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We analyze theoretically and experimentally the triadic resonance instability (TRI) of a
plane inertial wave in a rotating fluid. Building on the classical triadic interaction equations
between helical modes, we show by numerical integration that the maximum growth rate
of the TRI is found for secondary waves that do not propagate in the same vertical plane
as the primary wave (the rotation axis is parallel to the vertical). In the inviscid limit,
we prove this result analytically, in which case the change in the horizontal propagation
direction induced by the TRI evolves from 60◦ to 90◦ depending on the frequency of the
primary wave. Due to a wave generator with a large spatial extension in the horizontal
direction of invariance of the forced wave, we are able to report experimental evidence that
the TRI of a plane inertial wave is three dimensional. The wave vectors of the secondary
waves produced by the TRI are shown to match the theoretical predictions based on the
maximum growth rate criterion. These results reveal that the triadic resonant interactions
between inertial waves are very efficient at redistributing energy in the horizontal plane,
normal to the rotation axis.

DOI: 10.1103/PhysRevFluids.6.074801

I. INTRODUCTION

Rotating and stratified fluids allow the propagation of waves in their bulk, as a result of the
restoring action of the Coriolis force and of the buoyancy force, respectively [1–3]. Moreover, iner-
tial waves in rotating fluids and internal gravity waves in stratified fluids share several remarkable
features: They have similar dispersion relations linking the ratio between the wave frequency and
the rotation rate or the buoyancy frequency to the tilt angle with the horizontal of the direction
along which their energy propagates (with the rotation or gravity axis parallel to the vertical). As
a consequence, their group and phase velocities are normal to each other. Also, their wavelength
is independent of their frequency and is set by boundary conditions, viscous dissipation, and
nonlinearities [4]. This leads to a variety of wave structures such as self-similar beams [5–9], plane
waves [10–12], resonant cavity modes [13–17], and even cavity limit cycles called wave attractors
[4,18–22].

Global rotation and density stratification are two major ingredients of atmospheric and oceanic
turbulent dynamics [23]. Inertial and internal gravity waves are therefore important contributors in
these geophysical flows in which they merge into inertia-gravity waves with a dispersion relation
coupling rotation and buoyancy [2,23]. In this context, wave turbulence theory (WTT), which
addresses the statistical properties of weakly nonlinear ensembles of waves in large domains
[24–26], stands as an interesting direction for improving turbulence parametrizations in coarse
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atmospheric and oceanic models [27]. This is particularly the case since several recent studies have
given credence to the WTT framework for inertial waves in experiments [28] and in numerical
simulations [29,30] as well as for internal gravity waves in experiments [31,32].

In the framework of WTT, an energy cascade towards small scales and small frequencies emerges
as the statistical result of weakly nonlinear interactions within resonant triads of waves [33–36]. A
fundamental process at play in this weakly nonlinear cascade [37] is the triadic resonance instability
(TRI) which drains the energy of a primary wave at frequency σ0 toward two subharmonic waves
at frequencies σ1 and σ2 such that σ1 + σ2 = σ0. The instability of inertial and internal gravity
waves has been reported since early works in the 1960s (see [38] and references therein). Several
quantitative experimental and numerical studies of the TRI have been conducted since the 2000s,
starting with the two-dimensional (2D) numerical simulations of a propagating plane internal gravity
wave by Koudella and Staquet [39]. Since then, the TRI has been characterized numerically and
experimentally for plane waves [11,12,40,41] and for the self-similar beam of wave attractors [4,42–
44]. In addition, refinements of the theory for the TRI accounting for finite-size effects, i.e., the finite
number of wavelengths present in the primary wave beam, have been proposed [41,45].

In all these works, when the comparison of the experimental or numerical data with the
theoretical framework of the TRI was done, it was restricted to the case where the secondary
waves propagate in the same vertical plane as the primary wave, assuming that the secondary
waves are invariant in the same horizontal direction as the primary wave (labeled direction y
in the following). This implicit assumption of a two-dimensional instability is somewhat consis-
tent with the considered numerical and experimental setups. For example, in the experiments of
Refs. [11,12,40,41,43,44], with the notable exception of the work of Brunet et al. [4], the width
of the primary wave beam in the y direction was not large compared to its wavelength or to its
typical propagation distance. Furthermore, in the 2D numerical simulations of Refs. [39,42] the
flow was strictly invariant in the y direction. On the one hand, the possibility of the triadic resonance
instability being three dimensional, i.e., with an energy transfer toward two waves propagating in
vertical planes other than the one of the primary wave, is yet to be considered theoretically. On the
other hand, this possibility has not been tested either because of the very limited extension of the
forcing in the y direction in experiments or because 2D simulations render it forbidden at the outset.

In the present article, we analyze theoretically and experimentally the triadic resonance instability
of a plane inertial wave in a rotating fluid of uniform density. First, we show by numerical
integration that the classical triadic resonance interaction analysis for the TRI of a plane inertial
wave predicts a maximum growth rate for secondary waves propagating out of the primary wave
plane. Moreover, we analytically demonstrate this result in the inviscid limit. Second, we test this
theoretical prediction experimentally by forcing a plane inertial wave beam with an extension in
its horizontal invariance direction y much larger than its wavelength. We find good agreement
between the features of the secondary waves produced by the instability in the experiments and
the predictions for the wave triad maximizing the TRI theoretical growth rate. Thus, we confirm the
natural tendency of the TRI of a plane inertial wave to be three dimensional and to redistribute the
energy in the horizontal plane normal to the rotation axis.

II. TRIADIC RESONANCE INSTABILITY OF A PLANE INERTIAL WAVE

A. Navier-Stokes equation in a rotating frame

In the following, we consider the dynamics of a fluid of uniform density subject to a global
rotation at a rate � around the vertical axis defined by the unit vector ẑ. In the rotating frame of
reference, the velocity field u(x, t ) of incompressible fluid motions (∇ · u = 0) is described by the
Navier-Stokes equation

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p − 2� × u + ν∇2u, (1)
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FIG. 1. Sketch of a plane inertial wave of wave vector k with polarity (a) s = −1 and (b) s = +1. The wave
is invariant in the horizontal y direction (ky = 0). The fluid motions consist in an anticyclonic circular trans-
lation in the planes of constant phase, normal to k, which are tilted by an angle θ = cos−1(σ ∗) = cos−1(kz/k)
with respect to the horizontal. The phase of the wave propagates normally to these constant phase planes, but
the energy of the wave propagates parallel to these planes along the group velocity. The vectors cg and cϕ

indicate the direction of the group and phase velocities, respectively. The amplitude of the fluid motions is
damped along the energy propagation direction cg at a rate νk2.

where p is the pressure field, ν the fluid viscosity, ρ the fluid density, and � = � ẑ the vector
rotation rate. In the inviscid and linear limit, Eq. (1) has anisotropic, dispersive, and helical plane
wave solutions, called inertial waves [1,23]. Their dispersion relation

σ = s2�
k · ẑ
|k| (2)

relates the normalized wave angular frequency σ ∗ = σ/2� to the direction of the wave vector k.
In Eq. (2), −s is the sign of the wave helicity (∇ × u) · u [37]. The dispersion relation (2) reveals
that the wavelength λ = 2π/k (where k = |k|) is independent of the frequency σ . In practice, the
wavelength is set by the boundary conditions, viscous effects, and even nonlinear effects in some
cases (see [4] for a discussion on this point). When viscosity is considered in Eq. (1), the amplitude
of the wave of wave vector k is damped at a rate νk2 [46]. In addition, viscosity does not modify
the wave dispersion relation (2) (see Ref. [46]), which is not the case, e.g., for internal gravity
waves. Finally, it is worth mentioning that inertial plane waves are also solutions of the complete
(nonlinear) Navier-Stokes equation (1), in which case they are however not necessarily stable, as we
will see in the following.

The structure of a plane inertial wave of wave vector k is sketched in Fig. 1 for the two
possible polarities s = −1 and +1. The fluid motions in the wave consist in an anticyclonic
circular translation at frequency σ = s2�kz/k in the planes of constant phase, which are normal
to k and therefore tilted by an angle θ = cos−1(σ ∗) = cos−1(kz/k) with respect to the horizontal
(kz = k · ẑ). The phase shift of the motion between close parallel planes of constant phase involves
a shear and finally leads to a vorticity ∇ × u that is parallel to the local velocity u. The energy
of the wave propagates parallel to the slope of the planes of constant phase at the group velocity
|cg| = 2� sin θ/k. The energy goes upward (with respect to ẑ) when s = +1 and downward when
s = −1. The phase of the wave propagates at the phase velocity cϕ = σk/k2, which is normal to the
planes of constant phase and therefore to the group velocity cg. Viscosity damps the wave amplitude
as

exp

(
−νk2

|cg| ξ
)

= exp

(
− νk3

2� sin θ
ξ

)
(3)

in the direction of the group velocity cg at which the energy of the wave propagates [3,47] (ξ is the
spatial coordinate in the direction of the group velocity; see Fig. 1).
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B. Helical basis decomposition

Following Smith and Waleffe [37], we can decompose any divergence-free velocity field u(x, t )
on the basis of helical modes as

u(x, t ) =
∑

k

∑
sk=±1

bsk (k, t )hsk (k)ei[k·x−σsk (k)t], (4)

where σsk (k) is the angular frequency of the mode with wave vector k, amplitude bsk (k, t ), and
polarity sk = ±1. The helical base vectors hsk (k) are defined as

hsk = k
|k| × k × ẑ

|k × ẑ| + isk
k × ẑ
|k × ẑ| . (5)

Inserting the decomposition (4) into the Navier-Stokes equation (1) yields a set of equations for the
evolution of the amplitude bsk of the modes (k, sk, σsk ),(

∂

∂t
+ νk2

)
bsk = 1

2

∑
k+p+q=0

C
skspsq

kpq bsp bsq ei(σsk +σsp +σsq )t , (6)

due to nonlinear interactions with couples of modes (p, sp, σsp ) and (q, sq, σsq ) (the overline
indicates complex conjugate). In Eq. (6), the sum is taken over all wave vectors p and q such that
k + p + q = 0 and over the polarities sp = ±1 and sq = ±1. The triadic interaction coefficients are
defined as

C
skspsq

kpq = sqq − sp p

2
[hsp (p) × hsq (q)] · hsk (k), (7)

where p = |p| and q = |q|.

C. Triadic resonance of inertial waves

In Eqs. (4) and (6), if the frequency σsk (k) of a mode with wave vector k obeys the dispersion
relation of inertial waves

σsk (k) = 2�sk
kz

k
, (8)

the resulting helical mode corresponds exactly to a plane inertial wave [37]. To describe the triadic
resonance instability of a plane inertial wave, we therefore restrict the system of equations (6) to
three waves defined by (k0, s0, σ0), (k1, s1, σ1), and (k2, s2, σ2). These three waves have frequencies
that follow the dispersion relation (8) and that fulfill the triadic resonance conditions

σ0 + σ1 + σ2 = 0, (9)

k0 + k1 + k2 = 0. (10)

The spatial resonance condition (10) was already included in Eq. (6). Then, writing the temporal
resonance condition (9) amounts to assume that the flow is weakly nonlinear, i.e., that the wave
period 1/σi is much shorter than the nonlinear time 1/kibi, where bi is the amplitude of wave i
and ki = |ki|. This weak nonlinearity condition is achieved when the Rossby number of the waves
Roi = biki/4π� is small compared to the normalized wave period σ ∗

i = σi/2�, which implies
that nonlinear processes driving the evolution of the amplitudes bi(t ) are slow compared to the
wave oscillations. Under this weak nonlinearity assumption, the dominant contributions to the
right-hand side term of Eq. (6) come from waves that meet the temporal resonance condition such
that ei(σsk +σsp +σsq )t = 1 [28,37]. For nonresonant triads, the contribution of the complex exponential
tends toward zero when integrated over times longer than 1/(σsk + σsp + σsq ), strongly reducing the
efficiency of the energy exchanges within the triad [26,33]. Although these arguments suggest that
only resonant triads are of interest, this is strictly true only at vanishing Rossby number and recent

074801-4



THREE-DIMENSIONALITY OF THE TRIADIC RESONANCE …

works have shown that nearly resonant [48] and even nonresonant [49] triads can trigger instabilities
of inertial waves toward 2D vertically invariant modes at finite Rossby number, these instabilities
having however growth rates Ro times smaller than those of the triadic resonance instability.

D. Instability growth rate

In the following, we consider that the flow is composed of a plane inertial wave (labeled 0),
as the base flow, and two secondary plane inertial waves (labeled 1 and 2) that result from the
instability. Without loss of generality, we choose the primary wave 0 to be invariant in the y
direction, i.e., that k0 = (kx,0, 0, kz,0), and to have a positive angular frequency σ0 and a negative
polarity s0 = −1. We also consider the case (corresponding to the experiments presented later)
where kx,0 < 0, kz,0 being negative as a consequence of the dispersion relation. We restrict our
analysis to the early development of the instability, assuming that the primary wave amplitude b0

remains constant and the amplitudes of the secondary waves, b1 and b2, remain small compared to
b0, a situation sometimes called the pump-wave approximation [50,51]. Following (6), the evolution
of the amplitudes of the secondary waves is described by

db1

dt
= C1b0b2 − νk2

1b1, (11)

db2

dt
= C2b0b1 − νk2

2b2, (12)

where k1 = |k1|, k2 = |k2|, C1 = C
sk1 sk0 sk2
k1k0k2

, and C2 = C
sk2 sk1 sk0
k2k1k0

. Solving this system of equations
leads to an exponential growth (or decay) of b1 and b2 at a rate

γ = −ν
(
k2

1 + k2
2

)
2

+
√

ν2
(
k2

1 − k2
2

)2

4
+ C1C2|b0|2, (13)

the product C1C2 being real. We first note that the instability growth rate γ does not depend
on the rotation rate of the fluid �. Thus, γ will depend on the primary wave Reynolds number
Re0 = b02π/k0ν and on its nondimensional frequency σ ∗

0 but not on the primary wave Rossby
number Ro0 = b0k0/4π�.

In the inviscid limit where the primary wave Reynolds number tends to infinity, the expression
of the instability growth rate reduces to γ = |b0|

√
C1C2. In this situation, as well as in the 2D case

where secondary waves propagates in the same vertical plane as the primary wave (i.e., ky,1=ky,2=0),
the maximum growth rate is found for secondary wave numbers much larger than the primary
wave number such that k1 � −k2 [11,38,39]. As a consequence, the secondary waves are found
at degenerated frequencies |σ1| � |σ2| equal to half the primary wave frequency σ0/2 and the TRI
is often called parametric subharmonic instability [11,38,39].

Building on several identities pointed out in [37,52,53] (see Appendix A), the inviscid growth
rate can in the general 3D case be rewritten as

γ = |b0|
[

sin2 α2

4k2
2

(s0k0 + s1k1 + s2k2)2 σ1σ2

σ 2
0

(s2k2 − s1k1)2

]1/2

, (14)

where α2 is the angle opposite to the side k2 in the closed triangle formed by the resonant triads
(k0, k1, k2). We assume in the rest of this section that, in the inviscid 3D case, the secondary
wave numbers associated with the maximum growth rate are also much larger than the primary
wave number such that |σ1| = |σ2| = σ0/2 and k1 � k2 � k0 (this assumption will be validated in
the next section). Focusing on the combination of wave polarities (s0 = −1, s1 = +1, s2 = −1),
an asymptotic expansion of the growth rate to the first order in k0/k1 � k0/k2 leads to a simple
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FIG. 2. Resonance surfaces of (a) k1 and (b) k2 for the combination of wave polarities (−, +, −) and a
primary wave defined by k0 = 0.83 rad cm−1, s0 = −1, σ ∗

0 = 0.84, and b0 = 0.39 cm s−1. In (a) the vertical
axis shows −kz,1 for the sake of clarity. The two 3D plots also show the cone of apex at ki = 0 and of semiangle
θ0 = cos−1(σ ∗

0 ). This cone represents the waves at the forcing frequency according to the dispersion relation.
Below each resonance surface, we also report the map of the growth rate γ of the instability in the plane
(kx,i, ky,i ) in which the locations of the maximum growth rate are shown by black dots. The value ν = 1.20 ×
10−6 m2 s−1 is used for the kinematic viscosity in order to match the experimental value in the next section.

expression for the growth rate depending only on the angle α2 (see Appendix A),

γ

k0|b0| � 1

2
sin α2(1 − cos α2). (15)

Maximizing this expression with respect to the angle α2, the maximum growth rate
γ (max)/k0|b0| � 0.6495 is found for the specific angle α2 = 2π/3 (120◦) independently of the
primary wave frequency σ ∗

0 .
Remarkably, this angle α2 = 2π/3 can only be found for 3D resonant triads with the secondary

waves propagating in vertical planes other than the one of the primary wave, i.e., with a nonzero y
component of their wave vectors ky,1 = −ky,2. More precisely, we show in Appendix A that

ky,1

kx,1
= ±

(
3

1 − σ ∗
0

2

)1/2

. (16)

For the primary wave nondimensional frequency that will further be considered in our experiments,
σ ∗

0 = 0.84, this corresponds to an angle

φ1 = tan−1

(
3

1 − σ ∗
0

2

)1/2

� 73◦ (17)

between the vertical plane of propagation of the primary wave and the one of secondary wave 1
(and secondary wave 2 actually). For σ ∗

0 ranging from 0 to 1, the angle φ1 ranges from 60◦ to 90◦.
This result is remarkable: It demonstrates that, in the inviscid limit, the most unstable triad is always
three dimensional with secondary waves propagating in vertical planes making an angle between
60◦ and 90◦ with the primary wave vertical plane of propagation.

In the following, we return to the general 3D case with viscosity and identify numerically the
maximum growth rate of the instability.
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E. Instability growth rate in the viscous case

In Fig. 2 we report in the coordinate system (kx/k0, ky/k0, kz/k0) the resonance surfaces defined
by all the wave vectors k1 [Fig. 2(a)] and k2 [Fig. 2(b)] which are solutions of the triadic resonance
conditions (9) and (10). These surfaces are computed for a primary wave defined by k0 = 0.83
rad cm−1, s0 = −1, σ ∗

0 = 0.84, and b0 = 0.39 cm s−1 and for a combination of wave polarities (s0 =
−1, s1 = +1, s2 = −1) denoted in the following by the shorthand (−,+,−). These resonance sur-
faces illustrate all the possible couples of secondary waves (k1, k2 = k0 − k1) in triadic resonance
with the primary wave for the case (−,+,−). These resonance surfaces are the three-dimensional
extensions of the 2D classical resonance curves, reported in several works [11,37,39,40], which are
restricted to secondary waves invariant in the y direction (ky = 0), as the primary wave. Below each
resonance surface, we report the map of the corresponding growth rate γ of the instability (13)
in the plane (kx,i, ky,i ). The primary wave Reynolds number is Re0 = b02π/k0ν � 245, where the
value ν = 1.20 × 10−6 m2 s−1 is used for the kinematic viscosity in order to match the experimental
value in the next section. The rotation rate � = 18 rpm is the same as the one of the experiments
presented later in the article. It yields a primary wave Rossby number of Ro0 = b0k0/4π� � 0.014.

Figure 2(a) shows the resonance surface for the wave vector k1 (note that the vertical axis reports
−kz,1 for the sake of clarity). This resonance surface (in pink) extends up to infinity, with any
choice of the wave-vector components (kx,1, ky,1) having a resonant solution. The resonance surface
uniformly lies below the cyan cone of apex at k1 = 0 (a point also included in the resonance surface)
and semiangle θ0 = cos−1(σ ∗

0 ) corresponding to wave vectors k1 of waves at the forcing frequency
according to the dispersion relation. This observation means that the resonant secondary waves 1
always have a wave vector k1 which is more horizontal than the primary wave vector k0 (shown in
the figure). According to the dispersion relation (2), it implies that |σ1| < |σ0|. We also note that a
small portion of the k1 resonance surface associated with positive values of kz,1 and small values
of (kx,1, ky,1) is not shown. One can however see that this range of secondary wave vectors k1 is
associated with a negative growth rate γ and therefore is not to be considered further.

Figure 2(b) shows the resonance surface for the wave vector k2 = k0 − k1. Although this infor-
mation is equivalent to the one found in Fig. 2(a), the k2 resonance surface highlights interesting
features. For instance, contrary to the case of k1, the k2 resonance surface does not intersect the
kz = 0 plane since kz,2 is always strictly positive. In addition, a portion of the resonance surface
at small (kx,2, ky,2) lies inside the cone of semiangle θ0 = cos−1(σ ∗

0 ). One can see in the map of γ

reported in the plane (kx,2, ky,2) that the corresponding values of k2 are however associated with
the regime of negative growth rate already noticed in Fig. 2(a) for the wave vector k1. Again,
if we restrict our analysis to positive growth rates γ , the secondary wave vectors k2 are more
horizontal than the primary wave vector k0. In summary, the resonant secondary waves 1 and 2 have
frequencies that are always smaller in absolute value than the one of the primary wave, |σ1,2| < |σ0|,
i.e., the secondary wave vectors k1 and k2 are always more horizontal than the primary wave vector
[37]. Considering that in the present conventions frequencies can be negative, a resonant triad with
a primary wave of positive frequency σ0 will have negative frequencies for both secondary waves
obeying the relation |σ1| + |σ2| = |σ0|.

We now arrive at the most important conclusion of this section: The growth rate of the instability
γ is maximum for secondary waves which are not propagating in the same plane as the primary
wave, i.e., for secondary waves that are not invariant in the y direction (ky �= 0). The triadic
resonance instability of a plane inertial wave is therefore expected to be a three-dimensional
instability transferring energy to secondary waves with a wave-vector component ky of the same
order as kx. This can be observed in Fig. 2, where the two locations of the maximum growth rate in
the (kx,i, ky,i ) planes are indicated by black dots. There are actually two couples of secondary waves
that maximize the growth rate with symmetric wave vectors ki with respect to the primary wave
vertical plane ky,i = 0. In the following we will show that this three-dimensionality is in agreement
with the experiments.
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FIG. 3. (a) Resonance surface of k1 (in pink) and (b) 3D view of the instability growth rate γ for the
combination of polarities (−, −, −). In (a) we also show the cone of apex at k1 = 0 and of semiangle θ0 =
cos−1(σ ∗

0 ). The surfaces are computed for a primary wave defined by k0 = 0.83 rad cm−1, s0 = −1, σ ∗
0 = 0.84,

and b0 = 0.39 cm s−1 in a rotating fluid of kinematic viscosity ν = 1.20 × 10−6 m2 s−1.

For the sake of completeness, we also consider the combinations of polarities (−,−,+) and
(−,−,−). The first combination (−,−,+) is actually the same case as (−,+,−) where the roles
of the waves 1 and 2 have been exchanged. For the polarities combination (−,−,−), Fig. 3(a) shows
the resonance surface for k1 and Fig. 3(b) shows a 3D view of the corresponding growth rate γ as
a function of (kx,1, ky,1). This representation is necessary since the resonance surface is a closed
surface with values of k1 of the order of k0. This implies that for a given couple of wave-vector
components (kx,1, ky,1) there are either two resonant solutions for kz,1 at small (kx,1, ky,1) or no
solution at large (kx,1, ky,1). Then γ takes also two values when kz,1 does. As for the (−,+,−)
instability, when the instability growth rate γ is positive, the secondary waves are subharmonic
with |σ1| and |σ2| smaller than |σ0|. In contrast, the maximum growth rate of the instability is
this time found for secondary waves with ky = 0, invariant in the y direction. At the considered
nondimensional frequency σ ∗

0 = 0.84, the (−,−,−) instability is therefore two dimensional to the
first order, i.e., if one considers only its maximum growth rate.

To conclude this section, we report in Fig. 4(a) the evolution of the maximum instability growth
rate γ (max) for combinations (−,+,−) and (−,−,−) as a function of the primary wave Reynolds
number Re0 = b02π/νk0 for σ ∗

0 = 0.84. This maximum growth rate is actually shown normalized
by the nonlinear frequency of the primary wave as γ (max)/k0b0. The normalized maximum growth
rate naturally grows with Re0 for both modes starting from vanishing and asymptotically equal
values at small Re0. At large Re0, the normalized growth rate γ (max)/k0b0 tends toward order 1
asymptotic values, the growth rate for the (−,+,−) mode being typically twice larger than for
the (−,−,−) mode. Moreover, in the (−,+,−) case, the maximum normalized growth rate tends
toward the inviscid value γ (max)/k0b0 � 0.6495 predicted analytically in Sec. II D [see Eq. (15)].
In Fig. 4(b) we show the wave-vector components k(max)

x,1 and k(max)
y,1 corresponding to the maximum

growth rate for each mode and as a function of Re0 (again for σ ∗
0 = 0.84). For the instability mode

(−,+,−), k(max)
x,1 is negative and slowly grows in absolute value from approximately k0/10 at Re0 �

10 up to approximately 2.7k0 at Re0 � 4 × 105, whereas k(max)
y,1 can take two opposite values that

grow in absolute value from approximately k0/10 at Re0 � 10 to approximately 9.3k0 at Re0 �
4 × 105, in agreement with the symmetry found in Fig. 2. We also report in Fig. 4(b) as a red

curve the wave number |k(max)
x,1 |

√
3/(1 − σ ∗

0
2) which is predicted in the inviscid limit (see Sec. II D)

to match the wave-vector component k(max)
y,1 . One can observe that the value of k(max)

y,1 numerically
obtained from the full set of viscous equations is actually already close to its inviscid prediction
at moderate Re0. The behavior of the mode (−,−,−) is very different. The maximum-growth-
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FIG. 4. (a) Maximum normalized instability growth rate γ (max)/k0b0 for polarity combinations (−, +, −)
and (−,−, −) as a function of the primary wave Reynolds number Re0 = b02π/νk0 for σ ∗

0 = 0.84. The hori-
zontal blue straight line reports the value γ (max)/k0b0 predicted analytically in the inviscid limit in Sec. II D [see
Eq. (15)]. (b) Wave-vector components k(max)

x,1 and k(max)
y,1 corresponding to the maximum growth rate for each

mode as a function of Re0 (again for σ ∗
0 = 0.84). The red curve shows the wave number

√
3/(1 − σ ∗

0
2) |k(max)

x,1 |,
which is predicted in the inviscid limit (see Sec. II D) to match the wave-vector component k(max)

y,1 for the

instability mode (−, +, −). (c) Corresponding wave numbers. The blue straight line shows a power law Re1/4
0 .

rate instability is two dimensional, with k(max)
y,1 = 0 for all Re0, and k(max)

x,1 positive, of order k0 and
slowly increasing with Re0. Figure 4(c) finally shows that for the (−,+,−) mode the norm of the
subharmonic wave numbers k1 and k2 continuously grows from values of the order of 0.3k0 and
1.4k0 at Re0 � 10, respectively, up to values of the order of 13k0 at Re0 � 4 × 105. At large Re0,
k1/k0 and k2/k0 increase, following power laws Re1/4

0 . In parallel, for the (−,−,−) mode, k1 and k2
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FIG. 5. Sketch of the experimental setup seen from (a) the side and (b) the top.

slowly grow over the range of Reynolds number considered while remaining in the range between
0.3k0 and 1.5k0.

The previous theoretical developments demonstrate the 3D character of the TRI of a plane inertial
wave. In the following we explore this question from an experimental point of view before we finally
compare the two approaches quantitatively.

III. EXPERIMENTAL SETUP

The flow is generated in a parallelepipedic glass tank of Lx × Ly = 150 × 80 cm2 rectangular
base and 70 cm height filled with 55 cm of water as sketched in Fig. 5. A plane inertial wave is
forced in the tank by an immersed wave maker which has already been implemented in several
studies of internal gravity waves in stratified fluids [12,40,43,44] and in a previous study of the
instability of a plane inertial wave [11]. A major difference with these previous experiments has
nevertheless been introduced: The wake maker produces here a plane wave with a large spatial
extension in the horizontal direction y (in which the forced wave is supposed to be invariant) normal
to the wave propagation plane (x, z). More precisely, the wave maker extent in the y direction is
50 cm, whereas it was 14 cm in the previous studies, these lengths being to be compared to the
forced wavelength of 7.6 cm.

The wave maker is composed of a stack of 48 plates which are 6.33 mm thick and 50 cm wide
(see Fig. 5). The plates are fitted with a rectangular hole at their center through which a camshaft is
inserted, each cam being a circular plate adjusted to the hole with a rotation point shifted from its
center by an eccentricity A (scotch yoke mechanism). A constant angular shift of 30◦ is introduced
between adjacent cams leading the surface drawn by the plate edges to approximate a sinusoidal
shape of wavelength λ f = 7.6 cm. The profile contains four wavelengths such that the produced
wave beam will have a 4λ f = 30.4 cm width. A brushless motor coupled to a reducer is driving the
camshaft in a constant rotation at an angular frequency σ0 such that each plate is finally subject to
an oscillating linear translation motion in the direction normal to its width and to the camshaft axis
(the plates are guided laterally). The wave maker surface eventually describes a sinusoidal profile

ξwm(η, t ) = A sin(σ0t − k0η), (18)
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with a phase propagating downward, parallel to the camshaft axis. In Eq. (18), k0 = 2π/λ f is the
wave number, η is the coordinate along the phase propagation direction, and ξ is the coordinate
along the energy propagation direction (see Fig. 5).

The whole system is mounted on a 2-m-diam platform rotating at a rate � = 18 rpm. The
angular frequency of the wave maker is set to σ0 = 0.84 × 2� � 3.17 rad s−1. Following the inertial
wave dispersion relation, the wave maker is tilted at an angle θ0 = cos−1(σ0/2�) � 32.9◦ with its
deforming surface pointing downward. With this tilt, the motion of the wave maker surface matches
the velocity boundary condition of a plane inertial wave at frequency σ0 and propagating downward
(polarity s0 = −1). More precisely, the wave maker drives inertially the velocity component of the
plane wave along its energy propagation direction (axis ξ in Fig. 5) without however forcing the
velocity component along the wave invariance direction y. Given the location of the wave maker in
the tank (Fig. 5), the forced wave will propagate over a distance of about 60 cm before the reflection
on the bottom of the tank takes place. In our study, we use cams with eccentricity A equal to either 1,
1.5, or 2 mm, leading to forcing Reynolds numbers Re f = Aσ0λ f /ν in the range 230 � Re f � 420
and forcing Rossby numbers Ro f = Aσ0/2�λ f in the range 0.011 � Ro f � 0.022.

The two components (ux, uz ) of the velocity field are measured in the vertical plane y = y0 =
Ly/2 using a particle image velocimetry (PIV) system mounted in the rotating frame (y = 0 is the
front side of the tank). The water is seeded with 10-μm tracer particles and illuminated by a laser
sheet generated by a corotating 140-mJ Nd:YAG pulsed laser. For each experiment, 7920 images
of particles are acquired using a 2360 × 1776 pixel camera at a frequency of 24 images per wave
maker period T = 2π/σ0. The acquisition, which is started 30 forcing periods before the start of
the wave maker, covers 330 periods in total. The imaged region has a surface of 71 × 53 cm2 (see
the dashed rectangle in Fig. 5). Particle image velocimetry cross correlation is finally performed
between successive images using 32 × 32 pixel interrogation windows with a 50% overlap and
provides velocity fields with a spatial resolution of 4.8 mm. The rotation of the platform is always
started at least 30 min before the start of the wave maker in order for the spin-up of the fluid to be
completed.

IV. EXPERIMENTAL RESULTS

A. Subharmonic instability

In order to explore the temporal content of the flow produced by the wave maker, we compute
the temporal power spectral density of the measured velocity field as

E (σ, t,�T ) = 4π

�T
〈|ũ(x, z, σ, t,�T )|2〉, (19)

where the components of ũ are given by

ũ j (x, z, σ, t,�T ) = 1

2π

∫ t+�T/2

t−�T/2
u j (x, y0, z, t ′)e−iσ t ′

dt ′, (20)

the temporal Fourier transform of the velocity component uj (x, y0, z, t ) with j = (x, z), and the
angular brackets denote the spatial average over the measurement area in the plane y0 = Ly/2.
In Fig. 6 we report the temporal spectra E (σ, t,�T ) as a function of the normalized frequency
σ ∗ = σ/2� for the three experiments at forcing amplitudes A = 1, 1.5, and 2 mm. The Fourier
transform (20) is computed over the whole experimental duration from the start of the wave maker
(�T = 300T , t = �T/2, and T = 2π/σ0 being the period of the forcing). As a reference, we also
report a spectrum measured with the wave generator off (A = 0 and Re f = 0). All the spectra (with
the wave generator on) exhibit an energetically dominant peak at the driving frequency σ ∗

0 = 0.84.
The spectrum at the lowest (nonzero) forcing amplitude (Reynolds number Re f = 230) corresponds
to a flow in the linear regime, below the onset of the triadic resonance instability. Nevertheless, sec-
ondary peaks at frequencies σ = � (σ ∗ = 0.5), σ = 2� (σ ∗ = 1), and σ = 2� − σ0 (σ ∗ = 0.16)
are observed. One can note that the energy peaks at σ = � (σ ∗ = 0.5) and σ = 2� (σ ∗ = 1)
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FIG. 6. Temporal power spectral density E (σ, t = 150T, �T = 300T ) as a function of the normalized
frequency σ ∗ = σ/2� for experiments at σ ∗

0 = 0.84 and � = 18 rpm for a forcing wavelength λ f = 7.6 cm
and four forcing Reynolds numbers Re f = 0 (pink curve), Re f = 230 (red curve), Re f = 300 (blue curve),
and Re f = 420 (black curve). The spectrum at Re f = 0 corresponds to an experiment with the wave generator
off. A vertical shift by a factor of 20 has been introduced between successive spectra.

are already present, with the same amplitude, in the spectrum without forcing (Re f = 0). The
peak at σ = � (σ ∗ = 0.5) has actually been shown to correspond mainly to a flow created by
the rotating platform’s precession induced by the earth’s rotation (see [17,54]). Nevertheless, we
cannot exclude that part of the energy in this peak is related to mechanical perturbations of the
system rotation at the frequency σ = � inducing inertial waves in the flow. The peak at σ ∗ = 1 is
the result of a perturbation of the platform rotation inducing waves at σ = 2� in the water tank.
The peak at σ = 2� − σ0 (σ ∗ = 0.16) can be interpreted as the result of the interaction between
the mode at σ = 2� and the forcing. We also observe a peak at σ ∗ = 0 with a tail extending up to
σ ∗ � 0.05. This peak, already present with a similar amplitude in the spectrum without forcing,
has been discussed in Refs. [4,11] and is due to the presence of thermal convection columns
drifting horizontally in the water tank. Finally, other even weakly energetic peaks are present in
the spectrum at Re f = 230 corresponding to direct combinations (sums and differences) of the
frequencies of the leading energetic modes at σ = σ0, σ = �, and σ = 2�. As one can see, these
modes are progressively drowned in the spectral noise for the experiments conducted at larger
forcing amplitudes.

When increasing the forcing Reynolds number to Re f = 300, two spectral bumps at subharmonic
frequencies emerge. These bumps are almost perfectly symmetric with respect to half the forcing
frequency σ0/2, which indicates that the frequencies associated with these two bumps are in triadic
resonance with the primary wave frequency σ0. This observation is the classical signature of the
triadic resonance instability of an inertial wave and it has been widely reported in experimental
[4,11,28,49,55] and numerical works [42,48]. As the forcing Reynolds number increases to 420,
the subharmonic bumps are spreading in frequency, in agreement with previous experimental works
[4,49]. This latter feature is at odds with the subharmonic peaks observed in numerical simulations
of a 2D inertial wave attractor by Jouve and Ogilvie [42], where the flow is strictly invariant in the
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TABLE I. Reported for each experiment are the normalized frequency σ ∗
1 associated with the maximum

of the bump at the lowest frequency in each subharmonic couple and the associated resonant frequency
σ ∗

2 = σ ∗
0 − σ ∗

1 (σ ∗
0 = σ0/2� = 0.84). These frequencies are highlighted by red circles in Fig. 6. Also reported

for each subharmonic mode are the values computed in Sec. IV B of the wave-vector components with
the corresponding error bars. The forcing Reynolds and Rossby numbers are defined as Re f = Aσ0λ f /ν

and Ro f = Aσ0/2�λ f , respectively. Here ν is the experimental kinematic viscosity of water (derived from
temperature measurements), � = 18 rpm is the global rotation rate, σ0 is the forcing frequency, A is the forcing
amplitude, and λ f = 7.6 cm is the forcing wavelength.

Parameter Experiment 1 Experiment 2 Experiment 3

Re f 230 300 420
Ro f 0.011 0.017 0.022
A (mm) 1 1.5 2.0
ν (m2/s) 1.05 × 10−6 1.20 × 10−6 1.15 × 10−6

σ ∗
1 no TRI 0.285 0.252

σ ∗
2 = σ ∗

0 − σ ∗
1 no TRI 0.555 0.588

kx,1 (rad cm−1) no TRI 0.640 ± 0.104 0.625 ± 0.110
ky,1 (rad cm−1) no TRI 1.314 ± 0.313 0.794 ± 0.125
kz,1 (rad cm−1) no TRI 0.435 ± 0.097 0.263 ± 0.043
kx,2 (rad cm−1) no TRI −1.124 ± 0.145 −1.057 ± 0.120
ky,2 (rad cm−1) no TRI −1.188 ± 0.125 −0.729 ± 0.070
kz,2 (rad cm−1) no TRI −1.091 ± 0.127 −0.934 ± 0.058

transverse horizontal direction y. A possible explanation is that the large frequency width observed
here for the subharmonic bumps produced by the TRI is a consequence of the three-dimensionality
of the TRI allowed in the experiments but forbidden in the 2D simulations. Nevertheless, one cannot
exclude that part of the spreading of the TRI subharmonic bumps observed here at Re f = 420 is
the consequence of the emergence of secondary triadic resonant interactions in the flow, which
could stand as the premise of a transition toward an inertial wave turbulence following the scenario
reported in [28].

To further explore the characteristics of the secondary waves produced by the triadic resonance
instability, we select, for each couple of subharmonic bumps, the angular frequency σ ∗

1 associated
with the maximum spectral density of the lowest-frequency bump in the spectra of Fig. 6. We report
these values in Table I and highlight them in Fig. 6. Then we select the frequency σ ∗

2 = σ ∗
0 − σ ∗

1 in
triadic resonance with σ ∗

1 . For each couple of bumps, we can see in Fig. 6 that the computed value
σ ∗

2 is very close to the frequency associated with the maximum of the second spectral bump (σ ∗
1 and

σ ∗
2 are shown in Fig. 6 by red circles).

In the following, we use a Hilbert filtering procedure to extract the velocity field associated with
the modes at frequencies σ1 and σ2. This procedure consists in a bandpass Fourier filter of the
velocity field at the frequency of interest σi (with a band width equal to the spectral resolution)
in conjunction with a filtering in the wave-vector space retaining only the energy present in one
(judiciously chosen) quadrant of the wave-vector space (kx, kz ). Compared to a simple temporal
Fourier filtering, this procedure allows us to remove other wave beams at the frequency of interest
coming from reflections on the water tank boundaries, which have wave-vector components in the
other three quadrants of the wave-vector space. Moreover, the temporal filtering retains only the
energy at the selected frequency σi > 0 without including the corresponding negative frequency.
This procedure leads to a complex velocity field whose real part is the physical field (once multiplied
by 2 to compensate for the discarded negative frequency and enforce energy conservation) and
whose argument ϕ(x) is the phase field of the wave of interest at the frequency σi. Details on this
filtering procedure can be found in Refs. [4,11,56].
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FIG. 7. Snapshots of the vertical velocity component computed with the Hilbert filtering procedure for the
experiment at Re f = 300 for frequencies (a) σ ∗

0 , (b) σ ∗
1 , and (c) σ ∗

2 : (a) temporal filter at σ ∗
0 = 0.84 and spatial

filter keeping the wave-vector quadrant (kx < 0, kz < 0), (b) σ ∗
1 = 0.285 and (kx > 0, kz > 0), and (c) σ ∗

2 =
0.555 and (kx < 0, kz < 0). In each panel, the dotted line indicates the theoretical tilt angle θi = cos−1(σ ∗

i )
with the horizontal predicted for the constant phase planes for a wave at the considered frequency σ ∗

i and
propagating in the vertical measurement plane (x, z), i.e., with ky = 0. The black rectangle (more precisely, its
underside) indicates the mean position of the wave generator surface. In (b) and (c) the dashed line indicates
the direction normal to the projection in the measurement plane of the wave vectors computed in Sec. IV B for
the modes at σ ∗

1 and σ ∗
2 in the instability region (dashed rectangle).

For the experiment at Re f = 300, Fig. 7 shows snapshots of the vertical velocity field computed
via the Hilbert filtering procedure for the three frequencies σ ∗

0 , σ ∗
1 , and σ ∗

2 . In Fig. 7(a) we observe
a plane primary wave having a wave-beam width of four wavelengths, as expected from the wave-
maker geometry shown in Fig. 5. The amplitude of the velocity oscillations uξ of the primary wave
measured experimentally along the energy propagation direction cg,0 is 4.0 ± 0.3 mm s−1 [Fig. 7(a)
reports the velocity component uz, which is equal to (1 − σ ∗

0
2)1/2uξ � 0.54uξ for an in-plane wave

at frequency σ ∗
0 = 0.84]. This value is consistent with the forcing velocity amplitude A f σ0 � 4.75

mm s−1. Figures 7(b) and 7(c) show snapshots of the vertical velocity obtained from Hilbert filtering
at the frequencies σ ∗

1 and σ ∗
2 (see Table I), respectively. In the measurement plane, the wavelengths

of the secondary waves are of the same order as the primary wavelength. In addition, the secondary
waves’ velocity oscillation amplitude is of the order of 0.5 mm s−1, one order of magnitude smaller
than the amplitude of the primary wave. The characteristic Rossby number of the secondary waves
is therefore of the order of 10−3.

In Figs. 7(b) and 7(c) we note that the triadic resonance instability emerges only after the primary
wave has traveled a distance between 20 and 30 cm from the wave maker. The region, where the
instability develops, is identified by a dashed rectangle in the fields of Fig. 7. The reason why the
TRI does not occur closer to the wave maker remains an open question. After analyzing the direction
of propagation of the phase for each of the subharmonic waves, we conclude that the wave at σ1

has an s = +1 polarity (upward phase propagation), whereas the wave at σ2 has an s = −1 polarity
(downward phase propagation); the instability observed here has a polarity combination (−,+,−),
in line with the theory presented in Sec. II, which predicts that this polarity combination is associated
with the maximum instability growth rate. Consistent with the directions of their respective group
velocities (upward for s = +1 waves and downward for s = −1 waves), the wave at σ1 spreads out
upward with respect to the instability region (the dashed rectangle), whereas the wave at σ2 spreads
out downward with respect the instability region (see Fig. 1).

Remarkably, we observe in Fig. 7 that the apparent planes of constant phase of the subharmonic
waves at frequencies σ ∗

1 and σ ∗
2 (dashed line) are more horizontal than the theoretical tilt angle
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θi = cos−1(σ ∗
i ) = cos−1(kz,i/ki ) (dotted line) expected for waves at the considered frequencies

and propagating in the plane (x, z) as the primary wave, i.e., invariant in the y direction. This
observation is evidence that the subharmonic waves have a nonzero wave-vector component in
the y direction and therefore that they are propagating out of the primary wave (and measurement)
plane. This out-of-plane propagation explains that the apparent tilt angle cos−1[kz,i/(k2

x,i + k2
z,i )

1/2]
of the constant phase planes observed in the measurement plane is lower than the actual angle of the
out-of-plane waves cos−1[kz,i/(k2

x,i + k2
y,i + k2

z,i )
1/2]. The experimental triadic resonance instability

is three dimensional, in agreement with the theoretical prediction of Sec. II.
At this point, it is important to highlight that because we only measure the cut of the velocity field

in a vertical plane (y = y0), we are unable to directly measure the component of the subharmonic
modes wave vectors along the horizontal direction y normal to the measurement plane. As a conse-
quence, we are not able to demonstrate that the subharmonic modes verify the dispersion relation of
inertial waves (which involves measuring ky for waves propagating out of the measurement plane).
Nevertheless, given the low Rossby number of the subharmonic modes (∼10−3) and of the primary
wave (∼10−2), it is reasonable to assume that the subharmonic modes are indeed inertial waves.
Thus, instead of showing that the subharmonic modes verify the dispersion relation, we will use the
dispersion relation to compute the out-of-plane component of their wave vectors. In Sec. IV B we
compute the wave vectors of the subharmonic waves at frequencies σ ∗

1 and σ ∗
2 and compare them

with the theoretical predictions for the 3D TRI described in Sec. II. The excellent agreement that
we find between the theory and the experiments strongly supports a posteriori the validity of the
assumption that the subharmonic modes are inertial waves.

It is important to uncover the time evolution of the flow from the start of the forcing. For this
study, we focus on the region where the instability takes place (dashed rectangle in Fig. 7). We
report in Figs. 8(a) and 8(b) the natural logarithm of the temporal energy spectrum E (σ, t,�T )
normalized by its maximum as a function of time t and of the normalized frequency σ ∗ = σ/2� for
the experiments at Re f = 300 and 420. These time-frequency spectra are computed using a short
sliding time window of �T = 15T in order to preserve the time resolution as much as possible while
accessing a reasonably fine frequency resolution (although coarse obviously). In Fig. 8(a), for the
experiment at Re f = 300, the subharmonic energy bumps start to be detectable after typically 100
forcing periods T . The amplitudes of the subharmonic bumps then appear to slowly grow during the
rest of the experiment. To have a more quantitative view, we report in Fig. 8(c) the time evolution of
the energy density E (σ, t,�T ) for four specific frequencies: the forcing frequency σ ∗

0 = 0.84, the
subharmonic frequencies σ ∗

1 and σ ∗
2 (reported in Table I), and the frequency σ ∗ = σ ∗

0 /2, which is
shown as a tracer of the spectral noise level (see Fig. 6). In Fig. 8(c) we observe that the initial
increase of the amplitude of the primary wave typically takes 15 forcing periods T . Using the
theoretical value of the group velocity |cg| = 2� sin θ/k0 � 2.47 cm s−1 of the primary wave, we
can estimate the duration of the initial propagation of the primary wave through the studied region of
10 × 12 cm2 area to be of about two to three forcing periods T . The apparent duration of 15T of the
growth in amplitude of the forced wave in Fig. 8(c) results from the time width of the sliding window
used for the computation of the time-frequency spectra: Processes taking place over a duration much
shorter than �T have their duration artificially increased up to typically �T = 15T . This artificial
spreading in time also explains the fact that we already observe the growth of the amplitude of the
primary wave at t = 0, while it is expected to start only after about 6T after the start of the forcing
(the dashed rectangle is at a distance of about 30 cm from the wave maker).

In Fig. 8(c) the amplitudes of the two subharmonic waves, which have a similar behavior,
emerge from the spectral noise level around t = 100T after the start of the forcing, before they
slowly grow until the end of the experiment at t = 300T . By fitting the increase with time of the
amplitude of the subharmonic bumps with the exponential behavior E ∼ exp(2γ (expt)t ) over the
time period 100T < t < 200T , we estimate an experimental growth rate (for the velocity) of the
subharmonic modes of γ (expt) � 3.1 × 10−3 s−1. This value is about 50 times smaller than the
theoretical growth rate, of about γ (max) � 0.17 s−1, computed in Sec. II for a primary wave with
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FIG. 8. Natural logarithm of the temporal energy spectra E (σ, t,�T ) normalized by its maximum as a
function of time t and of the normalized frequency σ ∗ = σ/2� for the experiments at (a) Re f = 300 and
(b) Re f = 420, computed using a sliding time window of �T = 15T . Also shown is the corresponding time
evolution of the temporal energy spectra E (σ, t, �T ) normalized by its maximum for four specific frequencies
σ ∗

0 = 0.84, σ ∗
1 , σ ∗

2 (reported in Table I), and σ ∗ = σ ∗
0 /2, for the experiments at (c) Re f = 300 and (d) Re f =

420.

features matching those of the experiment at Re f = 300 (details will be given in Sec. IV B regarding
this point). This discrepancy most probably reveals that the exponential growth of the subharmonic
waves predicted at the onset of the TRI is restricted to earlier times in the experiment, before
t < 100T , for which unfortunately the subharmonic waves amplitude is too weak to be resolved
by the PIV measurements. A natural interpretation for the low growth rate observed here for the
subharmonic modes over the time period 100T < t < 200T is that the saturation processes are
already in action even if the saturation is not yet completed. Also, it is worth noting that we do not
observe a significant broadening of the subharmonic bumps during their observable growth phase.
This implies that the spreading in frequency of the subharmonic modes produced by the TRI does
not necessarily result from the saturation processes of the instability.

For the experiment at Re f = 420 reported in Figs. 8(b) and 8(d), the scenario of the instability
takes place much faster: The subharmonic bumps become detectable beyond t � 45T and then
saturate in amplitude around t � 75T . The experimental growth rate for the velocity amplitude
of the modes at σ ∗

1 and σ ∗
2 during the period 45T < t < 75T is here about γ (expt) � 0.030 s−1.

This value, which is much larger than the one measured for the experiment at Re f = 300, is still
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significantly smaller (seven times smaller) than the maximum theoretical growth rate, of about
γ (max) � 0.20 s−1, that can be computed theoretically for a primary wave with features matching the
ones of the experiment at Re f = 420. The observable growth of the subharmonic modes proceeds
over a relatively short duration of about 30T , of the same order as the width of the sliding window
used to compute the spectra. Contrary to the experiment at Re f = 300, it is therefore here most
likely that the measured growth rate is significantly biased (reduced) by the temporal spectrum
computation and it is possible that the actual growth rate is not that far from the theoretical
one. A final noteworthy remark regarding Fig. 8 is the fact that the forced wave, after its initial
propagation through the studied area, experiences a slow decrease in amplitude during the stage
where the secondary waves are increasing in amplitude, before finally reaching a stable state when
the secondary waves saturate.

B. Comparison of the experimental data to the theory

In this section we focus on the region of the flow where the instability develops (the dashed
rectangle in Fig. 7), where the three waves at σ ∗

0 , σ ∗
1 , and σ ∗

2 are all energetic. We measure for
each subharmonic mode the wave-vector components in the measurement plane, kexpt

x,i and kexpt
z,i ,

by spatially averaging the phase field gradient ∇ϕ over that region (the dashed rectangle). The
corresponding measurement errors are computed as the standard deviation of the phase field gradient
∇ϕ over the same area.

Considering the observations of the preceding section, the subharmonic waves are propagating
out of the measurement plane (x, z) and should therefore have a nonzero wave-vector component in
the y direction. We estimate this component by means of the dispersion relation of inertial waves
(2) as

kexpt
y,i = ±

√(
kexpt

z,i

)2
(

1

σ ∗
i

2 − 1

)
− (

kexpt
x,i

)2
. (21)

For the secondary waves, we estimate kexpt
y,i by spatially averaging (21) over the instability region (the

dashed rectangle in Fig. 7). We compute the corresponding error as the standard deviation of (21)
over the same region. As a test, we apply this procedure to the primary wave of the experiment
at Re f = 300, which leads to a negligible out-of-plane wave-vector component |kexpt

y,0 | = 0.017

rad cm−1 (computed as the root of the spatial mean of |kexpt
y,0 |2 over the instability region) and

a wave number kexpt
0 = 0.83 ± 0.02 rad cm−1 in excellent agreement with the expected value

2π/(7.6 cm) � 0.83 rad cm−1. The computed values of the wave-vector components for the waves
at σ ∗

1 and σ ∗
2 with the corresponding errors are reported in Table I for the experiments at Re f = 300

and 420, for which the TRI is observed.
In Fig. 9 we report three different cuts of the resonance surfaces for k1 computed theoretically for

a primary wave of frequency σ ∗
0 = 0.84, wavelength λ f = 7.6 cm, and amplitude b0 = 3.9 mm s−1.

These values match the features of the experimental primary wave at Re f = 300 in its unstable
region (dashed rectangle in Fig. 7). For each cutting plane, the resulting curves for the three possible
polarities combinations are shown. In Fig. 9(a) we report the classical resonance curves for k1 in the
plane (kx, kz ) of the primary wave (ky,1 = 0). We superimpose on this figure the projections of the
experimentally computed wave vectors kexpt

1 and kexpt
2 and of the primary wave vector kexpt

0 on the
(kx, kz ) plane. We also report the measurement error of each wave-vector component via a rectangle
around each wave-vector tip. We recall that the frequencies σ1 and σ2 are predicted to be negative by
the theory (see Sec. II). In parallel, they are positive-definite in the experimental data processing. In
order to compare the experimental data to the theory, in the following, we therefore systematically
multiply by −1 the experimentally measured wave vectors kexpt

1 and kexpt
2 before superimposing

them on the theoretical curves, starting with Fig. 9 [note that waves with (σ, k) and (−σ,−k) are
the same]. In Fig. 9(a) we observe that the three wave vectors form an almost closed triangle in
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FIG. 9. Cuts of the theoretical resonance surfaces for k1 computed for a primary wave of frequency
σ ∗

0 = 0.84, wavelength λ f = 7.6 cm, and amplitude b0 = 3.9 mm s−1 matching the features of the exper-
imental primary wave at Re f = 300 in its unstable region (dashed rectangle in Fig. 7). Superimposed on
the resonance curves, we show the projection on the considered plane of the wave vectors kexpt

0 , kexpt
1 , and

kexpt
2 experimentally estimated for the experiment at Re f = 300. We also report the measurement error corre-

sponding to each wave-vector component via a rectangle around each wave-vector tip. (a) Cut in the vertical
plane ky,1 = 0. (b) Cut in the vertical plane ky,1 = kexpt

y,1 . (c) Cut in the vertical plane ky,1/kexpt
y,1 = kx,1/kexpt

x,1

[kφ1,1 =
√

k2
x,1 + k2

y,1 = kx,1

√
1 + (kexpt

y,1 /kexpt
x,1 )2].

the vertical plane (kx, kz ), i.e., kexpt
0 + kexpt

1 + kexpt
2 � 0; this confirms the spatial resonance of the

three waves involved in the instability, at least in the vertical plane (kx, kz ). Nevertheless, it is clear
that the tip of the experimentally measured wave vector (kexpt

x,1 , kexpt
z,1 ) does not fall on one of the k1

resonance curves of the in-plane triadic resonance instability. In Fig. 9(b) we show the theoretical
resonance curves for k1 in the plane ky,1 = kexpt

y,1 on which we again superimpose the projection of

the experimentally measured wave vectors kexpt
0 , kexpt

1 , and kexpt
2 on the (kx, kz ) plane. This time the

nearly closed wave-vector triad has its kexpt
1 tip almost exactly on the (−,+,−) resonance curve.

In Fig. 9(c) we show the theoretical k1 resonance curves in the plane ky,1/kexpt
y,1 = kx,1/kexpt

x,1 . In this
plane, the projection of the experimental wave-vector triad is again almost closed and its k1 tip lies
almost exactly on the (−,+,−) resonance curve. Altogether Fig. 9 confirms, in agreement with
the theoretical arguments of Sec. II, the experimental observation of a three-dimensional triadic
resonance instability of type (−,+,−) driving the primary wave energy toward two subharmonic
waves not propagating in the same vertical plane as the primary wave.

To further compare the experimental data with the theoretical predictions, we report in Fig. 10
the map of the growth rate γ as a function of (kx,1, ky,1) for the (−,+,−) instability. This map
is computed for a primary wave with features σ ∗

0 = 0.84, λ f = 7.6 cm, and b0 = 3.9 mm s−1

matching the experimental primary wave characteristics at Re f = 300 (same parameters as in
Fig. 2). We superimpose on the map of γ the projection on the (kx, ky) plane of the experimental
wave vectors kexpt

0 , kexpt
1 , and kexpt

2 at Re f = 300. First, we observe that the experimental triad in
the (kx, ky) plane is also close to spatial resonance with the wave vectors tending to form a closed
triangle. Moreover, the tip of the kexpt

1 wave vector is near the location of the maximum of the
theoretical instability growth rate; it is included in the region where γ is larger than 95% of its
maximum. The latter observation shows that the features of the triadic resonance instability observed
in the experiment at Re f = 300 are consistent with the theoretical predictions based on the selection
of the maximum growth rate.

We recall here that the theory presented in Sec. II focuses on the early times of the instabil-
ity during which the amplitudes of the subharmonic secondary waves grow exponentially from
low values. In parallel, as already discussed, we are not able to study experimentally the initial
exponential growth of the subharmonic waves because during this stage the subharmonic waves
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FIG. 10. Map of the growth rate γ normalized by its maximum γ (max) as a function of (kx,1, ky,1) for
the (−, +, −) instability computed theoretically for a primary wave with features σ ∗

0 = 0.84, λ f = 7.6 cm,
and b0 = 3.9 mm s−1 matching the experimental primary wave at Re f = 300 (same map as in Fig. 2).
Superimposed on the γ /γ (max) map, we show the projection in the (kx, ky ) plane of the experimental wave
vectors kexpt

0 , kexpt
1 , and kexpt

2 . As in Fig. 9, the measurement errors on the wave vectors are reported via a
rectangle around each wave-vector tip.

amplitude is smaller than the resolution of our PIV measurements. Therefore, the experimental
characterization of the subharmonic waves is conducted over the whole experiment duration. The
growing influence of the saturation processes observed during the experiment at Re f = 300 can
possibly lead to discrepancies between the maximum growth rate modes expected to be dominant
at the early stages of the instability and the dominant modes present in the experimentally studied
stage where the subharmonic waves are detectable. It is therefore even more remarkable to observe
such excellent agreement between the theoretical predictions of the 3D TRI at early times and our
measurements. Finally, recalling that the map of the theoretical growth rate γ (kx,1, ky,1) is symmetric
with respect to the ky,1 = 0 axis with two symmetric maxima, we should mention that in Fig. 10,
when computing kexpt

y,1 from Eq. (21) we arbitrarily choose the sign of the y wave-vector component,
the most probable situation being that both signs are present in reality. Another point is worth noting:
References [41,45] have shown that refinements to the model of the triadic resonance instability
can be done in order to account for the finite size of the wave beam, i.e., for the finite number
of wavelengths contained in the beam width. In Appendix B we show that, after including in the
theory the finite-size corrections proposed by Bourget et al. [41], the map of the theoretical growth
rate is only slightly modified by the finite-size effects and that the good agreement between the
experimental triad and the most unstable theoretical triad is preserved.

In the following we reproduce the same analysis for the experiment at Re f = 420. In Fig. 11
we report the cut of the theoretical resonance surface for k1 in the planes ky,1 = 0 [Fig. 11(a)]
and ky,1/kexpt

y,1 = kx,1/kexpt
x,1 [Fig. 11(b)] on which we superimpose the projection of the experimental

wave-vector triad corresponding to the maximum of energy in the first subharmonic bump of the
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expt expt

FIG. 11. (a) and (b) Cuts of the theoretical resonance surfaces for k1 computed for a primary wave of
frequency σ ∗

0 = 0.84, wavelength λ f = 7.6 cm, and amplitude b0 = 5.1 mm s−1 matching the features of the
experimental primary wave at Re f = 420. Superimposed on the resonance curves, we show the projection on
the considered plane of the wave vectors kexpt

0 , kexpt
1 , and kexpt

2 measured for the experiment at Re f = 420.
(a) Cut in the vertical plane ky,1 = 0. (b) Cut in the vertical plane ky,1/kexpt

y,1 = kx,1/kexpt
x,1 . (c) Map of the growth

rate γ normalized by its maximum γ (max) as a function of (kx,1, ky,1) for the (−, +, −) instability computed
theoretically for a primary wave matching the features of the experimental primary wave at Re f = 420.
Superimposed on the γ /γ (max) map, we show the projection in the (kx, ky ) plane of the experimental wave
vectors kexpt

0 , kexpt
1 , and kexpt

2 .

temporal energy spectrum (Fig. 6). In Fig. 11(c) we show the map of the theoretical growth rate γ

as a function of (kx,1, ky,1) for the (−,+,−) instability. This map is computed for a primary wave
with features (σ ∗

0 = 0.84, λ f = 7.6 cm, and b0 = 5.1 mm s−1) matching the experimental primary
wave characteristics at Re f � 420. We also superimpose on the map of γ the projection on the
(kx, ky) plane of the experimental wave-vector triad at Re f = 420. In Fig. 11 we verify the fact that
the experimental triad is nearly closed, confirming the spatial resonance of the temporally resonant
waves. In Fig. 11(b) the tip of the k1 experimental wave vector again falls very well on the (−,+,−)
theoretical resonance curve, whereas it is at a significant distance from the 2D resonance curve in
the ky,1 = 0 plane [Fig. 11(a)]. Finally, in Fig. 11(c) we observe that the tip of the k1 experimental
wave vector is significantly remote from the maximum of the growth rate map. It is however found
within the region where the theoretical growth rate γ is larger than 90% of its maximum, which
is rather satisfactory considering that, for this experiment at Re f = 420, the analysis is dominated
by the saturated regime of the TRI, which is not the case for the previously studied experiment at
Re f = 300, which is closer to the instability onset.

V. CONCLUSION

In this article we reported PIV measurements of the velocity field produced in a rotating fluid by
a wave generator. The wave maker is designed to produce a wave beam approaching the structure of
a plane inertial wave. In practice, the wave beam contains four wavelengths in its width. In addition,
the wave generator is particularly large in the horizontal direction y in which the plane wave is
supposed to be invariant: The generator extension in the y direction corresponds to nearly seven
wavelengths. This last feature is radically different from previous experiments aiming to produce
plane inertial (or internal gravity) waves where the wave-maker extension in the y direction was
(slightly) smaller than two wavelengths [11,12,40,41]. Starting from the linear regime, we increased
the forcing amplitude in order to explore the emergence of the nonlinear effects affecting the forced
inertial wave. Above a given threshold in amplitude, the forced wave was subject to an instability
transferring some of its energy toward two subharmonic inertial waves in temporal and spatial
triadic resonance with the primary wave. We nevertheless showed that the secondary waves are not
propagating in the same vertical plane as the primary wave: They are noninvariant in the horizontal
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y direction, along which the primary wave is invariant. This spontaneous breaking of the symmetry
of the base flow shows that the triadic resonance instability of the forced inertial wave is three
dimensional.

In parallel, by building on the classical inertial wave triadic interaction coefficients, we computed
numerically the growth rate of the triadic resonance instability of a plane inertial wave in the three-
dimensional case. We showed that the maximum growth rate is associated with a three-dimensional
instability producing two secondary waves propagating out of the primary wave vertical plane. We
also showed that this result can be demonstrated analytically in the inviscid case where the TRI
becomes a parametric subharmonic instability (PSI) [38,57] with two secondary waves at vanishing
scale and at frequencies equal to half the primary wave frequency. Finally, we demonstrated that the
secondary wave vectors observed in our experiments agree well with the triad predicted theoretically
by the maximization of the theoretical instability growth rate. This agreement with the theory for a
plane wave confirms that the three-dimensionality of the TRI observed experimentally is intrinsic
and unrelated to deviations of the experimental primary wave from an exact plane wave (due to
friction on the water tank walls, finite-size effects, etc.).

An important consequence of our results concerns flows in the wave turbulence regime (at
larger Reynolds number than the ones considered here) [28,30]. One of the key assumptions made
when deriving the scaling laws for the spatial energy spectrum from the kinetic equations in weak
inertial-wave turbulence theory [33] is the statistical axisymmetry of the flow around the rotation
axis. We have shown in the present article that the triadic resonant interactions between inertial
waves are very efficient at redistributing the energy in the horizontal plane, normal to rotation. This
feature should contribute to drive flows in the inertial wave turbulence regime toward statistical
axisymmetry and to make them fulfill the assumption made in the derivation of the wave turbulence
theory [33].

At this point, an interesting question concerns the triadic resonance instability of an internal
gravity wave: Is it two or three dimensional? In the 2D case (invariant in the horizontal direction y),
the expressions of the triadic interaction coefficients and of the growth rate of the TRI for internal
gravity waves are analogous to those for inertial waves [58]. However, this similarity seems not to
hold when considering 3D triadic interactions of waves propagating in different vertical planes [59]
and only a dedicated study will provide answers in the case of internal gravity waves. The question
of the three-dimensionality of the TRI for an internal gravity wave has been tackled recently
by Ghaemsaidi and Mathur [60], who implemented a local stability analysis for a plane internal
gravity wave. Their analysis, restricted to the inviscid limit and to small-scale perturbations, i.e.,
the parametric subharmonic instability case, shows that a three-dimensional PSI is possible for an
internal gravity wave. However, the instability associated with the maximum growth rate is shown
to remain two dimensional with secondary waves propagating in the same vertical plane as the
primary wave. The local stability analysis of Ghaemsaidi and Mathur predicts that the internal wave
instability starts to be dominated by three-dimensional processes when the primary wave becomes
strongly nonlinear, i.e., with a Froude number (equivalent to the Rossby number in stratified fluids)
larger than 1. In this situation, the instability growth rate is shown to be larger than the internal wave
frequencies: The flow is completely out of the weakly nonlinear framework of the triadic resonance
instability.

The three-dimensionality of the TRI of an internal gravity wave toward two subharmonic waves
of finite wavelengths remains an open question, to be investigated theoretically and experimentally.
More generally, the question of the energy redistribution in the horizontal plane normal to gravity
by internal gravity wave triadic interactions remains open with important stakes regarding the
conditions under which the wave turbulence formalism for stratified fluids [35,61,62] could be
relevant.
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APPENDIX A: ASYMPTOTIC EXPRESSION OF THE GROWTH RATE IN THE INVISCID LIMIT

Using Eq. (13), the growth rate of the triadic resonance instability of a plane inertial wave is
given by

γ = −ν
(
k2

1 + k2
2

)
2

+
√

ν2
(
k2

1 − k2
2

)2

4
+ C1C2|b0|2, (A1)

where, according to Waleffe [52],

C1C2 = sin2 α2

4k2
2

(s0k0 + s1k1 + s2k2)2(s0k0 − s2k2)(s1k1 − s0k0). (A2)

Following Eq. (8) of Ref. [37] [which is the direct consequence of the dispersion relation combined
to the triadic resonance conditions (9) and (10)], one can show that

(s0k0 − s2k2) = σ1

σ0
(s2k2 − s1k1), (s0k0 − s1k1) = σ2

σ0
(s1k1 − s2k2) (A3)

such that

C1C2 = sin2 α2

4k2
2

(s0k0 + s1k1 + s2k2)2 σ1σ2

σ 2
0

(s1k1 − s2k2)2. (A4)

In the following, we conduct an asymptotic expansion of the inviscid growth rate γ = |b0|
√

C1C2

to the first order in k0/k1 � k0/k2 assuming that the secondary wave numbers associated with the
maximum growth rate are much larger than the primary wave number such that |σ1| = |σ2| = σ0/2
and k1 � k2 � k0. Focusing on the combination of wave polarities (s0 = −1, s1 = +1, s2 = −1),
the growth rate can be written

γ � |b0|
4k2

sin α2

√
(k0 − k1 + k2)2(k2 + k1)2 (A5)

� |b0|
4k2

sin α2

√[
k0(k1 + k2) + k2

2 − k2
1

]2
. (A6)

Using the law of cosines

cos α2 = k2
0 + k2

1 − k2
2

2k1k0
, (A7)

Eq. (A6) gives, to the first order in k0/k1 � k0/k2,

γ

|b0|k0
� 1

2
sin α2(1 − cos α2). (A8)

Maximizing Eq. (A8) with respect to α2 yields

cos α2 = − 1
2 , (A9)

corresponding to an angle α2 = 2π/3 rad (= 120◦) and to a growth rate equal to

γ (max) � 0.6495|b0|k0. (A10)
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Injecting this specific value α2 = 2π/3 rad in the law (A7), one gets

k2
2 = k2

1 + k2
0 + k0k1. (A11)

Retaining the sign conventions used in Sec. II, the primary wave vector can be written
k0 = (kx,0, 0, kz,0) = (−k0 sin θ0, 0,−k0 cos θ0), with θ0 = cos−1(σ ∗

0 ). In addition, we define k1 =
(kx,1, ky,1, kz,1) = (−k1 sin θ1 cos φ1,−k1 sin θ1 sin φ1,−k1 cos θ1) as the components of the wave
vector of secondary wave 1 with θ1 = cos−1(|σ ∗

1 |). Using the spatial resonance condition

k2
2 = (kx,1 + kx,0)2 + k2

y,1 + (kz,1 + kz,0)2, (A12)

one gets

k0k1 = 2k0 · k1 (A13)

= k0k1(2 sin θ0 sin θ1 cos φ1 + 2 cos θ0 cos θ1). (A14)

Using now the fact that the secondary wave 1 maximizing the growth rate verifies |σ ∗
1 | = cos θ1 =

σ ∗
0 /2 = cos θ0/2 in the inviscid limit, one obtains

sin θ0 = 2 sin θ1 cos φ1, (A15)

which finally leads to

cos2 φ1 = 1 − σ ∗
0

2

4 − σ ∗
0

2 (A16)

and to

ky,1

kx,1
= tan φ1 = ±

√
3

1 − σ ∗
0

2 . (A17)

APPENDIX B: ACCOUNTING FOR FINITE-SIZE EFFECTS

In Ref. [41], Bourget et al. proposed a refined theoretical description of the triadic resonance
instability of an internal gravity wave accounting for the finite size of the wave beam (see also
Ref. [45] on this topic). They considered the instability of a monochromatic wave beam modulated
in its transverse direction by a rectangular function of width W . Their description is based on an
energy budget realized inside a control volume matching the beam width W where the TRI takes
place. In the following, we reproduce this model for an inertial wave and modify it accordingly: The
viscous dissipation rate for an inertial wave of wave number k is νk2 [46], whereas it is νk2/2 for
an internal gravity wave [3]. Then, in the equations of evolution of the secondary wave amplitudes
[Eqs. (11) and (12)], the dissipation rate νk2

i for the secondary wave i must be replaced by χi =
νk2

i + |cg,i · k̂0|/2W , with cg,i the group velocity of wave i and k̂0 the unit vector parallel to the
primary wave vector. The additional term |cg,i · k̂0|/2W actually accounts for the rate at which the
energy of the secondary wave i is leaving the control volume where the instability takes place.
Finally, the TRI growth rate for an inertial wave beam of transverse width W becomes

γ = −χ1 + χ2

2
+

√
(χ1 − χ2)2

4
+ C1C2|b0|2. (B1)

The contribution of the additional damping term |cg,i · k̂0|/2W due to the beam’s finite size will
reduce the growth rate and stabilize certain triads that were unstable for an “infinite” plane wave.

It is interesting to analyze to what extent including these finite-size effects modifies the theoret-
ical prediction for the most unstable triad and its agreement with the experimental triad reported
in the present article. Focusing on the primary wave parameters of the experiment at Re f = 300
(analyzed in Figs. 7–10), we report in Fig. 12 the map of the theoretical growth rate for a primary
plane wave [Fig. 12(a)] and for a wave beam of width W = 4λ f [Fig. 12(b)], corresponding to the
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FIG. 12. Map of the growth rate γ normalized by its maximum γ (max) as a function of (kx,1, ky,1) for the
(−,+, −) instability computed theoretically for a primary wave with features σ ∗

0 = 0.84, λ f = 7.6 cm, and
b0 = 3.9 mm s−1, matching the experimental primary wave at Re f = 300. Superimposed on the γ /γ (max) map,
we show the projection in the (kx, ky ) plane of the wave vectors kexpt

0 , kexpt
1 , and kexpt

2 estimated experimentally.
(a) Growth rate map for an (infinite) plane wave (same map as in Fig. 10). (b) Growth rate map for a wave
beam with four wavelengths in its width W = 4λ f following Eq. (B1).

experimental wave beam containing four wavelengths in its width. As in Fig. 10, we superimpose
on these maps the experimental wave-vector triad projected on the plane (kx,1, ky,1) [Fig. 12(a) is
identical to Fig. 10].

Overall, the map of the growth rate is only slightly modified by the finite-size effects. For
instance, in the plane (kx,1, ky,1) the tip of the theoretical wave vector k1 associated with the

maximum growth rate is shifted a relative distance of 20% (compared to the value of
√

k2
x,1 + k2

y,1).

In addition, there is better agreement between the experimental wave-vector triad and the theoretical
triad with the maximum growth rate: The tip of the experimental vector k1 is now included in the
region where the theoretical growth rate is larger than 98% of its maximum, whereas it was 95%
when finite-size effects where not accounted for. We realize that the conclusions put forward in the
present article are not modified by the finite size of the primary wave beam: The refined model does
still predict that the TRI is tridimensional and the agreement between the experimental TRI and the
theory is conserved (and even slightly improved).
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