N

N

Immersive Video Coding: Should Geometry Information
be Transmitted as Depth Maps?
Patrick Garus, Felix Henry, Joél Jung, Thomas Maugey, Christine Guillemot

» To cite this version:

Patrick Garus, Felix Henry, Joél Jung, Thomas Maugey, Christine Guillemot. Immersive Video Cod-
ing: Should Geometry Information be Transmitted as Depth Maps?. IEEE Transactions on Circuits
and Systems for Video Technology, 2022, 32 (5), pp.3250-3264. 10.1109/TCSVT.2021.3100006 . hal-
03303040

HAL Id: hal-03303040
https://hal.science/hal-03303040
Submitted on 27 Jul 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03303040
https://hal.archives-ouvertes.fr

Immersive Video Coding: Should Geometry
Information be Transmitted as Depth Maps?

Patrick Garus, Felix Henry, Orange Labs
Joel Jung, Tencent Media Lab
Thomas Maugey, Christine Guillemot, /INRIA

Abstract—Immersive video often refers to multiple views with
texture and scene geometry information, from which different
viewports can be synthesized on the client side. To design efficient
immersive video coding solutions, it is desirable to minimize
bitrate, pixel rate and complexity. We investigate whether the
classical approach of sending the geometry of a scene as depth
maps is appropriate to serve this purpose. Previous work shows
that bypassing depth transmission entirely and estimating depth
at the client side improves the synthesis performance while saving
bitrate and pixel rate. In order to understand if the encoder
side depth maps contain information that is beneficial to be
transmitted, we first explore a hybrid approach which enables
partial depth map transmission using a block-based RD-based
decision in the depth coding process. This approach reveals
that partial depth map transmission may improve the rendering
performance but does not present a good compromise in terms
of compression efficiency. This led us to address the remaining
drawbacks of decoder side depth estimation: complexity and
depth map inaccuracy. We propose a novel system that takes
advantage of high quality depth maps at the server side by
encoding them into lightweight features that support the depth
estimator at the client side. These features allow reducing the
amount of data that has to be handled during decoder side
depth estimation by 88%, which significantly speeds up the cost
computation and the energy minimization of the depth estimator.
Furthermore, -46.0% and -37.9% average synthesis BD-Rate
gains are achieved compared to the classical approach with depth
maps estimated at the encoder.

Index Terms—MPEG, decoder side depth estimation, Feature-
Driven Depth Estimation, Immersive Video.

I. INTRODUCTION

HE MPEG-I Visual group is investigating solutions for

immersive video to enable 6 Degrees of Freedom (DoF)
for the client [1], i.e. allowing the user to freely navigate
through the video content. Typical applications include sports
events, telepresence, entertainment and gaming. For example,
in a sport use case, a stadium is surrounded by a camera
array that captures the entire field of play so that any point
of view can be synthesized. The preferred format adopted by
the MPEG-I Visual is multiview plus depth (MVD), where
each view carries both a texture and a depth component
and the point of view of the user (called the viewport) is
synthesized from these components in the client. In order to
avoid the deployment of new codecs, the group intends to
build its solution around legacy 2D video codecs. Therefore,
two solutions are investigated: an MV-HEVC-based [2] and
an HEVC-based [3] method. MV-HEVC comes with interview
prediction, making it suitable to compress multiview sequences
efficiently. However, because of these interview dependencies,

it requires the decoding of a large number of views at the
client side before the requested viewport can be rendered.
This results in pixel processing larger than the pixel rate of
the client, i.e. the maximum number of pixels it can decode
per time unit. While it is possible to discard several views
before encoding the quality of the reconstructed scene may be
reduced. The other solution is denoted as MPEG Immersive
Video (MIV) [4]. While its reference software implementation
uses HEVC, it is agnostic to the video codec. Instead of using
interview prediction, MIV removes interview-redundancy in a
pre-processing step by pruning the input views and packing
remaining patches of pixels into atlases. Thus, the pixel rate
is significantly reduced. The atlases are subsequently coded
using any 2D codec. Yet MIV suffers from similar downsides
as the MV-HEVC approach. In both cases, the depth maps
are compressed using a video codec designed for texture
compression. This affects view synthesis, as the presence of
compression artifacts in depth maps impacts the quality of
the synthesized views [5]. Furthermore, the depth maps can
take up to 30% of the total bitstream and, most significantly,
they increase the pixel rate, as they represent additional video
frames that need to be decoded. Finally, this method requires
the allocation of a suitable quantization parameter (QP) for
depth maps, which is not trivial to find [6]. In the following,
we denote this kind of system as encoder side depth estimation
(ESDE), as the depth maps are acquired or estimated at the
encoder side and transmitted to the decoder side.

We have shown in our previous work, that most of the
downsides of ESDE are solved by completely bypassing the
transmission of depth maps and then performing the depth
estimation at the decoder side using the decompressed texture
views. This approach is called decoder side depth estimation
(DSDE) [7]. In particular, this approach enables a significant
improvement in coding efficiency because most of the geome-
try can be estimated from the decoded textures at the decoder.
Furthermore, DSDE reduces the pixel rate as depth maps
do not need to be decoded. However, this method requires
an additional depth estimation stage in the decoder and may
produce depth map inaccuracies [7]. This raises the following
question: what part of the geometry should be sent (at the
price of a rate cost) and what should be estimated at the
decoder (at the price of a possibly degraded view synthesis
quality and a higher complexity)? In order to answer this
question, we first investigate a compromise between ESDE and
DSDE by switching between the two approaches at a Coding
Unit (CU) level using a Rate-Distortion criterion. This enables

Copyright © 2021 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.

the transmission of partial depth maps, where only the CUs
that are useful to the efficiency of the overall compression
efficiency are transmitted. Subsequently, the partial depth is
completed on the decoder side using depth estimation. This
approach would retain flexibility for content providers, who
may still prefer to transmit their own depth maps. It leads to an
average BD-Rate reduction of -34.9% and -24.8% for medium
and low bitrates respectively, considering synthesized view
PSNR compared to the MPEG-I Visual reference. However, it
does not substantially outperform regular DSDE. We therefore
conclude that it is not beneficial for compression efficiency to
send the geometry of a scene as global or local depth maps.
In the second part of this paper, we propose a new design
called Feature Driven DSDE, with the goal of solving the two
main issues of DSDE: the increase of client side complexity
arising from the additional depth estimation step, and the
accuracy of the client side depth maps that are estimated
from the available decompressed texture views. We use the
DSDE approach and, in addition, we allow the transmission
of side information in the form of lightweight “features”. We
extract these features from original depth maps at the block
level, in order to guide the decoder side depth estimation.
These features include regularization parameters that enable
the decoder side depth estimator to generate depth maps
which minimize the L2 distance to the original encoder-side
depth maps. Furthermore, depth ranges are provided per block,
thereby significantly reducing the number of depth hypotheses
that need to be evaluated in the decoder. Additional syntax
elements serve to refine the system and to reduce the overall
bitrate of the features. These features allow the reduction in
the number of depth candidates to be explored by 88% on
average and by over 95% for several sequences. In addition,
the BD-rate gain compared to MPEG-I Visual reference is -
46.0% and -37.9% for medium and low bitrates respectively.
This approach also outperforms regular DSDE.

The remainder of the paper is organized as follows. In Section
I, an overview of possible system architectures for immersive
video is provided and the terminology is introduced. Section
IIT presents the Hybrid DSDE and Feature Driven DSDE
in more detail. Section IV summarizes the test environment
and section V provides the experimental results. Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

Multiview content can either be based on computer-
generated imagery (CGI) or captured by a set of 2D cameras
typically positioned in arcs or arrays. The depth maps may
either be captured using depth sensors, estimated using depth
estimation algorithms or computed from CGI models. Current
depth sensors usually do not provide sufficient quality for view
synthesis tasks, as they lack both resolution and precision.
Natural content therefore relies on depth estimation algo-
rithms. However, choosing the best depth estimator for a view
synthesis task is not trivial [8]. For MVD content, intermediate
views can be synthesized using depth image-based rendering
(DIBR) [9]. Therefore, the support of immersive video implies
compression and transmission of multiple viewpoints, view
synthesis, and depth estimation.

A. Systems for Immersive Video Coding

The positioning of the depth estimator and the view syn-
thesizer [10] in the codec pipeline defines three possible
architectures as illustrated in Fig 1. The scene is captured and
stored as multiview textures 7'. They are compressed using a
texture encoder. In case of ESDE, the original depth maps
are encoded, typically using the same video codec as for
textures. At the decoder side a synthesizer generates novel
views Sgspr using decoded textures 7™ and depth maps
D* (Fig. 1a). This architecture has been chosen as a reference
at the beginning of 3D-HEVC standardization, which has moti-
vated a lot of research in depth coding tools [11], continuously
improving compression performance [12] or reducing encoder
complexity [13] [14].

Dziembowski et al. [5] have tested the impact of compressing
the textures on the accuracy of depth estimation and showed
that it is limited to low bitrates. Their investigation is targeting
the application of rendering servers, in which depth estimation
is performed on compressed textures to save storage, while
synthesized views are transferred to the client [15]. This solu-
tion is based on the third architecture shown in Fig. 1¢), which
is significantly different from the design currently considered
in MPEG.

We call Basic-DSDE (B-DSDE) the simplest form of DSDE,
shown in Fig. 1b). The depth maps are not transmitted, the
depth estimator is moved to the decoder side and depth maps
DT are estimated from decoded textures T to synthesize
Spspr. A first analysis of this system compared to ESDE
is presented in [7] for full views and in [16] for patch atlases.
In contrast to ESDE, little investigation [17] and improvement
have been done towards the DSDE system up to this date.
In the literature, several reasons are mentioned as for why
the DSDE system has not been considered for immersive
video [18]:

1) The result of depth estimation varies depending on
the method. Consequently, a content provider may not
have full control of the view synthesis quality on the
consumer’s display.

2) Quantization noise and other compression artifacts
present in decoded textures make depth estimation more
challenging and may harm the view synthesis process.

3) Depth estimation is typically a complex process and
may therefore be inappropriate to be performed on the
decoder side.

The first argument has only minor relevance because the
renderer is purposely not part of the specification of 3D-HEVC
and any immersive video standard currently in development:
while this prevents a guarantee of a certain level of quality, it
leaves room for improvement as any type of future synthesizer
can be used. The second argument has been discussed in [7]
and we have shown that DSDE provides better view synthesis
performance when compared to ESDE if HEVC or MV-
HEVC are used for depth compression. In this work, we
propose a modification of DSDE that significantly reduces the
complexity while further improving the view synthesis quality,
thereby addressing the third and last concern related to DSDE.

Encoder-Side

a) T

Depth
Estimator

Texture Texture
Encoder Bitstream
D Depth Depth
Encoder Bitstream

Decoder-Side

Encoder-Side

- | -
Texture Texture Texture *
b) T Bitstream | r

1
Texture * 3 aqizer
1 T SESDE
1
Depth *
1 b
Decoder-Side

Depth
Estimator

Encoder-Side

C) T"{ Synthcsizch—' S"{

Texture
Encoder

Depth
Estimator

Decoder-Side

| -
Texture Texture S*
Bitstream | Decoder

Fig. 1: Three immersive video coding architectures with different positioning of the depth estimator and the view synthesizer.
The input signals are original multiview textures 7' and multiview depth maps D. The superscript * indicates decoded signals.
a) shows the ESDE system with synthesized views Sgspg, b) shows the DSDE system with decoder-derived depth D+ and
synthesized views Spspg and c) shows a third solution, which directly transmits synthesized views S.

B. Compression for Immersive Video

When compressing MVD video, spatial, temporal, inter-
view and inter-component redundancies are exploited to in-
crease the compression performance. MV-HEVC inherently
removes redundancy amongst views by using inter-view mo-
tion parameters and residual prediction [2]. On one hand, it
efficiently exploits previously encoded views for prediction,
using only high-level syntax changes compared to HEVC.
On the other hand, 3D-HEVC additionally exploits inter-
component redundancy between depth maps and textures:
block-based synthesized view distortion is used to drive depth
map encoding decisions [19], [20]. Substantial research effort
has been done towards improving the compression of depth
maps with the goal of improving view synthesis [21]. Nev-
ertheless, mostly due to the lack of wide industrial adoption
of dedicated depth coding tools, depth maps are compressed
using already deployed codecs such as HEVC or MV-HEVC.
This comes with a negative impact on the quality of the
decoded depth maps for view synthesis. This motivates our
work to investigate the estimation of depth maps at the
decoder side. As depth estimation and view synthesis are fast
advancing topics of research, only the most recent and MPEG-
related algorithms are presented in the following.

C. Depth Image-Based Rendering

DIBR systems use depth maps and textures for the rendering
of intermediate views. A typical and recent example of such
a system is presented in [22], which covers 3D warping,
occlusion handling by inpainting and depth map processing.
Depth maps are filtered by a local asymmetric depth filter to

avoid blurring of non-hole regions. After warping the input
views, holes are filled by an additional inverse 3D-Warping
step. Finally, a depth map based image inpainting is used to
fill remaining occlusions in the synthesized view. In [23], a
deep learning based approach is proposed. Depth maps are
estimated using two different stereo matching algorithms, one
targeting global consistency, the other targetting fine details.
Temporal consistency is encouraged in the loss term, which
comprises a perceptual loss using activations at different
scales of a pretrained VGG16 network. The Versatile View
Synthesizer (VVS) is the reference synthesizer for the MV-
HEVC-based 6DoF solution in MPEG-I Visual [24]. It was
designed for optimizing perceptual quality of virtual views,
considering the presence of compression artifacts in the trans-
mitted reference views. Reference views are sorted according
to their warping quality, which increases its robustness towards
complex camera setups. Depth information is used to project
the texture views to the virtual view position. After merging,
temporal inpainting is performed to fill remaining holes.

D. Depth Estimation

Like view synthesis, depth estimation is a well studied topic.
With the increasing progress of neural networks, most recent
approaches use CNN-based methods to estimate high quality
depth maps for certain content. Yet, due to their current lack of
robustness and their requirement for specific hardware, CNN-
based approaches are not yet considered by the standardization
community. The authors of [25] use deep learning methods
to estimate depth maps from light-fields. Using a fine tuned
FlowNet 2.0 network, several candidate depth maps are esti-

mated between the target view and other horizontal or vertical
views. They are then merged together to form a single depth
map. In addition to depth accuracy, the authors of [26] set the
emphasis on reducing the complexity of the depth estimation
algorithm by using superpixels as their basic data units. Using
a GPU-optimized implementation, they can process one HD
depth map per second. The authors of [27] use several runtime
optimization strategies on their deep convolutional encoder-
decoder design, such as depthwise decomposition, network
pruning and hardware-specific compilation. Their CNN-based
monocular depth estimator achieves up to 178 fps on 224x224
resolution video.

The Depth Estimation Reference Software [28] is continuously
refined in the scope of MPEG-I. DERS8.0 supports up to four
neighboring views to estimate a single depth map. Firstly,
different depth hypotheses are tested using block matching and
the cost for each pixel and depth candidate is computed using a
similarity measure. Secondly, the error cost is used to calculate
the disparity for each pixel using a graph cut algorithm. The
complexity of the block matching stage increases linearly with
the number of depth candidates, while the graph cut stage
increases polynomially.

In this study, we use DERSS, VVS and MV-HEVC, in MPEG-
I Visual testing conditions, in order to show the benefit of
estimating depth at the decoder.

III. INVESTIGATED DSDE SYSTEMS

In this section, we investigate two variants of B-DSDE:
one named Hybrid DSDE (H-DSDE) aiming at investigating
whether local depth map transmission is efficient, and Feature
Driven DSDE, our proposed design to overcome the limita-
tions of B-DSDE: lack of encoder control and high complexity.

A. Hybrid-DSDE

B-DSDE has shown significant quality improvements over
ESDE. However, the original depth maps at the encoder side
may contain areas which cannot be retrieved at the decoder
side with sufficient quality. Therefore it is still possible that
local depth map transmission is more efficient than B-DSDE,
if the encoder has the possibility to carefully select the areas
where a depth map is transmitted. To test this hypothesis, we
apply a Rate-Distortion (RD) based decision between DSDE
and ESDE at the block level (Coding Unit, or CU). This
H-DSDE approach aims at transmitting only the depth CUs
which are improving the RD criterion. Consequently, there
are potentially two different depth estimation processes at the
encoder side: a first one to produce the original depth maps
(as in ESDE), and a second one which aims at simulating
the depth estimation process at the decoder side. In this paper
we use DERS8 for both depth estimation processes. The H-
DSDE system is shown in Fig. 2a). Texture compression is not
modified. We assume textures to be encoded prior to the depth
maps. Using the decoded textures, the encoder can estimate
the same depth maps as at the decoder side using DERSS.
Inputs to the H-DSDE encoder are the original depth D and
DSDE depth D™. First, an ESDE CU is processed by the
video codec. The bitrate required to compress the depth CU

is denoted as Rgspr. Then, in order to estimate the bitrate
required for the DSDE case, an empty (medium grey level)
CU is encoded. The goal is to signal the DSDE-decision
in the cheapest manner, without disrupting the subsequent
compression process. The corresponding bitrate for the DSDE
CU is denoted as Rpspg. In order to model the distortion, we
follow the concept of the synthesized view distortion change
(SVDC) [29] using VVS to synthesize views at source posi-
tions. The computation is illustrated in Fig. 4. We construct
a complete depth map in order to perform view synthesis.
All decisions prior to the current CU being processed are
fixed during synthesis and are either ESDE- or DSDE-type
depth. All subsequent CUs are replaced by the original depth.
Therefore, three depth maps have to be evaluated, in which
the current CU is either DSDE, ESDE or original depth.
We synthesize a neighboring target view using VVS and
compute the sum of squared differences (SSD) between the
synthesized view and the corresponding original view Trey
for all three cases. Synthesizing a complete view ensures that
the full impact of the CU decision is taken into account in the
synthesized view. In practice, the complexity of our encoder
could be reduced by synthesizing only the portion of the view
that is affected by the CU decision, similar to the partial re-
rendering concept of 3D-HEVC [30].

Depending on the depth type, we denote the correspond-
ing distortion measures as egspr, €pspe and eorig. The
quantity used in the RD-formulation is the distortion change
AEgspE = €ESDE — €orig ad AEpspE = €pSDE — €orig
for ESDE and DSDE accordingly. The decision is taken by
choosing the minimum between the cost functions:

Cgspe = AEgspe +7A\RespE,
Cpspe = AEpspe + YARDpsDE,

)

with the lagrangian multiplier A and a scaling factor .
adapts the lagrangian multiplier in order to optimize the coding
performance using the SVDC. We set v = 0.5 as in [29]. The
decision is signalled through a flag per CU.

At the decoder side, the partial depth map D, is decoded.
A depth estimator reconstructs the depth CUs which were
bypassed using the decoded flag. The resulting depth map D}‘;r
is a composition of ESDE and DSDE depth CUs, that can be
used to render novel views. Fig. 3 demonstrates the benefit of
H-DSDE for the Kitchen sequence. Our H-DSDE encoder is
based on HM16.6 [31].

Simulations (see section V) show that H-DSDE improves the
PSNR in the majority of sequences. Indeed, the pixel rates
reported in Table III indicate that a non negligible amount
of depth CUs are selected to be transmitted. Yet, due to
the additional bitrate required to transport the local depth
maps, it does not outperform B-DSDE in terms of overall
compression efficiency (see Table II). This should not be the
case in theory, as we use a Rate-Distortion criterion to drive
our decisions. However, this criterion relies on approximations,
since it uses an existing neighboring original view instead of
the desired viewport. This is a limitation inherent to DIBR
systems and we believe this is the reason why the encoder
fails to select the ESDE blocks most efficiently. Moreover,
H-DSDE also negatively impacts the pixel rate since the

Encoder-Side

Texture
a) r Encoder
T*
Depth +
D
Depth
D

H-DSDE
Encoder

Texture
Bitstream

Partial Depth
Bitstream

Decoder-Side

|
I Textur
exiure * - H
T S
*+
DH
Depth
Estimator

H-DSDE *
Decoder part

Encoder-Side

Texture

Texture
Encoder

b)

Feature
F

Bitstream

Decoder-Side

1
1 Texture . ,, .
1
FD-Depth +
Estimator

1
1 DF
1
1
1
]

Feature Feature F*
Bitstream Decoder
1

Fig. 2: Overview of the proposed systems. The input signals in both systems are original multiview textures 7" and multiview
depth maps D. T* are coded textures. a) shows the H-DSDE system. DT are depth maps estimated from decoded textures.
D;,, are coded partial depth maps and D;I"’ are depth maps composed of decoded and decoder derived-depth. ST are
synthesized views. b) shows the FD-DSDE system. F' and F'* are the original and coded feature sets respectively. D; are
feature-enhanced decoder-derived depth maps. ST are synthesized views.

Fig. 3: Example for different depth signals in the H-DSDE
system. From left to right: source depth (D), DSDE depth
(D7), hybrid depth (D;;r), decoded partial depth (D;art).

transmitted blocks must be processed by the video decoder
in the client. Since the amount of such blocks is unknown,
the decoder must have capabilities for the worst case, and
therefore have the complexity for pixel rates that are equivalent
to the ESDE design. For these reasons, we conclude from
the hybrid approach that depth map transmission, even when
limited to local cases, does not seem to be a promising design.

B. Feature Driven DSDE

We concluded from our H-DSDE experiments (see sec-
tion V), that depth map transmission using a video codec,
globally or locally, is inefficient. Consequently, we propose
a novel system based on B-DSDE, that adresses the two
major drawbacks of this design: decoder complexity, and depth
estimation inaccuracy. The Feature Driven DSDE (FD-DSDE)

ESDE encoded
cru™"o WS SsD epspE —
original
AE =
Trer — O e ESEEE .
ESDE orig
encoded
WS SSD |+ eorig —
original
Trer - AEpspp =
DSDE €pspE ~ €orig
- encoded
CTU "= ==[0 |
VS SSD epspE
original

Fig. 4: Overview of the SVDC computation. View synthesis
is performed by VVS. The currently encoded CU is either
ESDE, DSDE or original. The sum of squard differences
(SSD) between the synthesized view and the original view
Trer leads to the distortions egpspr, epspr and e,rig for
all three cases respectively. The differences AFgspr and
AFEpspg are used in the RD cost computation.

system is shown in Fig. 2b). A feature extractor identifies
features that help the depth estimation at the decoder side.
The features are chosen during encoding time to generate
a depth map which minimize the distance to the original
depth map. The encoder has access to the decoded version
of the textures and can thus simulate the behavior of the
decoder side depth estimator in order to correctly choose the
feature values. Since the features are extracted and optimized

at the block level, the depth estimator has been modified
to operate on a block-basis. For each block, the following
features are extracted and transmitted: depth ranges, optimal
depth estimation parameters, depth estimation skip flag and a
partition flag, which are detailed in the following paragraphs.
Depth Range: traditionally, the camera distance Z,,;,
and Z,,,, are required by most depth estimators, in order to
define the search range, which can alternatively be described
in terms of disparity to a fixed reference view as dpaz = 7
and d,in = Z{,; iz with the focal length f and the baseline to a
reference view b. The disparity range [dnin, ..., dmax| defines
the number of disparity candidates that need to be tested. The
number of candidates is N = (dmaz — dmin) - p + 1 with
optional sub-pixel precision p. The overall size of the cost
volume is therefore CV = N - w - h with width w and height
h of a view. Each pixel requires an analysis over the full range,
which is defined by the farthest and closest object in the view.
For each block, the feature extractor simply selects Z,,,;, and
Zmao from the original depth map D. In the same spirit,
the available geometry has been utilized previously in order
to optimize the computation of plane-sweep volumes in the
context of CNN-based view synthesis [32] [33].
Narrowing down depth ranges per block aims at reducing the
complexity by minimizing the cost volume that has to be
computed. Enabling partial cost volumes increases the speed
of block-matching, depth selection (e.g. by graph-cuts) and
makes the estimated depth maps more accurate by avoiding
depth candidates that are out of the correct range. This is
illustrated in Fig. 5, where the number of candidates is
minimized for smooth areas. The much larger default number
of depth candidates is only justified where a block contains a
transition between foreground and background.

Dmin =65 .
» 3 depth candidates
Dmax = 67 P

SR

| N
Dmin =133 Dmin =61

Dmax = 156

Dmax = 134» 75 depth candidates

24 depth candidates

Fig. 5: Illustration of required number of depth candidates per
block, specified by the transmitted depth range (D,,;, and
Dmam)-

Depth Estimation Skip: the depth estimation skip is
signaled through a single flag which indicates if a block
requires re-estimation. If a block is skipped, the depth of the
previous frame is re-used and the encoder does not transmit
any additional features. Fig. 6 indicates, which blocks require
re-estimation. In the given example, only around 7.5% of the
blocks require a re-estimation of the depth map. The skip

Fig. 6: Illustration of depth estimation skip. Highlighted blocks
are re-estimated while all other blocks are skipped.

flag aims at minimizing complexity and maintaining temporal
stability in the depth maps and synthesized textures. While
it would be possible for the decoder side depth estimator
to determine whether a block depth should be updated, this
would require additional computation and would go against
our objective to reduce the complexity.

Fartitioning: with the design of a block-based approach,
a maximum block size has to be selected. Partitioning enables
the feature extractor to transmit features at a finer granularity
if beneficial. We enable a simple partitioning in a quad-tree
fashion. The benefit is illustrated in Fig. 7. In the given
example, a range of [61,...,134] has to be analyzed in a block
of size N x N. The range is large, because the block contains
parts of the table (close to camera) and part of the wall behind
the chair (far from camera). By partitioning, each block can
further minimize the search range, leading to a reduction of
depth candidates that have to be tested by an additional 50%.

,64 6

1222 Bs122;

DTS RR25;
134 134

partitionFlag = 1
N2
-* 147 ~ N? * 37 candidates

partitionFlag =0
N? x 74 candidates

Fig. 7: Ilustration of the partition flag. The highlighted block
shows D,,in, and D,,q,. On the left, parts of the background
are in the block and 74 depth candidates have to be tested.
On the right, the partition flag is used and the back- and
foreground are more efficiently separated, reducing the total
number of depth candidates to 37.

Depth Estimation Parameters: most Multiview or Stereo
Depth Estimation methods include a form of regularization
which favors homogeneous regions, unless a substantially
large change is detected locally. This type of regularization

is usually dependent on parameters determining the amount
of change requested to consider a transition as valid, such
as smoothing coefficients in energy-minimization methods.
We choose to transmit optimized smoothing coefficients as
features, because the strength of the regularization is heav-
ily signal-dependent. In our feature-extractor design, several
smoothing coefficients are tested by simulating the depth
estimation process and selecting the value which minimizes
the error with the block in the reference depth.

In this work, our feature extractor selects the features by
minimizing the L2 distance of a block between the estimated
and the reference depth. In other words, we encode the
reference depth into a feature set, which helps the depth
estimator at the decoder side to estimate depth maps using
decoded textures. This criterion is used to identify partitioning
and depth estimation parameters. The depth estimation skip is
performed if the L2 distance between two temporally adjacent
blocks in the original source textures is below a threshold. For
CGI content, the depth maps can be used directly to identify
the depth estimation skip, where any temporal change implies
re-estimation.

Our feature extractor is based on DERSS8, where every possible
feature set is tested by estimating the depth on a block-
basis. The DERS8 used at the decoder side has been modified
accordingly, reading the received features and estimating the
depth faster and with higher performance. One should note that
FD-DSDE does not require any synthesis during encoding,
so it is relatively light when compared to other processing
stages such as texture coding. The features are compressed
using Context-based Binary Arithmetic Coding (CABAC) [34]
with a single context assigned for each feature. We encode the
features losslessly and therefore optimize for complexity min-
imization instead of BD-Rate performance, since complexity
is the biggest concern of the DSDE system.

Fig. 8 illustrates the impact of our features on depth estimation
and synthesis performance. In this example, uncoded textures
are used for depth estimation and synthesis. A) shows the
performance of unmodified DERSS. F) shows the performance
of synthesis if blender depth is used. B)-E) gradually include
additional features, extracted from the blender depth. We
observe a degradation of quality by moving from a full-frame
to a purely block-based method in B). This is expected, as the
limited texture available in certain blocks can make the depth
estimation more challenging. However, by transmitting the
depth range per block in C), many artifacts are removed from
the estimated depth map and an improvement of the visual
quality is obtained. In D) the depth estimation is enhanced by
additional smoothing coefficients, which further reduces the
distance to the blender reference and has the biggest impact
on the objective quality. In E), partitioning is included, which
further refines the depth map locally.

While the difference in objective metrics may seem minor
compared to the unmodified DERSS, the impact increases with
decoded textures, which we show in section V using DERSS8
depth maps as a reference. Additionally, when high-quality
depth maps are available (e.g. for CGI), this approach can
guide the depth estimator to achieve a higher quality depth
maps (see section V-D).

IV. TEST ENVIRONMENT FOR IMMERSIVE VIDEO

All proposals are evaluated following the Common Test
Conditions (CTC) [35] of MPEG-I Visual, detailed in the
following.

A. Common Test Conditions

The CTC [35] defines nine test sequences covering a wide
spectrum of challenges. The number of cameras, their posi-
tioning as well as scene complexity varies for each sequence.
A summary of the test sequences is provided in Tab. I. We
compute all depth maps for ESDE as well as all DSDE-type
proposals using DERS8. Configurations for all sequences are
provided by the MPEG-I Visual group, which we adopt for
all our experiments without any modification. Since our pre-
vious work [7], the Fencing sequence was removed from the
mandatory sequences by MPEG, because the unconventional
capturing and formatting led to inconclusive results. Therefore,
we exclude it from our analysis. Textures and depth maps are
compressed independently using MV-HEVC.

Transmitted views reside at source positions. For subjective
evaluation, views at intermediate positions are synthesized
following a pose trace. For objective evaluation, views at
source position are synthesized assuming the texture and
depth map at the currently synthesized source position do
not exist. In this way, the synthesized view can be directly
compared to the uncompressed texture at the source position.
View Synthesis is performed by VVS. Textures and depth
maps are encoded separately using predefined QPs for textures
(QPr) and depth maps (QPp). Five QPr/QPp-pairs are
tested for texture and depth coding. Codecs are compared
using the Bjgntegaard delta (BD) [36]. The four upper QP-
pairs define the medium-bitrate range and the four lower QP-
pairs define the low-bitrate range, which are used for BD-Rate
computation. The bitrate consists of all transmitted data which,
in our experiments, include textures in all cases. In the cases
of ESDE and H-DSDE, the bitrate for encoded depth maps (or
partial depth maps) are included as well. In case of FD-DSDE,
the rate of the features is included.

In contrast to classical 2D video coding, two types of BD-
Rates are reported, which consider the Y-PSNR of either
decoded textures (video BD-Rate) or of synthesized textures
(synth BD-Rate) together with the total bitrate. Beyond the
CTC, MPEG-I Visual further studies the combination of
additional metrics with the BD-Rate by replacing the PSNR
with Video Multimethod Assessment Fusion (VMAF) [37]
and Multi-Scale Structural Similarity (MS-SSIM) [38]. This
is motivated by the fact that the evaluation of view synthesis
performance can be misleading if merely PSNR is consid-
ered [39]. While a common agreement of multiple metrics
may confirm an actual improvement, subjective evaluation
of synthesized video segments is still the proper way of
evaluating changes in the design. We additionally report the
LPIPS metric [40], which evaluates the human perception of
synthesized views. The overall objective performance of the
system is always evaluated considering the bitrate together
with quality of synthesized textures compared to the original
source textures. According to the conventions of the CTC,

A) unmodified DERS8

B) block-based DERS8

C) B + Depth Rangcs

D) C + Depth Estimation Parameters

PSNR: 35.50 dB. LPIPS: 0.034

E) D + Partitioning

F) blender Ground-Truth

Fig. 8: Illustration of the impact of features, extracted from high quahty blender depth Depth Estimation Parameters

Partitioning are chosen to maximize PSNR.

PSNR: 35.44 dB. LPIPS: 0.027

PSNR: 34.85 dB, LPIPS: 0.041

PSNR: 34.83 dB, LPIPS: 0.039

and

Sequence Type #Views (Setup) Resolution (frame rate)
Painter Natural 16 (4x4 planar) 2048x1088 (30)
UnicornA Natural 25 (5x5 planar) 1920x1080 (still image)
UnicornB Natural 15 (5x3 planar) 1920x1080 (still image)
Shaman CGI 25 (5x5 planar) 1920x1080 (30)
Kitchen CGI 25 (5x5 planar) 1920x1080 (30)
Dancing CGI 42 (14x3 planar) 1920x1080 (30)
Chef2 Natural 20 (5x4 planar) 1920x1048 (30)
Frog Natural 15 (15x1 linear) 1920x1080 (30)
Fencing Natural 10 (10x1 linear) 1920x1080 (25)

TABLE I: Test sequences of the CTC of MPEG-I Visual.

negative BD-Rate values indicate an improvement of the
proposal compared to the anchor.

B. Pixel Rate Constraint

Industrial concerns have been raised in MPEG that an
immersive video coding standard should reduce the pixel rate
to a point where it becomes compatible with current and
future devices. Consequently, the group has decided to set
two pixel rate constraints [41]. A low pixel rate configuration
is constrained to 32 Megapixels at 30 frames per second,
motivated by decoding capabilities of modern smartphones. A
typical test sequence of size 2048x1088 and 16 views requires
64 Megapixels at 30 frames per second and can therefore not
be decoded at the low pixel rate constraints. This motivates
solutions which allow transmission of less pixels in terms of
texture or depth maps. Consequently, the concept is ordered
as follows:

1) First, meet the low pixel rate constraint. Going further
down is not considered beneficial at this point.

2) Second, minimize bitrate requirements and maximize
synthesis performance, i.e. optimize synth BD-Rate.

Due to the increased relevance of pixel rate, an approach that
performs worse in terms of BD-Rate may be preferred if it
manages to meet the low pixel rate constraint.

C. QPp Allocation

A common difficulty in the ESDE system is the allocation
of QPp depending on @ Pr. Typically, QPp is derived using

QPp = QPr + Agp, 2

with a fixed Agp for all sequences. The challenge in allocat-
ing QPp arises from its dependency on multiple additional
aspects besides the current QPp: the quality of the given
depth maps, the coding method used, and the sequence itself.
The allocation problem has been intensively studied in [42].
Recently, the authors of [43] propose to model the relationship
between () Pr and () Pp using linear regression, assuming high
quality depth maps. Yet, deriving sequence-optimum QPp
remains a challenging task. B-DSDE as well as FD-DSDE do
not suffer from this problem: B-DSDE does not require any
coding of depth maps while the FD-DSDE proposal encodes
the features losslessly.

D. Depth Estimation Complexity

Speed-up techniques such as hardware optimization and
parallelization may be used if depth estimation is to be

performed at the decoder side. Ideally, depth estimation should
only be performed on the views that are required for the
synthesis of the viewport. However, there is currently no such
depth estimator specifically designed for the DSDE context in
MPEG, which could serve as an anchor. Therefore, reporting
runtime alone would not fully reflect the potential of the
proposals presented in this paper. We chose to additionally
report the cost volume reduction (CVR) as this seems to be an
accurate approximation of the overall complexity of the depth
estimator. This quantity is defined by the following equation:

15 refCV —pCvV
CVR=-— fZO 100 refCV [%], 3)
with refCV being computed using the maximum and min-
imum disparity of each sequence, while pC'V is the partial
cost volume, if adapted disparity ranges are transmitted. In a
similar manner, pixel rate reduction (PRR) is reported relative
to the ESDE anchor (in which all depth maps are transmitted).
We use CVR, PRR and runtime to report the impact of our
proposed systems on the depth estimation and video decoder
complexity respectively.

V. EXPERIMENTAL RESULTS

In this section, all results related to B-DSDE, H-DSDE
and FD-DSDE are compared to the ESDE anchor of MPEG-I
Visual. The objective results are summarized in Tab. II and
Tab. III. Examples for view synthesis are shown in Fig. 9.

A. Compression Performance

Depending on the sequence, depth maps can take up to
30% of the total bitrate in ESDE. The video BD-Rate shown
in Tab. II reflects the bitrate savings of B-DSDE if depth
maps are bypassed entirely. B-DSDE improves ESDE by
-17.4% and -21.0% average video BD-Rate for medium and
low bitrate respectively. In all our extensions, we decide to re-
invest bitrate into either partial depth maps or into features. In
case of H-DSDE, transmitting partial depth maps comes with
-5.1% and -2.7% average video BD-Rate gain respectively. In
case of FD-DSDE, we observe -14.0% and -13.9% video BD-
Rate savings for medium and low bitrate respectively. Taking
into account the lossless transmission of the features, FD-
DSDE proves to be much more efficient than H-DSDE.

B. Synthesis Performance

We reinvest the bitrate into partial depth (H-DSDE) or into
features (FD-DSDE) in order to improve the view synthesis
quality at the decoder side. Tab. II summarizes all synthesis
BD-Rate values with different objective metrics, while Tab. III
gives the PSNR and LPIPS values. In case of B-DSDE, the
depth estimation at the decoder side leads to an improvement
of the objective metrics for all but three cases corresponding
to natural sequences. CGI content benefits significantly from
the B-DSDE with average synth BD-Rate gains of up to
-72.4% (medium) and -51.4% (low) for Dancing. MS-SSIM
and VMAF confirm improvements of perceptual quality for all

T

Kitchen :

Ground Truth ESDE B-DSDE H-DSDE FD-DSDE

Fig. 9: Ground-truth and synthesized views with the proposed methods, for four sequences: Dancing, Kitchen, Shaman and
Frog. FD-DSDE outperforms all other solutions visually.

TABLE II: BD-Rate objective metrics for B-DSDE, H-DSDE and FD-DSDE compared to ESDE. The best synthesis performance

is indicated in bold.

video BD-Rate [%]

Config Sequence

synth PSNR BD-Rate [%]

synth MS-SSIM BD-Rate [%] synth VMAF BD-Rate [%]

B-DSDE H-DSDE FD-DSDE | B-DSDE H-DSDE FD-DSDE | B-DSDE H-DSDE FD-DSDE | B-DSDE H-DSDE FD-DSDE
Painter -36.0 -24.0 -29.3 -31.7 -23.0 -25.0 -30.9 -19.4 -234 -35.4 -25.1 -28.6
UnicornA -4.7 2.0 -3.8 6.0 -14.6 -28.5 -59 -4.2 -13.2 5.5 -9.8 =224
UnicornB 5.6 -0.8 -4.6 -3.6 -22.7 -40.4 -1.8 -7.8 -14.5 -4.4 -20.2 -35.9
Medium Shaman -32.9 -20.9 -28.1 -55.2 -46.7 -52.1 -72.4 -31.5 -36.8 -62.7 -53.3 -50.8
Bitrate Knchgn -18.2 1.3 -14.8 -39.2 -37.0 -51.5 -24.3 -12.4 -28.6 -43.3 -34.6 -52.1
Dancing -53 -8.1 2.7 -72.4 -42.6 -75.0 -48.7 -22.8 -49.0 -74.5 -42.8 -73.8
Chef2 -27.8 -5.3 -22.8 -58.4 -50.9 -42.2 -40.7 -25.7 -32.8 -53.3 -43.5 -47.5
Frog -11.4 -1.3 -5.8 -57.8 -41.9 -53.1 -36.2 -20.8 -28.6 -53.3 -35.7 -48.2
Average -17.4 -5.1 -14.0 -39.0 -34.9 -46.0 -334 -18.0 -28.3 -40.8 -33.1 -44.9
Painter -39.2 -23.2 -27.6 -35.1 -20.8 -23.6 -34.8 -18.0 -21.5 -39.8 -24.3 -27.7
UnicornA -5.4 3.7 -3.4 -6.7 -11.1 -23.1 -8.3 -1.1 -10.6 -5.0 -7.1 -18.7
UnicornB -6.7 -0.2 -4.7 -13.8 -15.9 -26.5 9.2 -3.8 -10.0 -14.3 -14.7 -25.2
Low Shaman -39.7 -20.9 -30.4 -50.0 -34.0 -44.8 -70.1 -23.0 -33.1 -60.0 -42.9 -47.3
Bitrate Kllchgn -22.3 6.8 -16.0 -36.0 -21.3 -43.6 -26.0 0.5 -25.4 -41.8 -21.0 -45.1
Dancing -8.0 14.7 -2.5 -51.4 -35.1 -68.0 -32.9 -11.1 -40.0 -59.6 -344 -64.2
Chef2 -31.2 2.2 -22.6 -54.3 -36.0 -40.0 -40.9 -14.9 -23.4 -52.8 -28.8 -36.7
Frog -15.0 0.0 -3.7 -42.8 -24.8 -34.0 -28.5 -9.8 -16.1 -41.5 -22.2 -31.3
Average -21.0 2.7 -13.9 -36.3 -24.8 -37.9 -31.3 -10.2 -22.5 -39.3 -24.4 -37.0

TABLE III: Average synthesis PSNR and LPIPS for all systems. The best performance is indicated in bold.

" synth PSNR [dB] LPIPS

Config Sequence —porr—p1GDE H-DSDE FD-DSDE | ESDE B-DSDE H-DSDE FD-DSDE
Painter 3438 3423 3434 3425 0220 0218 0217 0218
UnicornA 29.58 29.38 29.78 29.92 0.059 0.063 0.056 0.056
UnicomB ~ 29.88 29.84 30.18 30.42 0.058 0.059 0.056 0.055

Medium Shaman 3361 3421 34.26 34.04 0255 0.243 0.243 0.250

Binaw Kitchen 30.55 31.05 31.41 31.45 0.181 0.176 0.170 0.169
Dancing 28.15 29.97 29.08 30.06 0218 0.191 0.202 0.191
Chef2 3150 31.91 32.03 31.70 0260 0.260 0.258 0.257
Frog 2695 27.59 27.41 27.53 0229 0.208 0215 0215
Average 3057 31.02 31.06 31.20 0.185 0.177 0.177 0.176
Painter 3296 3275 32.87 32.80 0334 0331 0.331 0332
UnicomA 2821 2820 28.54 28.67 0.123 0.122 0.116 0.115
UnicomB ~ 28.56 28.65 28.90 29.12 0.123 0.121 0.119 0.118

Low Shaman 3246 3275 32.87 32.93 0430 0.418 0.419 0.423

Binie Kichen 2942 2979 30.17 30.27 0324 0317 0311 0.308
Dancing 27.02 28.11 27.93 28.88 0386 0.374 0.370 0.356
Chef2 30.82 3129 31.41 31.13 0323 0322 0.321 0.319
Frog 2599 26.59 26.44 26.60 0363 0.337 0.344 0.346
Average 2943 29.77 29.89 30.05 0301 0293 0.291 0.290

sequences, including those that suffer in terms of PSNR-based
synthesis BD-Rate.

H-DSDE improves the PSNR performance for the majority
of sequences beyond B-DSDE by transmitting the relevant
depth map CTUs which cannot be estimated accurately at
the decoder side. Overall, the PSNR improves on average by
0.55 dB and 0.34 dB for medium and low bitrates respectively.
As expected, the improvement is better at low bitrates, since
B-DSDE is more challenging with highly compressed textures.
An exception is Dancing, which performs worse in H-DSDE
than in B-DSDE. This is likely due to imperfection in the
reference view selection during H-DSDE encoding: we select
between ESDE and DSDE by synthesizing a single target view.
In the final evaluation however, the depth map is used for the
synthesis of the neighborhood, which can be up to four target
views at source position. Having the most numbers of views,
this disadvantage becomes visible in the Dancing sequence.
Accordingly, the synth BD-Rate for H-DSDE improves by -
34.9% and -24.8% for medium and low bitrate respectively.
While the perceptual quality is still improved according to the
MS-SSIM metric, it cannot outperform B-DSDE. The VMAF
metric confirms a lack of perceptual quality in the H-DSDE
solution, which may be due to the composition of depth maps

from two sources. Discontinuities at block-boundaries can
translate into visually unpleasant artifacts. In conclusion, we
are able to identify relevant ESDE-CUs, which improve the
synthesis PSNR compared to B-DSDE. However, the depth
map compression performance is too low to transport this
relevant information to the decoder side. The objective quality
with FD-DSDE is improved further compared with B-DSDE
and H-DSDE. PSNR gains increase on average by 0.63 dB
and 0.62 dB for medium and low bitrate respectively. Similar
to H-DSDE, the benefit of the method heavily depends on the
quality of the depth map at the encoder side. In the case of the
Chef2 sequence, we observe that neither of our extensions led
to a benefit over B-DSDE, which indicates that the encoder
side depth maps did not contain relevant additional information
compared to the B-DSDE depth maps. However, the Dancing
sequence increases in PSNR by 1.91 dB, surpassing B-DSDE
and H-DSDE. Overall, we observe an average synth BD-Rate
reduction of 46% and 37.9% showing a clear benefit over both
B-DSDE and H-DSDE. In contrast to ESDE and H-DSDE,
FD-DSDE efficiently transmits the relevant depth information
in terms of features to the client side. The MS-SSIM and
VMAF metrics confirm significant improvements compared
to ESDE, with equivalent performance compared to B-DSDE.

For the majority of sequences, the LPIPS metric is better with
FD-DSDE, showing that the synthesis quality is improved. In
Fig. 9 all methods are compared visually. Double-contouring
is a typical synthesis artifact in the case of ESDE. In B-
DSDE we observe much less blurring but more noise-like
distortions. H-DSDE can solve some of these artifacts, if the
RD compromise is reasonable. Therefore, H-DSDE may be an
improvement overall, but we still find the same artifacts as in
B-DSDE or ESDE in some areas. FD-DSDE does not contain
any ESDE-related artifacts. Instead, it is a direct improvement
of B-DSDE. Most of the noise-like artifacts are significantly
reduced, as is visible in the Frog sequence. Most edges appear
much cleaner and the views are better aligned in the blending
process as seen by the Dancing example.

C. Complexity Reduction

Pixel Rate Reduction (PRR) and Cost Volume Reduction
(CVR) are summarized in Tab. V. In H-DSDE, the pixel rate
varies depending on the amount of selected ESDE CUs. The
total cost volume increases as more DSDE CUs are selected.
Additionally, the PRR reflects the amount of DSDE or ESDE
CUs selected in the process. While true PRR would require to
pack the ESDE-blocks into a patch atlas, we can still predict
the potential benefit in H-DSDE.

On average, we could save around 28.68% and 30.98% pixel
rate in case of H-DSDE for medium and low bitrates respec-
tively. In other words, around 20% of the pixel rate has been
reinvested into depth map transmission in contrast to B-DSDE.
Whenever an ESDE CU has been transmitted, the decoder does
not need to estimate the corresponding depth. We interpret this
as a cost volume of size zero, which allows us to estimate the
total CVR in case of H-DSDE. On average, we reduce the
cost volume size by -38.49% and -36.11%. In the case of FD-
DSDE, which does not entail any depth map transmission,
we maintain the -50% pixel rate reduction of B-DSDE. This
is because the defined features are not appropriate to be
transmitted using a video encoder and are instead contained
in the metadata of an immersive video bitstream. Independent
of the pixel rate, the CVR of FD-DSDE is 88.3% and 88.4%
for medium and low bitrate respectively.

The depth estimation is computationally the most demanding
stage in the client and requires more processing time than
video decoding, view synthesis and feature decoding. There-
fore, the CVR is expected to have a very significant impact
on the total amount of processing required in the client. The
software implementation has not been optimized, however we
show in Tab IV the runtime values of our fastest proposal
FD-DSDE compared to the unmodified DERS8. Computation
was performed on an Intel Xeon (R) CPU E5-2520 0 @ 2.00
GHz. On average, we measure a speedup of 18.5. The speedup
depends on the cost volume reduction and the amount of
motion in the sequences.

D. FD-DSDE with High Quality Depth Maps

Up to this point, all depth maps used in our experiments
originated from the same algorithm (DERSS). In this way
we show that the changes in performance of all proposed

TABLE IV: Average runtime per frame and view using the
unmodified DERS8 and FD-DSDE.

Sequence DERSS [s] FD-DSDE [s] 1 speedup
Painter 698.3 111.0 , 63
UnicornA 291.4 40.4 ;72
UnicornB 270.5 352 7.7
Shaman 3933.9 169.1 1 233
Kitchen 1051.5 22.6 I 46.5
Dancing 1195.0 30.2 I 39.6
Chef2 2565.1 228.8 I 11.2
Frog 1107.3 177.6 6.2
Average 1389.1 101.85 " 185

TABLE V: Pixel Rate and Cost Volume Reduction for H-
DSDE and FD-DSDE.

Config Sequence PRR (%] CVR [%]
H-DSDE FD-DSDE H-DSDE FD-DSDE
Painter 39.43 -50.0 -21.13 -83.6
UnicornA -22.55 -50.0 -54.89 -76.8
UnicornB -21.13 -50.0 -28.83 -84.0
Medium S}}alnan 41.05 -50.0 -17.89 -94.8
Bitrate K1tch§n 32.24 -50.0 -35.51 -97.7
Dancing 14.78 -50.0 -70.42 -97.3
Chef2 30.64 -50.0 -34.58 -88.8
Frog 27.65 -50.0 -44.68 -82.4
Average -28.68 -50.0 -38.49 -88.3
Painter -39.78 -50.0 -20.42 -83.8
UnicornA -19.30 -50.0 -61.39 -77.4
UnicornB -32.16 -50.0 -35.7 -84.4
Low S}}aman 45.13 -50.0 -9.72 -95.0
Bitrate Kltch_en 35.60 -50.0 -28.79 -97.9
Dancing 18.46 -50.0 -63.07 -97.3
Chef2 30.64 -50.0 -20.42 -88.7
Frog 26.80 -50.0 -46.39 -82.4
Average 30.98 -50.0 -36.11 -88.4

systems do not come from changes in the depth estimation
algorithm. Yet, in practice, one would use the best depth maps
that are available. Due to the high potential of FD-DSDE,
shown in the last sections, we evaluate it once again using
high quality blender depth for CGI content. Tab. VI shows the
results of all objective metrics, where the Kitchen, Shaman and
Dancing sequences have been re-computed using high-quality
depth maps as a reference. Synth BD-Rate is further improved
compared to the FD-DSDE results with DERS8-reference. The
PSNR of the Dancing sequence has improved by 2.86 dB on
average, which is 1 dB more than B-DSDE and 2 dB more
than H-DSDE, while simultaneously keeping the bitrate low.
This further underlines that FD-DSDE is a more efficient way
of taking advantage from high quality depth maps by encoding
the relevant geometry information into features.

E. Comparison with 3D-HEVC

The previous section reports experimental results using
MPEG-I Visual CTC. As explained above, MPEG-I Visual
chose to facilitate the adoption of its standard by considering
existing 2D video codec for depth and textures, thus preventing
the use of specific depth coding and interview prediction
tools. In this subsection, we relax this constraint, and test
our FD-DSDE approach against the 3D-HEVC standard. As
there are inherent limitations of the 3D-HEVC standard and
its reference software that prevent us from setting it into a
configuration that matches the MPEG-I Visual CTC, we chose
to use the 3D-HEVC test conditions as described in [44] and

TABLE VI: Objective metrics, where features are extracted from high quality depth maps created with blender, which are
available for the CGI sequences (bold). The value in brackets indicate the change to the results of Tab. II and III.

Config Reference Sequence video synth PSNR synth MS-SSIM synth VMAF synth synth
Depth q BD-Rate [%] BD-Rate [%] BD-Rate [%] BD-Rate [%] PSNR [dB] LPIPS
Painter -29.3 -25.0 -23.4 -28.6 34.25 0.218
UnicornA -3.8 -28.5 -13.2 -22.4 29.92 0.054
DERSS UnicornB -4.7 -40.4 -14.5 -359 30.42 0.055
Medium Chef2 -22.8 -42.2 -32.8 -47.5 31.70 0.256
Bitrate - — — — — — _ Frog _ _38 _ __ 531 286 __ 482 2753 _{ 0216
Shaman -22.0 (+6.1) -58.3 (-6.2) -40.6 (-3.2) -48.9 (+1.9) 3491 (+0.67) 0.243 (-0.007)
Blender Kitchen -15.2 (-0.4) -56.7 (-5.2) -32.6 (-4.0) -53.7 (-1.6) 31.74 (+0.29) 0.166 (-0.003)
,,,,,,, Dancing__-34 (0.7 814 (64) 566 (7.6) 824 (86) _ 3103 (+097) 0.172 0018)
Average -13.4 -48.2 -30.3 -45.9 31.44 0.173
Painter -27.6 -23.6 -21.5 -27.7 32.80 0.332
UnicornA -34 -23.1 -10.6 -18.7 28.67 0.114
DERSS UnicornB -4.7 -26.5 -10.0 -25.2 29.12 0.118
Low Chef2 -22.6 -40.0 -23.4 -36.7 31.13 0.319
Bre] Fog 37 340 a6l 33 2660 0345
Shaman -18.7 (+11.7) -40.1 (+4.7) -24.5 (+8.6) -36.3 (+11.0) 33.36 (+0.43) 0.423 (-0.000)
Blender Kitchen -16.8 (-0.8) -47.7 (-4.1) -28.2 (-2.8) -46.4 (-1.3) 30.46 (+0.19) 0.306 (-0.002)
,,,,,,, Dancing ~_ -4.1(16) _ _-73.6 (5.6) _-462(62) _ _ -72.0 (-7.8) _ 29.51 (+0.63) 0.346 (-0.010)
Average -11.9 -38.6 -22.6 -36.8 30.21 0.288
TABLE VII: Synthesis PSNR BD-Rates using the 3-View
configuration of the 3D-HEVC CTC. FD-DSDE average (*) is - Frog
underestimated due to missing overlaps for Frog and Dancing. .
Instead, their RD-curves are shown in Fig. 10. . -
synth PSNR BD-Rate [%] Z 25
Config Sequence — 5 pry B DSDE FD-DSDE S
Painter -24.3 -36.4 -27.7 z
UnicornA -58.3 -42.3 -64.6 =
UnicornB -59.2 -33.8 -44.1 23
Medigm Shaman -59.5 -46.8 -35.9 .
Bitrate Kltch.en -66.4 -61.1 -57.2 0 5000 10000 15000 20000 25000 30000 35000 40000
Dancing -62.2 -83.4 no overlap Bitrate [kbps]
Chef2 -671 '82.3 _479 ~@-ESDE - MV-HEVC Simulcast ~~ESDE - 3D-HEVC A-FD-DSDE ~-B-DSDE
Frog -62.8 -79.9 no overlap . Dancing
Average -57.5 -58.2 -46.0% A
Painter 25.0 -36.5 27.0 2 -
UnicornA -39.3 -38.3 -47.5 27
UnicornB -41.6 -37.4 -40.0 7z
Low Shaman -50.6 -25.5 227 g %
Bitrate Kitch.en -57.4 -50.2 -53.6 & 26
Dancing -32.8 -82.2 no overlap ¢ %
Chef2 -55.3 -61.5 -40.7 25
Frog -40.5 -58.6 -77.8 24
Average -42.8 -48.8 -44.2% 24

set the configuration of FD-DSDE accordingly: in particular,
we limit ourselves to a 3 view configuration, using the first
three horizontal views of the MPEG-I Visual test sequences.
The results are summarized in Tab. VII and Fig. 10. To be
consistent with our previous section, the MV-HEVC anchor
in 3-view configuration is set as an anchor. As expected,
3D-HEVC outperforms MVD compression with MV-HEVC
simulcast. In many cases B-DSDE can still outperform 3D-
HEVC. Since depth maps are estimated from 3 views only,
FD-DSDE may perform worse, as the features are extracted
from depth maps with more artifacts. We show the RD curves
in Fig. 10.

VI. CONCLUSION

The main conclusion we draw from our DSDE experiments
is that depth maps are mostly redundant, as geometry is
already transported within the textures. We are able to extract
them at the decoder side with enough accuracy to efficiently

0 1000 2000 3000 4000 5000 6000 7000 8000
Bitrate [kbps]

~@-ESDE - MV-HEVC Simulcast ~o—ESDE - 3D-HEVC A—~FD-DSDE -4-B-DSDE

Fig. 10: RD-curves for the Dancing and Frog sequences.

drive the synthesis. This was already shown in earlier B-DSDE
experiments. While B-DSDE performs well, we have explored
the hypothesis that it could still be useful to transmit some
parts of the depth map in our H-DSDE experiments, where
blocks of the depth maps are omitted or transmitted based on
an encoder criterion. Synthesis PSNR shows that no significant
gain over B-DSDE can be obtained. Also, the hybrid approach
still requires the transmission of partial depth maps, which
negatively impacts the pixel rate. Therefore, this suggests
that depth map transmission using a generic video codec is
not the most promising approach. This motivated our final
proposal of FD-DSDE, which transmits intuitive and versatile
features such as depth ranges and regularization strengths.
Furthermore, the block-based depth estimation approach is
amenable to parallelization. It is asserted that these design
choices can lead to a significant reduction of complexity,

making decoder side depth estimation much more attractive.
The authors plan to explore in the future other types of features
to help the synthesis.

ACKNOWLEDGMENT

The authors would like to thank Gordon Clare, from Orange
Labs, for providing an implementation of CABAC.

REFERENCES

[1] M. Wien, J.M. Boyce, T. Stockhammer, W.-H. Peng, “Standardization
Status of Immersive Video Coding,” IEEE J. on Emerging and Selected
Topics in Circuits and Systems, vol. 9, no. 1, pp. 5-17, Mar. 2019.

[2] G. Tech, Y. Chen, K. Miiller, J.-R. Ohm, A. Vetro, Y.-K. Wang, “Overview
of the Multiview and 3D Extensions of High Efficiency Video Cod-
ing,” IEEE Trans. on Circuits and Systems for Video Technology, Jan.
2019;26(1):35-49.

[3] G. J. Sullivan, J. Ohm, W. Han and T. Wiegand, "Overview of the High
Efficiency Video Coding (HEVC) Standard,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[4] J. M. Boyce, R. Doré, A. Dziembowski, J. Fleureau, J. Jung, B. Kroon,
B. Salahieh, V. K. M. Vadakital and L. Yu, "MPEG Immersive Video
Coding Standard,” Proc. of the IEEE.

[5] A. Dziembowski, M. Domarski, A. Grzelka, D. Mieloch, J. Stankowski
and K. Wegner, “The influence of a lossy compression on the quality of
estimated depth maps,” Int. Conf. on Systems, Signals and Image Process.
(IWSSIP), pp. 1-4, 2016.

[6] E. Bosc, V. Jantet, M. Pressigout, L. Morin and C. Guillemot, "Bit-rate
allocation for multi-view video plus depth,” 2011 3DTV Conf.: The True
Vision - Capture, Transmission and Display of 3D Video (3DTV-CON),
Antalya, pp. 1-4, 2011.

[7] P. Garus, J. Jung, T. Maugey and C. Guillemot, “Bypassing Depth Maps
Transmission For Immersive Video Coding,” Picture Coding Symposium
(PCS), pp. 1-5, 2019.

[8] A. Q. de Oliveira, T. L. T. da Silveira, M. Walter, C.R. Jung, “On the
Performance of DIBR Methods When Using Depth Maps from State-
of-the-art Stereo Matching Algorithms,” IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, pp. 2272-2276, 2019.

[9] C. Fehn, “Depth-image-based rendering (DIBR), compression, and trans-
mission for a new approach on 3D-TV,” Proc. Electron. Imag., pp.
93-104, 2004.

[10] M. Tanimoto, “FTV (free viewpoint television) creating ray-based image
engineering,” IEEE Int. Conf. on Image Process. pp. 1I-25, 2005.

[11] G. Sanchez, L. Agostini, C. Marcon, “Algorithms for Efficient and Fast
3D-HEVC Depth Map Encoding,” Springer Nature, 2019.

[12] O. Stankiewicz, K. Wegner and M. Domarski, ”Study of 3D Video
Compression Using Nonlinear Depth Representation,” IEEE Access, vol.
7, pp. 31110-31122, 2019,

[13] J. Lei, J. Duan, F. Wu, N. Ling and C. Hou, "Fast Mode Decision
Based on Grayscale Similarity and Inter-View Correlation for Depth Map
Coding in 3D-HEVC,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 28, no. 3, pp. 706-718, Mar. 2018.

[14] M. Saldanha, G. Sanchez, C. Marcon and L. Agostini, “"Fast 3D-HEVC
Depth Map Encoding Using Machine Learning,” IEEE Trans. on Circuits
and Systems for Video Technology, vol. 30, no. 3, pp. 850-861, Mar.
2020.

[15] O. Stankiewicz, M. Domanski, A. Dziembowski, A. Grzelka, D. Mieloch
and J. Samelak, “A Free-Viewpoint Television System for Horizontal
Virtual Navigation,” IEEE Trans. on Multimedia, vol. 20, no. 8, pp. 2182-
2195, Aug. 2018.

[16] M. Milovanovi¢, F. Henry, M. Cagnazzo and J. Jung, “Patch Decoder-
Side Depth Estimation in MPEG Immersive Video,” IEEE Int. Conf. on
Acoustics, Speech and Signal Process. (ICASSP), pp. 1945-1949, 2021.

[17] C. Brites, J. Ascenso and F. Pereira, “Epipolar plane image based
rendering for 3D video coding,” IEEE Int. Workshop on Multimedia
Signal Process. (MMSP), pp. 1-6, 2015.

[18] K. Miiller, P. Merkle and T. Wiegand, “3-D Video Representation Using
Depth Maps,” Proc. of the IEEE, vol. 99, no. 4, pp. 643-656, Apr. 2011.

[19] W. Kim, A. Ortega, P. Lai, D. Tian, “Depth Map Coding Optimization
Using Rendered View Distortion for 3D Video Coding,” IEEE Trans. on
Image Process., vol. 24, no. 11, pp. 3534-3545, Nov. 2015.

[20] B. Rajei, T. Maugey, P. Frossard, “Rate-distortion analysis of multiview
coding in a DIBR framework,” annals of telecommunications, Nov. 2012.

[21] C. Debono, M. Domanski, S. De Faria, K. Klimaszewski, L. Lucas,
N. Rodrigues, K. Wegner, “Efficient Depth-Based Coding,” in 3D Visual
Content Creation, Coding and Delivery, pp.97-114, Jan. 2019.

[22] S. Zhu, H. Xu and L. Yan, "An Improved Depth Image Based Virtual
View Synthesis Method for Interactive 3D Video,” IEEE Access, vol. 7,
pp. 115171-115180, 2019,

[23] P. Hedman, J. Philip, T. Price, J.-M. Frahm, G. Drettakis, G. Brostowruit,
“Deep Blending for Free-Viewpoint Image-Based Rendering,” ACM
Trans. Graph. 37, 257:1-257:15, 2018.

[24] P. Boissonade and J. Jung, “[MPEG-I Visual] Improvement of
VVS1.0.1,” ISO/IEC JTC1/SC29/WG11/MPEG2019/m46263, Jan. 2019.

[25] J. Shi, X. Jiang, C. Guillemot, “A framework for learning depth from a
flexible subset of dense and sparse light field views,” IEEE Int. Conf on
Acoustics, Speech, and Signal Process., 13-17 May 2019.

[26] A. Chuchvara, A. Barsi, A. Gotchev, “Fast and Accurate Depth Estima-
tion from Sparse Light Fields,” arXiv:1812.06856, Dec. 2018.

[27] D. Wofk, E. Ma, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast
Monocular Depth Estimation on Embedded Systems,” IEEE Int. Conf.
on Robotics and Automation, Mar. 2019.

[28] T. Senoh, N. Tetsutani, H. Yasuda and M. Teratani, “Revised Pro-
posed Depth Estimation Reference Software (pDERSS.1),” ISO/IEC
JTC1/SC29/WG11/MPEG2018/m45265.v3, Jan. 2019.

[29] G. Tech, H. Schwarz, K. Miiller and T. Wiegand, “3D video coding using
the synthesized view distortion change,” Picture Coding Symposium, pp.
25-28, 2012.

[30] G. Tech, K. Miiller, H. Schwarz and T. Wiegand, "Partial Depth Image
Based Re-Rendering for Synthesized View Distortion Computation,”
IEEE Trans. on Circuits and Systems for Video Technology, vol. 28,
no. 6, pp. 1273-1287, June 2018.

[31] K. Suehring, B. Li, V. Seregim, K. Sharman, G. Tech, A. Tourapis,
“JCT-VC AHG report: Software development and software technical eval-
uation,” ISO/IEC JTC1/SC29/WG11/MPEG2020/JCTVC-AL0003, Jan.
2020.

[32] Takeuchi, K., Okami, K., Ochi, D., et al.: Partial plane sweep volume
for deep learning based view synthesis. ACM SIGGRAPH 2017.

[33] Li A, Fang L., Ye L., Zhong W., Zhang Q. (2020) Geometry-Guided
View Synthesis with Local Nonuniform Plane-Sweep Volume. In: Zhai
G., Zhou J., Yang H., An P, Yang X. (eds) Digital TV and Wireless
Multimedia Communication. IFTC 2019. Communications in Computer
and Information Science, vol 1181. Springer, Singapore.

[34] D. Marpe, H. Schwarz and T. Wiegand, ”Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp.
620-636, July 2003.

[35] J. Jung, B. Kroon, R. Doré, G. Lafruit
“CTC on 3DoF+ and Windowed 6DoF
JTC1/SC29/WG11/MPEG2018/N17726, July 2018.

[36] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” ITU-T Q.6/16, Doc. VCEG-M33, Mar. 2001.

[37] M. Orduna, C. Diaz, L. Muiloz, P. Pérez, 1. Benito and N. Garcia, ”Video
Multimethod Assessment Fusion (VMAF) on 360VR Contents,” IEEE
Trans. on Consumer Electronics, vol. 66, no. 1, pp. 22-31, Feb. 2020.

[38] Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity
for image quality assessment,” 37th Asilomar Conf. on Signals, Systems
& Computers, vol. 2, pp. 1398-1402, 2003.

[39] S. Tian, L. Zhang, L. Morin and O. Déforges, “A Benchmark of DIBR
Synthesized View Quality Assessment Metrics on a New Database for
Immersive Media Applications,” IEEE Trans. on Multimedia, vol. 21,
no. 5, pp. 1235-1247, May 2019.

[40] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. "The
unreasonable effectiveness of deep features as a perceptual metric,” Proc.
CVPR, 2018.

[41] B. Kroon, V. Kumar Malamal Vadakital, J. Jung, “Recommended
pixel rate limits for the CTC for Immersive Video,” ISO/IEC
JTC1/SC29/WGI11/MPEG2019/M49826, July 2019.

[42] E. Bosc, F. Racapé, V. Jantet, P. Riou, M. Pressigou, L. Morin,
“A study of depth/texture bit-rate allocation in multi-view video plus
depth compression,” Annals of Telecommunications, Springer, 68 (11-
12), pp.615-625, 2013.

[43] Y. Al-Obaidi, T. Grajek and M. Domariski, “Quantization of Depth in
Simulcast and Multiview Coding of Stereoscopic Video plus Depth Using
HEVC, VVC and MV-HEVC,” 2019 Picture Coding Symposium (PCS),
Ningbo, China, pp. 1-5, 2019.

[44] K. Miller and A. Vetro, “Common Test Conditions of 3DV
Core Experiments,” Document JCT3V-G1100, JCTVC ITU-T SG16
WP3ISO/IECJTC1/SC29/WGl11, San Jose, CA, USA, Jan. 2014.

and .
(v2),”

Boyce,
ISO/IEC

Patrick Garus received the M. Sc and
M. Ed. degrees from Rheinisch-Westfilische
Technische Hochschule Aachen (RWTH Aachen),
Aachen,Germany, in 2018 and 2019, respectively.
He worked as a research assistant in the Institute
of Communication Engineering (IENT), Aachen,
Germany from 2015 to 2017 on synthesis of
dynamic textures for video coding. He is currently
pursuing the Ph.D. degree with Orange Labs
and INRIA, Rennes, France. His current research
interests include Immersive Video Coding, depth
estimation, view synthesis and related machine learning-based technologies.

Félix Henry received the Dipl.-Ing. (M.Sc.) de-
gree in telecommunications from Telecom ParisSud,
Paris, France, in 1993, and the Ph.D. degree from
Telecom ParisTech, Paris, in 1998 in the domain
of wavelet image coding. He started his career
in 1995 with the Canon Research Center, France,
where he worked on still image compression and
video coding. He participated actively in JPEG2000,
HEVC and VVC standardization and is a co-inventor
of more than 150 patents in the domain of signal
processing. He is currently working as a research
Engineer with Orange Labs and the b<>com National Research Institute,
Rennes, France. His current research interests include Immersive Video
Coding and Video Compression using Neural Networks.

Dr. Joel Jung received the habilitation degree in
electrical engineering from Sorbonne University,
Paris, France, in 2019, and the Ph.D. degree in
electrical engineering from the University of Nice,
Nice, France, in 2000. From 1996 to 2000, he was
with the CNRS Laboratory, Sophia Antipolis, active
in the improvement of video decoders based on the
correction of compression and transmission artifacts.
In 2000, he joined Philips Research France, Paris, as
a Research Scientist in video coding, postprocessing,
perceptual models, objective quality metrics, and
low-power codecs. He worked at Orange Labs, France, from 2004 to 2020.
He has contributed to the 2-D and 3-D video coding standard HEVC/3-D
HEVC. He is currently a Principal Researcher with Tencent MedialLab, Palo
Alto, USA. His current research interests include video quality evaluation for
gaming content and immersive video content, contributing to ITU-T Study
Group 12 and being chair of the immersive video focus group of MPEG
Advisory Group 5 (AGS5) on video quality assessment. In addition, he is
involved in the standardization of immersive video codecs, as a co-chair of
MPEG Immersive Video (MIV) group, dealing with coding, view synthesis,
and depth estimation with six degrees of freedom.

Thomas Maugey graduated from Ecole Supérieure
d’Electricité, Supélec, Gif-sur-Yvette, France in
2007. He received the M.Sc. degree in fundamental
and applied mathematics from Supélec and Uni-
versité Paul Verlaine, Metz, France, in 2007. He
received his Ph.D. degree in Image and Signal
Processing at TELECOM ParisTech, Paris, France
in 2010. From October 2010 to October 2014, he
was a postdoctoral researcher at the Signal Pro-
cessing Laboratory (LTS4) of Swiss Federal Insti-
tute of Technology (EPFL), Lausanne, Switzerland.
Since November 2014, he is a Research Scientist at Inria Rennes-Bretagne-
Atlantique. He serves as an Assiociate Editor for EURASIP Journal on
advances in signal processing. His research deals with image and video
processing, 3D imaging and graph-based signal processing.

Christine Guillemot , IEEE fellow, is Director of
Research at INRIA. She holds a Ph.D. degree from
ENST (Ecole Nationale Superieure des Telecommu-
nications) Paris, and an Habilitation for Research Di-
rection from the University of Rennes. From 1985 to
Oct. 1997, she has been with FRANCE TELECOM,
where she has been involved in various projects in
the area of image and video coding and processing
for TV, HDTV and multimedia. From Jan. 1990 to
mid 1991, she has worked at Bellcore, NJ, USA, as
a visiting scientist. Her research interests are signal
and image processing, and computer vision. She has served as Associate
Editor for IEEE Trans. on Image Processing (from 2000 to 2003, and from
2014-2016), for IEEE Trans. on Circuits and Systems for Video Technology
(from 2004 to 2006), and for IEEE Trans. on Signal Processing (2007-2009).
She has served as senior member of the editorial board of the IEEE journal
on selected topics in signal processing (2013-2015) and has been senior area
editor of IEEE Trans. on Image Processing (2016-2020).

