particular, it follows from (2.2) that(

zt(t, x)
−zx(t, x)

)
= R−1

(
g(t− x)
−f(t+ x)

)
. (2.4)

Hence

z(t, x) = z(0, 0) +

∫ x

0

zx(0, s) ds+

∫ t

0

zt(s, x) ds

= z(0, 0) +
1√
2

∫ x

0

f(s) ds− 1√
2

∫ x

0

g(−s) ds

+
1√
2

∫ t

0

f(s+ x) ds+
1√
2

∫ t

0

g(s− x) ds

= z(0, 0) +
1√
2

∫ t+x

0

f(s) ds+
1√
2

∫ t−x

0

g(s) ds,

as required. Conversely, if z is given by (2.1), it is easy to see that ztt = zxx.

The functions f and g from (2.3) are called Riemann invariants in the classical literature of hyperbolic PDEs
(see, for instance, [5]). Proposition 2.1 motivates the following definition of weak solution to (1.1).
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Definition 2.2. Let (z0, z1) ∈ Xp. We say that z : R+ × [0, 1]→ R is a weak global (in time) solution of (1.1)
in Xp with initial condition (z0, z1) if there exist f ∈ Lploc(0,+∞) and g ∈ Lploc(−1,+∞) such that

z(t, x) =
1√
2

∫ t+x

0

f(s) ds+
1√
2

∫ t−x

0

g(s) ds for all (t, x) ∈ R+ × [0, 1],

z(t, 0) = 0, (zt(t, 1),−zx(t, 1)) ∈ Σ, for a.e. t ∈ R+,

z(0, x) = z0(x), zt(0, x) = z1(x), for a.e. x ∈ [0, 1].

(2.5)

In that case, we use ep(z)(t) to denote the Xp norm of the weak global solution z of (1.1) at time t ∈ R+, defined
by

ep(z)(t) = ‖(z(t, ·), zt(t, ·))‖Xp .

Note that, if z is a weak global solution of (1.1) in Xp, then (z(t, ·), zt(t, ·)) ∈ Xp for every t ∈ R+ and ztt = zxx
is satisfied in R∗+ × (0, 1) in the sense of distributions. In the sequel, we refer to weak global solutions of (1.1)
simply as solutions or trajectories of (1.1) and, by a slight abuse of expression, we refer to ep(z)(t) as the energy
of z at time t.

By rewriting the boundary and initial conditions of (1.1) in terms of the functions f and g from Definition 2.2,
one obtains at once the following characterization of solutions of (1.1), when they exist.

Proposition 2.3. Let z : R+ × [0, 1] → R be a solution of (1.1) with initial condition (z0, z1) ∈ Xp and f ∈
Lploc(0,+∞) and g ∈ Lploc(−1,+∞) be the corresponding functions from Definition 2.2. Then f and g satisfy(

g(−s)
−f(s)

)
= R

(
z1(s)
−z′0(s)

)
, for a.e. s ∈ [0, 1], (2.6a)

f(s) = −g(s), for a.e. s ≥ 0, (2.6b)

(g(s− 2), g(s)) ∈ RΣ, for a.e. s ≥ 1. (2.6c)

Conversely, consider g ∈ Lploc(−1,+∞) verifying (2.6c) and let f ∈ Lploc(0,+∞) be given by (2.6b). Then
the function z : R+ × [0, 1] → R defined by the integral formula from (2.5) is a solution of (1.1) whose initial
condition (z0, z1) ∈ Xp is the unique couple of functions satisfying (2.6a).

The main technique underlying all the results of our paper consists in establishing links between trajectories
of (1.1) and trajectories of discrete-time dynamical systems which are defined next.

Definition 2.4. Let S : R ⇒ R be a set-valued map. We refer to the inclusion

xn+1 ∈ S(xn), n ∈ N, xn ∈ R,

as the discrete-time dynamical system associated with S on R and its corresponding trajectories (xn)n∈N are
called real iterated sequences for S.

Similarly, we refer to the inclusion

gn+1(s) ∈ S(gn(s)), n ∈ N, a.e. s ∈ [−1, 1], (2.7)

as the discrete-time dynamical system associated with S on the space of real-valued measurable functions defined
on [−1, 1] and its corresponding trajectories (gn)n∈N are called iterated sequences for S. For p ∈ [1,+∞], the
discrete-time dynamical system associated with S on Yp is defined as the restriction of the above dynamical
system to sequences (gn)n∈N in Yp.
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In the sequel of the paper, we will connect solutions of (1.1) and solutions of (2.7) with S being the set-valued
map whose graph is RΣ, in which case (2.7) is another way of writing (2.6c). For that purpose, we need to
introduce some additional notations. In the following definition, we use YN

p to denote the set of sequences taking
values in Yp.

Definition 2.5. Let p ∈ [1,+∞].

(a) We use Seq : Lploc(−1,+∞)→ YN
p to denote the bijection which associates, with each g ∈ Lploc(−1,+∞),

the sequence (gn)n∈N in Yp defined by gn(s) = g(s+ 2n) for n ∈ N and a.e. s ∈ [−1, 1].
(b) We use I : Xp → Yp to denote the isometry which associates, with each (z0, z1) ∈ Xp, the element g0 ∈ Yp

defined by (
g0(−s)
g0(s)

)
= R

(
z1(s)
−z′0(s)

)
, for a.e. s ∈ [0, 1].

As a consequence of Proposition 2.3 and the above definitions, one immediately obtains the following one-
to-one correspondence between solutions of (1.1) in Xp and trajectories of the dynamical system (2.7) in Yp.

Proposition 2.6. Let p ∈ [1,+∞], Σ ⊂ R2, and S : R ⇒ R be the set-valued map whose graph is RΣ.

(a) Let z be a solution of (1.1) with initial condition (z0, z1) ∈ Xp, g ∈ Lploc(−1,+∞) be the corresponding
function from Definition 2.2, and (gn)n∈N = Seq(g). Then (gn)n∈N is an iterated sequence for S on Yp
starting at g0 = I(z0, z1).

(b) Conversely, let (gn)n∈N be an iterated sequence for S on Yp starting at some g0 ∈ Yp. Let g =
Seq−1((gn)n∈N), f ∈ Lploc(0,+∞) be given by f(s) = −g(s) for a.e. s ≥ 0, and z be defined from f and g as
in the first equation of (2.5). Then z is a solution of (1.1) in Xp with initial condition (z0, z1) = I−1(g0).

(c) Let z, g, and (gn)n∈N be as in (a) or (b). Then

ep(z)(t) = ‖g(t+ ·)‖p, for all t ∈ R+ (2.8)

and, in particular,

ep(z)(2n) = ‖gn‖p, for all n ∈ N. (2.9)

Proof. Items (a) and (b) are reformulations of Proposition 2.3. As for (2.8), it follows from the definition of ep,
(2.4), and (2.6b).

Saying that (gn)n∈N is an iterated sequence for the set-valued map S given in the statement of Proposition 2.6
is equivalent to

(gn(s), gn+1(s)) ∈ RΣ, n ∈ N, a.e. s ∈ [−1, 1], (2.10)

which is nothing but (2.6c) rewritten in terms of the sequence (gn)n∈N.
It is now clear, at the light of what precedes, that addressing standard issues for solutions of (1.1) such as

existence, uniqueness, and decay rates and their optimality is completely equivalent to addressing the same
issues for sequences (gn)n∈N in Yp verifying (2.10). This is the point of view that we will adopt all along the
paper.

Remark 2.7. Thanks to the iterative nature of discrete-time dynamical systems in Yp, Proposition 2.6 reduces
the issue of existence (resp. existence and uniqueness) of solutions of (1.1) in Xp for every initial condition in Xp
to the following equivalent statement in terms of S: for every g ∈ Yp, there exists (resp. there exists a unique)
h ∈ Yp such that h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1].
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Remark 2.8. For p < +∞, one deduces from (2.8) that, for every t ≥ 0,

epp(z)(t) =

∫ t+1

t−1

|g(s)|p ds,

and hence t 7→ epp(z)(t) is absolutely continuous and

d

dt
epp(z)(t) = |g(t+ 1)|p − |g(t− 1)|p, for a.e. t ≥ 0. (2.11)

Remark 2.9. When Σ is the graph of a function σ : R→ R, the set-valued map S : R ⇒ R whose graph is RΣ
can be described as follows: for x ∈ R, S(x) is the set of solutions y ∈ R of the equation

σ

(
x− y√

2

)
=
x+ y√

2
.

A similar equation has been given in [25] but, instead of working with a set-valued map S, the authors consider
instead solutions y of the above equation of minimal absolute value.

2.2. Hypotheses on Σ

To prepare for the sequel of the paper, we provide a list of assumptions on Σ that will be useful to characterize
existence, uniqueness, or asymptotic behavior of (1.1). The results of this paper will require subsets of these
assumptions, which are explicitly stated in each result. We stress the fact that we do not assume all these
assumptions on Σ at the same time, since most of our results do not require all of them. Note that we will use
the two notions of universally measurable function (whose definition is recalled in Appendix A) and function
with linear growth, i.e., functions ϕ : R→ R for which there exist a, b ∈ R+ such that

|ϕ(x)| ≤ a|x|+ b, ∀x ∈ R.

Hypotheses 2.10. The following hypotheses concern a set Σ ⊂ R2 and the set-valued map S whose graph is
RΣ.

(H1) (0, 0) ∈ Σ.
(H2) RΣ contains the graph of a universally measurable function ϕ with linear growth.
(H2)∞ RΣ contains the graph of a universally measurable function ϕ mapping bounded sets to bounded sets.
(H3) RΣ is equal to the graph of a universally measurable function ϕ with linear growth.
(H3)∞ RΣ is equal to the graph of a universally measurable function ϕ mapping bounded sets to bounded

sets.
(H4) For every (x, y) ∈ Σ, one has xy ≥ 0.
(H5) For every (x, y) ∈ Σ \ {(0, 0)}, one has xy > 0.
(H6) One has

lim
|(x,y)|→+∞

(x,y)∈Σ

min

(
x

y
,
y

x

)
= 0.

(H7) Σ satisfies (H4) and there exist positive constants M,a, b such that

a|x| ≤ |y| ≤ b|x|, for every (x, y) ∈ Σ ∩B(0,M).
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(H8) Σ satisfies (H4) and there exist positive constants M,a, b such that

a|x| ≤ |y| ≤ b|x|, for every (x, y) ∈ Σ \B(0,M).

(H9) Σ satisfies (H4) and there exist a positive constant M and a function q ∈ C1(R+,R+) with q(0) = 0,
0 < q(x) < x, and |q′(x)| < 1 for every x > 0 such that

q(|x|) ≤ |y| and q(|y|) ≤ |x|, for every (x, y) ∈ Σ ∩B(0,M).

(H10) Σ satisfies (H4) and there exist a positive constant M and a function q ∈ C1(R+,R+) with q(0) = 0,
0 < q(x) < x, and |q′(x)| < 1 for every x > 0 such that

|y| ≤ q(|x|) or |x| ≤ q(|y|), for every (x, y) ∈ Σ ∩B(0,M).

Throughout the paper we will often assume Σ to be a damping set, whose definition is given next.

Definition 2.11 (Damping set). A set Σ ⊂ R2 is called a damping set (or simply damping) if it
satisfies (H1), (H2), and (H4). It is said to be strict when one requires (H5) to be satisfied instead of (H4).

By a slight abuse of notation, we will also refer to the set-valued function S whose graph is RΣ as a (resp.
strict) damping when Σ is a (resp. strict) damping.

Assumption (H1) is used to guarantee that z ≡ 0 is a solution of (1.1). When Σ is the graph of a function σ,
then (H1) reduces to σ(0) = 0.

In the case where Σ is the graph of a linear function σ(x) = αx, it is standard that a necessary and sufficient
condition for the existence of solutions of (1.1) is α 6= −1, i.e., that RΣ is not the vertical axis x = 0. Hypothe-
ses (H2)–(H3)∞ prevent this phenomenon of nonexistence of solutions of (1.1) by imposing a positive distance
between the vertical axis x = 0 and some points of RΣ outside of a neighborhood of 0. Moreover, we will show
in Theorem 3.1 that (H2) (resp. (H2)∞) is a sufficient condition for the existence of solutions of (1.1) in Xp for p
finite (resp. p = +∞) and the necessity of the linear growth condition (resp. the condition of mapping bounded
sets to bounded sets).

Regarding uniqueness, we have a more precise result, namely that (H3) (resp. (H3)∞) is necessary and suffi-
cient for p finite (resp. for p = +∞), as shown in Theorem 3.2. Note that a standard assumption in the literature
for obtaining uniqueness of solutions of (1.1) is that σ or Id +σ are monotone, cf. for instance Proposition 1 of
[25] and also Proposition 2.19 below. Either of these properties implies conditions (H3) and (H3)∞ on Σ.

Condition (H4) is a generalization of the damping assumption on a function σ, which states that sσ(s) ≥ 0
for every s ∈ R, and which implies that the X2 norm of solutions of (1.1) is nonincreasing. Similarly, (H5) is a
strict version of (H4) and generalizes the condition of strict damping for a function σ, i.e., sσ(s) > 0 for every
s ∈ R∗.

Hypothesis (H6) is used in the sequel to show that the stability concept of UGAS does not hold in general in
Xp for finite p and it can be restated, in the case where Σ is the graph of a continuous function σ : R→ R, as

lim
|s|→+∞

min

(
σ(s)

s
,
s

σ(s)

)
= 0.

In particular, Hypothesis (H6) is verified if σ is either a saturation function (see Figure 3) or has a superlinear
growth at infinity.

Hypotheses (H7) and (H8) are generalizations of linear sector conditions in neighborhoods of the origin and
infinity respectively, which are classical in the case where Σ is the graph of a continuous function σ : R → R
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and which can be stated in that case respectively as

0 < lim inf
s→0

σ(s)

s
≤ lim sup

s→0

σ(s)

s
< +∞

and

0 < lim inf
|s|→+∞

σ(s)

s
≤ lim sup
|s|→+∞

σ(s)

s
< +∞.

We next translate these hypotheses in equivalent statements when one replaces Σ by RΣ and get the following
proposition.

Proposition 2.12. Let Σ ⊂ R2 and consider the list given in Hypotheses 2.10. Then Hypothesis (H1) is equiv-
alent to the same statement when replacing Σ by RΣ. As for (H4), (H5), (H6), (H7), (H8), (H9), and (H10)
they can be expressed in terms of RΣ (or, equivalent, of S) respectively as follows:

(̃H4) For every x ∈ R and y ∈ S(x), one has |y| ≤ |x|,
(̃H5) For every x ∈ R and y ∈ S(x) with (x, y) 6= (0, 0), one has |y| < |x|,
(̃H6) One has

lim
|(x,y)|→+∞
y∈S(x)

∣∣∣y
x

∣∣∣ = 1.

(̃H7) Σ satisfies (̃H4) and there exist M > 0 and µ ∈ (0, 1) such that

|y| ≤ µ|x|, for every (x, y) ∈ RΣ ∩B(0,M).

(̃H8) Σ satisfies (̃H4) and there exist M > 0 and µ ∈ (0, 1) such that

|y| ≤ µ|x|, for every (x, y) ∈ RΣ \B(0,M).

(̃H9) Σ satisfies (̃H4) and there exist a positive constant M and a function Q ∈ C1(R+,R+) with Q(0) = 0,
0 < Q(x) < x, and Q′(x) > 0 for every x > 0 such that

|y| ≤ Q(|x|), for every (x, y) ∈ RΣ ∩B(0,M).

(̃H10) Σ satisfies (̃H4) and there exist a positive constant M and a function Q ∈ C1(R+,R+) with Q(0) = 0,
0 < Q(x) < x, and Q′(x) > 0 for every x > 0 such that

|y| ≥ Q(|x|), for every (x, y) ∈ RΣ ∩B(0,M).

Proof. This proposition follows after immediate computations, after noticing though that the equivalences

between (H9) and (̃H9) and between (H10) and ˜(H10) are obtained via the follow explicit relation between
the functions q and Q:

Q(x) =
1√
2

[
2(q + Id)−1(

√
2x)−

√
2x
]
, (2.12)
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Figure 1. A set Σ satisfying (H4) and the corresponding set RΣ satisfying (̃H4).

where indeed x 7→ x+ q(x) is an increasing bijection from R+ to R+ when (H9) or (H10) holds true.

Remark 2.13. Hypotheses (H9) and (H10) are borrowed from [26], where they are only considered in the case
where Σ is the graph of a function. These hypotheses can be seen as nonlinear sector conditions, which can be
clearly understood when written in terms of RΣ, see Figure 2 below. Indeed, these conditions naturally arise
when one considers, instead of Σ, the set Σ−1 = {(y, x) | (x, y) ∈ Σ}, which generalizes the situation where
Σ is the graph of an invertible function σ and in which case Σ−1 becomes the graph of σ−1 and is obtained
from Σ by the symmetry with respect to the diagonal line y = x. Instead, RΣ−1 is obtained from RΣ by the
symmetry with respect to the axis y = 0 which corresponds to a simple sign change for S. Hence, all the issues
related to iterated sequences associated with S (such as existence, uniqueness and asymptotic behavior) remain
unchanged when they are considered for −S.

We next provide figures illustrating the region RΣ for different choices of Σ. The first one, provided in

Figure 1, is an example of a set Σ satisfying (H4) together with the corresponding set RΣ, which satisfies (̃H4).
Figure 2 provides the regions where a set Σ must be included in order to satisfy either (H9) (in light blue)

or (H10) (in light red). The figure also represents the corresponding regions for RΣ to satisfy (̃H9) or ˜(H10).
We represent in Figure 3 a set Σ as a saturation-type sector, i.e., a region comprised between the graphs

of two piecewise linear saturation functions. The latter are defined as functions f of the form f(x) = λx for
|x| ≤M and f(x) = λM x

|x| for |x| ≥M , for some positive constants λ and M . More generally, we call saturation

function any continuous function whose graph is contained in a saturation-type sector.
Finally, Figure 4 represents the set ΣM , M > 0, given by the graph of the sign set-valued map sgnM : R ⇒ R

defined by

sgnM (x) =


{−M}, if x < 0,

[−M,M ], if x = 0,

{M}, if x > 0,

(2.13)

i.e.,

ΣM = (R− × {−M}) ∪ ({0} × [−M,M ]) ∪ (R+ × {M}) . (2.14)

Note that ΣM is not the graph of a single-valued function, but RΣM is.



14 Y. CHITOUR ET AL.

Figure 2. Regions for generalized sector conditions for Σ and RΣ.

Figure 3. Saturation-type sectors.

2.3. Other models of wave equations with set-valued boundary damping

The flexibility of the viewpoint consisting of translating the study of solutions of (1.1) into that of iterated
sequences of the set-valued map S is well illustrated when considering the wave equation

ztt(t, x) = zxx(t, x), (t, x) ∈ R+ × [0, 1],

(zt(t, 0), zx(t, 0)) ∈ Σ0, t ∈ R+,

(zt(t, 1),−zx(t, 1)) ∈ Σ1, t ∈ R+,

z(0, x) = z0(x), x ∈ [0, 1],

zt(0, x) = z1(x), x ∈ [0, 1],

(2.15)

where Σ0 and Σ1 are subsets of R2. We have taken this example from [26] where precise decay rates of solutions
of (2.15), as time tends to infinity, have been given in the case where both Σ0 and Σ1 are graphs of functions
sgn(x)|x|1+α, α > 0.
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Figure 4. Sign function.

Similarly to Proposition 2.6, we aim at characterizing a correspondence between the solutions of (2.15) and
the iterated sequences of a discrete-time dynamical system. For that purpose, we first provide the appropriate
counterpart to Definition 2.5.

Definition 2.14. For p ∈ [1,+∞], set Zp = Lp(−1, 0).

(a) We use Seq0 : Lploc(−1,+∞)→ ZN
p to denote the bijection which associates, with each h ∈ Lploc(−1,+∞),

the sequence (hn)n∈N in Zp defined by hn(s) = h(s+ n) for n ∈ N and a.e. s ∈ [−1, 0].
(b) We use I2 : Xp → Zp × Zp to denote the isometry which associates, with each (z0, z1) ∈ Xp, the element

(h0, g0) ∈ Zp × Zp defined by(
g0(−s)
−h0(s− 1)

)
= R

(
z1(s)
−z′0(s)

)
, for a.e. s ∈ [0, 1].

We also assume in the sequel of this subsection that Definition 2.2 is suitably modified in order to take into
account the new boundary condition at x = 0 and the fact that z(0, 0) is not necessarily zero, and that the
contents of Definition 2.4 are extended to set-valued maps defined on R2 in order to deal with discrete-time
dynamical systems on R2 and Zp × Zp.

Proposition 2.15. Let p ∈ [1,+∞], Σ0,Σ1 be two subsets of R2, and Si : R ⇒ R be the set-valued map whose
graph is equal to RΣi for i ∈ {0, 1}. Define the set-valued map S on R2 which associates with every (x, y) ∈ R2

the Cartesian product of the subsets (−S1)(y) and (−S0)(x) of the real line.

(a) Let z be a solution of (2.15) with initial condition (z0, z1) ∈ Xp, f ∈ Lploc(0,+∞) and g ∈ Lploc(−1,+∞) be
the corresponding functions from Definition 2.2, and the sequences (hn)n∈N = Seq0(f(·+1)) and (gn)n∈N =
Seq0(g). Then (hn, gn)n∈N is an iterated sequence for S on Zp × Zp starting at (h0, g0) = I2(z0, z1).

(b) Conversely, let (hn, gn)n∈N be an iterated sequence for S on Zp × Zp starting at some (h0, g0) ∈ Zp × Zp.
Let f(·+ 1) = Seq−1

0 ((hn)n∈N) and g = Seq−1((gn)n∈N). Then f ∈ Lploc(0,+∞), g ∈ Lploc(−1,+∞) and, if
z is defined from f and g as in the first equation of (2.5), one gets that z is a solution of (2.15) in Xp
with initial condition (z0, z1) = I−1

2 (h0, g0).
(c) Let z, f , g, and (hn, gn)n∈N be as in (a) or (b). Then, for all t ∈ R+,

epp(z)(t) = ‖f(t+ 1 + ·)‖pZp + ‖g(t+ ·)‖pZp , if p < +∞,

e∞(z)(t) = max(‖f(t+ 1 + ·)‖Z∞ , ‖g(t+ ·)‖Z∞),
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and, in particular, for all n ∈ N,

epp(z)(n) = ‖hn‖pZp + ‖gn‖pZp , if p < +∞,

e∞(z)(n) = max(‖hn‖Z∞ , ‖gn‖Z∞).

Proof. The proof for the proposition exactly follows the line of arguments that led to Proposition 2.6. The only
difference appears when replacing the Dirichlet boundary condition at x = 0 in (1.1) by the boundary condition
at x = 0 given by (zt(t, 0), zx(t, 0)) ∈ Σ0 in (2.15). One then replaces by (2.6b) and (2.6c) by the equations

− g(t) ∈ S0(f(t)), −f(t+ 1) ∈ S1(g(t− 1)), for every t ≥ 0, (2.16)

respectively.

At the light of the above proposition, one can see that the issues of existence and uniqueness of solutions of
(2.15) boil down to the study of the set-valued map S, the latter question being equivalent to the separate study
of S0 and S1. On the other hand, asymptotic stability of solutions of (2.15) and related issues are addressed
through the study of iterated sequences associated with S in R2. Due to the structure of S, the latter question
can be reduced to the study of real iterated sequences associated with the set valued maps (−S1) ◦ (−S0) or
(−S0) ◦ (−S1) since, combining the two equations of (2.16) yields that (hn)n∈N is an iterated sequence for
(−S1) ◦ (−S0) in Zp while (gn)n∈N is an iterated sequence for (−S0) ◦ (−S1) in Zp.

When S0 is single-valued, the sequence (hn)n∈N suffices to describe solutions z of (2.15), since the corre-
sponding sequence (gn)n∈N is uniquely determined by the first relation of (2.16) and the second relation in
(2.16) can be expressed solely in terms of (hn)n∈N. If moreover the single-valued map S0 is invertible, we may
alternatively describe solutions z of (2.15) in terms of (gn)n∈N only, since (hn)n∈N can be computed using the
first relation of (2.16). This is precisely what is done for (1.1) in this paper, in which case S0 = Id and we can
use this simple expression of S0 to further simplify the relation between ep(z)(·) and the norms of the elements
of the sequence (gn)n∈N. A similar remark applies when S1 is single-valued.

Remark 2.16. Any boundary condition involving only zt and zx at the same endpoint can be recovered by
our formalism. Indeed, an homogeneous Neumann condition reads Σ equal to the horizontal axis R×{0}, while
an homogeneous Dirichlet condition can be seen as taking Σ equal to the vertical axis {0} × R. For instance,
proceeding in such a way at the extremity x = 0 with an homogeneous Dirichlet boundary condition yields that
S0 = Id, from which we recover the set-valued map S of Proposition 2.6 as equal to S1.

2.4. Additional auxiliary results

We now present some important auxiliary results providing properties of the solutions of (1.1) and of the
set Σ that will be used several times in the paper. We start with the following result on a decomposition of
solutions of (1.1), whose proof is immediate.

Proposition 2.17. Let p ∈ [1,+∞], Σ ⊂ R2, and S be the set-valued function whose graph is RΣ. Assume that
S(0) = {0}.

Let (f (k))k∈N be a sequence in Yp so that f (k) and f (k′) have disjoint supports for every integers k 6= k′ and
assume moreover that f =

∑
k≥0 f

(k) belongs to Yp. Hence, for every n ≥ 0,

S[n](f(s)) =
∑
k≥0

S[n](f (k)(s)), for a.e. s ∈ [−1, 1]. (2.17)

Moreover, if (fn)n≥0 is any iterated sequence for S starting at f , then, for every k ≥ 0, there exists an iterated

sequence (f
(k)
n )n∈N for S starting at f (k) such that fn =

∑
k≥0 f

(k)
n for every n ≥ 0. In particular, if p is finite,
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it holds

‖fn‖pp =
∑
k≥0

‖f (k)
n ‖pp, (2.18)

and, if p = +∞, one has

‖fn‖∞ = sup
k≥0
‖f (k)
n ‖∞. (2.19)

The next proposition gathers some elementary properties of set-valued dampings, as given in Definition 2.11.

Proposition 2.18. Let S : R ⇒ R be a damping.

(a) S(0) = {0} and, if S is a strict damping, then x ∈ S(x) if and only if x = 0.
(b) For every x ∈ R, S(x) is nonempty.
(c) If S is closed, then S(x) is compact for every x ∈ R.
(d) If T is a damping, then S ◦ T is also a damping, and it is strict if S or T is strict. In particular, the

iterates S[n], n ∈ N∗, are also dampings, and they are strict if S is strict.
(e) Assume that, for every real iterated sequence (xn)n∈N in R for S which is not identically zero, there exists

n ∈ N such that |xn| < |x0|. Then S[2] is a strict damping.
(f) S[2] is a strict damping if and only if there does not exist x ∈ R∗ such that either

(i) x ∈ S(x) or
(ii) −x ∈ S(x) and x ∈ S(−x).

Proof. By (H1), one has (0, 0) ∈ RΣ and thus 0 ∈ S(0) since the graph of S is RΣ. One can deduce easily

that (̃H4) implies S(0) = {0}. The second part of (a) follows immediately from (̃H5). The fact that RΣ contains
the graph of a function, which is a consequence of (H2), also immediately implies (b). The closedness of S

implies that, for every x ∈ R, ({x} × R) ∩RΣ is closed, and (̃H4) yields that this set is also bounded, showing
that it is compact. Then S(x) is compact as the image of ({x}×R)∩RΣ through the projection onto the second
coordinate, proving (c).

To prove (d), notice that S ◦ T trivially satisfies (H1), and (̃H4) for S ◦ T follows immediately from the

corresponding properties for S and T , with S ◦T satisfying (̃H5) as soon as one of S or T satisfies this assumption.
Finally, if ϕS : R → R and ϕT : R → R are universally measurable functions with linear growth contained in
the graphs of S and T , respectively, one immediately verifies that ϕS ◦ ϕT is a function with linear growth
contained in the graph of S ◦T . This function is also universally measurable as the composition of two universally
measurable functions (see Prop. A.4 in Appendix A), showing that S ◦ T also satisfies (H2), as required.

Let us show (e) by contraposition. By (d), S[2] is a damping and, if it is not strict, then there exists x ∈ R∗,
y ∈ S(x), and z ∈ S(y) such that |z| = |y| = |x|. If x = y or y = z, then the sequence (xn)n∈N defined by xn = y
for every n ∈ N is a real iterated sequence for S with |xn| = |x0| for every n ∈ N. Otherwise, one has z = −y = x
and we define the sequence (xn)n∈N by xn = (−1)nx for n ∈ N. It is then clearly a real iterated sequence for S
with |xn| = |x0| for every n ∈ N, leading thus to the proof of the desired result.

Finally, to prove (f), notice that, if the damping S[2] is not strict, then, letting x, y, z be as in the proof
of (e), the previous argument shows that one has either y ∈ S(y) or z = −y = x, in which case −x ∈ S(x) and
x ∈ S(−x), as required. Conversely, if there exists x ∈ R∗ such that x ∈ S(x), or such that −x ∈ S(x) and
x ∈ S(−x), then, in both cases, x ∈ S[2](x), showing that S[2] is not a strict damping.

In the case where Σ is the graph of a continuous function, items (a)–(c) have been already obtained in
Lemma 1 of [25].

We conclude this section with a technical result providing a necessary and sufficient condition on the set-valued
map S to be the graph of a continuous function when Σ is the graph of a continuous function.
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Proposition 2.19. Assume that Σ is the graph of a continuous function σ : R → R. Then the set-valued
function S is single-valued and continuous if and only if Id +σ : R → R is a bijection. Moreover, if σ is a
damping function, then S is single-valued and continuous if and only if Id +σ is strictly monotone.

Proof. Since Σ = {(x, σ(x)) | x ∈ R}, one gets that

RΣ =
{(
T (x), T (x)−

√
2x
) ∣∣∣ x ∈ R

}
with T = Id +σ√

2
.

If Id +σ is a bijection, then T is invertible and thus RΣ is the graph of the continuous function x 7→
x −
√

2T−1(x) defined on R. Conversely, assuming that RΣ is the graph of a single-valued function ϕ : R →
R, one immediately deduces that T : R → R is surjective. If x1, x2 ∈ R are such that T (x1) = T (x2), then
T (x1)−

√
2x1 = ϕ(T (x1)) = ϕ(T (x2)) = T (x2)−

√
2x2, implying that x1 = x2. Thus, T is also injective. Hence

T is bijective, as required.
The last assertion of the proposition follows from the fact that, if σ is a damping function, then

lim
s→−∞

(Id +σ)(s) = −∞ and lim
s→+∞

(Id +σ)(s) = +∞,

showing that Id +σ is surjective. Hence Id +σ is bijective if and only if it is strictly monotone.

3. Existence and uniqueness of solutions in Xp

In this section, we will show that the hypotheses (H2)–(H3)∞ introduced in Hypotheses 2.10 actually yield
necessary and sufficient conditions for existence and uniqueness of solutions of (1.1) in Xp, p ∈ [1,+∞]. We
start with the following existence result.

Theorem 3.1. Let Σ ⊂ R2 and p ∈ [1,+∞].

(a) If (H2) holds and p < +∞, or if (H2)∞ holds and p = +∞, then, for every (z0, z1) ∈ Xp, there exists a
solution of (1.1) in Xp with initial condition (z0, z1).

(b) Assume that, for every (z0, z1) ∈ Xp, there exists a solution of (1.1) in Xp with initial condition (z0, z1).
Then RΣ contains the graph of a Lebesgue measurable function. Moreover, RΣ also contains the graph of
a function with linear growth if p < +∞ or the graph of a function mapping bounded sets to bounded sets
if p = +∞.

Proof. According to Remark 2.7, the existence, for every initial condition (z0, z1) ∈ Xp, of a solution of (1.1) in
Xp with initial condition (z0, z1), is equivalent to the following statement: for every g ∈ Yp, there exists h ∈ Yp
such that h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1], where S denotes the set-valued map whose graph is RΣ.

We start by showing Item (a). It is clear that (H2) (resp. (H2)∞) is sufficient to get the statement for p
finite (resp. for p = +∞) by taking h = ϕ ◦ g, where ϕ is the function whose existence is asserted in (H2)
(resp. (H2)∞). Indeed, since ϕ is universally measurable and using Proposition A.5 in Appendix A, one gets
that h is measurable, and the linear growth assumption (resp. the assumption of mapping bounded sets to
bounded sets) on ϕ guarantees that h ∈ Yp.

We next turn to an argument for Item (b). Assume that, for every g ∈ Yp, there exists h ∈ Yp such that
h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1]. Notice first that, for every x ∈ R, S(x) is nonempty. Indeed, given x ∈ R,
consider g identically equal to x and apply the working hypothesis on g. Then clearly h(s) ∈ S(x) for a.e.
s ∈ [−1, 1], and hence S(x) is nonempty.

Let g : (−1, 1)→ R be a diffeomorphism. Thanks to Lemma D.1 in Appendix D, there exists a measurable
function h : (−1, 1)→ R such that h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1]. Let ϕ = h ◦ g−1, which is measurable since
g is a diffeomorphism. Then ϕ(x) ∈ S(x) for a.e. x ∈ R, and this inclusion can be made to hold everywhere up
to modifying ϕ on set of measure zero.
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We finally prove the last parts of the statement regarding linear growth for 1 ≤ p < +∞ and the condition
of mapping bounded sets to bounded sets for p = +∞. Reasoning by contradiction yields the existence of a
sequence (xn)n∈N such that, for p < +∞, one has

|y| > n(|xn|+ 1) for every n ∈ N and y ∈ S(xn), (3.1)

while, for p = +∞, (xn)n∈N is bounded and

|y| > n for every n ∈ N and y ∈ S(xn). (3.2)

Let {An}n∈N be a family of disjoint measurable subsets of [−1, 1] of positive Lebesgue measure αn. In the
case p < +∞, we further require that αn = 1

(|xn|+1)p(n+1)2 , which is possible since
∑∞
n=0 αn ≤ 2. Consider the

measurable function g =
∑∞
n=0 xnχAn . Since one has that

‖g‖pp =

∞∑
n=0

αn|xn|p if p < +∞ and ‖g‖∞ = sup
n∈N
|xn|,

then g ∈ Yp. Let h ∈ Yp be such that h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1]. Then, for p < +∞, one deduces by
(3.1) that |h(s)| > n(|xn|+ 1) for every n ∈ N and a.e. s ∈ An and therefore

‖h‖pp ≥
∞∑
n=0

αnn
p(|xn|+ 1)p =

∞∑
n=0

np

(n+ 1)2
≥
∞∑
n=0

n

(n+ 1)2
= +∞,

which contradicts the fact that h ∈ Yp. Similarly, for p = +∞, one gets by (3.2) that |h(s)| > n for every n ∈ N
and a.e. s ∈ An and, since An has positive measure for every n ∈ N, one has ‖h‖∞ = +∞, yielding the required
contradiction also in that case.

We next provide our result on the uniqueness of solutions of (1.1).

Theorem 3.2. Let Σ ⊂ R2 and p ∈ [1,+∞]. Then, for every (z0, z1) ∈ Xp, there exists a unique solution of
(1.1) in Xp with initial condition (z0, z1) if and only if either (H3) holds and p < +∞, or (H3)∞ holds and
p = +∞.

Proof. As in the proof of Theorem 3.1, we use Remark 2.7 to equivalently reformulate the existence and unique-
ness, for every initial condition (z0, z1) ∈ Xp, of a solution of (1.1) in Xp with initial condition (z0, z1), as the
following statement: for every g ∈ Yp, there exists a unique h ∈ Yp such that h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1].

We first suppose that (H3) or (H3)∞ holds. Notice that (H3) implies (H2) and (H3)∞ implies (H2)∞ and
hence, assuming either (H3) and p < +∞ or (H3)∞ and p = +∞, one has, from Theorem 3.1, existence of
solutions to (1.1). Moreover, both (H3) and (H3)∞ imply that S is the graph of a function ϕ : R→ R and hence
having h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1] is equivalent to having h = ϕ ◦ g, which uniquely determines h.

Conversely, by Theorem 3.1(b), RΣ contains the graph of a measurable function ϕ : R → R. If RΣ were
not equal to the graph of ϕ, there would exist x ∈ R such that S(x) contains more than one element, and
thus, by considering the initial condition g constant equal to x, one would construct two different solutions
to (1.1), contradicting the uniqueness assumption. Hence RΣ is equal to the graph of ϕ. Applying once again
Theorem 3.1(b), one deduces that ϕ is necessarily a function with linear growth in the case p < +∞ or a
function mapping bounded sets to bounded sets in the case p = +∞.

One is left to show that ϕ is universally measurable. This follows by first using Lemma D.1 from Appendix D
to conclude that ϕ preserves Lebesgue measurability by left composition and then Proposition A.5 from
Appendix A.
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Remark 3.3. It is clear from Theorems 3.1 and 3.2 that existence and uniqueness of solutions of (1.1) in Xp
solely depends on the fact that the set RΣ contains (or is equal to) the graph of a function with appropriate
properties. Thanks to this fact, it is possible to obtain existence and uniqueness of solutions of (1.1) for a large
variety of sets Σ. For instance, this allows us to consider Σ as graphs of discontinuous functions completed by
vertical segments at jump discontinuities without facing the usual issues addressed in [11, 27]. An example of
the above discussion is the sign function, illustrated in Figure 4 and treated in more details in Section 6.

Remark 3.4. Hypothesis (H2) falls short of being necessary for existence of solutions of (1.1) in Xp for p
finite. Indeed, it would be the case if not only the measurable function and that of linear growth provided by
Theorem 3.1(b) would be equal to the same function ϕ, but also if this function ϕ were universally measurable.
Note that the further assumption of uniqueness of solutions of (1.1), together with Proposition A.5, implies
such properties on ϕ and yields Theorem 3.2. We conjecture that (H2) is actually necessary for the existence of
solutions of (1.1) in Xp for p finite. Similar comments can be made on (H2)∞ in the case p = +∞.

Remark 3.5. The notion of solution of (1.1) introduced in Definition 2.2 covers only the case of solutions
which are global in time. One can easily adapt Definition 2.2 to allow for solutions of (1.1) defined locally in
time: given T > 0, it suffices to require that f ∈ Lploc(0, T + 1) and g ∈ Lploc(0, T ) and that (2.5) is satisfied for
t ∈ [0, T ) instead of for t ∈ R+. The local formulation allows one to also consider solutions of (1.1) that blow up
in finite time, but this topic is outside the scope of the present paper, which focuses instead on the convergence
to zero of solutions as time tends to infinity.

Theorem 3.1 concerns the existence of global solutions of (1.1), but, since one does not necessarily have
uniqueness of solutions, there may also exist local solutions blowing up in finite time under the assumptions
of Theorem 3.1(a). For finite p, one may prevent the existence of such local solutions by requiring the linear
growth assumption on S instead of only on the universally measurable function ϕ from (H2), i.e., by requiring
that there exist a, b ∈ R+ such that ‖S(x)‖ ≤ a|x|+ b for every x ∈ R. Under this assumption, any local solution
of (1.1) in Xp can be extended to a global solution. A similar remark holds in the case p = +∞ by requiring⋃
x∈A S(x) to be bounded for every bounded set A ⊂ R (which is in particular satisfied when S has linear

growth).
Notice that the linear growth condition on S is satisfied under (H3) (and, similarly, in the case p = +∞,

the condition of S being bounded on bounded sets is satisfied under (H3)∞), meaning that, given an initial
condition, the unique solution of (1.1) from Theorem 3.2 is unique not only on the class of global solutions,
but also on the class of local solutions. In the sequel of the paper, we will mostly often work with sets Σ ⊂ R2

which are dampings, in which case (H3) or (H3)∞ are not necessarily satisfied, but the linear growth assumption

trivially holds due to (̃H4).

Remark 3.6. Since (H3) is independent of p, it follows from Theorem 3.2 that existence and uniqueness
of solutions of (1.1) in Xp for any initial condition in Xp for some finite p is equivalent to having the same
property for every finite p. However, existence and uniqueness in the case p = +∞ are equivalent to the weaker
assumption (H3)∞. A way to interpret this fact is to remark that the linear growth assumption from (H3) is
designed to avoid blow-up in finite time of solutions of (1.1) in Lp norm for finite p, but, for bounded initial
conditions, this blow-up phenomenon can be prevented with the weaker assumption from (H3)∞.

Remark 3.7. If g0 is a simple function (i.e., a function whose range is a finite set), one may wonder whether
there exists a solution of (1.1) with initial condition I−1(g0). It turns out that a necessary and sufficient
condition for the existence of such a solution for every simple function g0 is that S is a multi-valued function
(i.e., S(x) 6= ∅ for every x ∈ R). Indeed, in this case, starting from a simple function g0, one builds at once a
sequence (gn)n∈N satisfying (2.10) where, for every n ≥ 0, gn is a simple function which is constant on every set
on which g0 is constant.

The same question may be asked in the more general case where g0 ∈ Yp has countable range. The necessary
and sufficient condition for the existence of solutions of (1.1) starting at I−1(g0) for every such g0 is simply now
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that RΣ contains the graph of a function with linear growth in the case p < +∞ or that of a function mapping
bounded sets to bounded sets in the case p = +∞.

Both statements follow immediately from the arguments provided in the proof of Theorem 3.1.

4. Asymptotic behavior

After having provided a suitable notion of weak solution of (1.1) and established conditions for existence
and uniqueness of corresponding solutions, we consider in this section their asymptotic behavior. We start
in Section 4.1 by identifying (H4) as a necessary and sufficient condition for the energy of a solution to be
nonincreasing and providing suitable definitions of stability. We then provide necessary and sufficient conditions
for these notions of stability in Section 4.2 in terms of the behavior of real iterated sequences for the set-valued
map S whose graph is RΣ, and relate them to properties of S[2] in Section 4.3. A detailed study of the decay
rates of solutions of (1.1) and their optimality is then presented in Section 4.4, and the section is concluded in
Section 4.5 by an example showing that the decay of solutions can be arbitrarily slow when Σ is of saturation
type, answering a conjecture of [26].

4.1. Basic results and definitions

We start with the following basic property of a damping set Σ as regards the behavior of ep along solutions
of (1.1). When Σ is the graph of a function, this result is classical for p = 2 and has been essentially given for
p ∈ [1,+∞] in the case of internal distributed damping in [14].

Proposition 4.1. Let Σ ⊂ R2, p ∈ [1,+∞], S be the set-valued map whose graph is RΣ, and assume that S
is a multi-valued function. Then t 7→ ep(z)(t) is nonincreasing for every solution z of (1.1) in Xp if and only
if (H4) holds.

Proof. Assume that (H4) holds and recall that it is equivalent to (̃H4). Let z be a solution of (1.1) in Xp and

g be as in Definition 2.2. By (̃H4) and (2.6c), one deduces that |g(t + 1)| ≤ |g(t− 1)| for every t ≥ 0, and the
result follows immediately in the case p < +∞ by (2.11). If p = +∞, notice that e∞(z)(t) = limq→+∞ eq(z)(t)
for every t ≥ 0. Since eq(z)(·) is nonincreasing for every q ∈ [1,+∞), the same holds true for e∞(z)(·).

Conversely, reasoning by contraposition, assume that (H4) does not hold. Therefore, there exist (x, y) ∈ RΣ
with |y| > |x|. Fix p ∈ [1,+∞] and let g0, g1 in Yp be the constant functions equal to x and y, respectively. Let
(gn)n≥1 be the sequence in Yp defined in Proposition 2.6 corresponding to a solution of (1.1) in Xp with initial
condition I−1(g1), which exists thanks to Remark 3.7 since g1 is a simple function. Then the sequence (gn)n≥0

corresponds, in the sense of Proposition 2.6, to a solution z of (1.1) in Xp with initial condition I−1(g0). Using
(2.9), one has

ep(z)(2)− ep(z)(0) = ‖g1‖p − ‖g0‖p = 2
1
p (|y| − |x|) > 0,

where 2
1
p = 1 for p = +∞. This shows that the function t 7→ ep(z)(t) is not nonincreasing, concluding then the

proof of our result.

For the rest of the section, Σ will be assumed to be a damping set (recall Definition 2.11) and we aim at
understanding the asymptotic behavior of solutions of (1.1) in Xp for p ∈ [1,+∞]. Taking into account the
previous proposition, we next aim at providing necessary and sufficient conditions on Σ so that all solutions
of (1.1) in Xp converges to zero as t → +∞. Since we are in an infinite-dimensional setting, there are several
meaningful definitions of convergence to zero, and we state in the next definition the ones that will be of interest
in this paper.

Definition 4.2. Let Σ ⊂ R2 satisfy (H1), p ∈ [1,+∞], and assume that, for every initial condition (z0, z1) ∈ Xp,
there exists a solution z of (1.1) starting at (z0, z1).
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Strong stability The wave equation defined by (1.1) in Xp is said to be strongly stable if, for every (z0, z1) ∈ Xp
and any solution z of (1.1) starting at (z0, z1), one has

lim
t→+∞

ep(z)(t) = 0.

UGAS The wave equation defined by (1.1) in Xp is said to be uniformly globally asymptotically stable (UGAS)
if there exists β ∈ KL such that, for every (z0, z1) ∈ Xp and any solution z of (1.1) starting at (z0, z1),
one has

ep(z)(t) ≤ β(ep(z)(0), t), t ≥ 0. (4.1)

GES The wave equation defined by (1.1) in Xp is said to be globally exponentially stable (GES) if it is UGAS
with β(ξ, t) = C1ξe

−C2t for some positive constants C1, C2.

The definition of strong stability is classical in the context of stabilization of PDEs (see, e.g., the survey [1]),
while that of UGAS stems from control theory (see, e.g., [22]).

Note that, thanks to Proposition 2.6, these stability concepts in Xp admit equivalent statements in terms of
the sequences (gn)n∈N in Yp corresponding to solutions of (1.1). The function β ∈ KL from the definition of
UGAS can be interpreted as a rate of decrease for solutions of (1.1) in Xp. In the sequel, we will hence say that
(1.1) is UGAS in Xp with rate β.

As a first step towards the characterization of the asymptotic behavior of (1.1), it is useful to consider real
iterated sequences for S since they provide particular solutions of (1.1) whose corresponding sequence (gn)n∈N

in the sense of Proposition 2.6 is made of constant functions. Thanks to (̃H4) from Proposition 2.12, all real
iterated sequences are nonincreasing in absolute value as soon as Σ is a damping, and we seek extra conditions
on Σ so that these real iterated sequences converge to 0. One might think that a natural sufficient condition for
that purpose would be that Σ is a strict damping set, i.e., it satisfies (H5), but this is not the case, as shown
by the following example.

Example 4.3. Let Σ0 be a strict damping set, p ∈ [1,+∞], and (an)n∈N be a decreasing sequence in R+

converging to a limit a∗ > 0. Let Σ be the set such that

RΣ = RΣ0 ∪ {(an, an+1) | n ∈ N},

i.e., the sequence (an)n∈N becomes a real iterated sequence for the set-valued map whose graph is RΣ. Clearly,
Σ is still a strict damping set since, for every (x, y) ∈ RΣ with (x, y) 6= (0, 0), one has either (x, y) ∈ RΣ0,
in which case |y| < |x| since Σ0 is a strict damping, or (x, y) = (an, an+1) for some n ∈ N, in which case
|y| = an+1 < an = |x| since (an)n∈N is decreasing.

Consider the sequence (gn)n∈N in Yp such that, for every n ∈ N, gn is constant and equal to an. Since this
sequence clearly satisfies (2.10), Proposition 2.6 ensures that this sequence corresponds to a solution z of (1.1)
in Xp. The sequence (gn)n∈N converges in Yp to the constant function equal to a∗ > 0, and thus, in particular,
z does not converge to 0 in Xp.

The previous example furnishes an instance of a set Σ which is a strict damping but for which there exists
a real iterated sequence not converging to 0. Conversely, we next provide an example of a set Σ which is a
nonstrict damping set for which every real iterated sequence converges to 0.

Example 4.4. Let Σ ⊂ R2 be the graph of the function σ : R→ R given by σ(x) = min(0, x) for x ∈ R. Then
Σ is a nonstrict damping set with the corresponding set-valued map S given by S(x) = {−max(x, 0)} for x ∈ R.
It is immediate to check that every iterated sequence converges to 0 since S[2](x) = {0} for every x ∈ R.
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4.2. Real iterated sequences and stability

In order to present our results, we introduce the following convergence properties for real iterated sequences.

Definition 4.5. Let S : R ⇒ R be a set-valued map.

(a) We say that real iterated sequences for S converge simply to zero if every real iterated sequence converges
to zero.

(b) We say that real iterated sequences for S converge to zero uniformly (on compact sets) if, for every r ≥ 0
and ε > 0, there exists N ∈ N such that, for every x ∈ R satisfying |x| ≤ r and every real iterated sequence
(xn)n∈N for S starting from x, one has |xn| < ε for every n ≥ N .

Our first result provides necessary and sufficient conditions for the strong stability of (1.1) in Xp in terms of
convergence properties of real iterated sequences.

Proposition 4.6. Let Σ ⊂ R2 be a damping set and p ∈ [1,+∞].

(a) If p < +∞, then the wave equation (1.1) is strongly stable in Xp if and only if real iterated sequences for
S converge simply to zero.

(b) For p = +∞, the following statements are equivalent:
(b-i) The wave equation (1.1) is UGAS in X∞.

(b-ii) The wave equation (1.1) is strongly stable in X∞.
(b-iii) Real iterated sequences for S converge uniformly to zero.

Proof. To prove (a), notice first that real iterated sequences for S provide particular solutions of (1.1) for
which the corresponding iterated sequence (gn)n∈N from Proposition 2.6 is made of constant functions (cf. also
Remark 3.7). Hence, convergence of all such sequences to zero is a necessary condition for the strong stability
of (1.1).

Conversely, assume that real iterated sequences for S converge simply to zero. Let z be a solution of (1.1)
in Xp and consider the corresponding sequence (gn)n∈N in Yp from Proposition 2.6. Then (gn(s))n∈N is a real
iterated sequence for S for a.e. s ∈ [−1, 1] and hence (gn)n∈N converges pointwise to zero almost everywhere.
Since Σ is a damping set, one has |gn(s)| ≤ |g0(s)| for every n ∈ N and a.e. s ∈ [−1, 1], and one concludes by
the dominated convergence theorem that gn → 0 in Yp as n tends to infinity.

Let us now prove (b). The implication (b-i) =⇒ (b-ii) is trivial by definition. We prove that (b-ii) =⇒
(b-iii) reasoning by contraposition. Hence, assume that real iterated sequences for S do not converge uniformly
to zero. This implies that there exists r > 0 and ε > 0 such that, for every k ∈ N, there exists x(k) ∈ [−r, r] and

a real iterated sequence (x
(k)
n )n∈N for S starting at x(k) for which |x(k)

Nk
| ≥ ε for some Nk ≥ k. Without loss of

generality, one can assume Nk = k by possibly replacing the initial value x(k) by x
(k)
Nk−k, which still belongs to

[−r, r]. Let {An}n∈N be a family of disjoint measurable subsets of [−1, 1] of positive Lebesgue measure. Consider
the sequence of functions (gn)n∈N defined by

gn =
∑
k≥0

x(k)
n χAk .

Then, by construction, for every n ∈ N, one has gn ∈ Y∞ and gn+1(s) ∈ S(gn(s)) for a.e. s ∈ [−1, 1]. By
Proposition 2.17, one gets that ‖gn‖∞ ≥ ε for every n ∈ N, and thus, using Proposition 2.6, the corresponding
solution of (1.1) starting from I−1(g0) does not converge to 0 in X∞.

Let us finally prove that (b-iii) =⇒ (b-i). Assume that (b-iii) holds and let β0 : R+ × R+ → R+ be defined
by

β0(r, t) = sup{|xn| | n ≥ t and (xk)k∈N is a real iterated

sequence for S with |x0| ≤ r}.
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One can verify that β0(0, ·) ≡ 0, β0(·, t) is nondecreasing for every t ≥ 0, β0(r, ·) is nonincreasing for every
r ≥ 0, and β0(r, t) ≤ r for every (r, t) ∈ R+ × R+. The statement of (b-iii) exactly says that, for every r ≥ 0,
β0(r, t)→ 0 as t→ +∞. Moreover, for every real iterated sequence (xn)n∈N for S, one has |xn| ≤ β0(|x0|, t) for
n ≥ t.

Let z be a solution of (1.1) in X∞ and consider the corresponding sequence (gn)n∈N in Y∞ from
Proposition 2.6. For a.e. s ∈ [−1, 1], (gn(s))n∈N is a real iterated sequence for S starting from g0(s), and
thus

|gn(s)| ≤ β0(|g0(s)|, n) for a.e. s ∈ [−1, 1] and every n ∈ N.

Using the fact that β0 is nondecreasing with respect to its first argument, we deduce that, for every n ∈ N,

‖gn‖∞ ≤ β0(‖g0‖∞, n).

From Propositions 2.6 and 4.1, one has

e∞(z)(t) ≤ e∞(z) (2bt/2c) =
∥∥gbt/2c∥∥∞ ≤ β0 (e∞(z)(0), bt/2c) for every t ≥ 0.

One concludes the proof by applying Lemma D.2 from Appendix D to the function (r, t) 7→ β0(r, bt/2c).

Remark 4.7. Since the notion of real iterated sequences of S converging simply to zero is independent of p, it
follows from Proposition 4.6(a) that the convergence of solutions of (1.1) to 0 for p finite is independent of p:
if solutions of (1.1) converge to 0 in some Xp with p finite, then solutions will converge to 0 in every Xp with
p finite. The situation is different for p = +∞, in which case one must require a uniformity property on the
convergence to zero of real iterated sequences for S in order to obtain convergence in the strong topology of
X∞. By adapting the proof of Proposition 4.6(a), one can show that simple convergence to zero of real iterated
sequences for S is also a necessary and sufficient condition for the convergence to 0 of solutions of (1.1) in X∞
in the weak-∗ topology of X∞.

Recall the obvious fact that, for every solution z of (1.1) in X∞, p ∈ [1,+∞], and t ≥ 0, one has

ep(z)(t) ≤ 21/pe∞(z)(t),

with the convention that 1/p = 0 for p = +∞. In case the wave equation (1.1) is UGAS in X∞, one deduces at
once a UGAS-like estimate of ep(z)(t) for every finite p, involving however, as regards the dependence with the
respect to the initial condition, its X∞ norm e∞(z)(0) only. In the next result, we refine the above mentioned
trivial estimate of ep(z)(t), with another one involving the Xp norm of the initial condition.

Proposition 4.8. Let Σ ⊂ R2 be a damping set and p ∈ [1,+∞). Assume that the wave equation (1.1) associated
with Σ is UGAS in X∞ with rate β. Then, for every solution z of (1.1) in X∞, one has, for every t ≥ 0,

ep(z)(t) ≤ 21/pβ
(
e1/2
p (z)(0), 2

⌊
t
2

⌋)
+ e1/2

p (z)(0)β
(

max(e∞(z)(0), e1/2
p (z)(0)), 2

⌊
t
2

⌋)
. (4.2)

Proof. Let z be a solution of (1.1) in X∞ and consider the corresponding sequence (gn)n∈N in Y∞ in the sense
of Proposition 2.6. Let us denote Zq = eq(z)(0) for q ∈ {p,∞}. Consider the partition of [−1, 1] in the disjoint
subsets

E1 = {s ∈ [−1, 1] | |g0(s)| < Z1/2
p },

E2 = {s ∈ [−1, 1] | |g0(s)| ≥ Z1/2
p }.
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Let χi and αi, i ∈ {1, 2}, be the characteristic functions and Lebesgue measures associated with Ei,
respectively. One clearly has, for every n ∈ N,

gn = gnχ1 + gnχ2,

‖gn‖pp = ‖gnχ1‖pp + ‖gnχ2‖pp.

Let i ∈ {1, 2}. Then

|gn(s)χi(s)| ≤ χi(s)β(‖g0χi‖∞, 2n), for a.e. s ∈ [−1, 1].

For i = 1, since β(·, t) is increasing for all t ≥ 0, one deduces that

‖gnχ1‖pp ≤ 2
(
β(Z1/2

p , 2n)
)p
, (4.3)

and, for i = 2, one gets

‖gnχ2‖pp ≤ α2

(
β(max(Z∞, Z

1/2
p ), 2n)

)p
. (4.4)

By Chebyshev’s inequality, it follows that α2 ≤ Z
p/2
p . Putting together (4.3), (4.4) and the above estimate of

α2, one obtains

‖gn‖p ≤
(

2β(Z1/2
p , 2n)p + Zp/2p β(max(Z∞, Z

1/2
p ), 2n)p

) 1
p

.

Since p ≥ 1, one deduces that

‖gn‖p ≤ 21/pβ(Z1/2
p , 2n) + Z1/2

p β(max(Z∞, Z
1/2
p ), 2n). (4.5)

We conclude using the fact that t 7→ ep(z)(t) is nonincreasing.

At the light of the equivalence between (b-i) and (b-ii) from Proposition 4.6, one may wonder if such an
equivalence holds in Xp with p finite. The answer is negative, which is a consequence of the next proposition.

Proposition 4.9. Let Σ ⊂ R2 be a damping set and p ∈ [1,+∞). If (H6) holds, then the wave equation (1.1)
is not UGAS in Xp.

Proof. We prove that (1.1) is not UGAS in Xp reasoning by contradiction. Assume then that (1.1) is UGAS in
Xp with rate β, i.e., there exists some β ∈ KL such that, for every solution z of (1.1), one has

ep(z)(t) ≤ β(ep(z)(0), t), for every t ≥ 0. (4.6)

Since β ∈ KL, there exists N ∈ N such that β(1, 2N) < 1/2.

Assumption (̃H6) implies that there exists M > 1 such that, for every (x, y) ∈ R2, if |(x, y)| > M and
y ∈ S(x), then

∣∣ y
x

∣∣ > 1
21/N . Let x0 ∈ R be such that |x0| ≥ 2M and consider a real iterated sequence (xn)n∈N

for S starting from x0. Then, for every n ∈ {0, . . . , N}, one has∣∣∣∣xnx0

∣∣∣∣ ≥ 1

2n/N
. (4.7)
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Indeed, (4.7) trivially holds for n = 0. If n ∈ {0, . . . , N − 1} is such that (4.7) holds, then |xn| ≥ |x0|
2n/N

> M and

thus, since xn+1 ∈ S(xn), we deduce that
∣∣∣xn+1

xn

∣∣∣ > 1
21/N , yielding that

∣∣∣xn+1

x0

∣∣∣ =
∣∣∣xn+1

xn

∣∣∣∣∣∣xnx0

∣∣∣ ≥ 1
2(n+1)/N , showing

that (4.7) holds for n+ 1. Hence, by induction, (4.7) is established for every n ∈ N.
Consider now the iterated sequence of functions (gn)n∈N for S in Yp such that gn = xnχA, where A ⊂ [−1, 1]

is an interval of length 1/|x0|p. Then clearly ‖gn‖p =
∣∣∣xnx0

∣∣∣. Letting z be the solution of (1.1) corresponding to

(gn)n∈N in the sense of Proposition 2.6, one deduces from (2.9) that

ep(z)(2N) = ‖gN‖p =

∣∣∣∣xNx0

∣∣∣∣ ≥ 1

2
.

This is a contradiction since, from (4.6), one also has that

ep(z)(2N) ≤ β(ep(z)(0), 2N) = β(1, 2N) <
1

2
.

This contradiction establishes the desired result.

Remark 4.10. A particular instance of the above proposition has been established in Theorem 4.1.1 of [26]
where it is shown that (1.1) is not GES in the case p = 2 and Σ is the graph of a saturation function.

Proposition 4.9 raises the question of whether one can provide conditions on Σ under which (1.1) is UGAS
for finite p. Our next result identifies the assumption (H8) as such a condition.

Theorem 4.11. Let Σ ⊂ R2 be a damping satisfying (H8) and p ∈ [1,+∞). Assume moreover that the wave
equation defined in (1.1) is UGAS in X∞ with rate β. Then it is also UGAS in Xp.

Proof. Let M > 0 and µ ∈ (0, 1) be given by (̃H8) and set η = 1/µ. Let z be a solution of (1.1) in Xp and denote
by (gn)n∈N the corresponding sequence in Yp in the sense of Proposition 2.6. For simplicity of notation, we set

g = g0, Zp = ‖g‖p, Z = max(M,Z
1/2
p ).

Consider the partition of [−1, 1] in disjoints subsets defined by

E = {s ∈ [−1, 1] | |g(s)| < Z1/2
p },

F = {s ∈ [−1, 1] | Z1/2
p ≤ |g(s)| < Z},

Ek = {s ∈ [−1, 1] | ηkZ ≤ |g(s)| < ηk+1Z}, k ≥ 0,

Let χE and αE , χF and αF , χk and αk, k ≥ 0, be the characteristic functions and Lebesgue measures associated
with E, F and Ek, k ≥ 0, respectively. One clearly has

g = gχE + gχF +
∑
k≥0

gχk,

Zpp = ‖gχE‖pp + ‖gχF ‖pp +
∑
k≥0

αkξ
p
k, where ξk ∈ [ηkZ, ηk+1Z] for k ≥ 0.

Moreover, for every n ∈ N, one has

‖gn‖pp = ‖gnχE‖pp + ‖gnχF ‖pp +
∑
k≥0

‖gnχk‖pp. (4.8)



ONE-DIMENSIONAL WAVE EQUATION WITH SET-VALUED BOUNDARY DAMPING 27

Note that, for every set S ∈ {E,F,E0, E1, . . . }, the sequence (gnχS)n∈N corresponds, in the sense of Proposi-
tion 2.6, to a solution zS of (1.1) with initial condition I−1(gχS). In particular, since gχS ∈ Y∞, zS is a solution
of (1.1) in X∞ and one has, for every n ∈ N,

|gn(s)χS(s)| ≤ χS(s)β(‖gχS‖∞, 2n), for a.e. s ∈ [−1, 1]. (4.9)

since (1.1) is UGAS in X∞ with rate β.
One deduces for S = E that

‖gnχE‖pp ≤ αE
(
β(Z1/2

p , 2n)
)p

(4.10)

and, for S = F

‖gnχF ‖pp ≤ αF
(
β(Z, 2n)

)p
.

By Chebyshev’s inequality, we have that αF ≤
Zpp

Z
p/2
p

≤ Zp/2p . Then, we obtain

‖gnχF ‖pp ≤ Zp/2p

(
β(Z, 2n)

)p
. (4.11)

We next estimate the sum appearing in the right-hand side of (4.8). For k ≥ 0 and s ∈ Ek, by applying (̃H8),

it holds that ‖S(g(s))‖ ≤ ηkZ and, more generally, an immediate inductive argument using (̃H8) shows that
‖S[n](g(s))‖ ≤ ηmax(0,k+1−n)Z for every n ≥ 0. Then, for every k ∈ N and n ∈ N, one has

‖gnχk‖pp ≤ αkηpmax(0,k+1−n)Zp ≤
αkξ

p
k

ηp(k−max(0,k+1−n))
.

For k ≥ bn/2c+ 1, it follows that k −max(0, k + 1− n) ≥ n−1
2 and hence

‖gnχk‖pp ≤
αkξ

p
k√

ηp(n−1)
.

Since
∑
k≥0 αkξ

p
k ≤ Zpp , we deduce that

∞∑
k=bn/2c+1

‖gnχk‖pp ≤
Zpp

√
ηp(n−1)

. (4.12)

For k ∈ {0, . . . , bn/2c} and n ≥ 1, note that, since gk+1(s) ∈ S[k+1](g(s)), one has |gk+1(s)| ≤ Z for s ∈ Ek.
Using the facts that (gk+1+jχk)j∈N is an iterated sequence for S in X∞ and that (1.1) is UGAS in X∞, we
deduce that ‖gk+1+jχk‖∞ ≤ β(Z, 2j) for every j ∈ N, and thus

‖gnχk‖pp ≤ αk
(
β(Z, 2(n− 1− k))

)p
≤ αk

(
β(Z, n− 1)

)p
,
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since β(Z, ·) is nonincreasing. Using the facts that ξk ≥ ηkZ and that
∑
k≥0 αkξ

p
k ≤ Zpp , one deduces that

bn/2c∑
k=0

αk

(
β(Z, n− 1)

)p
≤

(
β(Z, n− 1)

)p
Zp

bn/2c∑
k=0

αkξ
p
k

ηkp

≤

(
β(Z, n− 1)

)p
Zp

Zpp ≤ Zp/2p

(
β(Z, n− 1)

)p
.

(4.13)

Putting together (4.10), (4.11), (4.12), and (4.13), and using the fact that αE ≤ 2, one deduces that

‖gn‖pp ≤ 2
(
β(Z1/2

p , 2n)
)p

+ Zp/2p

(
β(Z, 2n)

)p
+ Zp/2p

(
β(Z, n− 1)

)p
+

Zpp
√
ηp(n−1)

.

We conclude using the fact that t 7→ ep(z)(t) is nonincreasing and by Lemma D.2 as in the proof of
Proposition 4.6.

Note that Proposition 4.8 and Theorem 4.11 both assume that (1.1) is UGAS in X∞, this property being
characterized in terms of real iterated sequences for S in Proposition 4.6. Proposition 4.12(e) in the next
subsection provides an easy to check sufficient condition to have the latter property.

4.3. Stability properties based on properties of S[2]

Proposition 4.6 provides necessary and sufficient conditions for the strong stability of (1.1) in Xp in terms
of convergence to zero of real iterated sequences for the multi-valued map S : R ⇒ R. These necessary and
sufficient conditions are not yet satisfactory because they are difficult to verify. Instead, we provide in the sequel
necessary or sufficient conditions on S that are simpler to check. For that purpose, we introduce the function
ρ : R+ → R+ defined next which will be useful for several results in the sequel of the paper.

Proposition 4.12. Let Σ ⊂ R2 be a damping set. Let ρ : R+ → R+ be the function defined by

ρ(r) = lim
η→0+

sup
|x|≤r+η

‖S[2](x)‖. (4.14)

Then the following properties hold.

(a) ρ(0) = 0, ρ is nondecreasing, and ρ(r) ≤ r for every r ∈ R+.
(b) ρ is upper semi-continuous.
(c) Assume that S[2] is closed. Then ρ(r) < r for every r > 0 if and only if S[2] is a strict damping.
(d) For every n ∈ N and r ∈ R+, one has

sup
|x|≤r
‖S[n](x)‖ ≤ ρ[bn/2c](r). (4.15)

In particular, for every real iterated sequence (xn)n∈N for S, one has

|xn| ≤ ρ[bn/2c](|x0|). (4.16)

(e) If ρ(r) < r for every r > 0, then real iterated sequences for S converge uniformly to zero.

Proof. Since Σ is a damping, one has at once that ‖S[2](x)‖ ≤ |x| for every x ∈ R and hence (a) follows at once.
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To prove (b), notice that, by definition of ρ, for every r ∈ R+ and ε > 0, there exists δ > 0 such that

sup
|x|≤r+δ

‖S[2](x)‖ ≤ ρ(r) + ε,

implying that, for every η ∈ (0, δ), ρ(r+η) ≤ ρ(r)+ε. This shows that limη→0+ ρ(r+η) ≤ ρ(r) for every r ∈ R+,
which is equivalent to the upper semi-continuity of ρ since ρ is nondecreasing.

Let us now prove (c). The only nontrivial implication is that ρ(r) < r for every r > 0 as soon as S[2]

is closed and a strict damping. Fix r > 0. By definition of ρ(r), there exist sequences (xn)n∈N and (yn)n∈N
with yn ∈ S[2](xn) for every n ∈ N and such that, up to extracting subsequences, (xn)n∈N converges to some
x∗ ∈ [−r, r] and (yn)n∈N converges to some y∗ ∈ R with ρ(r) = |y∗|. Since S[2] is closed, one has y∗ ∈ S[2](x∗),
which implies, using the fact that S[2] is a strict damping, that (x∗, y∗) = (0, 0) or |y∗| < |x∗|. In both cases,
one deduces that ρ(r) < r.

To prove (d), notice that it suffices to prove (4.15) for even integers since ‖S(x)‖ ≤ |x| for every x ∈ R, and
that (4.15) is trivially true for n = 0 and n = 2. The argument goes on by induction: let n ≥ 4 be an even integer
so that (4.15) holds for even integers m < n and set k = n

2 . For every r ≥ 0, y ∈ [−r, r], and z ∈ S[2(k−1)](y),
one has

‖S[2](z)‖ ≤ ρ(|z|) ≤ ρ
(
‖S[2(k−1)](y)‖

)
≤ ρ(ρ[k−1](|y|)) ≤ ρ[k](r),

where we used the definition of ρ in the first inequality, the fact that ρ is nondecreasing in the second, third,
and fourth inequalities, and the induction hypothesis in the third inequality. Hence (4.15) follows at once. It is
clear that (4.16) is an immediate consequence of (4.15).

Let us finally prove (e). By taking into account (4.16), it is enough to prove that, for every r > 0, ρ[n](r)
converges to 0 as n→ +∞. Since ρ(x) ≤ x for every x ∈ R+, (ρ[n](r))n∈N is nonincreasing, and hence it admits
a limit r∗ ∈ R+. Since ρ[n+1](r) = ρ(ρ[n](r)) for every n ∈ N, one deduces, letting n→ +∞ and using the upper
semi-continuity of ρ, that r∗ = limn→+∞ ρ(ρ[n](r)) ≤ ρ(r∗) ≤ r∗, showing that ρ(r∗) = r∗. Since ρ(x) < x for
every x > 0, one then has necessarily that r∗ = 0.

Remark 4.13. Notice that, if S is closed, then S[2] is closed, and therefore the conclusion of item (c) holds
true. This is the case, in particular, if S is the graph of a continuous function.

We can now state necessary and sufficient conditions on S only (and not relying on real iterated sequences)
for strong stability of (1.1) in Xp.

Theorem 4.14. Let Σ ⊂ R2 be a damping set and p ∈ [1,+∞]. If (1.1) is strongly stable in Xp, then S[2] is a
strict damping.

Conversely, assume that S[2] is a strict damping and that ρ defined in Proposition 4.12 satisfies ρ(r) < r for
every r > 0. Then (1.1) is strongly stable in Xp.

Proof. The first part of the statement follows immediately from Propositions 2.18(e) and 4.6, while the second
part is an immediate consequence of Propositions 4.12(e) and 4.6.

Remark 4.15. In the case where the damping set Σ is the graph of a function σ : R→ R, the second part of
Theorem 4.14 has been essentially already obtained in [25] in the case p = 2 under the assumption that either
σ(s) > 0 for all s > 0 or σ(s) < 0 for all s < 0 (referred to in that reference as a unilateral condition), which is
stronger than requiring S[2] to be a strict damping.

Remark 4.16. Recall that, for p = +∞, Proposition 4.6 ensures that strong stability and UGAS are equivalent
and (4.16) immediately implies that, for every solution z of (1.1) in X∞, the corresponding sequence (gn)n∈N
in Y∞ from Proposition 2.6 satisfies, for every n ≥ 0,

‖gn‖∞ ≤ ρ[bn/2c](‖g0‖∞), (4.17)
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which yields

e∞(z)(t) ≤ e∞(z)(2bt/2c) ≤ ρ[bt/4c](e∞(z)(0)). (4.18)

If now ρ verifies that ρ(r) < r for every r > 0, we have UGAS for solutions of (1.1) in X∞ and one can build a
corresponding KL function β by applying Lemma D.2 to the function (r, t) 7→ ρ[bt/4c](r).

Remark 4.17. One could have replaced S[2] by S[n] for n ≥ 1 in Proposition 4.12 to define functions ρn similar
to ρ (= ρ2) satisfying the same properties. Note that (ρn)n∈N∗ is a nonincreasing sequence of functions. We
focus on the case n = 2 due to Proposition 2.18(e) as well as to the fact that, from Theorem 4.14, S[2] being
a strict damping is a necessary condition for the strong stability of (1.1), which is not the case for S due to
Example 4.4.

An ultimate justification for sticking to n = 2 is the fact that we were not able to come up with a result
interesting enough to justify the use of ρn with n > 2, even though, for n ≥ 3, the condition ρn(r) < r for every
r > 0 is strictly weaker than the corresponding condition with n = 2.

As an immediate consequence of Proposition 4.12(c) and Theorem 4.14, one deduces the following result.

Corollary 4.18. Let Σ ⊂ R2 be a damping set, p ∈ [1,+∞], and assume that S[2] is closed. Then (1.1) is
strongly stable in Xp if and only if S[2] is a strict damping.

4.4. Decay rates and their optimality

In the previous sections, we have considered the convergence to zero of solutions of (1.1) and the speed of
convergence to zero (or decay rate) was in some cases upper bounded by a KL function β arising from the
stability concept of UGAS. In this section, we intend to be more explicit on the dependence in time of β and
also to provide lower bounds for the decay rate in some cases. More precisely, we say that a KL function β is
optimal for (1.1) if the latter is UGAS with rate β and there exists a nonzero initial condition (z0, z1) ∈ Xp such
that

lim inf
t→+∞

‖(z(t, ·), zt(t, ·))‖Xp
β(‖(z0, z1)‖Xp , t)

> 0. (4.19)

In the sequel, we will essentially work with Hypotheses (̃H9) or ˜(H10). Our results in this section are decomposed
in two parts: first, in Section 4.4.1, we present some preliminary results concerning the decay rates of real iterated
sequences, and then, in Section 4.4.2, we apply these results to solutions of (1.1).

4.4.1. Decay rates for real iterated sequences

The main results of this section are the next two propositions dealing with real iterated sequences for S.
They will be crucial in order to establish our subsequent results for decay rates of solutions of (1.1) and

their optimality in Xp, p ∈ [1,+∞]. The first proposition translates (̃H9) and ˜(H10) in terms of upper and lower

bounds, respectively, on real iterated sequences for S, relying on iterates of the function Q from (̃H9) and ˜(H10).

Its proof is an immediate consequence of the formulation of (̃H9) and ˜(H10).

Proposition 4.19. Let Σ ⊂ R2 be a damping set and S be the corresponding set-valued map whose graph is
equal to RΣ.

(a) Assume that (H9) holds and let Q be as in (̃H9). Then, for every real iterated sequence (xn)n∈N for S with
|x0| ≤M/

√
2, one has

|xn| ≤ Q[n](|x0|), for every n ∈ N. (4.20)
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(b) Assume that (H10) holds and let Q be as in ˜(H10). Then, for every real iterated sequence (xn)n∈N for S
with |x0| ≤M/

√
2, one has

|xn| ≥ Q[n](|x0|), for every n ∈ N. (4.21)

The next proposition provides an explicit asymptotic behavior for the sequence (Q[n](|x0|))n∈N, which serves
as either an upper or a lower bound in the previous proposition.

Proposition 4.20. Let q ∈ C1(R+,R+) be as in (H9) or (H10), i.e., q(0) = 0, 0 < q(x) < x, and |q′(x)| < 1
for every x > 0, and Q be defined from q as in (2.12). Let x0 ∈ R∗+.

(a) Assume that q′(0) = 0 and let F : (0, x0]→ R+ be the diffeomorphism defined by

F (z) =

∫ x0

z

dξ

q(ξ)
,

where q(s) =
√

2q(
√

2s) for s ∈ R+. Then F (Q[n](x0)) ∼ n as n → +∞. If moreover there exists C > 0
such that

F (z)q(z)

z
≤ C, for every z ∈ (0, x0], (4.22)

then

Q[n](x0) ∼ F−1(n) as n→ +∞.

(b) Assume that q′(0) ∈ (0, 1) and let λ = 2 artanh(q′(0)). Then lnQ[n](x0) ∼ −λn as n→ +∞. If moreover
one has

∞∑
k=0

ψ(e−
λ
2 k) < +∞, (4.23)

where ψ(r) = sups∈(0,r]

∣∣∣ q(s)s − q′(0)
∣∣∣, then there exists C > 1 such that, for every n ∈ N,

C−1e−λn ≤ Q[n](x0) ≤ Ce−λn.

(c) If q′(0) = 1, then for every C > 0, limn→+∞ eCnQ[n](x0) = 0. If moreover, there exist positive constants
C∗, α, x∗ such that C∗x

α
∗ < 1 and |q(x) − x| ≤ C∗2

−α2 |x|1+α for |x| ≤ x∗, then there exists a positive
constant µ∗ such that

Q[n](x0) ≤ C−
1
α

∗ e−µ∗(1+α)n ,

for n large enough.

Proof. By (2.12), one immediately gets that

Q′(0) =
1− q′(0)

1 + q′(0)
.

For n ∈ N, set xn = Q[n](x0) and remark that (xn)n∈N is a sequence of positive real numbers decreasing to zero.
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We start by establishing Item (a). Notice that q is of class C1 and one has q(0) = q′(0) = 0. Set ϕ(x) = x−Q(x)
and notice that ϕ is C1 and verifies ϕ(0) = ϕ′(0) = 0 and 0 < ϕ(x) < x for every x > 0. The sequence (xn)n∈N
is then solution of the recurrence relation xn+1 = xn − ϕ(xn) for n ∈ N. Moreover, for x > 0 and setting
y = (q + Id)−1(x), one has

q(x)

ϕ(x)
=
q(y + q(y))

q(y)
= 1 +

1

q(y)

∫ y+q(y)

y

q′(ξ) dξ → 0 as y → 0,

implying that ϕ(x) ∼ q(x) as x→ 0.
For n ∈ N, define tn = F (xn). We first prove that tn ∼ n as n→ +∞. Notice that, for n ≥ 1, one has

tn
n

=
F (xn)

n
=

1

n

n−1∑
k=0

∫ xk

xk+1

dξ

q(ξ)
,

hence, by Cesàro’s theorem, the claim follows if one shows that

lim
a→0

∫ a

a−ϕ(a)

dξ

q(ξ)
= 1,

i.e., that

lim
a→0

1

q(a)

∫ a

a−ϕ(a)

q(a)− q(ξ)
q(ξ)

dξ = 0,

which would follow if

lim
a→0

max
ξ∈[a−ϕ(a),a]

∣∣∣∣q(a)− q(ξ)
q(ξ)

∣∣∣∣ = 0. (4.24)

Notice that, since, for every ξ ∈ [a− ϕ(a), a], q(ξ) = q(a) + (ξ − a)q′(ξa), for some ξa ∈ [ξ, a], one gets that

|q(a)− q(ξ)| ≤ ϕ(a) max
ζ∈[0,a]

|q′(ζ)|, q(ξ) ≥ ϕ(a)

(
q(a)

ϕ(a)
− max
ζ∈[0,a]

|q′(ζ)|
)
.

One deduces that, for every ξ ∈ [a− ϕ(a), a],∣∣∣∣q(a)− q(ξ)
q(ξ)

∣∣∣∣ ≤ maxζ∈[0,a]|q′(ζ)|
q(a)
ϕ(a) −maxζ∈[0,a]|q′(ζ)|

.

Since maxζ∈[0,a]|q′(ζ)| tends to 0 as a→ 0, one immediately deduces (4.24).
Let us now show that, under (4.22), one has the stronger conclusion that xn ∼ F−1(n) as n→ +∞. Notice

that xn = F−1(tn) = F−1(n) − (tn − n)q(F−1(ξn)) for some ξn between n and tn. Set zn = F−1(ξn), which
tends to zero as n→ +∞. Then, for n ∈ N,

xn
F−1(n)

= 1− ρn
zn

F−1(n)
with ρn =

F (zn)q(zn)

zn

tn − n
ξn

.
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In addition, one has that∣∣∣∣ tn − nξn

∣∣∣∣ =

(
max(tn, n)

min(tn, n)
− 1

)
min(tn, n)

ξn
≤
(

max(tn, n)

min(tn, n)
− 1

)
.

Since tn ∼ n as n → +∞ and using (4.22), one deduces that ρn → 0 as n → +∞. Moreover, since F−1 is
decreasing, for every n ∈ N, there exists αn ∈ [0, 1] such that zn = (1− αn)F−1(n) + αnxn. Then, for n large
enough, one deduces, after an elementary computation, that

xn
F−1(n)

=
1− ρn(1− αn)

1 + ρnαn
,

yielding that xn ∼ F−1(n) as n→ +∞.
We next turn to an argument for Item (b). Notice first that λ = − lnQ′(0). For n ∈ N, one has

xn+1 = Q′(0)xn(1 +Q1(xn))),

where Q1(x) = Q(x)
xQ′(0) − 1 for x > 0. Notice that Q1(x) tends to zero as x tends to zero since Q is differentiable

at zero. Moreover, there exists n0 ∈ N so that |Q1(xn)| < 1 for n ≥ n0. One deduces that, for n ≥ n0,

xne
λn = C(x0, n0)

n−1∏
k=n0

(1 +Q1(xk)),

where C(x0, n0) > 0 only depends on x0 and n0. Hence,

ln(xn)

n
+ λ =

lnC(x0, n0)

n
+

1

n

n−1∑
k=n0

ln(1 +Q1(xk)). (4.25)

Since Q1(xn)→ 0 as n tends to infinity, the first part of Item (b) follows at once. In particular, it implies that,
for n large enough, one has the estimate

e−
3
2λn ≤ xn ≤ e−

2
3λn. (4.26)

Assume moreover that (4.23) holds true. Notice that, for x small enough, one has∣∣∣∣Q(x)

x
−Q′(0)

∣∣∣∣ ≤ 2

∣∣∣∣q(y)

y
− q′(0)

∣∣∣∣ ≤ 2ψ(
√

2x), (4.27)

where y = (Id +q)−1(
√

2x) ≤
√

2x. Indeed, for x > 0, one has

Q(x)

x
−Q′(0) = 2

(
y

y + q(y)
− 1

1 + q′(0)

)
=

2(
1 + q(y)

y

)
(1 + q′(0))

(
q′(0)− q(y)

y

)
,

and (4.27) follows since (H9) or (H10) are supposed to hold true.
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The second part of Item (b) is equivalent to the fact that ln(xn) + λn remains bounded as n tends to infinity.
By (4.25), it is then enough to prove that the series of general term |Q1(xn)| is convergent. By (4.26) and (4.27),
for n large enough, one has

|Q1(xn)| ≤ 2ψ(
√

2xn)

Q′(0)
≤ 2ψ(

√
2e−

2
3λn)

Q′(0)
≤ 2ψ(e−

λ
2 n)

Q′(0)
,

where we also use the fact that ψ is nondecreasing. The conclusion follows from (4.23).
We finally prove Item (c). Note that Q′(0) = 0 and hence xn+1

xn
tends to zero as n tends to infinity. Fix C > 0.

For every n ≥ 0, one has

eCnxn = x0

n−1∏
k=0

yk, yn := eC
xn+1

xn
.

The first part of Item (c) immediately follows since limn→+∞ yn = 0. For the second part, we start by noticing
that, for every x > 0, one has Q(x) = 1√

2
(y − q(y)) with y = (Id +q)−1(

√
2x). For x ≤ x∗√

2
and since one has

y ≤
√

2x ≤ x∗, one deduces by assumption that

|Q(x)| ≤ C∗√
2

2−
α
2 |y|1+α ≤ C∗|x|1+α.

Let n2 ∈ N be such that xn ≤ x∗√
2

for n ≥ n2. Then one has, for n ≥ n2,

xn+1 ≤ C∗x1+α
n .

By setting zn = ln
(
xnC

1/α
∗

)
, an elementary computation yields that zn+1 ≤ (1 + α)zn, hence, for n ≥ n2, one

has zn ≤ (1 + α)n−n2zn2
and one gets the desired conclusion after setting

µ∗ = − ln(x∗C
1/α
∗ )

(1 + α)n2
> 0.

Remark 4.21. Note that F−1 : R+ → (0, x0] is equal to the solution V of the Cauchy problem

d

dt
V (t) = −q(V (t)), V (0) = x0.

This is how F−1 is introduced in [26]. We postpone to Remark 4.29 a comparison of our results from
Proposition 4.20(a) with the corresponding ones of [26].

Condition (4.22) is satisfied in several cases considered in the literature (see, e.g., Theorem 1.7.12, Examples 1
to 4 of [1] and [26]), such as polynomial feedbacks of the form q(s) = s|s|p−1 for p > 1, or when q is an odd
function given for s > 0 by q(s) = e−β(s) with β(s) = 1/sp for p > 0 or β(s) = e1/s.

Concerning (4.23), it holds true if for instance there exist positive C,α such that |q′(x)− q′(0)| ≤ C|x|α in a
neighborhood of zero. Moreover one has quasi-optimality of (4.23) in the following sense: if the series of general
term Q1(xn) is unbounded, then lim supn→+∞ eλnQ[n](x0) = +∞ or lim infn→+∞ eλnQ[n](x0) = 0.

Remark 4.22. In the case where q′(0) = 0 but (4.22) is not satisfied, Proposition 4.20 ensures that
F (Q[n](x0)) ∼ n as n → +∞ but no direct information is provided on the asymptotic behavior of Q[n](x0).
On the other hand, the techniques used in the proof of Proposition 4.20, together with standard techniques
in analysis, propose a simple strategy to derive the asymptotic behavior of Q[n](x0) for any choice of q with
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q′(0) = 0, especially when (4.22) is not satisfied. To illustrate that strategy, consider the case of the function
q(x) = x

(− ln x)p for x ∈ (0,M ], where p,M > 0 and 0 < q(x) < x and |q′(x)| < 1 for every x > 0, which appears

in Theorem 1.7.12, Example 5 of [1]. In that reference, the optimality of the decay rate associated with such
a function q is left open, as discussed in [1] after its Theorem 1.7.16. In Appendix B, we provide an answer to
that open problem, by determining the precise decay rate of the corresponding the sequence Q[n](x0).

The next proposition gathers some useful additional properties of Q[n](x0) under the assumptions of
Proposition 4.20(a).

Proposition 4.23. Let q ∈ C1(R+,R+) be as in the statement of Proposition 4.20(a), i.e., q(0) = q′(0) = 0,
0 < q(x) < x, and |q′(x)| < 1 for every x > 0. Let x0 ∈ R∗+ and Q be defined from q as in (2.12).

(a) For every n0 ∈ N, one has Q[n+n0](x0) ∼ Q[n](x0) as n→ +∞.
(b) For every y0 ∈ R∗+, one has Q[n](x0) ∼ Q[n](y0) as n→ +∞.
(c) For every ε > 0, we have

lim
n→+∞

eεnQ[n](x0) = +∞.

Proof. To show (a), note that, for n ∈ N,

Q[n+n0](x0)

Q[n](x0)
=

j=n0−1∏
j=0

Q(Q[n+j](x0))

Q[n+j](x0)
=

j=n0−1∏
j=0

(
1− ϕ(Q[n+j](x0))

Q[n+j](x0)

)
,

where ϕ is defined as in the proof of Proposition 4.20(a). Since Q[n+j](x0) → 0 as n → +∞ for every j ∈
{0, . . . , n0 − 1} and ϕ(0) = ϕ′(0) = 0, one gets the conclusion.

In order to prove (b), assume, with no loss of generality, that y0 ≤ x0. Then there exists n0 ∈ N such that
Q[n0+1](x0) < y0 ≤ Q[n0](x0), yielding that Q[n+n0+1](x0) < Q[n](y) ≤ Q[n+n0](x0), and one gets the conclusion
from (a).

Finally, to show (c), let F and q be defined as in the statement of Proposition 4.20(a). Since q′(0) = 0, one

has 0 < q(s) < ε
4s for every s ∈ (0, s0), for some s0 > 0. Hence F (z) ≥ 3

ε ln
(

1
Q[n](x0)

)
. Since F (Q[n](x0)) ∼ n

and Q[n](x0)→ 0 as n→ +∞, one deduces that, for n large enough, n ≥ 2
ε ln

(
1

Q[n](x0)

)
, which is equivalent to

Q[n](x0) ≥ e−nε2 , yielding the conclusion.

A quick look at the argument in Proposition 4.20(c) for the decrease of (xn)n∈N faster than any exponential
in the case q′(0) = 1 may let one think that more precise decay rates can be obtained. However, it is not really
the case, as explained in the following proposition, whose proof is given in Appendix C.

Proposition 4.24. Let ϕ : R+ → R+ be an increasing function such that limx→+∞ ϕ(x) = +∞. Then there
exists q ∈ C1(R+,R+) satisfying q(0) = 0, 0 < q(x) < x, |q′(x)| < 1 for every x > 0, and q′(0) = 1, such that,
for every x0 > 0,

lim inf
n→+∞

enϕ(n)Q[n](x0) > 0, (4.28)

where Q is defined from q as in (2.12).

4.4.2. Decay rates for solutions

We now use Section 4.4.1 to derive results regarding decay rates for solutions of (1.1). We start with the
following consequence of Proposition 4.19.
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Theorem 4.25. Let Σ ⊂ R2 be a damping set.

(a) Suppose that Σ satisfies (H9). Let M0 > 0 and Q be the constant and the function whose existences are

asserted in (̃H9).
(a-i) For g0 ∈ Y∞ satisfying ‖g0‖∞ ≤ M0√

2
, one has that, every solution z of (1.1) starting at I−1(g0),

e∞(z)(t) ≤ Q[bt/2c](e∞(z)(0)), ∀t ≥ 0, (4.29)

and, for p ∈ [1,+∞),

ep(z)(t) ≤ 2
1
pQ[bt/2c](Z1/2

p ) + Z1/2
p Q[bt/2c](max(Z∞, Z

1/2
p )), ∀t ≥ 0, (4.30)

where Zq = eq(z)(0) for q ∈ {p,∞}.
(a-ii) Assume that the wave equation defined in (1.1) is UGAS in X∞ with rate β. Then, for every solution

z of (1.1) in X∞, one has

e∞(z)(t) ≤ Q[b t−tz2 c]
(

min
(
e∞(z)(0),

M0√
2

))
, ∀t ≥ tz, (4.31)

where tz ≥ 0 is the first nonnegative time so that

β(e∞(z)(0), tz) = min
(
e∞(z)(0),

M0√
2

)
.

(a-iii) Assume that (H8) holds and that the wave equation defined in (1.1) is UGAS in X∞. Then, for every
p ∈ [1,+∞] and every solution z of (1.1) in Xp, one has, for t large enough,

ep(z)(t) ≤ 2Q[bt−t1c](Z1/2
p ) + 2Z1/2

p Q[bt/2c−t2](Z) + Zpµ
t
4−

1
2 , (4.32)

where Zp = ep(z)(0), Z = max(M,Z
1/2
p ), M and µ are provided by (̃H8), and the times t1, t2 only

depend on Zp and Z.
(b) Suppose that Σ satisfies (H10). Let p ∈ [1,+∞] and z be a nontrivial solution of (1.1) in Xp

starting at I−1(g0) for some g0 ∈ Yp. Assume moreover that either the Lebesgue measure of{
s ∈ [−1, 1]

∣∣∣ 0 < |g0(s)| ≤ M√
2

}
is positive or Σ ∩∆ = {(0, 0)}, where ∆ = {(x, x) | x ∈ R}. Then there

exists positive constants C1, C2 only depending on the initial condition such that

ep(z)(t) ≥ C1Q
[bt/2c](C2), ∀t ≥ 0. (4.33)

Proof. To get the first part of Item (a-i), simply notice by Proposition 4.1 that

e∞(z)(t) ≤ e∞(z)(2bt/2c) =
∥∥gbt/2c∥∥∞,

and, by (4.20),

|gn(s)| ≤ Q[n](|g0(s)|), for n ∈ N and a.e. s ∈ [−1, 1]. (4.34)

The conclusion follows at once since Q[n] is increasing for every integer n. As regards the second part of
Item (a-i), we simply follow the argument of Proposition 4.8 replacing the bounds using the KL function β(·, t)
by Q[bt/2c](·) and the conclusion follows from (4.5).
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Since e∞(z)(tz) ≤ M0√
2

, Item (a-ii) follows immediately by applying Item (a-i) to g0 = I(z(tz, ·), zt(tz, ·)).
As regards Item (a-iii), the argument consists in reproducing the proof of Theorem 4.11 with modifications

taking into account Item (a-ii). In the sequel, we use the notations of the proof of Theorem 4.11. Thanks to
Item (a-ii), one can replace the estimate (4.10) by

‖gnχE‖p ≤ α1/p
E Q[b 2n−t1

2 c]
(

min

(
Z1/2
p ,

M0√
2

))
,

where t1 ≥ 0 only depends on Zp. We use again Item (a-ii) to replace equations (4.11) and (4.13) by

‖gnχF ‖p ≤ Z1/2
p Q[b 2n−t2

2 c]
(

min

(
Z,
M0√

2

))
,

and

bn/2c∑
k=0

‖gnχk‖pp ≤ Zp/2p

(
Q[bn−1−t2

2 c]
(

min

(
Z,
M0√

2

)))p
,

where t2 ≥ 0 only depends on Z. Putting together (4.12) and the previous inequalities, and up to increasing t1
and t2, we deduce (4.32).

We finally provide an argument for Item (b). Denote by (gn)n∈N the sequence in Yp corresponding to the
solution z in the sense of Proposition 2.6. For every n ∈ N, define the measurable set Fn ⊂ [−1, 1] by

Fn =

{
s ∈ [−1, 1]

∣∣∣∣ 0 < |gn(s)| ≤ M√
2

}
. (4.35)

Assume first that Fn is of zero Lebesgue measure for every n ∈ N. In particular, Σ∩∆ = {(0, 0)}, i.e., 0 /∈ S(x)
for every x ∈ R∗. Let E = {s ∈ [−1, 1] | g0(s) 6= 0}. Since z is nontrivial, the Lebesgue measure αE of E is
positive. Moreover, our assumption on the sets Fn and the fact that Σ ∩∆ = {(0, 0)} yield that, for almost

every s ∈ E and every n ∈ N, one has |gn(s)| ≥ M√
2
. In particular, ‖gn‖p ≥ α1/p

E
M√

2
, and the conclusion follows

with C1 = α
1/p
E

M√
2
, C2 = 1, and by using Propositions 2.6 and 4.1 and the fact that Q(x) ≤ x for every x ≥ 0.

If now there exists n0 ∈ N so that Fn0
has positive Lebesgue measure, then there exists Cz > 0 and a subset

Gz of Fn0
of positive measure αz such that Cz ≤ |gn0

(s)| ≤ M√
2

for s ∈ Gz. By Proposition 4.19(b) and by

using the fact that Q is increasing, it follows, for n ≥ n0, that |gn(s)| ≥ Q[n−n0](|gn0
(s)|) ≥ Q[n](Cz) for s ∈ Gz.

Thus ‖gn‖p ≥ α
1/p
z Q[n](Cz) and, from Propositions 2.6 and 4.1, one deduces that ep(z)(t) ≥ ‖gbt/2c+1‖p ≥

α
1/p
z Q[bt/2c+1](Cz), whence the conclusion with C1 = α

1/p
z and C2 = Q(Cz).

Remark 4.26. If we assume in (a-iii) that (H8) holds with a constant M > 0 equal to the constant M0 > 0

from (H9), then necessarily (1.1) is UGAS in X∞. Indeed, in that case, by combining the bounds from (̃H8)

and (̃H9), we deduce that ρ(r) < r for every r > 0, where ρ is given by (4.14). The fact that (1.1) is UGAS in
X∞ then follows from Propositions 4.6(b) and 4.12(e).

Remark 4.27. It is useful to notice that, for p = +∞, we have deduced the estimate (4.29) immediately from
(4.34). One may wonder whether it is possible to deduce from (4.34) a similar estimate replacing e∞ by ep for
finite p. This is indeed the case under the extra assumption that Q is concave (or, equivalently, that q is convex):
one deduces from Lemma D.3 in Appendix D that

ep(z)(t) ≤ 21/pQ[bt/2c](2−1/pep(z)(0)), (4.36)



38 Y. CHITOUR ET AL.

as soon as e∞(z)(0) ≤ M0√
2

. Note that (4.36) holds true for every solution of (1.1) in Xp as soon as one assumes

that (H9) holds globally, i.e., M = +∞ in its definition. In that case, the wave equation in (1.1) is UGAS in
Xp. This is in accordance with Theorem 4.11 since (H8) holds if Q is concave in R+ and (H9) holds globally.

Theorem 4.25 together with Propositions 4.20 and 4.23 provide accurate estimates for the behavior of tra-
jectories of (1.1) as time tends to +∞. Moreover, the optimality of such estimates can be addressed using
Theorem 4.25(b). Even though this can be done in full generality in the case where Σ is the graph of a function
q or q−1, with q ∈ C1(R+,R+) satisfying the statements in (H9) or (H10), we only focus in the sequel on the
case where q′(0) = 0 since it is the one usually addressed in the literature (see, e.g., [1, 26]). More precisely, we
have the following result.

Corollary 4.28. Let Σ ⊂ R2 be a damping set satisfying (H8) and M > 0 be the constant from (H8). Assume
moreover that

(a) Σ ∩∆ = {(0, 0)}, where ∆ = {(x, x) | x ∈ R}; and
(b) there exists a function q ∈ C1(R+,R+) with q(0) = q′(0) = 0, 0 < q(x) < x, and |q′(x)| < 1 for every x > 0

such that

|y| = q(|x|) or |x| = q(|y|), for every (x, y) ∈ Σ ∩B(0,M).

Then, for every p ∈ [1,+∞] and every nontrivial solution z of (1.1) in Xp, there exist positive constants C1, C2

such that, for every t ≥ 0,

C1Q
[bt/2c](1) ≤ ep(z)(t) ≤ C2Q

[bt/2c](1),

where Q is the function defined from q in (2.12).

Proof. Note that assumption (b) implies that both (H9) and (H10) are satisfied with the same function q
and the same M > 0. Moreover, as noticed in Remark 4.26, (b) and (H8) imply that (1.1) is UGAS in X∞.
Then, by Theorem 4.25(a-iii) and (b), one deduces that (4.32) and (4.33) hold, and the conclusion follows by
Proposition 4.23.

Remark 4.29. Our results given in Proposition 4.20(a), Theorem 4.25 (Eqs. (4.29), (4.31), and (4.33) with
p = +∞), and Corollary 4.28 are directly inspired by a string of results of [26], namely Theorem 2.1 and all the
results from Section 3 of that reference. Because of the flexibility of our approach, we provide simpler proofs
and we are able to relax some assumptions on the function q and the set of initial conditions for which the
appropriate estimates hold true.

Note that Theorem 4.25(a-iii), together with the assumption that the function q from (H9) satisfies q′(0) = 0
and (4.22), yields the estimate

ep(z)(t) ≤ 3(1 + ep(z)(0)1/2)F−1(t/2)

for every p ∈ [1,+∞], every solution z of (1.1) in Xp, and t large enough, where F is as in Proposition 4.20(a).
Indeed, this follows from (4.32), Proposition 4.20(a), and manipulations similar to those in the argument of
Corollary 4.28. This estimate can be compared to that of Theorem 2.1(b) of [28], which obtains a similar
estimate for wave equations in space dimension up to 3 but with stronger assumptions on q.

An interesting instance of the preceding results is the classical linear case, which corresponds to Σ
satisfying (H7). As a consequence of the above results and remarks, we have the following.

Corollary 4.30. Let Σ ⊂ R2 be a damping set.
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(a) If Σ satisfies (H7) and (1.1) is UGAS in X∞, then there exists λ > 0 such that, for every p ∈ [1,+∞] and
every initial condition (z0, z1) ∈ X∞, every solution z of (1.1) starting at (z0, z1) satisfies

ep(z)(t) ≤ Ce−λtep(z)(0), for every t ≥ 0, (4.37)

where the constant C > 0 depends only on λ and ‖(z0, z1)‖X∞ .
(b) If there exist positive constants a, b such that a|x| ≤ |y| ≤ b|x| for every (x, y) ∈ Σ, then (1.1) is GES in

Xp for every p ∈ [1,+∞]. More precisely, there exist C > 0 and λ > 0 such that, for every p ∈ [1,+∞]
and every initial condition (z0, z1) ∈ Xp, every solution z of (1.1) starting at (z0, z1) satisfies

ep(z)(t) ≤ Ce−λtep(z)(0), for every t ≥ 0. (4.38)

Proof. Item (a) can be deduced by combining the previous results and remarks and noticing that (H7) is a
particular case of (H9) with a linear function q. We choose however to provide the following direct ad hoc
argument.

Let M > 0 and µ ∈ (0, 1) be as in (̃H7) and β be the KL function provided by the UGAS assumption in X∞.
Let z be a solution of (1.1) in X∞ and consider the corresponding sequence (gn)n∈N in Y∞ from Proposition 2.6.
Set R = ‖g0‖∞, let tR > 0 be such that β(R, tR) ≤ M√

2
, and define nR = dtR/2e. For n ≥ nR and a.e. s ∈ [−1, 1],

one has

|gn(s)| ≤ e∞(z)(2n) ≤ β(R, 2n) ≤ β(R, tR) ≤ M√
2
.

It follows from (̃H7) that, for n ≥ nR, one has

‖gn‖p ≤ µn−nR‖gnR‖p ≤ µ
n−nR‖g0‖p. (4.39)

The previous inequality still holds for n ∈ {0, . . . , nR − 1} since (gn)n∈N is nonincreasing. One immediately gets
the conclusion with λ = − lnµ

2 using Propositions 2.6 and 4.1.
Part (b) follows immediately since, from its assumptions, one deduces that (4.39) holds for every n ∈ N with

nR = 0.

We next provide an alternative proof to Corollary 4.30(a) at the price of strengthening Hypothesis (H7) to
the following hypothesis on a damping set Σ ⊂ R2:

(H7)∗ For every M > 0, there exists µ ∈ (0, 1) such that |y| ≤ µ|x| for every (x, y) ∈ RΣ ∩B(0,M).

It is immediate to see that, under (H7)∗, real iterated sequences for S converge uniformly to zero and hence
(1.1) is UGAS in X∞, therefore (H7)∗ is stronger than the assumptions of Corollary 4.30(a).

Nevertheless, we can prove Corollary 4.30(a) under (H7)∗ for p finite with an argument having its own
interest, which is given next. Consider the Lyapunov function Vp, based on a variant of ep, and defined, for a
solution z of (1.1) in Xp, by

Vp(t) =

∫ 1

0

eνxF (f(t+ x)) dx+

∫ 1

0

e−νxF (g(t− x)) dx, t ≥ 0, (4.40)

where f and g are the functions associated with z from Definition 2.2, ν is a positive constant to be chosen
later, and F (s) = |s|p for s ∈ R. Note that Vp coincides with epp(z) if ν = 0. In the case p = 2, the corresponding
Lyapunov function V2 has been extensively used in the literature of hyperbolic systems of conservation laws, as
detailed in [5].
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We first provide another expression for Vp before taking its time derivative along trajectories of (1.1). From
(4.40) and (2.6b), one gets for t ≥ 0 that

Vp(t) = e−νt
∫ t+1

t−1

eνsF (g(s)) ds. (4.41)

Hence Vp is absolutely continuous and its time derivative along the trajectories of (1.1) satisfies

dVp
dt

(t) = −νVp(t) + eνF (g(t+ 1))− e−νF (g(t− 1)), t ≥ 0. (4.42)

Since g(t + 1) ∈ S(g(t − 1)) for t ≥ 0, we deduce from (H7)∗ that |g(t + 1)| ≤ µ|g(t − 1)|, where µ ∈ (0, 1) is
obtained by taking M = ‖(z0, z1)‖X∞ in (H7)∗ and (z0, z1) is the initial condition of z. Then, from (4.42), one
deduces that

dVp
dt

(t) ≤ −νVp(t) + e−νF (g(t− 1))
(
µpe2ν − 1

)
, t ≥ 0.

Setting ν = −p2 ln(µ), one obtains that

dVp
dt

(t) ≤ −νVp(t), t ≥ 1,

which implies the exponential convergence of trajectories of (1.1) with a decay rate depending on ‖(z0, z1)‖X∞ .
It is now standard to obtain (4.37) with ν independent of the initial condition, cf. [13].

Remark 4.31. Note that the previous argument stills works without considering the parameter ν in the
definition of Vp in (4.40), in which case Vp = epp(z). Equation (4.42) becomes, after taking into account (H7)∗,

dVp
dt

(t) ≤ −(1− µp)F (g(t− 1)), for a.e. t ≥ 0.

Integrating between t− 1 and t+ 1 for t ≥ 1, one gets that

ep(z)(t+ 1) ≤ µep(z)(t− 1),

which yields exponential decay. More generally, at the light of Remark 2.8 and without assuming necessarily
(H7)∗, one can follow a reasoning relying on a Lyapunov function of the form (4.40) with any positive definite
function F with no additional regularity assumption on the solution z ∈ Xp of (1.1), as soon as a damping and
sector conditions are satisfied.

We close this section by providing a necessary and sufficient condition of GES.

Corollary 4.32. Let Σ ⊂ R2 be a damping set, p ∈ [1,+∞], and S be the set-valued map whose graph is RΣ.
Then (1.1) is GES in Xp if and only if there exists µ ∈ (0, 1) and n0 ∈ N∗ such that, for every x ∈ R, one has
‖S[n0](x)‖ ≤ µ|x|.

Proof. Assume that there exists µ ∈ (0, 1) and n0 ∈ N∗ such that, for every x ∈ R, one has ‖S[n0](x)‖ ≤ µ|x|.
Let z be a solution of (1.1) in Xp and consider the sequence (gn)n∈N in Yp corresponding to z according to
Proposition 2.6. Then, for every k ∈ N, one has

‖gkn0‖p ≤ µk‖g0‖p,



ONE-DIMENSIONAL WAVE EQUATION WITH SET-VALUED BOUNDARY DAMPING 41

Figure 5. Regions RC and RRC .

and, by using Propositions 2.6 and 4.1, one gets that (1.1) is GES.
Conversely, assume that (1.1) is GES and let C, λ be positive constants such that ep(z)(t) ≤ Ce−λtep(z)(0)

for every t ≥ 0 and every solution z of (1.1) in Xp. Let n0 ∈ N∗ be such that Ce−2λn0 < 1. By considering
constant initial conditions, one gets the conclusion with µ = Ce−2λn0 .

4.5. Arbitrary slow convergence

In this subsection, we positively answer a conjecture posed in Theorem 4.1, Remark 2 of [26] regarding the
worst possible decay rate of solutions of (1.1) when Σ is of saturation type.

Theorem 4.33. For C > 0, define RC = {(x, y) ∈ R2 | |x| ≤ C/
√

2 or |y| ≤ C/
√

2}. Let Σ ⊂ R2 be a damping
set such that Σ ⊂ RC for some C > 0. Then, for every p ∈ [1,+∞) and every decreasing function ϕ : R+ → R∗+
tending to 0 as t → +∞, there exists (z0, z1) ∈ Xp such that every solution z of (1.1) with initial condition
(z0, z1) satisfies, for every t ≥ 0,

ep(z)(t) ≥ ϕ(t).

A graphical representation of the region RC and the rotated region RRC is provided in Figure 5. The darker
shade represents the intersection between RC and the damping region {(x, y) ∈ R2 | xy ≥ 0}.

Proof. Let S be the set-valued map whose graph is RΣ. The assumptions on Σ, namely the fact that Σ is a
damping set and that Σ ⊂ RC , imply that, for every x ∈ R and y ∈ S(x), one has |x| − C ≤ |y| ≤ |x|.

From Propositions 2.6 and 4.1, it is enough to construct g0 ∈ Yp such that, for every iterated sequence
(gn)n∈N in Yp for S starting at g0, one has

‖gn‖p ≥ ϕ(2(n− 1)), ∀n ∈ N∗. (4.43)

Up to dividing the sequence (gn)n∈N and the function ϕ by C, we assume with no loss of generality that C = 1.

Let Cp = 1
3p−1 and φ : R+ → R+ be a decreasing function such that φ(t) = 1

Cp
ϕp(2( t

1/p

3 −1)) for every t ≥ 3p.

Note that Cpφ(3pnp) = ϕp(2(n− 1)) for every n ∈ N∗. Let (an)n∈N and (bn)n∈N be the sequences obtained by
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applying Lemma D.6 in Appendix D to φ. Define g0 : [−1, 1]→ R+ by

g0(s) =

∞∑
k=0

k1/pχ(ak+1,ak](s), (4.44)

and consider an iterated sequence (gn)n∈N for S starting at g0. Using the fact that the sequence (bn)n∈N converges
to 0 and the relationship between the sequences (an)n∈N and (bn)n∈N, it is easy to see that

‖g0‖pp =

∞∑
k=0

k(ak − ak+1) =

∞∑
k=1

ak = b0 < +∞,

and thus g0 ∈ Yp, which implies that gn ∈ Yp for every n ∈ N. Moreover, Proposition 2.17 shows that, for every
n ≥ 1, one has

gn(s) =

∞∑
k=0

αk,nχ(ak+1,ak](s), with αk,n ∈ S[n](k1/p) for k ∈ N.

Notice that, for every n ∈ N and k ≥ np, one has |αk,n| ≥ k1/p − n. Then, for every n ∈ N, one has

‖gn‖pp ≥
∑
k≥np

(k1/p − n)p(ak − ak+1)

=
∑

k≥np+1

[(
k1/p − n

)p
−
(

(k − 1)1/p − n
)p]

ak.
(4.45)

We next prove that, for every n ∈ N∗ and k ≥ 3pnp, one has(
k1/p − n

)p
−
(

(k − 1)1/p − n
)p
≥ Cp. (4.46)

To see that, we rewrite the left-hand side of (4.46) as k(Ap −Bp) with

A = 1− n

k1/p
, B =

(
1− 1

k

)1/p

− n

k1/p
.

Using that k ≥ 3pnp, one deduces at once that 1
3 ≤ B ≤ A ≤ 1. On the other hand, there exists Γ ∈ [B,A] ⊂[

1
3 , 1
]

such that Ap −Bp = p(A−B)Γp−1. Since

A−B = 1−
(

1− 1

k

)1/p

≥ 1

pk
for every k ∈ N∗,

one concludes that (4.46) holds.
It now follows from (4.45), (4.46), and the expression of the sequence (ak)k∈N with respect to (bk)k∈N that

‖gn‖pp ≥ Cpbd3pnpe−1 ≥ Cpφ(3pnp) = ϕp(2(n− 1)), n ≥ 1,

as required.
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Remark 4.34. Note that Theorem 4.33 does not hold for p = +∞. Indeed, assume that Σ ⊂ R2 is the graph
of the piecewise linear saturation function σ defined by σ(x) = x for |x| ≤ 1 and σ(x) = x

|x| for |x| ≥ 1. Then

RΣ is the graph of the function S given by S(x) = 0 for |x| ≤
√

2 and S(x) = −x +
√

2 x
|x| for |x| ≥

√
2. A

straightforward computation using Proposition 2.6 shows that, for every (z0, z1) ∈ X∞, we have e∞(z)(t) = 0
for every t ≥ 2

⌈
e∞(z)(0)/

√
2
⌉
, and thus an estimate such as that of Theorem 4.33 cannot hold.

5. Boundary perturbations

In this section, we show that the framework developed previously to address the stability of (1.1) can also
be applied to handle wave equations with disturbances in the boundary condition (zt(t, 1),−zx(t, 1)) ∈ Σ. More
precisely, the disturbed version of (1.1) we consider in this section is

ztt(t, x) = zxx(t, x), (t, x) ∈ R+ × [0, 1],

z(t, 0) = 0, t ∈ R+,

(zt(t, 1),−zx(t, 1)) ∈ Σ + d(t), t ∈ R+,

z(0, x) = z0(x), x ∈ [0, 1],

zt(0, x) = z1(x), x ∈ [0, 1],

(5.1)

where d : R+ → R2 is a measurable function representing the disturbance.
Given p ∈ [1,+∞] and a disturbance d as above, solutions of (5.1) in Xp can be defined with an obvious

modification of Definition 2.2, consisting in replacing the set Σ in the boundary condition at x = 1 in (2.5) by
Σ + d(t). Proposition 2.3 still holds for (5.1) after replacing (2.6c) by

(g(s− 2), g(s)) ∈ RΣ +Rd(s− 1), for a.e. s ≥ 1. (5.2)

One may use the one-to-one correspondence Seq from Definition 2.5 between elements g ∈ Lploc(−1,+∞) and
sequences (gn)n∈N in Yp to rewrite (5.2) as

(gn(s), gn+1(s)) ∈ RΣ + δn(s), n ∈ N, a.e. s ∈ [−1, 1], (5.3)

where the sequence of measurable functions (δn)n∈N is defined from d by

δn(s) = Rd(s+ 2n+ 1) for every n ∈ N and s ∈ [−1, 1]. (5.4)

As regards existence and uniqueness of solutions of (5.1), similarly to Theorems 3.1 and 3.2, we deduce in a
straightforward manner the following result.

Theorem 5.1. Let Σ ⊂ R2 and p ∈ [1,+∞].

(a) If (H2) holds and p < +∞, or if (H2)∞ holds and p = +∞, then, for every (z0, z1) ∈ Xp and every
d ∈ Lploc(R+,R2), there exists a solution of (5.1) in Xp with initial condition (z0, z1).

(b) For every (z0, z1) ∈ Xp and every d ∈ Lploc(R+,R2), there exists a unique solution of (5.1) in Xp with
initial condition (z0, z1) if and only if either (H3) holds and p < +∞, or (H3)∞ holds and p = +∞.

We now turn to the issue of asymptotic behavior of solutions of (5.1). Before stating our results, we need to
introduce, for every damping set Σ ⊂ R2, the function µ : R+ → R+ defined by

µ(r) = lim
η→0+

sup
|x|≤r+η

‖S(x)‖, (5.5)
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where we recall that S is the set-valued map whose graph is RΣ. Similarly to the function ρ introduced in (4.14),
the function µ satisfies the properties stated in Proposition 4.12, with S[2] replaced by S in (c) and ρ[bn/2c]

replaced by µ[n] in (d). We also need to introduce the space of disturbances Dp, p ∈ [1,+∞), given by

Dp :=

{
d : R+ → R2 is measurable

∣∣∣∣∣ D(·) :=

∞∑
n=0

|d(·+ 2n+ 1)| ∈ Yp

}
. (5.6)

Note that Dp ⊂ Lp(R+,R2) with equality if and only if p = 1.
We shall use the next definition of input-to-state stability for (5.1), which can can be seen as a generalization

of the UGAS property in presence of disturbances (see, for instance, [22]).

Definition 5.2. Let p ∈ [1,+∞]. We say that the dynamical system (5.1) is input-to-state stable (ISS) with
respect to the state space Xp and the disturbance space Lp(R+,R2) if there exist a KL function β and a K
function γ such that, for every trajectory z of (5.1) associated with an initial condition (z0, z1) ∈ Xp and a
disturbance d ∈ Lp(R+,R2), one has

ep(z)(t) ≤ β(ep(z)(0), t) + γ(‖d‖Lp(R+,R2)), t ≥ 0. (5.7)

The main result of this section is the next theorem, which provides conditions on µ ensuring that (5.1) is
either strongly stable or ISS.

Theorem 5.3. Let p ∈ [1,+∞], Σ ⊂ R2 be a damping set, and µ be the corresponding function defined in (5.5).
Assume that µ(r) < r for every r > 0.

(a) Let d ∈ Lploc(R+,R2) and z be a solution of (5.1) with disturbance d. Then ep(z)(t) → 0 as t → +∞ if
one of the following conditions holds.

(a-i) p < +∞ and d ∈ Dp.
(a-ii) d(t)→ 0 as t→ +∞ and, for every ε > 0, one has

inf
r≥ε

r − µ(r) > 0.

(b) The dynamical system (5.1) is ISS with respect to Xp and Lp(R+,R2) if one of the following conditions
holds.

(b-i) p = +∞ and limr→+∞ r − µ(r) = +∞.
(b-ii) p < +∞ and (H8) is satisfied.

Proof. Let d : R+ → R2 be measurable, z be a trajectory of (5.1), and (gn)n∈N and (δn)n∈N be the sequences
corresponding to z and d according to Proposition 2.6 and (5.4), respectively. For n ∈ N and s ∈ [−1, 1], denote
δn(s) = (δn,1(s), δn,2(s)) ∈ R2 and set hn(s) = gn(s) − δn,1(s). Then, using (5.3), one deduces that, for n ∈ N
and a.e. s ∈ [−1, 1],

|hn+1(s)| ≤ µ(|hn(s)|) + |δn+1,1(s)− δn,2(s)|. (5.8)

We first prove (a) under the assumption (a-i). One deduces from (5.8) that, for n ∈ N and a.e. s ∈ [−1, 1],

|hn(s)| ≤ |h0(s)|+ 2D(s), (5.9)

where D is the function in Yp associated with d ∈ Dp in the sense of (5.6). Hence (hn)n∈N is a sequence in
Yp and it is dominated by the function |h0| + 2D, which also belongs to Yp. In addition, δn(s) tends to 0 as
n → +∞ for a.e. s ∈ [−1, 1] since D ∈ Yp. Then, in order to obtain the conclusion of (a), it suffices to show
that (hn)n∈N tends to zero almost everywhere.
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Let s ∈ [−1, 1] be such that the series of general term |δn+1,1(s) − δn,2(s)| is convergent. The sequence
(|hn(s)|)n∈N being bounded thanks to (5.9), it is enough to prove that its only limit point is zero. Reasoning by
contradiction, assume that there exists a subsequence (|hnk(s)|)k∈N converging to some r∗ > 0. Then, for every
ε > 0, there exists k0 ∈ N such that

∣∣|hnk(s)| − r∗
∣∣ < ε for every k ≥ k0 and

∑∞
n=nk0

|δn+1,1(s) − δn,2(s)| < ε.

Using (5.8) and the fact that µ is increasing, one deduces that

r∗ − ε ≤ |hnk+1
(s)| ≤ µ(|hnk(s)|) +

nk+1−1∑
n=nk

|δn+1,1(s)− δn,2(s)| ≤ µ(r∗ + ε) + ε.

Hence r∗ ≤ µ(r∗+ε)+2ε and, since µ is upper semi-continuous and ε > 0 is arbitrary, we deduce that µ(r∗) ≥ r∗,
yielding the desired contradiction.

We next prove (a) under the assumption (a-ii), which amounts to prove that (hn)n∈N tends to 0 in Yp. For
every ε > 0, let η = min

(
ε/2, infr≥ε/2 r − µ(r)

)
> 0. Let n0 ∈ N be such that |δn+1,1(s) − δn,2(s)| < η/2 for

every n ≥ n0 and s ∈ [−1, 1]. It follows from (5.8) that, for n ≥ n0 and s ∈ [−1, 1], one has

|hn(s)| ≤ ε =⇒ |hn+1(s)| ≤ ε,

|hn(s)| ≥ ε

2
=⇒ |hn+1(s)| ≤ |hn(s)| − η

2
.

For n ≥ n0, let χn denote the characteristic function of the set {s ∈ [−1, 1] | |hn(s)| ≤ ε}. Then the sequence
(hnχn)n∈N takes values in Yp and, for n ≥ n0, one has ‖hnχn‖p ≤ 21/pε (with the convention that 1/p = 0
for p = +∞). On the other hand, for a.e. s ∈ [−1, 1], the sequence (|hn(s)|(1− χn(s)))n∈N is nonincreasing for
n ≥ n0 and converges in a finite number of steps to zero. In particular, by the dominated convergence theorem,
‖|hn|(1− χn)‖p tends to zero as n→ +∞. The conclusion follows.

We next turn to (b). Notice first that epp(z)(t) ≤ epp(z)(2n) + epp(z)(2(n + 1)) for p < +∞ and e∞(z)(t) ≤
max(e∞(z)(2n), e∞(z)(2(n + 1))) for every n ∈ N and t ∈ [2n, 2(n + 1)]. Hence, using also Lemma D.2 in
Appendix D, it is enough to show that the inequality in (5.7) holds for t = 2n for every n ∈ N to obtain that
(5.1) is ISS. Moreover, notice that (H8) implies that limr→+∞ r − µ(r) = +∞.

First of all, one obtains from Lemma D.5 given in Appendix D that there exists a K∞ function ϕ lower
bounding the function r 7→ r − µ(r) and such that Id−ϕ is nondecreasing. In particular, one then has that
ϕ−1 : R+ → R+ is K∞. Moreover, if (H8) holds true, one has in addition that Id−ϕ is concave. From (5.3), one
deduces that, for every n ∈ N and s ∈ [−1, 1], one has

|gn+1(s)| ≤ (Id−ϕ)(|gn(s)|+ |δn,1(s)|) + |δn,2(s)|,

and thus

|gn+1(s)| ≤ (Id−ϕ)(|gn(s)|) + |δn,1(s)|+ |δn,2(s)|,

since, by an immediate computation using the fact that ϕ is nondecreasing, for every a, b ∈ R+, one has
(Id−ϕ)(a + b) ≤ (Id−ϕ)(a) + b. Since Id−ϕ is nondecreasing and it is concave when p is finite, one deduces,
applying Lemma D.3 in Appendix D in the case p < +∞, that, for every n ∈ N,

‖gn+1‖p ≤ 21/p(Id−ϕ)(2−1/p‖gn‖p) + 2‖δn‖p,

with the convention that 1/p = 0 for p = +∞. It follows that ‖gn‖p ≤ kn, where (kn)n∈N is the trajectory of
the one-dimensional discrete-time control system defined by

kn+1 = 21/p(Id−ϕ)(2−1/p|kn|) + |un|, n ∈ N, (5.10)
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with initial condition and control given respectively by

k0 = ‖g0‖p,
un = 2‖δn‖p, n ∈ N.

To obtain the conclusion, it is enough to prove that the control system (5.10) is ISS according to the standard
definition of ISS for finite-dimensional control systems as given in [15]. Indeed, in this case, one will deduce that
there exist a KL function β and a K function γ such that

‖gn‖p ≤ kn ≤ β(k0, n) + γ

(
sup
n∈N

un

)
= β(‖g0‖p, n) + γ

(
2 sup
n∈N
‖δn‖p

)
and the conclusion follows by noticing that supn∈N‖δn‖p ≤ ‖d‖Lp(R+,R2).

Thanks to Theorem 1 of [15], the proof of ISS for (5.10) is reduced to establishing the existence of three K
functions γ0, σ1, σ2 such that, for every trajectory (kn)n∈N of (5.10) starting at k0 ∈ R and corresponding to a
control (un)n∈N, one has

lim sup
n→+∞

|kn| ≤ γ0

(
lim sup
n→+∞

|un|
)

(5.11)

and

sup
n∈N
|kn| ≤ max

(
σ1(|k0|), σ2

(
sup
n∈N
|un|

))
. (5.12)

From (5.10) and the fact that Id−ϕ is continuous and nondecreasing, it is immediate to derive that

lim sup
n→+∞

|kn| ≤ 21/p(Id−ϕ)(2−1/p lim sup
n→+∞

|kn|) + lim sup
n→+∞

|un|,

yielding (5.11) with γ0(r) = 21/pϕ−1(2−1/pr) for r ∈ R+.
Finally, (5.12) follows by proving that, for every n ∈ N,

|kn| ≤ max
(
|k0|, U + 21/pϕ−1(2−1/pU)

)
,

where U = supn∈N|un|. Indeed, using an inductive argument, the above inequality holds trivially for n = 0,
while the induction step follows by considering separately the cases where |kn| < 21/pϕ−1(2−1/pU) or not.

Remark 5.4. Consider a damping set Σ verifying the following generalized sector condition, which is a global
version of (H9): there exist a positive constant M and a function q ∈ C1(R+,R+) with q(0) = 0, 0 < q(x) < x,
and |q′(x)| < 1 for every x > 0 such that q(|x|) ≤ |y| and q(|y|) ≤ |x| for every (x, y) ∈ Σ. In that case, the
function µ defined in (5.5) satisfies µ ≤ Q, where the function Q is defined from q as in (2.12). Moreover,
conditions on µ expressed in (a-ii) and (b-i) are satisfied if lim infx→+∞ q(x) > 0 and limx→+∞ q(x) = +∞,
respectively.

Remark 5.5. One can weaken the assumption in (b-i) to p = +∞ and lim infr→+∞ r−µ(r) =: ` > 0 and obtain
an ISS-type result under additional assumptions on the L∞ norm of the disturbance d. More precisely, in that
case, one can adapt the proof of Lemma D.5 in Appendix D to provide a K function ϕ lower bounding Id−µ
such that Id−ϕ is nondecreasing, but whose range is [0, `) instead of R+. By following the same lines of the
arguments of Item (b-i), one deduces an ISS-type estimate for trajectories of (5.1) associated with disturbances
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d in L∞(R+,R2) with ‖d‖L∞ < `/2, i.e., one has an estimate of the form (5.7) but the function γ is defined
only on [0, `/2).

Remark 5.6. To the best of our knowledge, few results on (5.1) have been obtained and the most precise ones
can be found in [27], which considers the case where Σ is the graph of a saturation function and essentially deals
with disturbance rejection. Theorem 5.3(a) improves the results of that reference since the disturbance there
is assumed to be matching and regular (both d(·) and d′(·) belong to D1) and Remark 5.5 shows that we can
achieve ISS-type of results in X∞.

6. Application to the case of the sign function

In this section, we apply the framework introduced in the paper to the particular choice of Σ as the graph
of the sign multi-valued function defined in (2.13), which is not the graph of a function σ : R→ R and which
is not a strict damping. We will illustrate how our techniques easily handle this case, obtaining in particular
existence and uniqueness of solutions of (1.1) and the precise characterization of their asymptotic behavior.
This boundary condition has been previously considered in the literature, for instance in [27].

We then consider that Σ = ΣM , where ΣM is defined in (2.14), and, for sake of simplicity, we assume in
the sequel that M =

√
2. All the results that we will present in this section in that case readily extend to the

general case of ΣM for any M > 0 by simply remarking that z is a solution of (1.1) associated with the set ΣM
if and only if

√
2z/M is a solution of (1.1) associated with the set Σ√2.

A straightforward computation shows that RΣ is the graph of a function (which we denote by S in a slight
abuse of notation) given by

S(x) =


x, if |x| ≤ 1,

2− x, if x > 1,

−2− x, if x < −1.

(6.1)

Note that this set satisfies both (H3) and (H3)∞ and thus, as an immediate consequence of Theorem 3.2, we
obtain the following.

Proposition 6.1. Let p ∈ [1,+∞] and consider the wave equation (1.1) with the set Σ given by (2.14). Then,
for every (z0, z1) ∈ Xp, there exists a unique solution of (1.1) in Xp with initial condition (z0, z1).

Remark 6.2. In [27], the sign function has been introduced as the limit of linear saturated feedbacks, and the
existence and uniqueness result therein, ([27], Lem. 3), is shown in the Hilbertian framework of X2 by proving
that the generator of the corresponding equation in X2 is a maximal monotone nonlinear operator. With respect
to that framework, our techniques allow one to consider solutions of (1.1) in Xp for any p ∈ [1,+∞].

We now turn to the asymptotic behavior of trajectories of (1.1) in Xp for p ∈ [1,+∞] with Σ given by (2.14)
and M =

√
2. It is immediate to see that Σ is a damping set and hence, by Proposition 4.1, the energy ep(z)(·)

is nonincreasing along trajectories z. On the other hand, S is continuous, and hence its graph is closed, as well
as the graphs of its iterates S[n] for n ∈ N. Since S(x) = x for x ∈ [−1, 1], S[2] is not a strict damping, and
thus Corollary 4.18 immediately implies that (1.1) is not strongly stable in Xp for any p ∈ [1,+∞]. A more
direct way to see that, which is similar to the argument provided in Lemma 4 of [27], consists of considering a
constant function g0 in Yp whose constant value belongs to [−1, 1]. The corresponding solution z of (1.1) with
initial condition I−1(g0) corresponds to the sequence (gn)n∈N which is constant and equal to g0.

We next characterize the limits of solutions of (1.1). We start with the following preliminary result dealing
with limits of real iterated sequences for S, which is obtained by straightforward computations.

Lemma 6.3. Let S be given by (6.1).
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(a) For every n ∈ N, one has S[n](0) = 0 and, for x 6= 0,

S[n](x) = (−1)k
x

|x|
(|x| − 2k) , k = min

(
n,

⌊
|x|+ 1

2

⌋)
. (6.2)

(b) Let (xn)n∈N be a real iterated sequence for S starting at x0 6= 0 and denote k0 =
⌊
|x0|+1

2

⌋
. Then (xn)n≥k0

is constant and

xn = (−1)k0
x0

|x0|
(|x0| − 2k0) , for n ≥ k0.

For sake of simplicity and using an abuse of notation, we will write the right-hand side of (6.2) also when
x = 0, and it should be considered as being equal to zero in that case.

As an immediate consequence of Lemma 6.3, we have the following.

Proposition 6.4. Let g0 : [−1, 1]→ R be measurable and consider the iterated sequence (gn)n∈N for S starting

at g0. Let K : [−1, 1]→ N and g∞ : [−1, 1]→ R be defined by K(s) =
⌊
|g0(s)|+1

2

⌋
and

g∞(s) = (−1)K(s) g0(s)

|g0(s)|
(|g0(s)| − 2K(s)) .

Then S ◦ g∞ = g∞, gn converges to g∞ a.e. on [−1, 1], and |gn| ≤ |g0|. In particular, if g0 ∈ Yp for some
p ∈ [1,+∞), then gn converges to g∞ in Yp. In addition, if g0 ∈ Y∞, then gn = g∞ for every n ≥ ‖K‖∞.

Translating the above result in terms of solutions of (1.1), one immediately gets the following.

Theorem 6.5. Let p ∈ [1,+∞], (z0, z1) ∈ Xp, and consider the solution z of (1.1) with Σ given by (2.14) with
M =

√
2 and with initial condition (z0, z1). Let g0 = I(z0, z1) ∈ Yp, g∞ be defined from g0 as in Proposition 6.4,

and z∞ be the solution of (1.1) starting at I−1(g∞). Then z∞ is 2-periodic and z(t) − z∞(t) converges to 0
in Xp as t → +∞. Moreover, if p = +∞, the convergence takes place in finite time less than or equal to

T = 2
⌊
‖(z0,z1)‖X∞+1

2

⌋
, i.e., z(t) = z∞(t) for t ≥ T .

Proof. We only provide an argument for the 2-periodicity of z∞. Indeed, recall that, by Proposition 2.6(b),
the Riemannian invariants of z∞ are built after the S-iterates of g∞. The latter being a fixed point of S, the
Riemannian invariants of z∞ are then 2-periodic. One derives the 2-periodicity of z∞ by using the first equation
of (2.5).

Remark 6.6. Theorem 6.5 improves the result ([27], Thm. 6) in the following directions: firstly, Theorem 6.5
applies to solutions of (1.1) with initial conditions in Xp for some p ∈ [1,+∞], whereas the main convergence
result in Theorem 6 of [27] only consider regular solutions of (1.1) in the Hilbertian setting. Secondly, thanks
to Theorem 6.5, we provide an expression for the limit z∞ which is more explicit than the one based on Fourier
series provided in Theorem 6 of [27].

Remark 6.7. At the light of the finite-time convergence in X∞ in Theorem 6.5, one may wonder whether
uniform bounds on the convergence rate can also be obtained for finite p. Unfortunately, the answer turns out
to be negative, since, by Theorem 4.33, the energy of solutions of (1.1) in Xp for finite p may decrease arbitrarily
slow.

Appendix A. Universally measurable functions

Hypotheses (H2)–(H3)∞ used throughout this paper use the notion of universally measurable functions. This
appendix provides the definition of this class of functions together with their main properties used in this paper.
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Interested readers may find further properties of universally measurable sets and functions and their applications
in analysis in [6, 9, 23]. For sake of simplicity, we only consider here real-valued universally measurable functions
defined on a (possibly unbounded) interval I ⊂ R, since this particular setting is the only one used in the paper.
We denote by B and L the σ-algebras of Borel and Lebesgue measurable subsets of R, respectively.

Definition A.1. Let F be a σ-algebra on R.

(a) Let µ be a nonnegative measure on (R,F). A set M ⊂ R is said to be µ-measurable if there exist A,B in
F with A ⊂M ⊂ B such that µ(B \A) = 0.

(b) A set M ⊂ R is said to be universally measurable with respect to F if, for every probability measure µ
on (R,F), M is µ-measurable. The family of all universally measurable subsets of R with respect to F is
denoted by F∗.
When F is the σ-algebra B of Borel subsets of R, we define U = B∗ and we say that the elements of U are
the universally measurable subsets of R.

(c) Let I ⊂ R be an interval and f : I → R. We say that f is an universally measurable function if, for every
A ∈ B, one has f−1(A) ∈ U.

For every σ-algebra F of R, the set F∗ is also a σ-algebra and one has further that (F∗)∗ = F∗. In particular,
U∗ = U. The σ-algebra U is called the universal σ-algebra of R. Using the fact that the Lebesgue measure is
complete with respect to the σ-algebra L, one also immediately checks that L∗ = L.

The above definition implies that B ⊂ U ⊂ L, and classical counterexamples presented in [6, 9, 23] show
that these inclusions are strict. One deduces from these inclusions that every Borel measurable function is
universally measurable and that every universally measurable function is Lebesgue measurable. Note that, as
stated, e.g., in [23], the requirement on µ to be a probability measure in Definition A.1(b) may be replaced with
the requirement on µ being finite or also σ-finite with no change in the definition.

A classical result on universal measurability is the following property, whose proof can be found, for instance,
in Lemma 8.4.6 of [9].

Proposition A.2. Let F and G be σ-algebras on R, I ⊂ R be an interval, and f : I → R. Assume that
f−1(A) ∈ F for every A ∈ G. Then f−1(A) ∈ F∗ for every A ∈ G∗.

As an immediate consequence of Proposition A.2, one obtains the following alternative characterizations of
Lebesgue and universally measurable functions.

Corollary A.3. Let I ⊂ R be an interval and f : I → R.

(a) The function f is Lebesgue measurable if and only if f−1(A) ∈ L for every A ∈ U.
(b) The function f is universally measurable if and only if f−1(A) ∈ U for every A ∈ U.

Corollary A.3(b) implies in particular that universal measurability of functions is preserved under composi-
tion, as we state next.

Proposition A.4. Let f : R → R and g : R → R be universally measurable functions. Then f ◦ g is also
universally measurable.

The major result on universally measurable functions that we need in this paper is the following, which
characterizes the set of universally measurable functions as those which preserve Lebesgue measurability by left
composition. The statement and the proof presented below were communicated to the authors1 by Mateusz
Kwaśnicki.

Proposition A.5. Let f : R→ R. Then f is universally measurable if and only if, for every Lebesgue measurable
function g : (−1, 1)→ R, f ◦ g is Lebesgue measurable.

1See https://mathoverflow.net/questions/366953/.

https://mathoverflow.net/questions/366953/
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Proof. Assuming first that f is universally measurable, one immediately obtains from the characterizations in
Corollary A.3 that f ◦ g is Lebesgue measurable for every Lebesgue measurable function g : (−1, 1)→ R.

Let us now assume that f is not universally measurable. We will construct a continuous function g : (−1, 1)→
R such that f ◦ g is not Lebesgue measurable.

Since f is not universally measurable, there exists B ∈ B such that A = f−1(B) /∈ U. Thus, there exists a
probability measure µ on (R,B) such that A is not µ-measurable. Let λ be the standard Gaussian probability

measure on R, i.e., dλ(x) = 1√
2π
e−x

2/2 dx, and consider the probability measure ν0 = 1
2µ + 1

2λ on (R,B).

Clearly, A is not ν0-measurable either. Let ν be the probability measure obtained from ν0 by removing its
atoms and renormalizing the resulting measure, and notice that A is not ν-measurable.

Let h : R→ R be the cumulative distribution function of ν, defined for x ∈ R by h(x) = ν((−∞, x]). Then, by
construction of ν, one deduces that h is continuous, increasing, h(x) ∈ (0, 1) for every x ∈ R, limx→−∞ h(x) = 0,
and limx→+∞ h(x) = 1. In particular, h admits an inverse h−1 : (0, 1)→ R which is continuous and increasing.
Recall also that ν(E) = m(h(E)) for every E ∈ B, where m denotes the Lebesgue measure on (0, 1).

We claim that h(A) is not Lebesgue measurable. Indeed, if it were not the case, there would exist two
Borel subsets F1, F2 of (0, 1) such that F1 ⊂ h(A) ⊂ F2 and m(F2 \ F1) = 0. Then, letting Ei = h−1(Fi)
for i ∈ {1, 2}, we would have that E1 and E2 are Borel sets (since h is continuous) with E1 ⊂ A ⊂ E2 and
ν(E2 \ E1) = m(h(E2 \ E1)) = m(F2 \ F1) = 0, implying that A is ν-measurable, a contradiction.

Let T : (−1, 1)→ (0, 1) be the linear map defined by T (x) = x+1
2 . Then T−1(h(A)) is not Lebesgue measur-

able. Let g : (−1, 1) → R be the continuous function defined by g = h−1 ◦ T . Then (f ◦ g)−1(B) = g−1(A) =
T−1(h(A)) and, since B ∈ B and T−1(h(A)) /∈ L, one deduces that f ◦ g is not Lebesgue measurable, as
required.

Appendix B. An optimal decay rate

This appendix proves the following result, which identifies the optimal decay rate of Q[n](x0) when q(x) =
x

(− ln x)p for x > 0 small enough and Q is defined from q as in (2.12) (cf. Rem. 4.22).

Theorem B.1. Let p > 0, M ∈ (0, 1), q ∈ C1(R+,R+) be given by q(x) = x
(− ln x)p for x ∈ (0, M√

2
), and assume

further that 0 < q(x) < x and |q′(x)| < 1 for every x > 0. Let x0 ∈ R∗+, Q be defined from q by (2.12), and the

sequence (xn)n∈N be given by xn = Q[n](x0) for n ≥ 0.

Set N =
⌊

1
2p

⌋
. Then there exist N + 1 real numbers αk, k ∈ {0, . . . ,M}, with α0 = (2(p+ 1))

1
p+1 , such that,

as n→ +∞, one has

xn ∼
1√
2
e−

∑N
k=0 αkn

1−2pk
p+1

. (B.1)

Proof. Notice first that q′(0) = 0. Thanks to the assumptions on q, (xn)n∈N is a decreasing sequence of positive
real numbers with xn → 0 as n → +∞ and we assume that xn ∈ (0, M√

2
) for every n ≥ 0 with no loss of

generality (cf. Prop. 4.23(a)). Let F be the diffeomorphism defined in Proposition 4.20(a). One computes that,
for z ∈ (0, x0], it holds

F (z) =
(− ln(

√
2z))p+1

2(p+ 1)
+ C, (B.2)

where C is a positive constant. In particular, q does not satisfy (4.22).
We start the argument for the theorem by setting some notations for the subsequent computations

yn =
√

2xn, zn = 2(q + Id)−1(yn), ξn =
1

− ln(yn)
, µn =

1

− ln(zn/2)
for n ∈ N.
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It follows at once that all the sequences defined above are positive, decreasing, and tend to zero as n tends to
infinity. By manipulating their definitions and using also (2.12), the explicit expression of q, and the fact that
xn+1 = Q(xn) for n ∈ N, we deduce that, for n ∈ N and a ∈ R,

1

ξn+1
=

1

ξn

[
1 + ξn ln

(1 + µpn
1− µpn

)]
, (B.3)

and

ξan = µan

(
1− µp+1

n

ln(1 + µpn)

µpn

)−a
. (B.4)

For the rest of the argument, we also use the standard symbols ∼, O(·) and o(·) as n tends to infinity without
writing the latter fact.

By (B.4), one has that ξn ∼ µn and it follows from (B.2) and Proposition 4.20(a) that

( 1

ξn

)p+1

∼ αp+1
0 n. (B.5)

Moreover, since 0 < µn < 1 for every n ∈ N, one has

ln
(1 + µpn

1− µpn

)
= 2µpn

∑
k≥0

µ2pk
n

2k + 1
. (B.6)

Using (B.6) in (B.3), one gets for n ∈ N that

1

ξn+1
=

1

ξn

1 + 2ξp+1
n

(
µn
ξn

)p∑
k≥0

µ2pk
n

2k + 1

 . (B.7)

On the other hand, one deduces from (B.4), (B.5), and the fact that ξn ∼ µn, that µn ∼ 1
α0n1/(p+1) ,

µan = ξan

(
1 +O

(
n−1

) )
, (B.8)

and

∑
k≥0

µ2pk
n

2k + 1
= 1 +O

(
n−

2p
p+1

)
. (B.9)

The above equation yields, together with (B.8), that (B.7) can be written, after taking its (p+ 1)-th power, as

1

ξp+1
n+1

=
1

ξp+1
n

[
1 + 2ξp+1

n

(
1 +O

(
n−1

) )(
1 +O

(
n−

2p
p+1

))]p+1

,

=
1

ξp+1
n

[
1 + αp+1

0 ξp+1
n

(
1 +O

(
n−1

)
+O

(
n−

2p
p+1

))]
,

=
1

ξp+1
n

+ αp+1
0 +O

(
n−1

)
+O

(
n−

2p
p+1

)
. (B.10)
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By summing up the above equations between 1 and n, one deduces that

1

ξp+1
n

= αp+1
0 n+O

(
ln(n)

)
+O

(
n1− 2p

p+1

)
= αp+1

0 n

(
1 +O

(
ln(n)

n

)
+O

(
n−

2p
p+1

))
, (B.11)

which implies that

1

ξn
= α0n

1
p+1

(
1 +O

(
ln(n)

n

)
+O

(
n−

2p
p+1

))
= α0n

1
p+1 +O

(
n

1−2p
p+1

)
+O

(
ln(n)

n1− 1
p+1

)
.

By taking the exponential of the above relation, the theorem is proved in the case p > 1
2 .

We next suppose that p ∈ (0, 1
2 ] and in that case N =

⌊
1
2p

⌋
≥ 1. By using (B.8), one rewrites (B.9) as

∑
k≥0

µ2pk
n

2k + 1
= 1 +

N∑
k=1

ξ2pk
n

2k + 1
+O

(
n−(1+ 2p

p+1 )
)

+O
(
n−

2p(N+1)
p+1

)
. (B.12)

One then rewrites (B.10) as

1

ξp+1
n+1

=
1

ξp+1
n

+ αp+1
0 + αp+1

0

N∑
k=1

ξ2pk
n

2k + 1
+O

(
n−1

)
+O

(
n−

2p(N+1)
p+1

)
. (B.13)

We next prove that there exists N real numbers γk for k ∈ {1, . . . , N} such that

1

ξp+1
n

= αp+1
0 n+

N∑
k=1

γkn
1− 2pk

p+1 +O
(

ln(n) + n1− 2p(N+1)
p+1

)
. (B.14)

To see that, we set γ0 = αp+1
0 and we will prove by induction on j ∈ {0, . . . , N} the following property: there

exist N + 1 real numbers γk for k ∈ {0, . . . , N} so that, for every j ∈ {0, . . . , N}, setting

fj(n) =

j∑
`=0

γkn
1− 2p`

p+1 and Fj(n) =
1

ξp+1
n

− fj(n),

one has

Fj(n) = O
(

ln(n) + n1− 2p(j+1)
p+1

)
. (B.15)

Note that fj(n) ∼ f0(n) = αp+1
0 n and the property is clearly true for j = 0 by (B.11). For the inductive step,

assume the property holds for some j ∈ {0, . . . , N − 1} and let us establish it for j + 1. It amounts to prove that
there exists a real number γj+1 such that

Fj(n) = γj+1n
1− 2p(j+1)

p+1 +O
(

ln(n) + n1− 2p(j+2)
p+1

)
. (B.16)

Using the induction assumption (B.15) and the definition of Fj(n), we have

1

ξp+1
n

= fj(n)

(
1 +O

(
ln(n)

n
+ n−

2p(j+1)
p+1

))
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and, since j ≤ N − 1, we have 2p(j+1)
p+1 ≤ 1

p+1 < 1, showing that, for every k ∈ {1, . . . , N},

ξ2pk
n = fj(n)−

2pk
p+1

(
1 +O

(
n−

2p(j+1)
p+1

))
. (B.17)

Moreover, we also have the estimate

(n+ 1)1− 2pk
p+1 − n1− 2pk

p+1 =

(
1− 2pk

p+ 1

)
n−

2pk
p+1

(
1 +O(n−1)

)
. (B.18)

We inject the expression 1

ξp+1
n

= fj(n) +Fj(n) into (B.13) and, after computations using (B.17) and (B.18), one

obtains that

Fj(n+ 1)− Fj(n) = −
j∑

k=1

γk

(
1− 2pk

p+ 1

)
n−

2pk
p+1

+ αp+1
0

N∑
k=1

fj(n)−
2pk
p+1

2k + 1
+O

(
n−

2p(j+2)
p+1 + n−1

)
. (B.19)

Denoting the second sum by Tj(n), one has that

Tj(n) =

N∑
k=1

α−2pk
0 n−

2pk
p+1

2k + 1

(
1 +

j∑
`=1

γ`

αp+1
0

n−
2p`
p+1

)− 2pk
p+1

.

Let ϕj,k(Z) =
(

1 +
∑j
`=1

γ`
αp+1

0

Z`
)− 2pk

p+1

and write its Taylor expansion around Z = 0 as ϕj,k(Z) = 1 +∑
`≥1 rj,k,`Z

`. Then, letting Z = n−
2p
p+1 in the previous expression, one gets

Tj(n) =

N∑
k=1

α−2pk
0 n−

2pk
p+1

2k + 1

(
1 +

∑
`≥1

rj,k,`n
− 2p`
p+1

)

=

N∑
k=1

α−2pk
0 n−

2pk
p+1

2k + 1
+

∑
1≤k≤N,`≥1

α−2pk
0

2k + 1
rj,k,`n

− 2p(`+k)
p+1

=
∑

1≤`≤j

r̃j,`n
− 2p`
p+1 + r̃j,j+1n

− 2p(j+1)
p+1 +O

(
n−

2p(j+2)
p+1

)
, (B.20)

for suitable coefficients r̃j,`, ` ∈ {1, . . . , j + 1}. The key point is to notice that, for ` ∈ {1, . . . , j}, the coefficients
rj,k,` only depend on γ0, . . . , γ` and not on γs for s > ` nor on j. As a consequence, the coefficients r̃j,` only
depend on γ0, . . . , γ`−1 and not on γj nor j. Hence, γ`, for ` ∈ {0, . . . , N}, is chosen according to the relation

γ` =
αp+1

0 r̃j,`

1− 2p`
p+1

,

which is possible since the right-hand side only involves γ0, . . . , γ`−1 and does not depend on j > l. In other
words, γ` is determined exactly at step ` of the induction.
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Gathering (B.19) and (B.20), one obtains

Fj(n+ 1)− Fj(n) = αp+1
0 r̃j,j+1n

− 2p(j+1)
p+1 +O

(
n−1 + n−

2p(j+2)
p+1

)
.

Setting γj+1 =
αp+1

0 r̃j,j+1

1− 2p(j+1)
p+1

, one gets (B.16) after summation of the previous equation between one and n large.

The induction step has been established, which concludes the proof of (B.14).
One deduces from (B.14) that

1

ξn
= α0n

1
p+1

[
1 +

N∑
k=1

γk

αp+1
0

n−
2pk
p+1 +O

(
ln(n)

n
+ n−

2p(N+1)
p+1

)] 1
p+1

. (B.21)

Since the term
∑N
k=1

γk
αp+1

0

n−
2pk
p+1 can be seen as a polynomial in the indeterminate Z = n−

2p
p+1 with zero constant

term, it is clear that there exist N real numbers αk with k ∈ {1, . . . , N} such that

[
1 +

N∑
k=1

γk

αp+1
0

n−
2pk
p+1 +O

(
ln(n)

n
+ n−

2p(N+1)
p+1

)] 1
p+1

= 1 +

N∑
k=1

αk
α0
n−

2pk
p+1 +O

(
ln(n)

n
+ n−

2p(N+1)
p+1

)
.

Plugging the above equation in (B.21), one gets that

1

ξn
=

N∑
k=0

αkn
1−2pk
p+1 +O

(
ln(n)

n1− 1
p+1

+ n
1−2p(N+1)

p+1

)
,

for n large enough. Taking the exponential yields (B.1).

Appendix C. Proof of Proposition 4.24

Proof. If (4.28) holds true for some ϕ as in the statement, then it still holds true for any function satisfying
the same assumptions and which is larger than ϕ on any interval [x0,+∞), x0 ≥ 0. By using Lemma D.4, it is
therefore enough to prove the proposition for ϕ which, in addition to the above mentioned hypotheses, is also

C2, with ϕ′ > 0, ϕ′′ ≤ 0, ϕ(0) > 0, and such that 0 ≤ xϕ′(x)
ϕ(x) ≤ 1 and 0 ≤ −xϕ

′′(x)
ϕ(x) ≤ 2 for every x ≥ 0, which

we assume in the sequel.
We first note that, for every C > 0, one has

lim
x→+∞

ϕ(x+ C)

ϕ(x)
= 1, (C.1)

since, for x ≥ 0, one has∣∣∣∣ln(ϕ(x+ C)

ϕ(x)

)∣∣∣∣ =

∣∣∣∣∣
∫ x+C

x

sϕ′(s)

ϕ(s)

ds

s

∣∣∣∣∣ ≤
∫ x+C

x

ds

s
= ln

(
1 +

C

x

)
,

which tends to zero as x tends to infinity, yielding (C.1).
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Notice that it suffices to construct the functions q and Q in a neighborhood of zero (in R+) and to prove
(4.28) for x0 > 0 in a neighborhood of zero (in R+). Indeed, if that is done, one can immediately extend q and
Q to R+ in such a way that the assumptions from the statement are satisfied and, in this case, for any x0 > 0,
the sequence (Q[n](x0))n∈N is decreasing and converging to zero, showing that Q[n](x0) is in a neighborhood of
zero for every n large enough. Hence, in the sequel, we only construct q and Q in a neighborhood of zero and
we only show (4.28) for x0 ∈ (0, 1) belonging to that neighborhood.

If q and Q are defined in a neighborhood of zero as in the statement, x0 ∈ (0, 1) belongs to that neighborhood,
and we let yn = − 1

ln(Q[n](x0))
for n ≥ 0, then one verifies from straightforward computations that the sequence

(yn)n∈N satisfies the recurrence relation

yn+1 = yn − U(yn), n ∈ N, (C.2)

where U is defined in a neighborhood of zero by U(0) = 0 and

U(y) = −
y2 ln

(
ψ(e−1/y)

)
1− y ln

(
ψ(e−1/y)

) , y > 0, (C.3)

and ψ is defined in a neighborhood of zero by ψ(0) = 0 and ψ(x) = Q(x)
x for x > 0. Conversely, given a function

U , defining ψ in a neighborhood of zero in such a way that (C.3) holds, setting Q(x) = xψ(x) and defining q
from Q using (2.12), any sequence (yn)n∈N starting in a neighborhood of zero and satisfying (C.2) is of the form
yn = − 1

ln(Q[n](x0))
for some suitable x0 ∈ (0, 1) in a neighborhood of zero. Moreover, in terms of the sequence

(yn)n∈N, (4.28) reads

lim inf
n→+∞

nϕ(n)− 1

yn
> −∞. (C.4)

Hence, constructing q and Q as in the statement is equivalent to constructing a function U such that the
functions q and Q defined from it as above satisfy the properties of the statement and such that any sequence
(yn)n∈N satisfying (C.2) and starting in a neighborhood of zero verifies (C.4).

Define Ψ(x) = 2
xϕ(x) for x > 0. Then Ψ realizes a C2 diffeomorphism from R∗+ to R∗+, mapping a neighborhood

of +∞ to a neighborhood of 0. Moreover, for x ≥ 0, one has

Ψ′(x) =
−2

x2ϕ(x)

(
1 +

xϕ′(x)

ϕ(x)

)
= −Ψ(x)

x

(
1 +

xϕ′(x)

ϕ(x)

)
(C.5)

and

Ψ′′(x) =
2Ψ(x)

x2

(
1 +

xϕ′(x)

ϕ(x)
+
x2ϕ′(x)2

ϕ(x)2
− x2ϕ′′(x)

2ϕ(x)

)
.

In particular, one has Ψ′ < 0 and Ψ′′ > 0 on R∗+. Straightforward computations also show that 0 < −xΨ′′(x)
Ψ′(x) ≤ 4

for every x > 0 and yΨ−1(y) = 2Ψ−1(y)
Ψ−1(y)ϕ(Ψ−1(y)) → 0 as y → 0+. Using the above bound on xΨ′′(x)

Ψ′(x) and reasoning

as in the argument to obtain (C.1), one deduces that, for every C > 0,

lim
x→+∞

Ψ′(x+ C)

Ψ′(x)
= 1. (C.6)
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We claim that the function U defined by U(0) = 0 and U = − 1
2Ψ′ ◦Ψ−1 in R∗+ meets all the requirements.

Indeed, U is of class C1 in R∗+ and, since U(y) = y
2Z

(
1 + Zϕ′(Z)

ϕ(Z)

)
with Z = Ψ−1(y), one deduces that U is

continuous at 0, 0 < U(y) < y for every y > 0, U ′(0) = limy→0+
U(y)
y = 0, and, using that yΨ−1(y) → 0 as

y → 0+, we also deduce that limy→0+
U(y)
y2 = +∞. Moreover, one has

U ′(y) = −1

2

Ψ′′ ◦Ψ−1(y)

Ψ′ ◦Ψ−1(y)
=

1

Z

1 +A+A2 +B

1 +A
,

where Z = Ψ−1(y), A = Zϕ′(Z)
ϕ(Z) ∈ [0, 1], and B = −Z

2ϕ′′(Z)
2ϕ(Z) ∈ [0, 1], yielding that U ′(y)→ 0 as y → 0+.

Let ψ be defined by ψ(0) = 0 and

ψ(x) = exp

(
−
U
(
− 1

ln x

)
(lnx)2

1 + U
(
− 1

ln x

)
lnx

)

for x in a neighborhood (0, x∗) of 0 with x∗ ∈ (0, 1), in such a way that (C.3) holds for y in a neighborhood of 0.
Using the above properties on U , one deduces that ψ is of class C1 in (0, x∗), continuous at 0, and ψ(x) ∈ (0, 1)
for x ∈ (0, x∗).

We claim that, up to reducing x∗, one has xψ′(x) > 0 for x ∈ (0, x∗) and xψ′(x) → 0 as x → 0+. Indeed,
notice that ψ can be written for x ∈ (0, x∗) as

ψ(x) = exp[V (U ◦ L(x), L(x))], L(x) := − 1

lnx
, V (u, y) := − u/y2

1− u/y
=

1

y
− 1

y − u
.

Hence, for x ∈ (0, x∗), we have xψ′(x) = xψ(x)W (x)L′(x), where

W (x) = ∂uV (U ◦ L(x), L(x))U ′ ◦ L(x) + ∂yV (U ◦ L(x), L(x)).

A straightforward computation yields that

xψ′(x) = ψ(x)
1− U ′ ◦ L(x)

1− U◦L(x)
L(x)

,

and the above properties of U show that xψ′(x) > 0 for x small enough and xψ′(x)→ 0 as x→ 0+.
We finally define Q in the neighborhood [0, x∗) by Q(x) = xψ(x). The above properties of ψ immediately

yield that Q(0) = 0 and 0 < Q(x) < x for x ∈ (0, x∗). Moreover, Q is clearly continuous in [0, x∗) and of class

C1 in (0, x∗). One has Q′(0) = limx→0+
Q(x)
x = 0 and, using that Q′(x) = ψ(x) + xψ′(x) for x > 0, one also

deduces from the above properties of ψ that Q is of class C1 in [0, x∗) and that Q′(x) > 0 for x ∈ (0, x∗). Finally,
defining q from Q using (2.12), one immediately verifies that q satisfies the assumptions from the statement.

We are now left to prove (C.4) for every sequence (yn)n∈N satisfying (C.2) and with y0 > 0. Fix such a
sequence (yn)n∈N and notice that, since U is continuous and 0 < U(y) < y for every y ∈ R∗+, (yn)n∈N is a
decreasing sequence of positive numbers converging to 0. We claim that there exists n0 ∈ N such that, for every
n ∈ N, one has

yn ≥ Ψ(n+ n0). (C.7)

Indeed, since U ′(0) = 0, the function Id−U is increasing in (0, y∗) for some y∗ > 0, and we take n0 ∈ N such
that yn ∈ (0, y∗) for every n ≥ n0. Using that Ψ(x)→ 0 as x→ +∞ and (C.6), increasing n0 if necessary, we
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also have that Ψ(n0) ≤ y0 and that

Ψ′(x+ 1)

Ψ′(x)
≥ 1

2
for every x ≥ n0. (C.8)

We prove (C.7) by induction on n. By construction of n0, (C.7) is satisfied for n = 0. Assume now that n ∈ N
is such that (C.7) holds. Using the fact that Id−U is increasing in (0, y∗), the induction assumption, and the
definition of U , we deduce that

yn+1 = yn − U(yn) ≥ Ψ(n+ n0)− U(Ψ(n+ n0)) = Ψ(n+ n0) +
1

2
Ψ′(n+ n0).

Applying the mean value theorem and using (C.8) and the fact that Ψ′ is negative and increasing, we get that
Ψ(n+n0)−Ψ(n+n0 + 1) ≥ −Ψ′(n+n0 + 1) ≥ − 1

2Ψ′(n+n0), yielding that yn+1 ≥ Ψ(n+n0 + 1), as required.
Hence (C.7) is established for every n ∈ N by induction.

By (C.1), we have that (n+n0)ϕ(n+n0)
nϕ(n) → 1 as n → +∞, and thus one deduces from (C.7) that, for n large

enough, one has yn ≥ 1
nϕ(n) , which finally implies (C.4), yielding the result.

Appendix D. Technical lemmas

This appendix provides a series of technical results used in the paper. The first one is useful for establishing
existence and uniqueness results for solutions of (1.1) in Section 3.

Lemma D.1. Let p ∈ [1,+∞], S : R ⇒ R, and assume that, for every g ∈ Yp, there exists h ∈ Yp such that
h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1]. Then, for every measurable function g : [−1, 1]→ R, there exists a measurable
function h : [−1, 1]→ R such that h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1].

Proof. Let g : [−1, 1]→ R be measurable. Let A0 = g−1([−1, 1]) and, for n ∈ N∗, let An = g−1([−n− 1,−n) ∪
(n, n + 1]). Then clearly An is measurable for every n ∈ N and the sequence (An)n∈N is a partition of [−1, 1].
For each n ∈ N, define gn : [−1, 1] → N by gn = gχAn , where χAn denotes the characteristic function of An.
Then gn is measurable and bounded, and hence gn ∈ Yp. Hence, there exists a sequence (hn)n∈N in Yp such that
hn(s) ∈ S(gn(s)) for every n ∈ N and a.e. s ∈ [−1, 1]. Let h =

∑∞
n=0 hnχAn , which is measurable as the countable

sum of measurable functions. For every n ∈ N and a.e. s ∈ An, one has h(s) = hn(s) ∈ S(gn(s)) = S(g(s)), and
thus h(s) ∈ S(g(s)) for a.e. s ∈ [−1, 1], as required.

The definition of uniform global asymptotic stability of (1.1) requires (4.1) to be satisfied for some KL
function β. Our next lemma provides sufficient conditions under which a function can be upper bounded by a
KL function, and it is thus useful in several proofs of UGAS results.

Lemma D.2. Let f : R+ × R+ → R+ be a function so that

(a) f(0, ·) ≡ 0;
(b) for every t ≥ 0, x 7→ f(x, t) is nondecreasing and tends to zero as x tends to 0;
(c) for every x ≥ 0, t 7→ f(x, t) is nonincreasing and tends to zero as t tends to infinity.

Then there exists a KL function β such that

f(x, t) ≤ β(x, t), ∀t ≥ 0. (D.1)

Proof. The issue here arises from the fact that f is not necessarily continuous. Define β0 : R+ × R+ → R+ as
follows: for x ∈ R+ and t ∈ [0, 1], β0(x, t) = f(x, 0) and, for x ∈ R+, n ∈ N∗, and t ∈ [n, n+ 1],

β0(x, t) = αtf(x, n− 1) + (1− αt)f(x, n),
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where αt ∈ [0, 1] is uniquely defined by the relation t = αtn + (1 − αt)(n + 1). Then β0 verifies the three
items (a), (b), and (c), f(x, t) ≤ β0(x, t) for every (x, t) ∈ R+ × R+, and, by construction, t 7→ β0(x, t) is
continuous for every x ≥ 0.

We next define β1 : R+×R+ → R+ as follows: for every t ∈ R+, n ∈ Z, and x ∈ [2n−1, 2n], we set β1(0, t) = 0
and

β1(x, t) = αxβ0(2n, t) + (1− αx)β0(2n+1, t),

where αx ∈ [0, 1] is uniquely defined by the relation x = αx2n−1 + (1 − αx)2n. It is immediate to check that
β1 is continuous, satisfies (a), (b), and (c), and f(x, t) ≤ β1(x, t) for every (x, t) ∈ R+ × R+. We conclude by
taking β(x, t) = β1(x, t) + xe−t for (x, t) ∈ R+ × R+.

The next result, used in Remark 4.27 and in the proof of Theorem 5.3, is a generalization of Jensen’s inequality
to Lp norms. Its proof follows closely the classical proof of Jensen’s inequality and is provided here for sake of
completeness.

Lemma D.3. Let (Ω,A, µ) be a measure space with 0 < µ(Ω) < +∞. Let f : R+ → R+ be a nondecreasing
concave function. Then, for every p ∈ [1,+∞) and every real-valued function g ∈ Lp(Ω, µ), one has

‖f ◦ |g|‖Lp(Ω,µ) ≤ µ(Ω)1/pf(µ(Ω)−1/p‖g‖Lp(Ω,µ)).

Proof. We assume, with no loss of generality, that µ(Ω) = 1, since, once the result is proved in this case, one

retrieves the general case by applying it to the measure ν(·) = µ(·)
µ(Ω) .

Fix p ∈ [1,+∞) and g ∈ Lp(Ω, µ). Since f is concave, there exist A,B ∈ R such that f(t) ≤ At + B for
every t ∈ R+ and f(‖g‖Lp(Ω,µ)) = A‖g‖Lp(Ω,µ) + B. In particular, f ◦ |g| ≤ A|g| + B. Moreover, since f is
nondecreasing, one has A ≥ 0 and, since f(0) ≥ 0, one has B ≥ 0. Then, using Minkowski inequality, one
deduces that

‖f ◦ |g|‖Lp(Ω,µ) ≤ ‖A|g|+B‖Lp(Ω,µ) ≤ A‖g‖Lp(Ω,µ) +B = f(‖g‖Lp(Ω,µ)),

as required.

The next two lemmas provide suitable constructions of functions and are used, respectively, in the proofs of
Proposition 4.24 and Theorem 5.3.

Lemma D.4. Let ϕ : R+ → R+ be an increasing function such that limx→+∞ ϕ(x) = +∞. Then there exists
a C2 function ψ : R+ → R+ satisfying limx→+∞ ψ(x) = +∞ such that ψ′ > 0, ψ′′ ≤ 0, ψ(0) > 0, ψ(x) ≤ ϕ(x)

for x large enough, and such that 0 ≤ xψ′(x)
ψ(x) ≤ 1 and 0 ≤ −xψ

′′(x)
ψ(x) ≤ 2 for every x ∈ R+.

Proof. It suffices to prove the result with the additional assumptions that ϕ is also continuous and piecewise
affine with positive constant derivative on every interval of the form (n, n + 1). Indeed, when this is not the
case, one can easily construct a function φ using a procedure similar to that of Lemma D.2 in such a way that
φ(x) ≤ ϕ(x) for x large enough and φ satisfies the assumptions of the theorem as well as the previous additional
assumptions. We then assume these additional assumptions in the sequel.

For n ∈ N, let ϕn = ϕ(n) and denote by ϕ̃n > 0 the constant value of the derivative of ϕ in the interval

(n, n+ 1). One has that ϕn = ϕ0 +
∑n−1
k=0 ϕ̃k, which is an increasing sequence tending to infinity. Also note that

we can assume with no loss of generality that ϕ0 and ϕ̃0 are both positive.
We first construct a continuous increasing piecewise affine function F : R+ → R+ with F ≤ ψ, lim

x→+∞
F (x)

= +∞, and such that its derivative f = F ′ is nonincreasing and constant at every interval of the form (n, n+ 1).
For that purpose, it is sufficient to construct the sequence (Fn)n∈N of the values of F (x) at the points x = n
and the sequence (fn)n∈N of the constant values of f on the intervals (n, n+ 1).
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We define (Fn)n∈N recursively as follows: F0 = ϕ0 > 0, f0 = ϕ̃0 > 0, and, for n ∈ N∗, Fn = F0 +
∑n−1
k=0 fk and

fn = fn−1 if Fn + fn−1 ≤ ϕn+1 or fn = ϕ̃n otherwise. We easily show by induction that Fn ≤ ϕn for n ≥ 0 and
(fn)n∈N is a nonincreasing positive sequence. Indeed, F0 = ϕ0, f0 = ϕ̃0, F1 = ϕ1, and one has either F1 +f0 ≤ ϕ2,
in which case f1 = f0, or F1 + f0 > ϕ2, in which case f0 > ϕ2 −F1 = ϕ2 −ϕ1 = ϕ̃1, yielding that f1 = ϕ̃1 < f0,
so that f0 ≥ f1 > 0 in both cases. Assume now that n ∈ N∗ is such that Fn ≤ ϕn and fn−1 ≥ fn > 0. If
Fn + fn−1 ≤ ϕn+1, then fn = fn−1, implying that Fn+1 = Fn + fn ≤ ϕn+1. If now Fn + fn−1 > ϕn+1, one
deduces from that equation that fn−1 > ϕ̃n = fn, yielding that Fn+1 = Fn + fn ≤ ϕn + fn = ϕn + ϕ̃n = ϕn+1

by the induction hypothesis. If Fn+1 + fn > ϕn+2 one deduces that fn > ϕ̃n+1 = fn+1 > 0 and otherwise
fn = fn+1 > 0. This concludes the induction argument.

It remains to prove that Fn tends to infinity as n tends to infinity. Arguing by contradiction yields that both
sequences (Fn)n∈N and (fn)n∈N are bounded. Hence there exists an integer n0 so that Fn + fn−1 ≤ ϕn+1 for
every n ≥ n0, since (ϕn)n∈N tends to infinity. Therefore, by definition, (fn)n≥n0 is constant and equal to some
f > 0, yielding that Fn = Fn0 + f(n − n0) for n ≥ n0, which contradicts the fact that (Fn)n∈N is bounded,
establishing this the result.

To obtain the required function ψ, we define ψ(x) = F (x) for x ∈ [0, 1
2 ] and we regularize the function F in

a neighborhood of each positive integer as follows: for n ∈ N∗ and s ∈ [0, 1], we set

ψ
(
n− 1

2 + s
)

=
fn − fn−1

2
s2 + fn−1s+ Fn −

fn−1

2
.

Note that ψ and ψ′ coincide with F and f , respectively, at all points of the form n+ 1
2 for n ∈ N, and that ψ′

is positive, continuous, and nonincreasing. In particular, from the latter fact, we get

ψ(x) = ψ(0) +

∫ x

0

ψ′(s) ds ≥ ψ(0) + xψ′(x), x ≥ 0,

which implies that 0 ≤ xψ′(x)
ψ(x) ≤ 1. Moreover, for every x ≥ 1

2 , there exist n ∈ N∗ and s ∈ [0, 1] such that

x = n− 1
2 + s, and one has

0 ≤ −xψ
′′(x)

ψ(x)
=
x(fn−1 − fn)

ψ(x)
≤ xfn−1

ψ(x)
≤

2(n− 1
2 )ψ′(n− 1

2 )

ψ(n− 1
2 )

≤ 2,

which concludes the proof.

Lemma D.5. Let µ : R+ → R+ be an upper semi-continuous nondecreasing function with µ(0) = 0, 0 < µ(r) <
r for r > 0, and such that r − µ(r) tends to +∞ as r → +∞. Then there exists a K∞ function ϕ such that
Id−ϕ is nondecreasing and µ ≤ Id−ϕ. Moreover, if there exist a ∈ (0, 1) and M ≥ 0 such that µ(r) ≤ ar for
every r ≥M , then ϕ can in addition be chosen convex.

Proof. Let us first consider the function ϕ0 : R+ → R+ defined by

ϕ0(s) = inf
r≥s

r − µ(r).

Then ϕ0 is nondecreasing, ϕ0(0) = 0, 0 < ϕ0(r) < r for every r > 0, µ ≤ Id−ϕ0, and ϕ0(r)→ +∞ as r → +∞.
We construct the required function ϕ by an argument similar to that of Lemma D.4. Choose an increasing

sequence (xn)n∈Z in R+ with limn→−∞ xn = 0 and limn→+∞ xn = +∞ such that the sequence (ϕ0(xn))n∈Z is

increasing, and, for n ∈ Z, let δn = xn+1 − xn > 0 and fn = ϕ0(xn)−ϕ0(xn−1)
δn

> 0. We now define a sequence
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(Fn)n∈Z as follows: for n ≤ 0, we set

Fn =

n−1∑
k=−∞

min(1, fk)δk,

and we remark that, for every n ≤ 0, one has 0 < Fn ≤
∑n−1
k=−∞ fkδk ≤ ϕ0(xn−1), Fn > Fn−1, and Fn−Fn−1

δn−1
=

min(1, fn−1) ≤ 1. For n > 0, we define Fn inductively by Fn = min(Fn−1 + δn−1, ϕ0(xn−1)). Clearly, for every
n > 0, we have Fn ≤ ϕ0(xn−1) by construction, and one easily shows by induction that Fn > Fn−1 and
Fn−Fn−1

δn−1
≤ 1.

Define ϕ : R+ → R+ by setting ϕ(0) = 0 and ϕ(x) = αxFn + (1 − αx)Fn+1 for n ∈ Z and x ∈ [xn, xn+1],
where αx ∈ [0, 1] is the unique value such that x = αxxn + (1−αx)xn+1. Clearly, ϕ is continuous and increasing.

For n ∈ Z, ϕ is affine in [xn, xn+1] with (constant) derivative Fn+1−Fn
δn

∈ (0, 1] in (xn, xn+1). In particular,
ϕ′(x) ∈ (0, 1] for almost every x > 0, and thus Id−ϕ is nondecreasing. For n ∈ Z and x ∈ [xn, xn+1], one has
ϕ(x) ≤ Fn+1 ≤ ϕ0(xn) ≤ ϕ0(x), which implies that µ ≤ Id−ϕ.

We are only left to prove that ϕ(x) → +∞ as x → +∞ or, equivalently, that Fn → +∞ as n → +∞.
Reasoning by contradiction yields that, since (Fn)n∈Z is increasing, there exists F∗ > 0 such that Fn → F∗ as
n → +∞ and Fn < F∗ for every n ∈ Z. Let n0 ∈ N be such that ϕ0(xn) ≥ F∗ for every n ≥ n0, which exists
since ϕ0(r)→ +∞ as r → +∞. Hence, for every n > n0, we have Fn < ϕ0(xn−1), and the inductive definition

of Fn implies that Fn = Fn−1 + δn−1. Thus Fn = Fn0
+
∑n−1
k=n0

δk = Fn0
+ xn − xn0

and, as n→ +∞, one has
xn → +∞, implying that Fn → +∞ and yielding the required contradiction.

Finally, we turn to the second part of the statement, namely that, under the extra assumption of the existence
of a ∈ (0, 1) and M ≥ 0 such that µ(r) ≤ ar for every r ≥M , one may construct ϕ to be convex. With no loss

of generality, we assume that M > 0. Let ϕ be constructed from µ as above, λ = min
(

1, (1−a)M
ϕ(M)

)
, and define

ϕ1 : R+ → R+ by ϕ1(x) = λϕ(x) for x ∈ [0,M ] and ϕ1(x) = ϕ1(M) + (1 − a)(x −M) for x > M . Then, by
construction, ϕ1 is a K∞ function such that Id−ϕ1 is nondecreasing and ϕ1 ≤ Id−µ. Let h : R∗+ → R+ be the
nondecreasing function given by h(x) = ess infr≥x ϕ

′
1(r) for every x > 0. Since ϕ1 is piecewise affine with finitely

many affine pieces on every interval of the form [x,+∞) with x > 0, ϕ′1 takes a finite number of values in each
such interval, and thus h(x) > 0 for every x > 0. Moreover, h(x) ≤ ϕ′1(x) for a.e. x ∈ R+ and h(x) = 1− a for
x > M . We define

ϕ∗(x) =

∫ x

0

h(r) dr,

which is clearly a convex K∞ function such that Id−ϕ∗ is nondecreasing and ϕ∗ ≤ ϕ1 ≤ Id−µ, as required.

Our final technical result in this appendix is the following lemma, used in the proof of Theorem 4.33.

Lemma D.6. Let φ : R+ → R∗+ be a decreasing function such that limt→+∞ φ(t) = 0. Define the sequence
(bn)n∈N inductively by b0 = φ(0), b1 = max(b0 − 1, φ(1)), and, for n ≥ 2,

bn = max(2bn−1 − bn−2, φ(n)),

and let (an)n∈N be given by a0 = 1 and an = bn−1 − bn for n ≥ 1. Then the sequence (an)n∈N is nonincreasing,
the sequence (bn)n∈N is decreasing, and both are sequences of positive numbers converging to 0.

Proof. Notice first that bn > 0 for every n ∈ N since bn ≥ φ(n) > 0.
To prove that (bn)n∈N is decreasing, we prove that bn < bn−1 for every n ≥ 1 by induction. One has either

b1 = b0 − 1 < b0 or b1 = φ(1) < φ(0) = b0, and hence b1 < b0. Now, let n ≥ 2 be such that bn−1 < bn−2. If
bn = 2bn−1 − bn−2, then bn − bn−1 = bn−1 − bn−2 < 0, and thus bn < bn−1. Otherwise, one has bn = φ(n) <
φ(n− 1) ≤ bn−1. Hence, in all cases, bn < bn−1. Thus, by induction, (bn)n∈N is decreasing.
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It now follows that an > 0 for every n ∈ N, since a0 = 1 and, for n ≥ 1, an = bn−1 − bn and (bn)n∈N is
decreasing.

Let us now show that (an)n∈N is nonincreasing. One has b1 ≥ b0 − 1, and thus a1 = b0 − b1 ≤ 1 = a0. For
n ≥ 2, one has bn ≥ 2bn−1− bn−2, which implies that bn− bn−1 ≥ bn−1− bn−2, and hence an ≤ an−1, as required.

Since (bn)n∈N is decreasing, this sequence admits a limit b∗ ∈ [0, b0). Then

lim
n→+∞

an = lim
n→+∞

(bn−1 − bn) = b∗ − b∗ = 0.

Assume, to obtain a contradiction, that b∗ > 0. Using also the fact that φ(t)→ 0 as t→ +∞, one deduces
that there exists N ≥ 2 such that, for every n ≥ N , one has bn >

b∗
2 and φ(n) < b∗

2 . Hence, one has necessarily
bn = 2bn−1 − bn−2 for every n ≥ N , which implies that bn−1 − bn = bn−2 − bn−1, and thus an = an−1 for every
n ≥ N . Since an → 0 as n → +∞, this implies that an = 0 for every n ≥ N , which contradicts the fact that
an > 0 for every n ∈ N. This contradiction establishes that b∗ = 0, as required.
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