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Abstract

Born–Oppenheimer Molecular Dynamics (bomd) is a powerful but expensive tech-

nique. The main bottleneck in a density functional theory bomd calculation is the

solution to the Kohn–Sham (ks) equations, that requires an iterative procedure that

starts from a guess for the density matrix. Converged densities from previous points

in the trajectory can be used to extrapolate a new guess, however, the non-linear con-

straint that an idempotent density needs to satisfy make the direct use of standard

linear extrapolation techniques not possible. In this contribution, we introduce a lo-

cally bijective map between the manifold where the density is defined and its tangent

space, so that linear extrapolation can be performed in a vector space while, at the

same time, retaining the correct physical properties of the extrapolated density using

molecular descriptors. We apply the method to real-life, multiscale polarizable qm/mm
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bomd simulations, showing that sizeable performance gains can be achieved, especially

when a tighter convergence to the ks equations is required.

1 Introduction

Ab-initio Born–Oppenheimer molecular dynamics (bomd) is one of the most powerful and

versatile techniques in computational chemistry, but its computational cost represents a big

limitation to its routine use in quantum chemistry. To perform a bomd simulation, one needs

to solve the quantum mechanics (qm) equations, usually Kohn–Sham (ks) density functional

theory (dft), at each step, before computing the forces and propagating the trajectory of

the nuclei. The iterative self-consistent field (scf) procedure is expensive, as it requires to

build at each iteration the ks matrix and to diagonalize it. Convergence can require tens of

iterations, making the overall procedure, which has to be repeated a very large number of

times, very expensive. To reduce the cost of bomd simulations, it is therefore paramount to

be able to perform as little iterations as possible while, at the same time, obtaining an scf

solution accurate enough to afford stable dynamics.

From a conceptual point of view, at each step of a bomd simulation, a map is built from

the molecular geometry to the scf density, and then to the energy and forces. The former

map, in practice, requires the solution to the scf problem and is not only very complex, but

also highly non-linear. However, the propagation of the molecular dynamics (md) trajectory

uses short, finite time steps, so that the converged densities at previous steps, and thus

at similar geometries, are available. As a consequence, the geometry to density map can

be in principle approximated by extrapolating the available densities at previous steps. The

formulation of effective extrapolation schemes has been the object of several previous works.1

Among the proposed strategies, one for density matrix extrapolation was developed by Alfè 2 ,

as a generalization of the wavefunction extrapolation method by Arias et al. 3 , which is

based on a least-squares regression on a few previous atomic positions. The main difficulty
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in performing an extrapolation of the density matrix stems from the non-linearity of the

problem. In other words, a linear combination of idempotent density matrices is not an

idempotent density matrix, as density matrices are elements of a manifold and not of a vector

space. To circumvent this problem, strategies that extrapolate the Fock or ks matrix4,5 or

that use orbital transformation methods6–8 have been proposed.

A completely different strategy has been proposed by Niklasson and coworkers.9–11 In the

extended Lagrangian Born–Oppenheimer (xlbo) method, an auxiliary density is propagated

in a time-reversible fashion and then used as a guess for the scf procedure. The strategy is

particularly successful, as it combines an accurate guess with excellent stability properties.

In particular, the xlbo method allows one to perform accurate simulations converging the

scf to average values (for instance, 10−5 in the root-mean-square (rms) norm of the density

increment), which are usually insufficient to compute accurate forces. An xlbo-based bomd

strategy has been recently developed by some of us in the context of polarizable multiscale

bomd simulations of both ground and excited states.12–15 Multiscale strategies can be ef-

ficiently combined, in a focused model spirit, to bomd simulations to extend the size of

treatable systems. Using a polarizable embedding allows one to achieve good accuracy in

the description of environmental effects, especially if excited states or molecular properties

are to be computed. In such a context, the xlbo guessing strategy allows one to perform

stable simulation even using the modes 10−5 rms convergence threshold, which, thanks to

the quality of the xlbo guess, typically requires only about 4 scf iterations.

Unfortunately, the performances of the xlbo-based bomd scheme are not so good when

a tighter scf convergence is required, which can be the case when one wants to perform md

simulations using post Hartree–Fock (hf) methods or for excited states described in a time-

dependent dft framework.14,16 In fact, such methods require the solution to a second set of

qm equations which are typically non-variational, making them more susceptible to numerical

errors and instabilities. Computing the forces for non-scf energies requires therefore a more

accurate scf solution.
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The present work builds on all previous methods for density matrix extrapolation and

aims at proposing a simple framework to overcome the difficulties associated with the non-

linearity of the problem. The strategy that we propose is based on a differential geometry

approach and is particularly simple. First, we introduce a molecular descriptor, i.e., a

function of the molecular geometry and other molecular parameters that represents the

molecular structure in a natural way that respects the invariance properties of the molecule

within a vector space. At the (n+ 1)-th step of an md trajectory, we fit the new descriptor

in a least-square fashion using the descriptors available at a number of previous steps and

obtain a new set of coefficients. However, we do not use them to directly extrapolate the

density. Instead, we first map the unknown density matrix, that we aim to approximate,

from the manifold where it is defined to its tangent space. We then perform the extrapolation

to approximate the representative density matrix in the tangent space, before mapping this

approximation back to the manifold in order to obtain an extrapolated density matrix that

satisfies the required physical constraints. This geometrical strategy, that has recently been

introduced in the context of density matrix approximation by us,17 allows one to use standard

linear extrapolation machinery without worrying about the non-linear physical constraints

on the density matrix, since both the space of descriptors and the tangent space are vector

spaces. As the mapping between the manifold and the tangent space is locally bijective, no

concerns about redundant degrees of freedom (such as rotations that mix occupied orbitals)

arise. The map and its inverse, which are known as Grassmann Logarithm and Exponential,

are easily computed and the implementation of the strategy is straightforward. We shall

denote this approach as Grassmann extrapolation (g-ext).

In this contribution, we choose a simple, yet effective molecular descriptor and, for the

extrapolation, a least square strategy. These are not the only choices. As our strategy al-

lows one to use any linear extrapolation technique between two vector spaces, which can

be in turn coupled with any choice of molecular descriptor, more advanced strategies can

be proposed, including machine learning. Our approach ensures that the extrapolated den-
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sity, independent of how it is obtained, satisfies all the physical requirements of a density

stemming from a single Slater determinant.

The paper is organized as follows. In the upcoming Section 2, we present all necessary

theoretical foundations required for the development and implementation of the presented

g-ext approach. Section 3 then presents detailed numerical tests illustrating the performance

of the extrapolation scheme, including realistic applications of bomd within a qm/molecular

mechanics (mm)-context before we draw the conclusion in Section 4.

2 Theory

We consider Born–Oppenheimer ab-initio bomd simulations where the position vector R ∈

R3M evolves in time according to classical mechanics as

Mi R̈i(t) = Fi(t,R(t)), (1)

where Ri(t), Fi(t) ∈ R3 denote the position of the i-th atom with mass Mi respectively the

force acting on it at time t. We consider a general qm/mm-method but the setting also

trivially applies to pure qm-models. The forces at a given time t and position R of the

nuclei arise from different interactions, namely qm-qm, qm-mm and mm-mm interactions.

The computationally expensive part is to determine the state of the electronic structure,

which is modelled here at the dft level with a given basis set of dimension N . Note that

considering hf instead of dft would not change much in the presentation of the method. It

consists of computing the instantaneous non-linear eigenvalue problem


FR(DR)CR = SRCRER

CT
RSRCR = IdN

DR = CRC
T
R

, (2)

5



where CR ∈ RN×N and DR ∈ RN×N denote the coefficients respectively of the occupied

orbitals and density matrix and ER ∈ RN×N the diagonal matrix containing the energy

levels. Further, FR denotes the dft-operator acting on the density matrix and SR the

customary overlap matrix.

At this point it is useful to note that the slightly modified coefficient matrix C̃R := S
1/2
R CR

belongs to the so-called Stiefel manifold defined as follows

St(N,N ) :=
{
V ∈ RN×N

∣∣ V TV = IdN

}
, (3)

due to the second equation in Equation (2). In consequence the normalized density matrix

D̃R = C̃RC̃
T
R = S

1/2
R DRS

1/2
R belongs to the following set

Gr(N,N ) :=
{
D ∈ RN×N

∣∣D2 = D, DT = D, TrD = N
}
, (4)

which can be identified with the Grassmann manifold of N -dimensional subspaces of RN

by means of the spectral projectors. For any D ∈ Gr(N,N ), one can associate the tangent

space TD which has the structure of a vector space. The evolution of the electronic structure

can therefore be seen as a trajectory t 7→ DR(t) on Gr(N,N ) where t 7→ R(t) denotes the

trajectory of the nuclei.

The goal of the present work is to find a good approximation for the electronic density

matrix at the next step of md trajectory by extrapolating the densities at previous steps.

More precisely, based on the knowledge of the density matrices Di := DR(ti), i = n−q, . . . , n−

1, at q previous times ti, one aims to compute an accurate guess of the density matrix Dn

at time tn.

Thus, the problem formulation can be seen as an extrapolation problem of the following

form: given the set of couples (R(ti), Di) and a new position vector R(tn), provide a guess

for the solution Dn. Here and in the remaining part of the article, we restrict ourselves on

the positions of the qm-atoms, i.e., with slight abuse of notation we denote from now on by
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R the set of qm-positions only, even within a qm/mm-context.

In order to approximate the mapping R 7→ DR, we split this mapping in several sub-maps

that will be composed as follows:

R3M→M→TD0→Gr(N,N )

R 7→ dR 7→ ΓR 7→DR = ExpD0
(ΓR),

(5)

where the different mappings will be presented and motivated in the following.

The first map is a mapping of the nuclear coordinates R to a molecular descriptor dR

that accounts for certain symmetries and invariances of the molecule. The last map, known

as the Grassmann exponential, is introduced in order to obtain a resulting density matrix

belonging to Gr(N,N ) and thus to guarantee that the guess fulfils all properties of a density

matrix. As Gr(N,N ) is a manifold this is not straightforward. The second mapping is the

one that we aim to approximate but before we do that, let us first introduce those two special

mappings, i.e., the molecular descriptor and the Grassmann exponential, in more details.

2.1 Molecular descriptors

The map R 7→ dR is a map from atomic positions to molecular descriptors. These descrip-

tors are used as fingerprints for the considered molecular configurations. Such molecular

descriptors have been widely used in the past decades e.g., to learn potential energy sur-

faces (pes),18–24 or to predict other quantities of interest. Among widely used descriptors,

one can find Behler–Parinello symmetry functions,25 Coulomb matrix,26 smooth overlap of

atomic positions (soap),27 permutationally invariant polynomials,28 or the atomic cluster

expansion (ace).29,30 These molecular descriptors are usually designed to retain similar sym-

metries as the targeted quantities of interest.

In this work, the quantity we are approximating is the density matrix, which is invariant

with respect to translations as well as permutations of like particles. The transformation of

the density matrix with respect to a global rotation of the system depends on the implemen-
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tation, as it is possible to consider either a fixed Cartesian frame or one that moves with

respect to the molecular system. In the former case, there is an equivariance with respect

to rotations of the molecular system, while in the latter, the density matrix is invariant. We

should therefore in principle use a molecular descriptor satisfying those properties.

However, the symmetry properties we will rely on are mostly translation and rotation

invariance. Therefore, we will use a simple descriptor in form of the Coulomb-matrix denoted

by dR, given by

(dR)ij =


0.5z2.4i if i = j

zizj
‖R(ti)− R(tj)‖

otherwise
. (6)

Note that such a descriptor is not invariant (nor equivariant) with respect to permutations of

identical particles. However, we have found this descriptor to offer a good trade-off between

simplicity and efficiency. Note that since we aim to extrapolate the density matrix from

previous time-steps, permutations of identical particles never occur from one time-step to

another and we do not need to rely on this property. Nevertheless, we expect that a better

description could be achieved by using more flexible descriptors, such as ace polynomials or

the soap descriptors, where the descriptors themselves can be tuned.

2.2 The Grassmann exponential

We only give a brief overview as the technical details have already been reported else-

where.17,31,32 The set Gr(N,N ) is a smooth manifold and thus, at any point, say D0 ∈

Gr(N,N ) in our application, there exists the tangent space TD0 such that one can asso-

ciate nearby points D ∈ Gr(N,N ) to tangent vectors Γ(D) ∈ TD0 . The mapping D 7→

LogD0
(D) = Γ(D) is known as the Grassmann logarithm and its inverse mapping as the

Grassmann exponential Γ 7→ ExpD0
(Γ) = D. There also holds that LogD0

(D0) = 0 and

ExpD0
(0) = D0. These mappings are not only abstract tools from differential geometry but

can be computed by means of performing an singular value decomposition (svd).17,31,32 In

our application we use the same reference point D0 in all cases which brings some computa-
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tional advantages as will be discussed in more detail the the upcoming Section 2.3.

2.3 The approximation problem

Since the tangent space TD0 is a (linear) vector space, we can now aim to approximate

the mapped density matrix on the tangent space TD0 . We look for parameter functions ci,

such that, given previous snapshots Γi = LogD0
(Di) for i from 1 to Nt, corresponding to

some R(ti)’s, the approximation of any density matrix on the tangent space is written as

R 7→ Γapp(R) =
Nt∑
i=1

cR,i Γi ∈ TD0 , (7)

with Γi = ΓR(ti).

The question is then how to find these coefficient functions cR,i and we propose to find

those via the resolution of a (standard) least-square minimization problem. For a given

position R, we look for coefficients that minimise the `2–error between the descriptor dR and

a linear combination of the previous ones dR(ti)

min
cR∈RNt

∥∥∥∥∥dR −
Nt∑
i=1

cR,idR(ti)

∥∥∥∥∥
2

. (8)

In matrix form, this simply reads

min
cR∈RNt

∥∥dR − PTcR
∥∥2, (9)

where P is the matrix of size Nt ×Nd containing the descriptors Pi,j := (dR(ti))j. Note that

we only fit on the level of the descriptor, i.e., the mapping from the position vector R to the

descriptor dR, and that this method is similar to the ones used by Alfè 2 , Arias et al. 3 , where

the descriptors they used were the positions of the atoms and only considered the previous

three time-steps of the molecular dynamics.

If the system is underdetermined, we select the vector cR that has the smallest norm.

9



However, in general, the system is overdetermined as we have more descriptors than snap-

shots. This implies that this formulation verifies the interpolation principle: for every i and j

from 1 to Nt, the solution of Problem (8) at the positions R(tj) satisfies cR(tj),i = δji.

In principle, should we consider a large amount of previous descriptors, then the system

may become undetermined and violates the interpolation principle. To mitigate this, we can

use a stabilization scheme, as explained in the upcoming subsection.

Note that once we have computed the coefficients cR by solving Problem (12), one com-

putes the initial guess for the density by using the same coefficients in the linear combination

on the tangent space as in Equation (7) and finally take the exponential (see Equation (5)).

The rational for this step is that, if the second mapping in Equation (5), that we denote

here by F : M→ TD0 , was linear, then there would hold

F

(
Nt∑
i=1

cR,idRi

)
=

Nt∑
i=1

cR,iF(dRi
) =

Nt∑
i=1

cR,iΓi. (10)

In practice, the mapping is however not linear and this approach works well in the test

cases we considered. Further, if the system is overdetermined, the scheme satisfies the

interpolation property Γj = Γ(R(tj)), and hence we recover the expected density ma-

trix DR(tj) = ExpD0
(Γj).

2.3.1 Stabilization

To stabilize the extrapolation by limiting high oscillations of the coefficients, we apply a

Tikhonov regularization

min
cR∈RNt

∥∥∥∥∥dR −
Nt∑
i=1

cR,idRi

∥∥∥∥∥
2

+ ε ‖cR‖2
 , (11)
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for some choice of ε. This problem is always well-posed, and corresponds to solving the

following problem

min
cR∈RNt

∥∥∥d̃R − P̃T · cR
∥∥∥2, (12)

where d̃R ∈ RNd+Nt is the vector dR padded with Nt zeros and P̃ ∈ RNt × RNd+Nt is the P

matrix padded with the square diagonal matrix ε IdNt . We observe in practice that using

such a stabilization makes possible to use more previous points without degradation of the

initial guess.

2.4 The final algorithm

Algorithm 1: Density extrapolation framework g-ext

Data: Array desc containing the descriptors for k previous time-steps, pn the
descriptor for the current position, Cn−1 and Sn−1 respectively the molecular
orbitals and overlap matrices of the previous time-step, and cref the
reference point on the Grassmannian

Result: Guess density matrix for time-step n > 1

begin

cmat(:, :, n− 1) ← Orthonormalization(Cn−1, Sn−1);
gmat(:, :, n− 1) ← Log(cref, cmat(:, :, n− 1));
desc, pn ← Stabilization(desc, pn);
c ← LeastSquares(desc, pn);

Γapp ←
∑n−1

i=n−1−k c(i) · gmat(:, :, i);
Capp ← Exp(cref, Γapp);
return 2 · Capp · CT

app;

Given previous density matrices DR(tj) for j = 1, . . . , Nt, the initial guess is computed

following Algorithm 1. That is, we start by computing the logarithms of the density matrices

DR(tj), from the coefficients CR(tj) that are first orthonormalized by performing C̃R = S
1/2
R CR.

We then compute the descriptors needed to build the P̃ matrix and solve Problem (12). This

provides the coefficients in the linear combination of the Γ′is on the tangent space. Finally, we

compute the exponential of the linear combination in order to obtain the predicted density

matrix.
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Note that the reference point D0 is chosen once and for all, which makes the computations

of these logarithms lighter, even though there is no theoretical justification for keeping a

single point D0 as a reference. Indeed, it is known that the formulae are only correct locally

(around D0) on the manifold. However, in practice we have never observed the need to

change the reference point. This enables us to compute only one logarithmic map per time

step; and hence, only two svd in total per time step. To have a robust algorithm that will

work even in this edge case, it will be sufficient to check that the exponential and logarithmic

maps are still inverse of one another.

Finally, to be on the safe-side with respect to the computations of the exponential, we

have added a check on the orthogonality of the matrix that is obtained: If the residue is

higher than a certain threshold, we then perform an orthogonalization of the result.

3 Numerical tests

In this section we present a series of numerical tests of the newly developed strategy. We

test our method on four different systems. All the systems have been object of a previous

or current study by some of us, and can therefore be considered representative of real-life

applications.

The first system is 3-hydroxyflavone (3hf) in acetonitrile.16 Two systems (ocp and appa)

are chromophores embedded in a biological matrix — namely, a carotenoid in the orange

carotenoid protein (ocp) and flavine in acid phosphatase (appa), a blue light-using flavine

photoreceptor.33–35 The fourth system is dimethylaminobenzonitrile (dmabn) in methanol.14

The main characteristics of the systems used for testing are recapitulated in Table 1.

The systems used for testing include a quite large qm chromophore, the ocp and three

medium-sized systems, embedded in large (appa, 3hf) and medium-sized environments

(dmabn) and are representative of different possible scenarios.

To test the performances of the new g-ext strategy, we performed three sets of short
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Table 1: Overview of the system size in terms of number of qm-atoms (NQM), number of
mm-atoms (NMM) and the total number of (qm) basis functions (N ).

System NQM NMM N

ocp 129 4915 1038
appa 31 16 449 309
dmabn 21 6843 185
3hf 28 15 018 290

(1 ps) multiscale bomd simulations on ocp, appa, 3hf, and dmabn. ks density functional

theory was used to model the qm subsystem, using the B3LYP36 hybrid functional and

Pople’s 6-31G(d) basis set.37 For the stability and energy conservation of the method, we

did a longer and more realistic simulations of 10 ps on 3hf, where the flavone moiety was

described using the ωB97X hybrid functional38 and Pople’s 6-31G(d) basis set. In all cases,

the environment was modeled using the AMOEBA polarizable force field.39

All the simulations have been performed using the Gaussian–Tinker interface previously

developed by some of us.12,13 In particular, we use a locally modified development version of

Gaussian40 to compute the qm, electrostatic and polarization energy and forces, and Tin-

ker41 to compute all others contributions to the qm/mm energy. We implemented the g-ext

extrapolation scheme in Tinker, that acts as the main driver for the md simulation, being

responsible of summing together all the various contributions to the forces and propagat-

ing the trajectory. At each md step, using the GauOpen interface,42 the density matrix,

molecular orbital (mo) coefficients, and overlap matrix produced by Gaussian are retrieved.

These are used to compute the extrapolated density as described in Section 2. The density

is then passed back to Gaussian to be used for the next md step. All the simulations were

carried out in the NVE ensemble, using the velocity Verlet integrator and a 0.5 fs timestep.

Concerning stabilization, we found that good overall results were obtained using a parame-

ter ε := 103 · rscf , where rscf is the tolerance of the scf algorithm.
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3.1 Numerical results

To assess the performance of the g-ext guess we perform 1 ps md simulations on the four

systems described in Section 3 starting from the same exact conditions (positions and initial

velocities) and using various strategies to compute the guess density for the scf solver. We

compare various flavors of the g-ext method with the the xlbo extrapolation scheme.10

Here, we note that the original xlbo method performs a propagation of an auxiliary density

matrix, which is then used as a guess. The latter is not idempotent: to restore such a

property, a purification step can be implemented. However, Niklasson reports that purifying

it would spoil the overall time-reversibility of the algorithm and therefore advises against

it. From our tests, where we never reduce the scf convergence threshold below a medium

value of 10−5, we found that purifying the density using McWeeny’s algorithm43 offers a

small advantage in terms of performances, while not altering the overall very good energy

conservation of the simulation. While this is indeed not advisable for scf-less or loosely

converged bomd simulations, we are not interested in relaxing the tolerance of the scf

algorithm, but in decreasing the number of scf iterations. In the following, we therefore

compare our method, where we use 3 to 6 previous points for the fitting and extrapolation,

to both the standard xlbo and to xlbo followed by purification (xlbo/mw). We use an

scf convergence threshold of 10−5 with respect to the rms variation of the density.

We report in Table 2, for each method, the average number of scf iterations performed

along the md simulation together with the associated standard deviation. As the xlbo

strategy requires 8 previous points, during which a standard scf is performed, we discard the

first points from the evaluation of the aforementioned quantities to have a fairer comparison.

We do not report the total time required to compute the guess, as it is in all cases very

small (up to 0.1 s wall clock time for the largest system using the g-ext(6) guess). This is

an important consideration, as the g-ext method requires one to perform various linear-

algebra operations (in particular, thin svd) that can in principle be expensive. Thanks to

the availability of optimized LAPACK libraries, this is in practice not a problem.
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Table 2: Performances of the g-ext method for different number of extrapolation points,
compared with the xlbo algorithm with and without McWeeny purification. All the results
were obtained using a 10−5 convergence threshold for the root-mean-square increment of
the density matrix and are derived from a 1 ps long md simulation, using a 0.5 fs time step.
We report the average number of iterations required to converge the scf, together with the
associated standard deviation. Note that the first 8 steps were discarded.

ocp dmabn appa 3hf

Method Average σ Average σ Average σ Average σ

xlbo 3.82 0.66 3.98 0.16 3.00 0.03 4.00 0.14
xlbo/mw 2.95 0.31 3.76 0.56 3.00 0.34 3.96 0.31
g-ext(3) 2.57 0.84 3.54 0.78 2.95 0.50 3.09 0.41
g-ext(4) 2.48 0.88 3.14 0.62 2.51 0.50 3.25 0.68
g-ext(5) 2.25 0.96 3.23 0.75 2.51 0.50 3.30 0.72
g-ext(6) 2.20 0.96 2.99 0.02 2.51 0.50 3.14 0.56

From the results in Table 2, we see that the g-ext algorithms systematically outperforms

the xlbo method. It is interesting to note that the McWeeny purification step has a sizeable

effect on the performances of the xlbo method only for the largest system, ocp, where it

results in the gain of almost one scf iteration on average. On the other systems, the

purification step has a smaller effect.

In all the systems we tested, the performances of the g-ext method are systematically

better than in xlbo, including with McWeeny purification. The effectiveness of the g-ext

extrapolation increases when going from 3 to 6 points, but quickly stagnates. We have

performed further tests with more than 6 (up to 20) extrapolation points, but never noted

any further gain.

We observe a reduction in the number of iterations that goes from 0.5 in dmabn to 0.75

in ocp (1.62 when compared to xlbo without McWeeny purification). We remark that these

gains, while apparently not so large, are greatly amplified during the md simulation, due to

the large number of steps that need to be performed.

The tests performed with a 10−5 convergence threshold are representative of a standard,

dft ground state bomd simulation. When performing a more sophisticated quantum me-

chanical calculation, such as a bomd on an excited state pes,16 such a convergence threshold
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may not be sufficient to guarantee the stability of the simulation, as the scf solution is used

to set up the linear response equations and the numerical error can be amplified, resulting

in poorly accurate forces.

We tested the g-ext algorithm in its best-performing version, the one that uses six ex-

trapolation points, with a tighter, 10−7 threshold, again for the rms variation of the density.

The results are reported in Table 3, where we compare the g-ext(6) scheme with the xlbo

method with McWeeny purification.

The xlbo method is based on the propagation of an auxiliary density and therefore the

accuracy of the guess it generates depends little on the accuracy of the previous scf densities.

As a consequence, its performances are reduced if a tighter convergence is required. The g-ext

guess, on the other hand, uses previously computed densities as its building blocks and one

can expect the accuracy of the resulting guess to be linked to the convergence threshold used

during the simulation.

This is exactly what we observe. Using a threshold of 10−7, the g-ext(6) guess exhibits

significantly better performances than xlbo, gaining, on average, from about 0.7 to about

3 scf iterations on the tested systems.

Table 3: Performances of the g-ext(6) method compared with the xlbo algorithm with
McWeeny purification. All the results were obtained using a 10−7 convergence threshold for
the root-mean-square increment of the density matrix and are derived from a 1 ps long md
simulation, using a 0.5 fs time step. We report the average number of iterations required
to converge the scf, together with the associated standard deviation. Note that the first 8
steps were discarded.

ocp dmabn appa 3hf

Method Average σ Average σ Average σ Average σ

xlbo/mw 5.02 0.17 7.30 0.64 7.49 0.84 7.47 0.63
g-ext(6) 3.58 0.79 4.23 0.50 4.39 0.57 6.81 0.78
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3.1.1 Stability

The good performances of the g-ext guess come, however, at a price, namely, the lack of

time reversibility. We can thus expect the total energy in a NVE simulation to exhibit a

long-time drift (ltd). Time reversibility and long-time energy conservation are, on the other

hand, one of the biggest strengths of the xlbo method.

To investigate the stability of bomd simulations using the g-ext guess, we build a chal-

lenging case, where we start a bomd simulation far from well-equilibrated conditions. We

use the 3hf system as a test case and achieve the noisy starting conditions by starting from a

well-equilibrated structure and changing the dft functional from B3LYP to ωB97XD. This

way, we have a physically acceptable structure, with no close atoms or other problematic

structural situations, but obtain starting conditions that are far from equilibrium.

We report in Figure 1 the total energy along a 10 ps bomd simulation of 3hf in acetonitrile

using either a 10−5 scf convergence threshold (left panel) or a 10−7 one (right panel). The

same results for a 10−6 threshold are reported in the supporting information. We compare

the g-ext(3) and g-ext(6) methods to the xlbo one including McWeeny purification. As

already noted, while in principle the purification may spoil the time reversibility, this has no

noticeable effect in practice.

The very noisy starting conditions are apparent from the energy profiles, that exhibits

large oscillations in the first couple hundreds femtoseconds.

To better estimate the short- and long-time energy stability, we report in Table 4 the

average short-time fluctuation (stf) and ltd of the energy. The former is computed by

taking the rms of the energy fluctuation every 50 fs and averaging the results over the

trajectory, discarding the first 500 fs, the latter by fitting the energy with a linear function

and taking the slope.

All methods show comparable short-term stability, which is to be mainly ascribed to

the chosen integration time-step. On the other hand, from both the results in Table 4 and

Figure 1, we observe a clear drift of the energy when the g-ext method is used. In particular,
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the system cools of about 10 kcal/mol with either g-ext(3) or g-ext(6). The xlbo trajectory,

despite the McWeeny purification, exhibits an almost perfect energy conservation.

These results are not surprising, but should be taken into account when choosing to use

the g-ext guess, which, if coupled to a 10−5 scf convergence threshold, cannot guarantee

long-term energy conservation. The drift is overall not too large and can be handled by using

a thermostat. Whether or not the trade between performances and energy conservation is

acceptable for a production simulation is a decision that ultimately lies with the user.

Increasing the accuracy of the scf computation improves the overall stability for g-ext,

which is already good at 10−6 and becomes virtually identical to the one offered by the xlbo

method at 10−7.

Table 4: Short and long-term stability analysis of the g-ext(3) and g-ext(6) methods, com-
pared to the xlbo algorithm with McWeeny purification, for the 3hf system. For each
method we report the stf and the ltd and the average number of scf iterations, for three
convergence thresholds of the scf algorithm.

Conv. 10−5 Conv. 10−6 Conv. 10−7

Method stf ltd stf ltd stf ltd

xlbo/mw 0.55 −0.04 0.55 −0.03 0.57 −0.03
g-ext(3) 0.55 −0.42 0.57 −0.15 0.53 −0.04
g-ext(6) 0.56 −0.53 0.52 −0.13 0.57 −0.04

4 Conclusion

In this contribution, we presented an extrapolation scheme to predict initial guesses of the

density matrix for the scf-iterations within bomd. What makes our approach new is that

we enforce the idempotency of the density matrix by extrapolating not the densities them-

selves, but their map onto a vector space, which is the tangent plane to the manifold of the

physically acceptable densities. Such a map is locally bijective, so that after performing the

extrapolation, we can map the new density back to the original manifold, providing thus

an idempotent density. The main element of novelty of the algorithm is that, by working
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Figure 1: Total energy (kcal/mol) as a function of simulation time (fs) for 3hf comparing
g-ext(3), g-ext(6) and xlbo with McWeeny purification, using a convergence threshold for
the scf algorithm of 10−5 (left panel) and 10−7 (right panel). The total energy was shifted
of +505 000 kcal/mol for readability.

on a tangent space, it allows one to use any linear extrapolation technique, while at the

same time automatically ensuring the correct geometrical structure of the density matrix.

As such, the technique presented in this paper can be seen as a simple case of a more general

framework. Such a framework allows one to recast the problem of predicting a guess density

by extrapolating information available from previous md steps as a mapping between two

vector spaces, i.e., the space of molecular descriptors and the tangent plane. This geometric

approach can be seen as an alternative to extrapolating quantities derived from the density,

such as the Fock or Kohn–Sham matrix, as proposed by Pulay and Fogarasi4 and by Her-

bert and Head-Gordon.5 However, the framework we developed, using molecular descriptors

and a general linear extrapolation technique, can in principle be easily extended to such

approaches.

That being said, our choices of both the molecular descriptor and of the extrapolation

strategies are far from being unique. In recent years, molecular descriptors gained attraction

within the rise of machine-learning (ml) techniques. Our choice, namely, using the Coulomb

matrix, is only one of the many possibilities, and while being simple and effective, more ad-

vanced descriptors may be used and possibly improve the overall performances of the method.

We also used a straightforward (stabilized) least-square interpolation of the descriptors at
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previous point to compute the extrapolation coefficients for the densities. This strategy is,

again, simple yet effective. However, many other approaches can be used. In particular, ml

techniques may not only provide a very accurate approximated map, but also benefit of a

larger amount of information (i.e., use the densities computed at a large number of previous

steps), further improving the accuracy of the guess. Improvements on the descriptors and

extrapolation strategies are not the only possible extensions of the proposed method. A

natural extension that is under active investigation is the application to the g-ext guess to

geometry optimization, for which the xlbo scheme cannot be used.

Overall, even the simple choices made in this contribution produced an algorithm that

exhibits promising performances. In all our tests, the g-ext method outperformed the well-

established xlbo technique, especially for tighter scf accuracies which may be relevant

for post-scf bomd computations, including computations on excited-state pes. While we

tested the method only for ks dft, it can also be used for Hartree–Fock or semiempirical

calculations. The main disadvantage of the proposed strategy with respect to the xlbo

method is, however, the lack of time reversibility, which manifests itself as a lack of long-

term energy conservation. In particular, for longer md simulations, the total energy may

exhibit a visible drift, which is something that the user must be aware of. In our test, the

observed drift was relatively small and the use of a thermostat should be enough to avoid

problems in practical cases, however, this is a clear, and expected, limitation of the proposed

approach. We note that, using a tighter scf convergence, which is also the case where the

proposed method shows its best performances, produces an energy conserving trajectory,

even starting from very noisy conditions.

Supporting Information Available

A Julia template of the g-ext algorithm is available at https://github.com/epolack/

GExt.jl. The figure representing the total energy computation with an scf convergence
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threshold of 10−6 for the molecule 3hf is available in the supplementary information.
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(2) Alfè, D. Ab Initio Molecular Dynamics, a Simple Algorithm for Charge Extrapolation.

Comput. Phys. Commun. 1999, 118, 31–33.

(3) Arias, T. A.; Payne, M. C.; Joannopoulos, J. D. Ab Initio Molecular-Dynamics Tech-

niques Extended to Large-Length-Scale Systems. Phys. Rev. B 1992, 45, 1538–1549.

(4) Pulay, P.; Fogarasi, G. Fock Matrix Dynamics. Chem. Phys. Lett. 2004, 386, 272–278.

(5) Herbert, J. M.; Head-Gordon, M. Accelerated, Energy-Conserving Born–Oppenheimer

Molecular Dynamics via Fock Matrix Extrapolation. Phys. Chem. Chem. Phys. 2005,

7, 3269–3275.

(6) Hutter, J.; Parrinello, M.; Vogel, S. Exponential Transformation of Molecular Orbitals.

J. Chem. Phys. 1994, 101, 3862–3865.

(7) VandeVondele, J.; Hutter, J. An Efficient Orbital Transformation Method for Electronic

Structure Calculations. J. Chem. Phys. 2003, 118, 4365–4369.

21



(8) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J.

Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian

and Plane Waves Approach. Comput. Phys. Commun. 2005, 167, 103–128.

(9) Niklasson, A. M. N.; Tymczak, C. J.; Challacombe, M. Time-Reversible Born-

Oppenheimer Molecular Dynamics. Phys. Rev. Lett. 2006, 97, 123001.

(10) Niklasson, A. M. N. Extended Born-Oppenheimer Molecular Dynamics. Phys. Rev.

Lett. 2008, 100, 123004.

(11) Niklasson, A. M. N.; Steneteg, P.; Odell, A.; Bock, N.; Challacombe, M.;

Tymczak, C. J.; Holmström, E.; Zheng, G.; Weber, V. Extended Lagrangian

Born–Oppenheimer Molecular Dynamics with Dissipation. J. Chem. Phys. 2009, 130,

214109.

(12) Loco, D.; Lagardère, L.; Caprasecca, S.; Lipparini, F.; Mennucci, B.; Piquemal, J.-

P. Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding. J.

Chem. Theory Comput. 2017, 13, 4025–4033.

(13) Loco, D.; Lagardère, L.; Cisneros, G. A.; Scalmani, G.; Frisch, M.; Lipparini, F.; Men-

nucci, B.; Piquemal, J.-P. Towards large scale hybrid QM/MM dynamics of complex

systems with advanced point dipole polarizable embeddings. Chem. Sci. 2019, 10,

7200–7211.

(14) Nottoli, M.; Mennucci, B.; Lipparini, F. Excited State Born-Oppenheimer Molecular

Dynamics through a coupling between Time Dependent DFT and AMOEBA. Phys.

Chem. Chem. Phys. 2020, 22, 19532–19541.

(15) Bondanza, M.; Nottoli, M.; Cupellini, L.; Lipparini, F.; Mennucci, B. Polarizable em-

bedding QM/MM: the future gold standard for complex (bio)systems? Phys. Chem.

Chem. Phys. 2020, 22, 14433–14448.

22



(16) Nottoli, M.; Bondanza, M.; Lipparini, F.; Mennucci, B. An enhanced sampling

QM/AMOEBA approach: The case of the excited state intramolecular proton transfer

in solvated 3-hydroxyflavone. J. Chem. Phys. 2021, 154, 184107.

(17) Polack, E.; Mikhalev, A.; Dusson, G.; Stamm, B.; Lipparini, F. An Approximation

Strategy to Compute Accurate Initial Density Matrices for Repeated Self-Consistent

Field Calculations at Different Geometries. Mol. Phys. 2020, 118, e1779834.

(18) Behler, J. Neural network potential-energy surfaces in chemistry: a tool for large-scale

simulations. Phys. Chem. Chem. Phys. 2011, 13, 17930–17955.

(19) Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. Fast and Accurate

Modeling of Molecular Atomization Energies with Machine Learning. Phys. Rev. Lett.

2012, 108, 058301.
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Figure 1: Total energy (kcal/mol) as a function of simulation time (fs) for 3HF comparing
g-ext(3), g-ext(6) and xlbo with McWeeny purification, using a convergence
threshold for the SCF algorithm of 10−6. The total energy was shifted of
+505 000 kcal/mol for readability.
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