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We have investigated the electromagnetic band structure, transmission, and phase time through a
one-dimensional structure made of loops pasted together with segments of finite length. In this serial
loop structure, the loops and segments are constituted of dielectric monomode materials. Analytic
expressions are reported for the band structure for a large numberN of loops and for transmission
coefficients and phase times for any value ofN. Experimental and numerical results show the
existence of large gaps in these structures. These gaps originate both from the periodicity of the
system and the loop resonant states that create zeroes of transmission. The gap widths depend on the
lengths of the finite segment and the loop diameters. Defect modes may occur in these bandgaps by
introducing defective segments in the structure. The localized states appear as very narrow peaks
both in the transmission spectrum and in the transmission phase time of finite serial loop structures.
The localized state behavior is analyzed as a function of the length and of the position of the defect
segment. The transmission phase measurements enable us to derive the group velocity as well as the
density of states in these structures. The experimental results are obtained using coaxial cables in the
frequency range of few hundreds of MHz. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1633983#

I. INTRODUCTION

Photon propagation in artificial periodic dielectric struc-
tures may give rise to photonic bandgaps~PBGs!,1,2 where
electromagnetic modes, spontaneous emission, and zero-
point fluctuations are all prohibited.3,4 These PBGs are ana-
logs, for electrons, to the electronic bandgaps in the band
structure of semiconductor crystals. Of particular interest is
the existence of PBG in the band structure of one-
dimensional~1D! structures with a variety of geometries.5–9

In previous papers,7,8 we demonstrated that the electromag-
netic transmission spectrum of quasi-1D comb structures ex-
hibits large gaps. These structures, calledstar waveguides,
are composed of an infinite backbone along which stars of
N8 finite branches are grafted atN equidistant sites,N and
N8 being integers. The stop bands originate from the period-
icity of the system determined by the distance between two
neighboring sites and from the eigenmodes of the dangling
side branches that play the role of resonators. The gap widths

depend also on the boundary conditions at the free ends of
the side branches; namely, the vanishing of either the electric
field (E50) or the magnetic field (B50). In such systems,
the propagation is monomode, provided the two characteris-
tic lengths~the periodicity and the resonator length! and the
wavelength are much larger than the backbone and the side
branch diameters.7,8 It is worthwhile to point out that this star
waveguide exhibits relatively broad forbidden bands even if
the backbone and the resonators are made of the same
material;7 in other words, the existence of the gaps does not
require a contrast between the parameters of the two con-
stituents. This property offers the possibility of engineering
bandgaps in homogeneous materials. Moreover localized
modes may appear in the forbidden bands when a defect is
introduced in the star waveguide periodic structure. Applica-
tions such as selective frequency filters and efficient
waveguides9 may be expected.

In a recent work, Zhanget al.10 studied theoretically and
experimentally three-dimensional PBG systems constructed
by segments and loops made of coaxial cables arranged in aa!Electronic mail: abdellatif.akjouj@univ-lille1.fr
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diamond structure. The transmission measurement shows a
wide gap, but the presence of the free ends of the structure
induces a surface state, which makes the gap not truly for-
bidden for all states. In addition, besides the Anderson local-
ized state observed in random structures, defect modes are
introduced in the gap by changing the length of one loop in
an ordered network. However, the peak associated with the
defect mode is not well defined because of the dissipation
inside the cables. In this article, we study a 1D structure
made of segments and loops, called itserial loop structure
~SLS! exhibiting large gaps, and in which the existence of
defect modes can be clearly observed. This SLS may be
modeled as an infinite number of unit cells pasted together.
Each cell is made of a finite segment of lengthd1 connected
to a loop of lengthd21d3 @each loop is composed of two
wires of different lengthsd2Þd3 , see Fig. 1~a!#. The propa-
gation of electromagnetic waves through SLSs is also as-
sumed to be monomode. The simple analytical expressions
obtained enables us to explain clearly the origin of the band
gaps as a function of the different lengths of segments and
loops. Indeed, the SLS allows us to distinguish two different
structures:~i! the symmetric SLS~i.e., d25d3), in which the
band gaps result only from the periodicityd5d11d2 of the
SLS and~ii ! the asymmetric SLS~i.e., d2Þd3), in which the
bandgaps result from both the periodicity and the transmis-
sion zeroes in these systems. In particular the phase time
measurements show different behaviors in these two cases,
in accordance with recent experiments on phase-coherent
transport through a quantum dot.11,12 The phase time mea-
surements also enable us to determine the group velocity,
which can exceed the speed of light in vacuum or even be-
come negative. The existence of such phenomena has at-
tracted much attention in the last few years,13–15 with the
challenge to attain a pulse advancement comparable to the
pulse width with a low level of pulse distortion. The SLS
may also show additional features in comparison with star

waveguides, such as the existence of larger gaps and the
absence of the boundary condition at the end of the side
branches, which could be of potential interest in optical
waveguide structures. These features are essentially due to
the loop structure, which is quite different from the case of a
simple resonator.7,8 The introduction of defects inside the
SLS structure may give rise to well-defined defect modes
inside the band gaps in the transmission spectra.

The experimental demonstration of our theoretical pre-
dictions is performed by measuring the transmission spectra
through finite SLS constituted by coaxial cables. The typical
length of the cables is on the order of a meter, and, therefore,
the frequencies fall in the range of 10 to 500 MHz. Let us
mention that, besides our previous papers,7,8 recent work also
dealt with photonic circuits constituted by an alternative rep-
etition of two different coaxial cables,16,17 indicating that the
behaviors observed in these 1D crystals are qualitatively
comparable to those of photonic systems of higher dimen-
sion as well.

The theoretical model developed here falls within the
framework of the interface response theory of continuous
media,18 which we recall briefly in Sec. II. The analytical
expressions for the band structure of an infinite SLS and for
the transmission coefficient of a finite SLS with and without
a defect are given in Sec. III. Section IV is devoted to a
numerical discussion of these expressions. The theoretical
predictions are then compared to experimental measurements
of the electromagnetic transmission spectra through a finite
SLS composed of standard coaxial cables. Finally, some con-
clusions are drawn in Sec. V.

II. THEORETICAL MODEL

A. Interface response theory of continuous media

Our theoretical analysis is performed with the help of the
interface response theory of continuous media, which allows
to calculate the Green’s function of any composite material.
In what follows, we present the basic concept and the funda-
mental equations of this theory.18

Let us consider any composite material contained in its
space of definitionD and formed out ofN different homo-
geneous pieces situated in their domainsDi . Each piece is
bounded by an interfaceMi , adjacent in general toj (1< j
<J) other pieces through subinterface domainsMi j . The
ensemble of all these interface spacesMi will be called the
interface spaceM of the composite material.

The elements of the Green’s functiong(DD) of any
composite material can be obtained from18

g~DD !5G~DD !2G~DM !G21~MM !G~MD !

1G~DM !G21~MM !g~MM !G21

3G21~MM !G~MD !, ~1!

whereG(DD) is the reference Green’s function formed out
of truncated pieces inDi of the bulk Green’s functions of the
infinite continuous media andg(MM ), the interface element
of the Green’s function of the composite system.

FIG. 1. ~a! Schematic of the 1D serial loop structures studied in this work.
The media are labeled by an indexi , with i 51 for the finite branch and 2
and 3 for the loop. Each loop has a lengthd21d3 and is distant byd1 from
the neighboring loops. Each cell is composed of a finite branch and the loop
connected to its right.~b! Waveguide with finiteN loops separated by a
lengthd1 and connected at its extremities to two semi-infinite leading lines.
~c! Same as in~b!, except that a defect branch of lengthd0 ~heavy line! is
introduced in the cellp.
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The knowledge of the inverse ofg(MM ) is sufficient to
calculate the interface states of a composite system through
the relation18

det@g21~MM !#50. ~2!

Moreover, ifU(D) represents an eigenvector of the ref-
erence system, Eq.~1! enables the calculation of the eigen-
vectorsu(D) of the composite material, and

u~D !5U~D !2U~M !G21~MM !G~MD !

1U~M !G21~MM !g~MM !G21~MM !G~MD !.

~3!

In Eq. ~3!, U(D), U(M ), andu(D) are row vectors. Equa-
tion ~3! provides a description of all the waves reflected and
transmitted by the interfaces, as well as the reflection and
transmission coefficients of the composite system. In this
case,U(D) is a bulk wave launched in one homogeneous
piece of the composite material.19

B. Inverse surface Green’s functions of the
elementary constituents

We consider an infinite homogeneous isotropic dielectric
wire i characterized by its characteristic impedancezi . The
Fourier transformed Green’s function between two pointsx
andx8 of this wire is20

Gi~x,x8!52
e2a i ux2x8u

2Fi
, ~4!

where

a i52 j
v

c
A« i~v!, ~5a!

and

Fi52
1

zi
5a i , ~5b!

where« i(v) is the relative permittivity,v the angular fre-
quency of the wave,c the speed of light in vacuum,Fi the
admittance, andj 5A21.

Before addressing the problem of SLS, it is helpful to
know the surface elements of the Green’s function of a finite
wire of lengthdi and of a semi-infinite wire. The finite wire
is bounded by two free surfaces located atx52di /2 andx
51di /2. These surface elements can be written in the form
of a (232) matrix gi(MM ), within the interface spaceMi

[$2di /2,1di /2%. The inverse of this matrix takes the fol-
lowing form:20

@gi~MM !#215S 2
FiCi

Si

Fi

Si

Fi

Si
2

FiCi

Si

D , ~6a!

whereCi5cosh(aidi) andSi5sinh(aidi). The inverse of the
surface element of the Green’s function of a semi-infinite
wire is given by20

@gi~00!#2152Fi . ~6b!

III. DISPERSION RELATIONS AND TRANSMISSION
COEFFICIENTS

The 1D serial loop waveguide can be considered as an
infinite number of unit cells pasted together@see Fig. 1~a!#.
Each cell is composed of a finite wire~medium1! of length
d1 in the directionx, connected to a loop ‘‘ring’’~medium2!
of length d21d3 ~each loop is constructed of two wires of
lengthsd2 and d3 , respectively!. The interface domain is
made of all the connection points between finite segments
and loops. A space position along thex axis in mediumi
belonging to the unit celln is indicated by (n,i ,x), wheren
~the ‘‘cell number’’! is an integer such that2`<n<1`, i
is the medium index (i 51,2,3), and2 di /2<x<1 di /2.
Due to the 1D spatial periodicity of the system in the direc-
tion x, one can define a Bloch wave vectork along the axis
of the waveguide.

Within the total interface space of the infinite SLS, the
inverse of the matrix giving all the interface elements of the
Green’s functiong is an infinite tridiagonal matrix formed by
linear superposition of the elements@gi(MM )#21 @Eq. ~6!#.
The explicit expression of the Green’s function elements in
the interface space is given as21

g~n,1,1d1/2;n8,1,1d1/2!

5g~n,1,2d1/2;n8,1,2d1/2!5Y1

t un2n8u11

t221
, ~7a!

g~n,1,1d1/2;n8,1,2d1/2!

5
S2S3

F2S31F3S2

t un2n8u11

t221
1

S1

F1

t un2n811u11

t221
, ~7b!

g~n,1,2d1/2;n8,1,1d1/2!

5
S2S3

F2S31F3S2

t un2n8u11

t221
1

S1

F1

t un2n821u11

t221
, ~7c!

where the integersn and n8 refer to the cell number (2`
,n,n8,1`), and

Y15

C1S2S31
S1

F1
~F2C2S31F3C3S2!

F2S31F3S2
. ~8!

The parametert is defined by

t5ejkd, ~9!

andd is the period of the structure.
The dispersion relation of the infinite serial loop wave-

guide is obtained from Eq.~2!. The stop bands are deter-
mined by the conditionuju.1, whereas the allowed bands
are given by the conditionuju,1, where

j5cos~kd!5
1

F2S31F3S2
H S1S2S3S F1

21F2
21F3

2

2F1
D

1F2C1C2S31F3C1C3S21
F2F3

F1
S1~C2C321!J .

~10!
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The bandgaps of the structure may be also obtained from
the transmission coefficient through a finite-sized serial loop
structure. The finite SLS containingN equidistant loops is
cut out of the infinite periodic system illustrated in Fig. 1~a!
and this piece is subsequently connected at its extremities
@(1,1,1d1/2),(N11,1,2d1/2)# to two semi-infinite leading
lines @Fig. 1~b!#. An incident bulk electromagnetic wave
e2asx of unit amplitude launched fromx52` is scattered
by the interfaces between the dissimilar wires constituting
the system. The indexs refers to the semi-infinite media
bounding SLS. The transmission function is then obtained
with the help of Eqs.~3!, ~4!, and~7! as

t r5
2FsB~N!

@A~N!2Fs#
22B2~N!

, ~11!

whereA(N) andB(N) are given by

A~N!5
Y1Y32t2N22Y2Y4

Y1
22t2N22Y2

2 , ~12!

and

B~N!5
Y1Y42Y2Y3

Y1
22t2N22Y2

2 tN21, ~13!

where

Y25
S2S3

F2S31F3S2
t1

S1

F1
, ~14!

Y352
1

t
1

F2C1C2S31F3C1C3S21F1S1S2S3

F2S31F3S2
, ~15!

and

Y45C12
F2C2S31F3C3S2

F2S31F3S2
t. ~16!

The transmission function can be written in an explicit
complex form as

t r5a1 jb5ATej w ~17!

whereT is the transmission coefficient andw5arctan(b/a)
6lp is the phase associated with the transmission field andl
is an integer. The first derivative ofw with respect to the
frequency is indicative of the delay time taken by the wave
to go through the structure. This quantity, called phase time,
is defined by22–26

t5
dw

dv
. ~18!

On the other hand, a defect can be created in the SLS by
replacing a segmentd1 in the cell (n5p) by a segment of
different lengthd0Þd1 @Fig. 1~c!#. Within the Green’s func-
tion formalism, one can calculate analytically the corre-
sponding localized state frequencies. Theses frequencies sat-
isfy the equation

H 11
t

t221
~Y12Y5!F2F0~C011!

S0
1

F1~C111!

S1
G J

3H 11
t

t221
~Y11Y5!F2F0~C021!

S0

1
F1~C121!

S1
G J 50, ~19!

where the index 0 refers to the defect segment and

Y55
S2S3

F2S31F3S2
1

S1

F1
t. ~20!

The transmission function through a defective SLS with
a finite numberN of cells and containing a defect located in
the cellp (1,p<N) can be obtained as

t r85
2Fs~F0 /S0!B~N!B~p!

Y~N!Y~p!2~F0 /S0!2~A~N!2Fs!~A~p!2Fs!
,

~21!

whereY(q) is given by

Y~q!5B2~q!2@A~q!2F1#FA~q!2
F0C0

S0
G , ~22!

with q[N or p. The other parameters in Eq.~22! were given
earlier.

From the previous general equations, one can deduce
two particular cases corresponding to specific lengths of the
loop.

~i! The tangent SLS, which corresponds tod2Þ0 and
d350. In this case,j @Eq. 10!# becomes

j5C11
F2

F1

S1S28

C28
, ~23!

whereS285sinh(a2d2/2) andC285cosh(a2d2/2). This
relation is equivalent to the dispersion relation of a
star waveguide along which two resonators of length
d2/2 are grafted periodically. This system was largely
investigated both theoretically and experimentally.7,8

The forbidden bands in the dispersion curves result
from the periodicity of the structure as well as the
zeroes of transmission due to the resonators.

~ii ! A symmetric SLS characterized by identical arms of
the loop ~i.e., d25d3). In this case, the dispersion
relation becomes

j5C1C21
1

2 S F1

2F2
1

2F2

F1
DS1S2. ~24!

This relation is analogous to the dispersion relation of
a superlattice constituted out of two different
layers.27,28The two layers should be of lengthsd1 and
d2 and characterized by their admittancesF1 and
2F2 , respectively. The bandgaps result only from the
periodicity of the system. Several theoretical studies
have dealt in the past with electromagnetic waves in
superlattices with defects.29–32 The experimental evi-
dence of the existence of defect modes in 1D photonic
crystals constructed by connecting segments of co-
axial cables of different characteristic impedances
was presented recently by Schneideret al.16 However,

1105J. Appl. Phys., Vol. 95, No. 3, 1 February 2004 El Boudouti et al.



in all these studies, the contrast between the dielectric
constants in the two constituting layers is a critical
parameter for the stop band to exist. In this work, we
show that symmetric SLS may exhibit large gaps and
defect modes even if the loops and the segments are
made of the same materials, which could be of poten-
tial interest in optical waveguide structures.

In the next section, we shall show the origin of the gaps
in SLSs as well as the evolution of the bandgap structure
when the lengths of the wires constituting the SLS vary be-
tween the two limiting cases~i! and ~ii ! just mentioned.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

A. A single loop

Before illustrating these analytical results by numerical
calculations confirmed experimentally with coaxial cables,
let us consider the elementary case of a waveguide consisting
of a single loop. From Eq.~11!, one can derive the analytical
expression of the transmission coefficient of a single homo-
geneous loop by settingN51. For the sake of simplicity, we
have limited ourselves to the case in which the media con-
stituting the SLS are made of identical materials~i.e., z1

5z25z3 and «15«25«35«). The transmission coefficient
is shown to be

T5U 2~S21S3!S2S3

~C2S31C3S21S2S3!22~S21S3!2U2

. ~25!

This coefficient equals zero only whenS21S350, or
equivalently, 2 sin(a8L/2)cos(a8DL/2)50, where DL5d2

2d3 , L5d21d3 , and a85 vA«/c. Therefore, zeroes of
transmission occur at frequencies such thata8L52mp and
a8DL5(2m811)p, or equivalently,

f m5
c

A«
S m1

1

2D 1

DL
, ~26!

and

f m85
c

A«

m8

L
, ~27!

wherem andm8 are integers.
It is worth noticing that for frequencies given by Eq.

~26!, the waves traveling on both paths of the loop are out of
phase. On the other hand, the frequencies given by Eq.~27!
correspond to the eigenmodes of a loop alone.

In the particular case of a symmetric loop (d25d3 ,DL
50), the transmission coefficient becomes

T5
16

2529 cos2~a8d2!
. ~28!

In contrast to the case of an asymmetric single loop, the
transmission through a symmetric loop never becomes zero.

A great deal of theoretical work has been devoted
recently26,33–35to the understanding of the relation between
the phase of the transmission and the density of states~DOS!
depending on whether the system exhibits or not zeroes of
transmission. Some of these researchers tried to explain by

continuum33,34 and lattice35 scattering models the phase
jumps observed in a few experiments realized on mesoscopic
systems.11,12 Here, we shall show theoretically and verify
experimentally the existence of phase jumps in the transmis-
sion of a single loop as far as the constituting wires of the
loop have different lengths. In the particular case when the
wire lengths become identical, the phase increases monotoni-
cally as a function of the frequency. These results are sum-
marized in Fig. 2, where we have plotted the amplitudeAT
@Figs. 2~a! and 2~d!#, the phase@Figs. 2~b! and 2~e!#, and the
phase time@Figs. 2~c! and 2~f!# for a symmetric~right panel!
and an asymmetric~left panel! loop. The lengths of the wires
of the asymmetric~symmetric! loop ared250.355 m and
d350.655 m (d25d350.5 m), whereas the dielectric per-
mittivity is taken to be«52.3. The solid curve represents the
theoretical results whereas the dotted curve corresponds to
the experimental ones. The experiments were performed us-
ing standard 50V coaxial cables assembled together with
metallic T-shaped connectors. The cross section of the cables
is negligible compared to their length and to the propagation
wavelength, so that the assumption of monomode propaga-
tion is satisfied. The transmission measurements have been
realized by using a tracking generator coupled to a spectrum
analyzer in the frequency range of 10 to 500 MHz. The at-
tenuation inside the coaxial cables was simulated by intro-
ducing a complex relative dielectric permittivity («5«8
2 j «9). The attenuation coefficienta can be expressed as
a5«9v/c. On the other hand, the attenuation specification
data supplied by the manufacturer of the coaxial cables in the
frequency range of 10 to 500 MHz can be approximately
fitted with the expression lna5a1b ln v, wherea andb are
two constants. From this fitting procedure, a useful expres-
sion for«9 as a function of frequency can be obtained under
«9.0,017f 20,5 where the frequencyf is expressed in the
units of hertz. Three successive minima are seen in the trans-
mission through an asymmetric loop@Fig. 2~a!#. The first and
the third ones, obtained for frequencies respectively equal to
193.5 and 387 MHz, respectively, correspond tom851 and
m852 in Eq. ~27!. The second minimum at 340.3 MHz is
associated withm50 in Eq. ~26!. The transmission zeroes
give rise to abrupt phase change byp in the phase of the
transmission function@Fig. 2~b!# or to delta peaks in the
transmission phase time@Fig. 2~c!#. It is worth noticing that
the phase jump is slightly enlarged and becomes less thanp
because of the dissipation in the cables.

These results agree with the experiments of Yacoby
et al.11 and Schusteret al.12 in which the conductance
through a quantum dot shows a phase change byp between
each pair of adjacent in-phase resonances. In contrast to Fig.
2~a!, Fig. 2~d! clearly shows that the transmission through a
symmetric loop does not reach zero and therefore the corre-
sponding phase@Fig. 2~e!# increases monotonically. These
results clearly show, in accordance with the theoretical works
of Refs. 26, 33–35, that the phase time measurements in a
symmetric loop reflect the DOS in this system, whereas in an
asymmetric loop these two quantities are different because of
the transmission zeroes.

An interesting result that can be deduced from the phase
time t @Figs. 2~e! and 2~f!# is the group velocity32 vg
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5(,/t), where, is the total length of the finite structure. In
contrast to a symmetric loop, an asymmetric loop may give
rise to negative group velocity around the transmission ze-
roes because of the negative peaks in the phase time spec-
trum. In the example of Fig.~2c!, the value ofvg becomes as
small as 20.05c around the peaks situated at 340 and
387 MHz.

The idea of negative group velocity amounts to several
decades with the challenge of realizing pulse advancement
comparable to pulse width, with a low level of pulse distor-
tion. Indeed, it is well known that inside an absorption line
the refractive index~or equivalently the phase of transmis-
sion @Fig. 2 ~b!#! may take a steep drop,36 resulting in an
anomalous dispersion and consequently a light pulse propa-
gation at a group velocity faster thanc or even negative37,38

in absorbing, homogeneous dielectric materials. More
recently,13,14,39negative group velocity has been found both
theoretically and experimentally in media made of atomic
vapor cells in the presence of gain. In all this work, it was
clearly pointed out that such superluminal behavior is not at
odds with either causality or Einstein’s theory of special rela-
tivity, but it exclusively results from interference between the
different frequency components of the pulse in an anomalous
dispersion region.15 In addition, as argued by several
authors,14,40–42 it is not the group velocity, but rather the
front velocity that must be no greater thanc. In circuits, a
discussion of negative group velocity in a simple bandpass
filter43 clearly demonstrated negative group delays. However,
for a filter, the concept of group velocity is not defined. Re-
cently, Munday and Robertson44 showed experimentally
negative group velocity in 1D photonic circuit made of alter-
nating two different impedance coaxial cables. However,
from the theoretical point of view,26,45 it has been shown that

for lossless, 1D filter, negative phase time26 or equivalently
negative group velocity45 are not possible. These results let
the authors suppose that the dissipation inside the coaxial
cables may be at the origin of the observed negative group
velocity. However, other experiments on coaxial cables made
of alternating different cables46 or SLS ~see Sec. B! do not
show such negative group velocity. On the other hand, the
results presented in Fig. 2~e! clearly show both theoretically
and experimentally that a single asymmetric loop made of
coaxial cables exhibits negative phase timet around the
transmission zeros of the structure. Therefore, we believe
that this structure could be a good candidate for obtaining
negative group velocity.

In the next section, we shall discuss the bandgap struc-
tures as well as the amplitudes and phase times of the trans-
mission when several SLS are connected together periodi-
cally by finite segments with or without a defect. A
preliminary report of these results on the band structure and
transmission spectrum appeared recently47 for asymmetric
SLS.

B. Several loops

Now, we turn to the analytical and experimental results
for the transmission of electromagnetic waves through SLS
made of several loops. When the media constituting the SLS
are made of identical materials~i.e., «15«25«35«s5«0

5«), the dispersion relation@Eq. ~10!# can be rewritten in
the following simplified form:

j5
1

2 sinS a8L

2 D cosS a8DL

2 D H sin~a8d1!F5

4
cos~a8L !

2
1

4
cos~a8DL !21G1cos~a8d1!sin~a8L !J , ~29!

whereDL5d22d3 , L5d21d3 anda85 vA«/c.
Figure 3 displays the projected band structure; that is,

the frequencyv/2p versusDL of an infinite SLS for given
values ofL and d1 : L51.06 andd150.5 m, respectively.
The shaded areas correspond to frequencies for whichuju
,1 and represent bulk bands. These areas are separated by
minigaps. Inside these gaps, the dashed lines show the fre-
quencies for which the denominator ofj @Eq. ~29!# vanishes.
The dashed horizontal and curved lines correspond to the
vanishing of sin(a8L/2) and cos(a8DL/2), respectively.48

They define the frequencies at which the transmission
through a single loop is equal to zero. The existence and
width of the minigaps are influenced by both the periodicity
of the structure and the zeros of transmission. Let us notice
that some of the minigaps having a lozenge pattern display a
large variation withDL. In the latter minigaps, one can ob-
serve the existence of very narrow~almost flat! minibands.
These minibands become totally flat~and coincide with the
horizontal dashed lines! if L is taken to be equal to 1 m
instead of 1.06 m. Indeed, forL51 m, we haveL52d1 , and
one can easily check that both the numerator and denomina-
tor of Eq. ~29! vanish simultaneously at the frequencies rep-
resented by the dashed lines. The physical meaning of such

FIG. 2. Transmission coefficient~a! and ~d!, phase~b! and ~e!, and phase
time ~c! and ~f! as function of the frequency for an asymmetric single loop
(d250.36 m and d350.65 m) and a symmetric single loop (d25d3

50.5 m).
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flat bands is that the infinite structure possesses localized
states at these frequencies, while the transmission through
the finite structure remains equal to zero. One also observes
in Fig. 3 that, at certain values ofDL ~for instance,DL
;0.25 m), one can obtain a series of narrow minibands
separated by large gaps. This results from the fact that the
points where the minibands close, align more or less verti-
cally in such a way that a few successive bands may become
very narrow.

In what follows, we shall detail the results concerning
the case of symmetric SLS (d25d3) and then give some
results about the case of an asymmetric SLS (d2Þd3). We
also show at the end of this section that the width of the
bandgaps may be enlarged by coupling several SLS of dif-
ferent physical characteristics.

1. Symmetric SLS

First, we analyze the properties of the band structure and
the transmission for a perfect SLS, without defect. Figure
4~a! shows the first five dispersion curves~full lines! in the
band structure of an infinite serial loop waveguide (N→`)
with the same characteristic lengths (d15d25d350.5 m).
One can observe a gap after the first passband and another
gap between the third and the fourth bands. The gaps be-
tween the second and the third bands and between the fourth
and the fifth bands~situated atkd50) close. The real and
imaginary parts of the reduced wave vectorkd are in very
good agreement with the experimental results~dotted curves!
obtained from the amplitudeutu @Fig. 4~b!# and the phaseF
@Fig. 4~c!# of the transmission through a finite sized SLS.
Indeed, writing the transmission coefficientt r5utuej F under

the form t r5ejk,, where, is the total length of the finite
structure, one obtains the effective wave number

k5
F

,
2 j

lnutu
,

. ~30!

One can note that despite the small number of serial
loops (N56) used in the finite structure, the amplitude and
the phase describe very well the band structure of the infinite
systemN→` @Fig. 4~a!#. The attenuation effect in coaxial
cables induces a transmission depletion particularly at high
frequencies. As mentioned earlier, the phase time in a sym-
metric SLS is equivalent to the DOS;26,33,34 therefore, Fig.
4~c! is also an illustration of the DOS in these 1D photonic
crystals. A large enhancement of the DOS is observed in the
vicinity of the band edges. The number of oscillations in
each band~that is related to the number of loops in the finite
structure! gives the number of states. The behavior of the
group velocity32 vg5(,/t) is given in Fig. 4~d!. For a 1D
PBG, vg is equivalent to the inverse of the DOS. It is well
known that in infinite 1D systems, the density of modes ap-
proaches infinity at the band edge and the group velocity
becomes very small. In a finite system, however, the electro-
magnetic mode density is an oscillating function rather than
a monotonous function@Fig. 4~c!#. The enhancement of the

FIG. 3. Projected band structure of the SLS as function ofDL5d22d3 for
d150.5 m and L5d21d351.06 m. The shaded areas represent the bulk
bands. The dashed curves indicate the frequencies for which the denomina-
tor of j @Eq. ~29!# vanishes.

FIG. 4. ~a! Theoretical band structure of the infinite symmetric SLS with
d15d25d350.5 m and«52.3. The experimental curve~dots! is obtained
from the amplitude~b! and the phase~c! of the transmission through a
finite-sized SLS.~b! Theoretical~solid line! and experimental~dots! varia-
tions of the transmission coefficient through a nondefective finite SLS con-
taining N56 loops with the same characteristic lengths as in~a!. ~c! Theo-
retical~solid line! and experimental~dots! variations of the phase time in the
same conditions as in~b!. Theoretical~solid line! and experimental~dots!
variations of the group velocity in the same conditions as in~b! and ~c!.
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phase time~or the DOS! at the band edges induces a small
group velocity@Fig. 4~d!# which has been shown to be of
potential interest in application to band-edge lasing and op-
tical delay lines.49 In addition, one can notice inside the pass-
bands, the group velocity is equal to 0.66c. However, inside
the gaps, anomalous dispersion occurs and superluminal ve-
locities are expected such that 3c<vg<3.5c. These results
are in accordance with those of Hache´ and Poirier.17,50 The
system studied here presents an advantage: all the segments
in the periodic structure are made of the same material in-
stead of being constructed by two different materials.

Now, we study the transmission spectrum and the phase
time through the structure when a segment of lengthd1

50.5 m is replaced by a defect branch of lengthd051 m in
the middle of the SLS waveguide. The results are presented
in Fig. 5 for three different values ofN. First, one can notice
that by increasingN, the transmission decreases more rap-
idly to zero at the band edges@Fig. 5~c!#. The effect of the
defect branch is to induce defect~or localized! modes in the
forbidden bands. The frequencies of these modes are almost
independent ofN, whereas their intensities decrease progres-
sively with increasingN ~Fig. 5!. This decrease of the inten-
sities may appear to be in contradiction with the fact that, by
increasingN, the localization degree of these modes around
the defect increases and therefore the peaks associated with
the defect modes narrow. However, this behavior can be ex-
plained by the dissipation inside the coaxial cables that lead

to a widening of the peaks due to the absorption phenom-
enon, but also to a decrease in the transmitted intensity due
to an enhancement of the reflected intensity.

The evolution of the phase time versus the frequency is
depicted in Fig. 6 for the same values ofN as in Fig. 5. In
contrast to the amplitude of the localized states in the trans-
mission spectra of Fig.~5!, the phase time associated with
the defect modes increases with increasingN. Indeed, the
intensity of the peaks in the phase time is related to the
lifetime of the resonances and it reflects the time spent by the
photon inside the defect~cavity! before its transmission.51

Therefore, whenN increases, the defect modes become more
localized and the trapping time of photons increases. These
results indicate that the characterization of localized modes
in SLSs, in which the attenuation is not negligible, is easier
with phase time analysis than with amplitude measurements.
To give a better insight into the localization properties of
photons inside the defect segment, Fig. 7 displays the phase
time of the defect mode lying in the first gap of Fig. 6 for
different values of N. One can notice that the lifetime of the
resonances associated with the defect mode increases from
0.42 to 1.1ms whenN increases fromN54 to N58 @Fig.
7~a!#. The integration of the phase time@Fig. 7~b!# shows a
monotonic rise by almostp ~one state! near the maximum of
the resonance. Finally, an analysis of the local DOS@Fig.
7~c!# as function of the space positionx clearly shows that
the defect mode is localized in the defect segment and rap-
idly decays in the vicinity of the defect. However, the local-
ization is more pronounced when the SLS size is larger.
These results indicate that most of the time spent by the

FIG. 5. Theoretical~solid line! and experimental~dots! variations of the
transmission coefficient through a finite SLS ofN loops containing a defect
of length d051 m located in the middle of the SLS~cell p) (d15d25d3

50.5 m and«52.3). ~a! N54 andp53, ~b! N56 andp54, and~c! N
58 andp55.

FIG. 6. Theoretical~solid line! and experimental~dots! variations of the
phase time as function of the frequency. The parameters are the same as in
Fig. 5.
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photon during the transmission process was inside the defect
segment. Indeed, once a photon enters the defect region, it
encounters two Bragg reflectors~the periodic parts! around
it. Since the frequency of the photon is in the gap of the
Bragg reflectors, the photon will be strongly reflected back to
the defect region. The defect region, acts as a Fabry–Perot
cavity and the photon can not escape from this region. The
long time spent in the defect region results in very high
energy density around the defect.32

When the defect is inserted far from the middle of the
SLS, the amplitude of the localized modes decreases pro-
gressively. This effect is depicted in Fig. 8 forN56. Indeed,
the amplitude of the defect mode decreases when the defect
lies between the second and the third loops@Fig. 8~b!#, and
practically vanishes when the defect branch is inserted be-
tween the first and the second loops@Fig. 8~c!#. One can
notice the same behavior when the defect is located between
the fourth and the fifth loops and between the fifth and the
sixth loops, respectively, because of the perfect symmetry of
the SLS. These behaviors may be explained qualitatively as
follows: when the defect is inserted in the middle of the SLS,
the SLS behaves as two identical waveguides with N/2 loops
connected with a defect. Because of the symmetry of the
system, constructive interferences occur that lead to the en-
hancement of the amplitude of the transmission. However,
when the defect branch lies far from the middle of the SLS,
the SLS behaves as two linked waveguides with different
number of loops~2, 4 or 1, 5!. Each of the linked waveguides
contributes in its own way to the transmission of the SLS.
Thus, destructive effects are responsible for the decrease in
amplitude when the defect is moved away from the middle
of the SLS. This qualitative interpretation agrees with the
evolution of the phase time corresponding to defect modes
which decreases also when the defect is inserted far from the
middle of the SLS~Fig. 9!.

On the other hand, the transmission inside the passbands
is also affected by the presence of the defect. Indeed, the
amplitude of the oscillations in the passbands is greater in
the perturbed SLS~Figs. 5 and 8! than in the perfect one

~Fig. 4! because one state~defect mode! is now detached
from the bulk band~see subsequent discussion!. This behav-
ior is particularly important when the defect is located far
from the middle of the SLS@Figs. 8~b! and 8~c!#. In these
cases, the amplitude of the oscillations in the passbands ex-
hibits strong variations due to destructive effects.

The comparison of Figs.~5! and ~8! shows that the fre-
quency of the defect mode does not depend on the defect
location in the SLS; however, the frequencies are very sen-

FIG. 7. Theoretical~solid line! and experimental~dots!
variations of the phase time~a! and the phase~b! of the
localized mode in the first gap of Fig. 6. Variation of the
local density of states~DOS! as function of the space
positionx for the localized modes in~a! and ~b!.

FIG. 8. Theoretical~solid line! and experimental~dots! variations of the
transmission coefficient through a finite SLS of six loops containing a defect
of length d051 m located in the cellp (d15d25d350.5 m and«52.3).
~a! p54, ~b! p53, and~c! p52.
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sitive to the defect lengthd0 , as is shown in Fig. 10. The
hatched areas correspond to the bulk bands. The solid lines
represent the computed frequencies in an infinite SLS with a
defect segment whereas the dots correspond to the experi-
mental measurements. The localized modes emerge from the
bulk band, decrease in frequency whend0 increases and fi-

nally merge into a lower bulk band. At each frequency, there
is a periodic repetition of the localized states as function of
d0 . One notes the overall good agreement between the ex-
perimental measurements and the theoretical results.

We have also studied the evolution of the power trans-
mission at the frequency of the defect mode falling in the
first gap as a function of the defect lengthd0 . Figure 11~a!
illustrates this evolution in the case of a defect inserted in the
middle of a SLS constructed ofN56 loops. Let us recall that
the power transmission is stronger when the defect is in-
serted closer to the middle of the waveguide~see Figs. 8 and
9!. The hatched area in Fig. 11~a! corresponds to the situa-
tion in which the defect mode merges into a bulk band@Fig.
11~b!#. The dashed line in Fig. 11~a! represents the computed
intensity when dissipation inside the cables is neglected. One
can notice that the transmission is unity for all frequencies,
this property is commonly verified in any symmetric com-
posite system, whereas it may only happen under special
conditions if the composite media is not symmetric. The full
line corresponds to the computed intensity when dissipation
is taken into account. The transmission, which is now
smaller than unity, increases progressively with the defect
length until the localized mode merges with the first bulk
band. With increasingd0 , a defect mode emerges from the
second bulk band, its intensity decreases, and reaches a sta-
tionary value. In Fig. 11~a!, the dots represent the experimen-
tal measurements whose evolution is in good agreement with

FIG. 9. Theoretical~solid line! and experimental~dots! variations of the
phase time as function of the frequency. The parameters are the same as in
Fig. 8.

FIG. 10. Comparison between theoretical and experimental frequencies of
the localized states associated with the presence of a defect branch of length
d0 , inserted in the cellp of a SLS. Solid lines: calculated frequencies in an
infinite SLS (N→`); dots: measured frequencies in a finite SLS withN
56 and p54. The other parameters ared15d25d350.5 m and«52.3.
The dashed areas correspond to the bulk bands.

FIG. 11. ~a! Variation of the intensity of the transmitted localized mode
located in the first gap as function of the defect lengthd0 . The defect is
inserted in the middle of a SLS withN56 andp54. Dashed lines: calcu-
lated intensities when the dissipation effect is neglected. Solid lines: calcu-
lated intensities when the dissipation is taken into account. The dots repre-
sent the measured intensities. The shaded areas correspond to the frequency
region when localized modes merge inside the bulk bands@~b!#. The other
parameters ared15d25d350.5 m and«52.3. ~b! The same as in Fig. 10.
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the computed results. Fig. 11~b!, recalls the frequency of the
localized mode as a function ofd0 as well as the location of
the bulk bands of the perfect infinite SLS.

2. Asymmetric SLS

An example of the dispersion curve in an infinite asym-
metric SLS is depicted in Fig. 12~a! ~full lines! for DL5d2

2d350.29 m andL51 m. These curves are in good agree-
ment with experimental measurements~dotted curves! ob-
tained from the amplitude@Fig. 12~b!# and the phase~not
shown! of the transmission through a finite-sized SLS made
of N54 loops. In comparison with symmetric SLS@Fig.
4~a!#, asymmetric SLS may exhibit larger gaps@Figs. 12~a!
and 12~b!#. The width of the bandgaps discussed earlier may
be enlarged by associating in tandem two or several succes-
sive SLSs that differ by their physical characteristics. An
example of this association is shown in Figs. 12~b! and 12~c!
for two different asymmetric SLSs:~i! a SLS with DL
50.29 m andL51 m ~i.e., d250.65 m andd350.36 m)
@Fig. 12~b!# and ~ii ! a SLS with DL5L.0.5 m ~i.e., d2

50.5 m andd3.0) @Fig. 12~c!#. In these two casesd1

50.5 m. Figure 12~c! exhibits a large gap at frequencies

lower than in Fig. 12~b!; that is, between 100 and 300 MHz.
The small feature appearing in the transmission spectrum
around 180 MHz inside the large gap is associated with a flat
band. It occurs because the actual lengthDL of the loops is
slightly different from 0.5 m and the corresponding bands
have a small width instead of being totally flat~see also Fig.
3 and the corresponding discussion!. Now, by associating in
tandem the serial loop structures@Figs. 12~b! and 12~c!#, one
obtains@Fig. 12~d!# an ultrawide gap in which the transmis-
sion vanishes over a large range of frequencies from 80 to
420 MHz. In this structure, the huge gap results from the
superposition of the forbidden bands of the individual SLS
@Figs. 12~b! and 12~c!#. Theoretical and experimental results
are in agreement within the limits of experimental precision.

If a defect is included in the structure, a localized state
can be created in the gap. A defect in a SLS can be realized
by replacing a finite wire of lengthd1 by a segment of length
dfÞd1 in one cell of the waveguide. The measured transmis-
sion spectrum for the structure depicted in Fig. 12~c! with a
defect segment of lengthdf50.13 m in the middle of this
structure is shown by the dotted line in Fig.~13!. The theo-
retical transmission is illustrated by the solid line. The mea-
sured values are in remarkable agreement with theory. Let us
emphasize that the frequency of the defect mode inside the
gap depends on the length of the defect segment, whereas the
intensity of the peak in the transmission spectrum depends
on the numberN of loops in the SLS and the location of the
defect segment.

V. SUMMARY AND CONCLUSIONS

In this article, we have considered quasi-1D serial loop
structures exhibiting very large photonic band gaps~PBGs!.
Compared to other 1D systems such as star-waveguides, the
observed gaps in SLS are significantly larger. The theoretical
model assumed the cross sections of the waveguide and of
the loops small compared to their linear dimensions. This
ensures monomode propagation of the electromagnetic
waves. These serial loop structures may present large stop
bands and are good candidates for PBG materials. Although
they are limited to one dimension and are void of polariza-
tion effects, their properties are also described by Maxwell’s
equations, and some linear16,52 and nonlinear50 properties
similar to those encountered in optical PBG materials have
been reported. The measurements of the amplitude and the
phase of the transmission coefficients through the finite-sized
SLS enables us to deduce several properties on the wave

FIG. 12. ~a! Theoretical band structure of the infinite asymmetric SLS with
d150.5 m, d250.65 m, andd350.36 m ~i.e., DL50.29 m). The experi-
mental curve~dots! is obtained from the amplitude~b! and the phase~not
shown! of the transmission through a finite-sized SLS.~b! Theoretical~solid
line! and experimental~dots! variations of the transmission coefficient
through a finite SLS containingN54 loops with the same characteristic
lengths as in~a!. ~c! The same as in~b!, but for L50.5 m andDL50.5 m
~i.e.,d250.5 m andd3.0.). ~d! The same as in~b! and~c!, but for a tandem
built of the ~b! and ~c! structures.

FIG. 13. The same as in Fig. 12~b!, but with a defect segment of length
df50.13 m in the middle of the structure.
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propagation through such structures as dispersion curves,
phase times, and therefore DOSs as well as group velocities.

In addition, we have shown that the presence of defect
branches in the SLS gives rise to localized states inside the
gaps. These defect modes appear as very narrow peaks of
strong amplitude in the transmission and the phase time
spectra. The localized states are very sensitive to the length
of the defects, and to their position in the SLS. The phase
time measurements in the SLS are in general different from
the DOS, except for the symmetrical SLS, in which these
two quantities are equivalent. The experimental results are
very well fitted by the 1D theoretical model using the
Green’s function method.

Let us also stress that, in star waveguides, an important
difficulty lies in the technical realization of the boundary
condition at the free ends of the resonators, whereas this
problem is avoided in SLS.

In this study, the lengths of the finite wires are of the
order of the meter and the gaps occur in the hyperfrequency
range. However, our theoretical model is in principle univer-
sal and is thus also valid in other frequency domains of the
electromagnetic spectrum. For example, designing SLS
working at optical frequencies requires characteristic lengths
d1 , d2 , andd3 of the order of the micrometer. The manu-
facturing of such waveguides could be very useful once the
problem of radiative and scattering losses is overcome by
amplification technique in making, for instance, filtering or
multiplexing devices. It would even be more interesting for
integrated structures working at optical frequencies. Recent
work shows clearly that the manufacturing of such serial
loop structures at a submicrometric scale becomes realizable
with recent technological developments using high-
resolution electron-beam lithography.53 Nevertheless, the lat-
eral size of such wires is in general of the same order of
magnitude as the optical wavelengths, and a more thorough
analysis of the scattering processes at the junctions would
become desirable. Such a numerical modeling of our SLS is
now underway.
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