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We have investigated the electromagnetic band structure, transmission, and phase time through a
one-dimensional structure made of loops pasted together with segments of finite length. In this serial
loop structure, the loops and segments are constituted of dielectric monomode materials. Analytic
expressions are reported for the band structure for a large nushbétoops and for transmission
coefficients and phase times for any valueNof Experimental and numerical results show the
existence of large gaps in these structures. These gaps originate both from the periodicity of the
system and the loop resonant states that create zeroes of transmission. The gap widths depend on the
lengths of the finite segment and the loop diameters. Defect modes may occur in these bandgaps by
introducing defective segments in the structure. The localized states appear as very narrow peaks
both in the transmission spectrum and in the transmission phase time of finite serial loop structures.
The localized state behavior is analyzed as a function of the length and of the position of the defect
segment. The transmission phase measurements enable us to derive the group velocity as well as the
density of states in these structures. The experimental results are obtained using coaxial cables in the
frequency range of few hundreds of MHz. )04 American Institute of Physics.
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I. INTRODUCTION depend also on the boundary conditions at the free ends of
the side branches; namely, the vanishing of either the electric

tures may give rise to photonic bandga®B8Gs,!? where field (E=0) tc_)r the magnetlcdfleIdEﬁz_((j))a Itr;] Sl:\?vh s;;]stem;s, .
electromagnetic modes, spontaneous emission, and zer 1€ propagation IS monomode, provided the two characteris-

point fluctuations are all prohibitetf These PBGs are ana- tic lengths(the periodicity and the resonator lengénd the .
logs, for electrons, to the electronic bandgaps in the band@velength are much larger than the backbone and the side

structure of semiconductor crystals. Of particular interest iranch diameter§? It is worthwhile to point out that this star
the existence of PBG in the band structure of one-Waveguide exhibits relatively broad forbidden bands even if
dimensional(1D) structures with a variety of geometrigs. ~ the backbone and the resonators are made of the same
In previous paperé? we demonstrated that the e|ectromag_matel’ia|,7 in other words, the existence of the gaps does not
netic transmission spectrum of quasi-1D comb structures exequire a contrast between the parameters of the two con-
hibits large gaps. These structures, calidr waveguides stituents. This property offers the possibility of engineering
are composed of an infinite backbone along which stars obandgaps in homogeneous materials. Moreover localized
N’ finite branches are grafted Bt equidistant sitesN and  modes may appear in the forbidden bands when a defect is
N’ being integers. The stop bands originate from the periodintroduced in the star waveguide periodic structure. Applica-
icity of the system determined by the distance between tweions such as selective frequency filters and efficient
neighboring sites and from the eigenmodes of the dangling\,aveguideg may be expected.

side branches that play the role of resonators. The gap widths |4 3 recent work, Zhangt al° studied theoretically and
experimentally three-dimensional PBG systems constructed
dElectronic mail: abdellatif.akjouj@univ-lillel.fr by segments and loops made of coaxial cables arranged in a

Photon propagation in artificial periodic dielectric struc-
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d, waveguides, such as the existence of larger gaps and the
< >d < > O ( > < > @) absence of the boundary condition at the end of the side
y ) ) branches, which could be of potential interest in optical
3

waveguide structures. These features are essentially due to

cell 1 the loop structure, which is quite different from the case of a
simple resonatdt® The introduction of defects inside the
< > < > L (b) SLS structure may give rise to well-defined defect modes
" +o inside the band gaps in the transmission spectra.
T NPT The experimental demonstration of our theoretical pre-

dictions is performed by measuring the transmission spectra
d, (©) through finite SLS constituted by coaxial cables. The typical
_—<Oo > - < >—< > - < >7+oo length of the cables is on the order of a meter, and, therefore,
the frequencies fall in the range of 10 to 500 MHz. Let us
oell 1 cellp mention that, besides our previous papgetsecent work also
FIG. 1. (a) Schematic of the 1D serial loop structures studied in this work. d€alt with photonic circuits constituted by an alternative rep-
The media are labeled by an indexwith i =1 for the finite branch and 2 etition of two different coaxial cablé§;17indicating that the

and 3 for the loop. Each loop has a lenghd; and is distant byl, from  pehaviors observed in these 1D crystals are qualitatively

the neighboring loops. Each cell is composed of a finite branch and the loo . . . _
connected to its right(b) Waveguide with finiteN loops separated by a Eomparable to those of phOtOhIC systems of hlgher dimen

lengthd, and connected at its extremities to two semi-infinite leading Iines.Sion as well. ) o
(c) Same as in(b), except that a defect branch of length (heavy ling is The theoretical model developed here falls within the

introduced in the celp. framework of the interface response theory of continuous
medial® which we recall briefly in Sec. Il. The analytical
expressions for the band structure of an infinite SLS and for

diamond structure. The transmission measurement shows8€ transmission coefficient of a finite SLS with and without
wide gap, but the presence of the free ends of the structurd defect are given in Sec. lll. Section IV is devoted to a
induces a surface state, which makes the gap not truly forrjum_erl_cal discussion of these expressions. The theoretical
bidden for all states. In addition, besides the Anderson localPredictions are then compared to experimental measurements
ized state observed in random structures, defect modes aPé the electromagnetic transmission spectra through a finite
introduced in the gap by changing the length of one loop inSLS_ composed of st_andard coaxial cables. Finally, some con-
an ordered network. However, the peak associated with the/uSions are drawn in Sec. V.

defect mode is not well defined because of the dissipation

inside the cables. In this article, we study a 1D structure

made of segments and loops, calledétial loop structure ||, THEORETICAL MODEL

(SLS exhibiting large gaps, and in which the existence ofA Interf h ¢ conti di

defect modes can be clearly observed. This SLS may be" nieriace response theory of continuous media
modeled as an infinite number of unit cells pasted together.  Our theoretical analysis is performed with the help of the
Each cell is made of a finite segment of lengthconnected interface response theory of continuous media, which allows
to a loop of lengthd,+d5 [each loop is composed of two to calculate the Green's function of any composite material.
wires of different lengthsl, #d5, see Fig. 1a)]. The propa- In what follows, we present the basic concept and the funda-
gation of electromagnetic waves through SLSs is also asmental equations of this theoly.

sumed to be monomode. The simple analytical expressions Let us consider any composite material contained in its
obtained enables us to explain clearly the origin of the bandpace of definitiorD and formed out olN different homo-
gaps as a function of the different lengths of segments andeneous pieces situated in their domdhs Each piece is
loops. Indeed, the SLS allows us to distinguish two differentbounded by an interfackl;, adjacent in general tp (1<j
structures(i) the symmetric SLSi.e.,d,=d3), in which the = <J) other pieces through subinterface domaMsg . The
band gaps result only from the periodicily=d;+d, of the  ensemble of all these interface spad&swill be called the
SLS and(ii) the asymmetric SL$.e.,d,#ds3), in which the interface spac® of the composite material.

bandgaps result from both the periodicity and the transmis- The elements of the Green’'s functig{DD) of any
sion zeroes in these systems. In particular the phase timsmposite material can be obtained fidm

measurements show different behaviors in these two cases,

in accordance with recent experizments on phase-coherent g(DD)=G(DD)—G(DM)G *(MM)G(MD)

transport through a quantum ddtt The phase time mea-_ L G(DM)G-{(MM)g(MM)G—

surements also enable us to determine the group velocity,
which can exceed the speed of light in vacuum or even be- XG Y{MM)G(MD), (1)
come negative. The existence of such phenomena has at-

tracted much attention in the last few ye&ts® with the  whereG(DD) is the reference Green’s function formed out
challenge to attain a pulse advancement comparable to thaf truncated pieces iB; of the bulk Green’s functions of the
pulse width with a low level of pulse distortion. The SLS infinite continuous media ang{ M M), the interface element
may also show additional features in comparison with staof the Green’s function of the composite system.
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The knowledge of the inverse g{il MM) is sufficient to

El Boudouti et al.

Ill. DISPERSION RELATIONS AND TRANSMISSION

calculate the interface states of a composite system throughOEFFICIENTS

the relation®

defg {(MM)]=0. 2)

Moreover, ifU(D) represents an eigenvector of the ref-

erence system, Eq1l) enables the calculation of the eigen-
vectorsu(D) of the composite material, and

u(D)=U(D)-UM)G }{(MM)G(MD)
+UM)G Y MM)g(MM)G {(MM)G(MD).

()
In Eq. (3), U(D), U(M), andu(D) are row vectors. Equa-

The 1D serial loop waveguide can be considered as an
infinite number of unit cells pasted togetHsee Fig. 1a)].
Each cell is composed of a finite witenedium1) of length
d, in the directionx, connected to a loop “ring{medium?2)
of lengthd,+d3 (each loop is constructed of two wires of
lengthsd, and d;, respectively. The interface domain is
made of all the connection points between finite segments
and loops. A space position along tkeaxis in mediumi
belonging to the unit celh is indicated by ,i,x), wheren
(the “cell number”) is an integer such thatosn<-+oo, i
is the medium index i&1,2,3), and— d;/2<x<+ d;/2.

tion (3) provides a description of all the waves reflected andPue to the 1D spatial periodicity of the system in the direc-
transmitted by the interfaces, as well as the reflection an§on x, one can define a Bloch wave vectorlong the axis
transmission coefficients of the composite system. In thi®f the waveguide.

case,U(D) is a bulk wave launched in one homogeneous

piece of the composite materisl.

B. Inverse surface Green’s functions of the
elementary constituents

Within the total interface space of the infinite SLS, the
inverse of the matrix giving all the interface elements of the
Green'’s functiorg is an infinite tridiagonal matrix formed by
linear superposition of the elemerjtg,(MM)] ™! [Eq. (6)].
The explicit expression of the Green’s function elements in
the interface space is givenZas

We consider an infinite homogeneous isotropic dielectric

wire i characterized by its characteristic impedaaceThe
Fourier transformed Green’s function between two points
andx’ of this wire i£°

e ailx=x'|
Gi(X,X')Z— T, (4)
I
where
w
a==jei(w), (59
and
1
Fi:_;i:ai: (5b)

where g;(w) is the relative permittivityw the angular fre-
qguency of the waveg the speed of light in vacuunt;; the
admittance, angl=+—1.

Before addressing the problem of SLS, it is helpful to
know the surface elements of the Green'’s function of a finite Y1=

wire of lengthd; and of a semi-infinite wire. The finite wire
is bounded by two free surfaces locatedkat —d;/2 andx

=+d;/2. These surface elements can be written in the form

of a (2X2) matrix g;(MM), within the interface spac®;
={-d;/2,+d;/2}. The inverse of this matrix takes the fol-
lowing form:2°

_RGR
UL I B (6a
s s

whereC; = coshg;d) and S;=sinh(;d,). The inverse of the

surface element of the Green’s function of a semi-infinite

wire is given by°

[9i(00)] *=—F;. (6b)

g(n,1,+dy/2;n",1,+d,/2)

t|n—n’|+1
Zg(n,l,—dllz;n’,l,—dl/Z)=Yl—t2_1 y (7a)
g(n,1,+dy/2;n",1,—d4/2)
S,S; t\n—n’|+l S, t|n—n’+1\+1
TFStFsS, -1 Fy -1 (7
g(n,1,—dy/2;n",1,+d4/2)
t\nfn’|+l IS t|nfn’fl\+1
$:S; 1 79

TSRS, t2-1 0 F, t2-1

where the integers andn’ refer to the cell number-{ «
<n,n’<+x), and
St
C1S:S:+ F—l(F2C283+ F3C3Sy)
F2S3+F3S;

The parametet is defined by

®

t=elkd, 9)
andd is the period of the structure.

The dispersion relation of the infinite serial loop wave-
guide is obtained from Eq2). The stop bands are deter-
mined by the conditiof¢|>1, whereas the allowed bands
are given by the conditiohé| <1, where

F2+F3+F3

&=cogkd)= oF,

1
F2S3+F3S, { 51525
FoF3
+F,C1CS3+F3C1C3S,+ F—lsl( C,C3—1)¢.

(10
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The bandgaps of the structure may be also obtained from
the transmission coefficient through a finite-sized serial loop
structure. The finite SLS containiny equidistant loops is
cut out of the infinite periodic system illustrated in Figajl
and this piece is subsequently connected at its extremities
[(1,1,+d/2),(N+1,1,—d,/2)] to two semi-infinite leading
lines [Fig. 1b)]. An incident bulk electromagnetic wave
e~ #s* of unit amplitude launched from= —« is scattered

El Boudoulti et al. 1105
t —Fo(Cot+1l) Fi(Cy+1)
1+ tle(Yl_YS){ SO + S]_
t —Fo(Co—1)
X{1+ t—2_—1(Y1+Y5) T
Fi(C;—1
PR ) ]=o, (19)
Sy

by the interfaces between the dissimilar wires constitutinqNhere the index O refers to the defect segment and

the system. The indes refers to the semi-infinite media
bounding SLS. The transmission function is then obtained
with the help of Egs(3), (4), and(7) as

2F B(N)

"TTAN) - F P BN

whereA(N) andB(N) are given by

Y, Y- t2NT2vLy,

S
> FyS+FsS, Fy

The transmission function through a defective SLS with
(11 a finite numbemN of cells and containing a defect located in
the cellp (1<p=N) can be obtained as

S St (20

2F4(Fo/So)B(N)B(p)

“Y(N)Y(p)— (Fo/Sp)%(A(N) —F9)(A(p)—Fy)’

A(N)= vZ_{N-2yZ (12) (2
whereY(q) is given by
and FoCo
Y(a)=B%a)—[A(q)—F1]| A(q)— s } (22)
B(N)= —2—2Y1Y4_Y2Y3 N1 13 . : :
Yi—t2N"2y2 ' with g=N or p. The other parameters in E@2) were given
earlier.
where From the previous general equations, one can deduce
two particular cases corresponding to specific lengths of the
Y= $:S3 o i (14 loop.
FoSetFsS, Fu (i)  The tangent SLS, which corresponds dg#0 and
. 1 F,C,Cy85+F4CiCaSy+ F1S,S,S, . d;=0. I'r; tg;caseg [Eq. 10] becomes
T F2S3+F3S » (9 §:C1+F_2F' (23
1 &2
and where S, =sinh(a,0,/2) and C;,=coshg,d,/2). This
relation is equivalent to the dispersion relation of a
VG F2CyS3+ F3C3S, 16) star waveguide along which two resonators of length
at F,S;+F3S, d,/2 are grafted periodically. This system was largely

The transmission function can be written in an explicit
complex form as

t,=a+jb=\Te* an

whereT is the transmission coefficient ang= arctanb/a)
*+l is the phase associated with the transmission fieldl and
is an integer. The first derivative af with respect to the
frequency is indicative of the delay time taken by the wave
to go through the structure. This quantity, called phase time,
is defined by?~%°

de

T:E.

(18

On the other hand, a defect can be created in the SLS by
replacing a segmert; in the cell (h=p) by a segment of
different lengthdy# d, [Fig. 1(c)]. Within the Green’s func-
tion formalism, one can calculate analytically the corre-
sponding localized state frequencies. Theses frequencies sat-
isfy the equation

investigated both theoretically and experimentéafly.
The forbidden bands in the dispersion curves result
from the periodicity of the structure as well as the
zeroes of transmission due to the resonators.

A symmetric SLS characterized by identical arms of
the loop (i.e., d,=d3). In this case, the dispersion
relation becomes

F, 2F
P 2R

7 T E SS. (24)
This relation is analogous to the dispersion relation of
a superlattice constituted out of two different
layers?’?8The two layers should be of lengttig and

d, and characterized by their admittancEs and
2F,, respectively. The bandgaps result only from the
periodicity of the system. Several theoretical studies
have dealt in the past with electromagnetic waves in
superlattices with defectS-32The experimental evi-
dence of the existence of defect modes in 1D photonic
crystals constructed by connecting segments of co-
axial cables of different characteristic impedances
was presented recently by Schneiderl1® However,

=C,C !
§&=Cy 2t 5
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in all these studies, the contrast between the dielectricontinuuni>** and latticé® scattering models the phase
constants in the two constituting layers is a critical jumps observed in a few experiments realized on mesoscopic
parameter for the stop band to exist. In this work, wesystems*? Here, we shall show theoretically and verify
show that symmetric SLS may exhibit large gaps andexperimentally the existence of phase jumps in the transmis-
defect modes even if the loops and the segments arsion of a single loop as far as the constituting wires of the
made of the same materials, which could be of potenioop have different lengths. In the particular case when the
tial interest in optical waveguide structures. wire lengths become identical, the phase increases monotoni-
cally as a function of the frequency. These results are sum-
In the next section, we shall show the origin of the gapsyarized in Fig. 2, where we have plotted the amplituﬁa
in SLSs as well as the evolution of the bandgap structur?pigs_ 2a) and 2d)], the phaséFigs. ab) and Ze)], and the
when the lengths of the wires constituting the SLS vary be'phase timéFigs. 2c) and Zf)] for a symmetridright pane)

tween the two limiting case8) and (ii) just mentioned. and an asymmetrigeft pane) loop. The lengths of the wires
of the asymmetrio'symmetrig loop ared,=0.355 m and
IV. NUMERICAL AND EXPERIMENTAL RESULTS d;=0.655 m @,=d;=0.5 m), whereas the dielectric per-

mittivity is taken to bes =2.3. The solid curve represents the
theoretical results whereas the dotted curve corresponds to
Before illustrating these analytical results by numericalthe experimental ones. The experiments were performed us-
calculations confirmed experimentally with coaxial cables,ing standard 500 coaxial cables assembled together with
let us consider the elementary case of a waveguide consistingetallic T-shaped connectors. The cross section of the cables
of a single loop. From E¢(11), one can derive the analytical s negligible compared to their length and to the propagation
expression of the transmission coefficient of a single homOWave|ength’ so that the assumption of monomode propaga-
geneous loop by settiny=1. For the sake of simplicity, we tjon is satisfied. The transmission measurements have been
have limited ourselves to the case in which the media conrealized by using a tracking generator coupled to a spectrum
stituting the SLS are made of identical materiél®., z,  analyzer in the frequency range of 10 to 500 MHz. The at-
=2;=z3 ande;=e,=e3=¢). The transmission coefficient tenuation inside the coaxial cables was simulated by intro-

A. A single loop

is shown to be ducing a complex relative dielectric permittivitys €&’
2(S,+55)S,S; ’2 —je&"). The attenuation coefficienk can be expressed as
T (25 a=¢"wl/c. On the other hand, the attenuation specification

= 2 2| -
(C2S3+CsS+ $%9)"~ (S, + )" data supplied by the manufacturer of the coaxial cables in the
This coefficient equals zero only whesy+S;=0, or  frequency range of 10 to 500 MHz can be approximately
equivalently, 2 sing¢’'L/2)cos@’'AL/2)=0, where AL=d, fitted with the expression la=a+bln v, wherea andb are
—d3, L=d,+d3, and a'= w\e/c. Therefore, zeroes of two constants. From this fitting procedure, a useful expres-
transmission occur at frequencies such théat =2ms and  sion fore” as a function of frequency can be obtained under
a'AL=(2m'+ 1), or equivalently, £"=0,017 %% where the frequency is expressed in the
units of hertz. Three successive minima are seen in the trans-
m+ 1 i (26) mission through an asymmetric lofipig. 2(a)]. The first and
2] AL the third ones, obtained for frequencies respectively equal to
193.5 and 387 MHz, respectively, correspondrto=1 and
m’=2 in Eq. (27). The second minimum at 340.3 MHz is
cm associated witm=0 in Eq. (26). The transmission zeroes
fm'=$ I (27) give rise to abrupt phase change Byin the phase of the
transmission functiorjFig. 2(b)] or to delta peaks in the
wherem andm’ are integers. transmission phase tinj&ig. 2(c)]. It is worth noticing that
It is worth noticing that for frequencies given by Eg. the phase jump is slightly enlarged and becomes less+#han
(26), the waves traveling on both paths of the loop are out obecause of the dissipation in the cables.

c

fmz\/E

phase. On the other hand, the frequencies given by(Zq. These results agree with the experiments of Yacoby
correspond to the eigenmodes of a loop alone. etall and Schusteret al’® in which the conductance

In the particular case of a symmetric loog,E&d5, AL through a quantum dot shows a phase change bgtween
=0), the transmission coefficient becomes each pair of adjacent in-phase resonances. In contrast to Fig.

16 2(a), Fig. 2d) clearly shows that the transmission through a
= - ) (28) symmetric loop does not reach zero and therefore the corre-
25-9 cos(a'dy) sponding phaséFig. 2(e)] increases monotonically. These

In contrast to the case of an asymmetric single loop, théesults clearly show, in accordance with the theoretical works
transmission through a symmetric loop never becomes zerof Refs. 26, 33-35, that the phase time measurements in a
A great deal of theoretical work has been devotedsymmetric loop reflect the DOS in this system, whereas in an
recently?®33-3%to the understanding of the relation betweenasymmetric loop these two quantities are different because of
the phase of the transmission and the density of st&©s)  the transmission zeroes.
depending on whether the system exhibits or not zeroes of An interesting result that can be deduced from the phase
transmission. Some of these researchers tried to explain time r [Figs. 2e) and 2f)] is the group velocity g

T
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Asymmetric Loop Symmetric Loop for lossless, 1D filter, negative phase tfher equivalently
negative group velocify are not possible. These results let
the authors suppose that the dissipation inside the coaxial
cables may be at the origin of the observed negative group
velocity. However, other experiments on coaxial cables made
of alternating different cablé$or SLS(see Sec. Bdo not

0.0 show such negative group velocity. On the other hand, the
3n results presented in Fig(& clearly show both theoretically
and experimentally that a single asymmetric loop made of

-
o

Transmission
o
[4,]
]

§ g | coaxial cables exhibits negative phase timearound the
& nd . 1 @ transmission zeros of the structure. Therefore, we believe
that this structure could be a good candidate for obtaining
0 * * negative group velocity.

oo P O —— In the next section, we shall discuss the bandgap struc-
£ tures as well as the amplitudes and phase times of the trans-
% 0.2 4 1 mission when several SLS are connected together periodi-
§ el 1 cally by finite segments with or without a defect. A

preliminary report of these results on the band structure and
transmission spectrum appeared recéhtfpr asymmetric

T T T T T i T T

0 100 200 300 400 5000 100 200 300 400 500
Frequency (MHz) Frequency ( MHz) SLS.

FIG. 2. Transmission coefficierit) and (d), phase(b) and (e), and phase
time (c) and (f) as function of the frequency for an asymmetric single loop B, Several loops

(d,=0.36 m andd;=0.65m) and a symmetric single loopd (=d; ) .
=0.5m). Now, we turn to the analytical and experimental results

for the transmission of electromagnetic waves through SLS

made of several loops. When the media constituting the SLS
=(€l7), where( is the total length of the finite structure. In are made of identical materialge., e1=e,=e3z=es= &
contrast to a symmetric loop, an asymmetric loop may give=¢). the dispersion relatiopEqg. (10)] can be rewritten in
rise to negative group velocity around the transmission zethe following simplified form:
roes because of the negative peaks in the phase time spec- 1

5
trum. In the example of Fig2c), the value ob ; becomes as &= oL AL {Sin(oz'dl)
2 sir( )cos( )

Zcos{a’L)

small as —0.05c around the peaks situated at 340 and
387 MHz.

The idea of negative group velocity amounts to several
decades with the challenge of realizing pulse advancement - Zcos(a’AL)—l
comparable to pulse width, with a low level of pulse distor-
tion. Indeed, it is well known that inside an absorption linewhereAL=d,—ds, L=d,+d; anda’= w\/¢/c.
the refractive indexor equivalently the phase of transmis- Figure 3 displays the projected band structure; that is,
sion [Fig. 2 (b)]) may take a steep drof,resulting in an  the frequencyw/27 versusAL of an infinite SLS for given
anomalous dispersion and consequently a light pulse propaalues ofL andd;: L=1.06 andd;=0.5 m, respectively.
gation at a group velocity faster thanor even negativE=®  The shaded areas correspond to frequencies for wiich
in absorbing, homogeneous dielectric materials. More<1 and represent bulk bands. These areas are separated by
recently™>143°negative group velocity has been found bothminigaps. Inside these gaps, the dashed lines show the fre-
theoretically and experimentally in media made of atomicquencies for which the denominator §fEq. (29)] vanishes.
vapor cells in the presence of gain. In all this work, it wasThe dashed horizontal and curved lines correspond to the
clearly pointed out that such superluminal behavior is not avanishing of sing’L/2) and cos¢’AL/2), respectively®
odds with either causality or Einstein’s theory of special rela-They define the frequencies at which the transmission
tivity, but it exclusively results from interference between thethrough a single loop is equal to zero. The existence and
different frequency components of the pulse in an anomalouwidth of the minigaps are influenced by both the periodicity
dispersion regio®® In addition, as argued by several of the structure and the zeros of transmission. Let us notice
authorst*4%=#2it is not the group velocity, but rather the that some of the minigaps having a lozenge pattern display a
front velocity that must be no greater than In circuits, a large variation withAL. In the latter minigaps, one can ob-
discussion of negative group velocity in a simple bandpasserve the existence of very narrqalmost flaj minibands.
filter*® clearly demonstrated negative group delays. HowevefThese minibands become totally fi@nd coincide with the
for a filter, the concept of group velocity is not defined. Re-horizontal dashed lingsf L is taken to be equal to 1 m
cently, Munday and Robertsth showed experimentally instead of 1.06 m. Indeed, for=1 m, we have.=2d,, and
negative group velocity in 1D photonic circuit made of alter- one can easily check that both the numerator and denomina-
nating two different impedance coaxial cables. Howevertor of Eq.(29) vanish simultaneously at the frequencies rep-
from the theoretical point of vie??*°it has been shown that resented by the dashed lines. The physical meaning of such

2 2

+cos(a’d1)sin(a’L)}, (29
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FIG. 3. Projected band structure of the SLS as functioAlof=d,—d; for
d;=0.5m and l=d,+d;=1.06 m. The shaded areas represent the bulk
bands. The dashed curves indicate the frequencies for which the denomina-
tor of £ [Eq. (29)] vanishes.
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FIG. 4. (a) Theoretical band structure of the infinite symmetric SLS with

. oo ._ d,=d,=d3=0.5 m ande =2.3. The experimental curvglots is obtained
flat bands is that the infinite structure possesses localizegh "o amplitude(b) and the phaséc) of the transmission through a

states at these frequencies, while the transmission througfiite-sized SLS(b) Theoretical(solid line) and experimentaldots varia-
the finite structure remains equal to zero. One also observgigns of the transmission coefficient through a nondefective finite SLS con-

in Fig. 3 that, at certain values afL (for instance,AL taining N=6 loops with the same characteristic lengths a&jn(c) Theo-
~0.25 ' btai . f : iband retical (solid line) and experimentdaldots variations of the phase time in the
) m)’ one can obtain a series or narrow minibands, e conditions as itb). Theoretical(solid line) and experimentaldoty

separated by large gaps. This results from the fact that th@yiations of the group velocity in the same conditions ainand (c).
points where the minibands close, align more or less verti-
cally in such a way that a few successive bands may become

Very narrow. _ _ the formt,=elk’, where¢ is the total length of the finite
In what follows, we shall detail the results concerning structure, one obtains the effective wave number

the case of symmetric SLSd{=d;) and then give some

results about the case of an asymmetric SUS#d3). We . m 30

also show at the end of this section that the width of the 3 ¢ (30

bandgaps may be enlarged by coupling several SLS of dif-

. " One can note that despite the small number of serial
ferent physical characteristics.

loops (N=6) used in the finite structure, the amplitude and
the phase describe very well the band structure of the infinite
systemN—o [Fig. 4@]. The attenuation effect in coaxial
cables induces a transmission depletion particularly at high
First, we analyze the properties of the band structure anftequencies. As mentioned earlier, the phase time in a sym-
the transmission for a perfect SLS, without defect. Figuremetric SLS is equivalent to the DG&333*therefore, Fig.
4(a) shows the first five dispersion curvésll lines) in the  4(c) is also an illustration of the DOS in these 1D photonic
band structure of an infinite serial loop waveguidé— o) crystals. A large enhancement of the DOS is observed in the
with the same characteristic lengthd; Ed,=d3=0.5 m).  vicinity of the band edges. The number of oscillations in
One can observe a gap after the first passband and anothesch bandthat is related to the number of loops in the finite
gap between the third and the fourth bands. The gaps bestructure gives the number of states. The behavior of the
tween the second and the third bands and between the fourtfioup velocity? vg=(€/7) is given in Fig. 4d). For a 1D
and the fifth bandgsituated atkd=0) close. The real and PBG, v is equivalent to the inverse of the DOS. It is well
imaginary parts of the reduced wave veckat are in very  known that in infinite 1D systems, the density of modes ap-
good agreement with the experimental res(distted curves  proaches infinity at the band edge and the group velocity
obtained from the amplitudg| [Fig. 4(b)] and the phasé@  becomes very small. In a finite system, however, the electro-
[Fig. 4(c)] of the transmission through a finite sized SLS. magnetic mode density is an oscillating function rather than
Indeed, writing the transmission coefficiemt=|t|e/® under a monotonous functiofFig. 4(c)]. The enhancement of the

1. Symmetric SLS
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FIG. 6. Theoretical(solid line) and experimenta(doty variations of the

FIG. 5. Theoreticalsolid line) and experimentaldoty variations of the  phase time as function of the frequency. The parameters are the same as in
transmission coefficient through a finite SLSMfloops containing a defect Fig. 5.

of lengthdy=1 m located in the middle of the SL&ell p) (d;=d,=dj3
=0.5m ande=2.3). (@) N=4 andp=3, (b) N=6 andp=4, and(c) N
=8 andp=>5.

to a widening of the peaks due to the absorption phenom-

enon, but also to a decrease in the transmitted intensity due

to an enhancement of the reflected intensity.
phase timgor the DOS at the band edges induces a small The evolution of the phase time versus the frequency is
group velocity[Fig. 4(d)] which has been shown to be of depicted in Fig. 6 for the same valuesMfas in Fig. 5. In
potential interest in application to band-edge lasing and opeontrast to the amplitude of the localized states in the trans-
tical delay line<® In addition, one can notice inside the pass-mission spectra of Fig(5), the phase time associated with
bands, the group velocity is equal to Oc661owever, inside the defect modes increases with increashhgindeed, the
the gaps, anomalous dispersion occurs and superluminal vewtensity of the peaks in the phase time is related to the
locities are expected such that8v,<3.5c. These results lifetime of the resonances and it reflects the time spent by the
are in accordance with those of Hached Poiriet”*°The  photon inside the defediavity) before its transmissio®t.
system studied here presents an advantage: all the segmeiftserefore, whem increases, the defect modes become more
in the periodic structure are made of the same material inlocalized and the trapping time of photons increases. These
stead of being constructed by two different materials. results indicate that the characterization of localized modes

Now, we study the transmission spectrum and the phasi SLSs, in which the attenuation is not negligible, is easier

time through the structure when a segment of lendth with phase time analysis than with amplitude measurements.
=0.5 mis replaced by a defect branch of lendff=1min  To give a better insight into the localization properties of
the middle of the SLS waveguide. The results are presenteghotons inside the defect segment, Fig. 7 displays the phase
in Fig. 5 for three different values M. First, one can notice time of the defect mode lying in the first gap of Fig. 6 for
that by increasindN, the transmission decreases more rap-different values of N. One can notice that the lifetime of the
idly to zero at the band edg¢big. 5(c)]. The effect of the resonances associated with the defect mode increases from
defect branch is to induce defg@r localized modes in the 0.42 to 1.1us whenN increases fronrN=4 to N=8 [Fig.
forbidden bands. The frequencies of these modes are almogta)]. The integration of the phase tiniig. 7(b)] shows a
independent oN, whereas their intensities decrease progresmonotonic rise by almosi (one statgnear the maximum of
sively with increasingN (Fig. 5). This decrease of the inten- the resonance. Finally, an analysis of the local D).
sities may appear to be in contradiction with the fact that, by7(c)] as function of the space positionclearly shows that
increasingN, the localization degree of these modes aroundhe defect mode is localized in the defect segment and rap-
the defect increases and therefore the peaks associated withy decays in the vicinity of the defect. However, the local-
the defect modes narrow. However, this behavior can be exzation is more pronounced when the SLS size is larger.
plained by the dissipation inside the coaxial cables that leadhese results indicate that most of the time spent by the
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FIG. 7. Theoretica(solid line) and experimentaldots
variations of the phase tim@) and the phasé) of the
localized mode in the first gap of Fig. 6. Variation of the
local density of state¢$DOS) as function of the space
positionx for the localized modes ifa) and (b).

photon during the transmission process was inside the defefig. 4) because one stat@efect modg is now detached
segment. Indeed, once a photon enters the defect region,fiom the bulk bandsee subsequent discussionhis behav-

encounters two Bragg reflectotghe periodic parfsaround

ior is particularly important when the defect is located far

it. Since the frequency of the photon is in the gap of thefrom the middle of the SL$Figs. §b) and &c)]. In these
Bragg reflectors, the photon will be strongly reflected back tacases, the amplitude of the oscillations in the passbands ex-
the defect region. The defect region, acts as a Fabry—Perbibits strong variations due to destructive effects.

The comparison of Figg5) and(8) shows that the fre-
long time spent in the defect region results in very highquency of the defect mode does not depend on the defect

cavity and the photon can not escape from this region. The

energy density around the deféét.

When the defect is inserted far from the middle of the
SLS, the amplitude of the localized modes decreases pro-
gressively. This effect is depicted in Fig. 8 fdi=6. Indeed,
the amplitude of the defect mode decreases when the defect
lies between the second and the third loppig. 8b)], and
practically vanishes when the defect branch is inserted be-
tween the first and the second looffsig. 8(c)]. One can
notice the same behavior when the defect is located between
the fourth and the fifth loops and between the fifth and the
sixth loops, respectively, because of the perfect symmetry of
the SLS. These behaviors may be explained qualitatively as
follows: when the defect is inserted in the middle of the SLS,
the SLS behaves as two identical waveguides with N/2 loops
connected with a defect. Because of the symmetry of the
system, constructive interferences occur that lead to the en-
hancement of the amplitude of the transmission. However,
when the defect branch lies far from the middle of the SLS,
the SLS behaves as two linked waveguides with different
number of loopg2, 4 or 1, 5. Each of the linked waveguides
contributes in its own way to the transmission of the SLS.
Thus, destructive effects are responsible for the decrease in
amplitude when the defect is moved away from the middle
of the SLS. This qualitative interpretation agrees with the
evolution of the phase time corresponding to defect modes
which decreases also when the defect is inserted far from the
middle of the SLSFig. 9.

On the other hand, the transmission inside the passbands
is also affected by the presence of the defect. Indeed, th

Transmission

location in the SLS; however, the frequencies are very sen-

100
Frequency (MHz)

200 300 400 500

F|G. 8. Theoretical(solid line) and experimenta(doty variations of the
ansmission coefficient through a finite SLS of six loops containing a defect

amplitude of the oscillations in the passbands is greater igf jengthd,=1 m located in the celp (d;=d,=d;=0.5 m ands=2.3).

the perturbed SLSFigs. 5 and 8 than in the perfect one

(@ p=4, (b) p=3, and(c) p=2.
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FIG. 11. () Variation of the intensity of the transmitted localized mode

FIG. 9. Theoretical(solid line) and experimentaldots variations of the  located in the first gap as function of the defect lendth The defect is

phase time as function of the frequency. The parameters are the same asifizerted in the middle of a SLS witN=6 andp=4. Dashed lines: calcu-

Fig. 8. lated intensities when the dissipation effect is neglected. Solid lines: calcu-
lated intensities when the dissipation is taken into account. The dots repre-
sent the measured intensities. The shaded areas correspond to the frequency

. . . . region when localized modes merge inside the bulk b4fgs. The other
sitive to the defect lengtlly, as is shown in Fig. 10. The parameters ard; = d,=d;=0.5 m andz=2.3. (b) The same as in Fig. 10.

hatched areas correspond to the bulk bands. The solid lines
represent the computed frequencies in an infinite SLS with a
defect segment whereas the dOFS correspond to the expeHéllly merge into a lower bulk band. At each frequency, there
mental measurements. The localized modes emerge from the

bulk band, decrease in frequency whenincreases and fi- is a periodic repetition of the localized states as function of
' q y do. One notes the overall good agreement between the ex-

perimental measurements and the theoretical results.

We have also studied the evolution of the power trans-
mission at the frequency of the defect mode falling in the
first gap as a function of the defect length. Figure 11a)
illustrates this evolution in the case of a defect inserted in the
middle of a SLS constructed df=6 loops. Let us recall that
the power transmission is stronger when the defect is in-
serted closer to the middle of the waveguidee Figs. 8 and
9). The hatched area in Fig. (B} corresponds to the situa-
tion in which the defect mode merges into a bulk bRid).
11(b)]. The dashed line in Fig. 14) represents the computed
intensity when dissipation inside the cables is neglected. One
can notice that the transmission is unity for all frequencies,
this property is commonly verified in any symmetric com-
posite system, whereas it may only happen under special

300

Frequency (MHz)

50 conditions if the composite media is not symmetric. The full
0.0 0.5 1.0 line corresponds to the computed intensity when dissipation
d,(m) is taken into account. The transmission, which is now

smaller than unity, increases progressively with the defect
FIG. 10. Comparison between theoretical and experimental frequencies dength until the localized mode merges with the first bulk
the localized states associated with the presence of a defect branch of leng§ynd. With increasingl,, a defect mode emerges from the
_do‘, |_nserted in the c.elp of-a SLS. Solid lines: cglcul_ated f_rgquenues inan second bulk band, its intensity decreases, and reaches a sta-
infinite SLS (N—); dots: measured frequencies in a finite SLS whith . ) .

tionary value. In Fig. 1a), the dots represent the experimen-

=6 andp=4. The other parameters acg=d,=d;=0.5 m ande=2.3. : L )
The dashed areas correspond to the bulk bands. tal measurements whose evolution is in good agreement with
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FIG. 13. The same as in Fig. @, but with a defect segment of length
d;=0.13 m in the middle of the structure.
c 0.0 T T
O 10+ o ,
n (c) lower than in Fig. 1fo); that is, between 100 and 300 MHz.
R i The small feature appearing in the transmission spectrum
E 05 i around 180 MHz inside the large gap is associated with a flat
g band. It occurs because the actual lengyth of the loops is
© A slightly different from 0.5 m and the corresponding bands
w 00 T T T T . . . .
— 0 have a small width instead of being totally flaee also Fig.
' (d) 3 and the corresponding discussioNow, by associating in
tandem the serial loop structurgsigs. 12b) and 1Zc)], one
0.5 | obtains[Fig. 12d)] an ultrawide gap in which the transmis-
sion vanishes over a large range of frequencies from 80 to
0.0 420 MHz. In this structure, the huge gap results from the
’ ! ' ' ' superposition of the forbidden bands of the individual SLS
0 100 200 300 400 500

[Figs. 12b) and 12c)]. Theoretical and experimental results
Frequency (MHz) are in agreement within the limits of experimental precision.
If a defect is included in the structure, a localized state
FIG. 12. (a) Theoretical band structure of the infinite asymmetric SLS with can be created in the gap A defect in a SLS can be realized
d;=0.5m, d,=0.65 m, andd;=0.36 m(i.e., AL=0.29 m). The experi- b laci fini . f | . b £l h
mental curve(dots is obtained from the amplitudém) and the phasénot y rep _acmg afinite wire o engF 1 by a segment of lengt )
shown of the transmission through a finite-sized SKI$. Theoreticaksolid ~ d¢# d4 in one cell of the waveguide. The measured transmis-
line) and experimentaldots variations of the transmission coefficient sjon spectrum for the structure depicted in Fig(d?/vith a
through a finite SLS containindl=4 loops with the same characteristic defect segment of Iengtd =0.13 m in the middle of this
lengths as ina). (c) The same as ifb), but forL=0.5 m andAL=0.5 m truct is sh by th fd tt' d i in Ei The th
(i.e.,d,=0.5 m andd3=0.). (d) The same as itb) and(c), but for a tandem S rl.JC ureis s .Own .y ; € dotled fine In (g,3) € theo-
built of the (b) and (c) structures. retical transmission is illustrated by the solid line. The mea-
sured values are in remarkable agreement with theory. Let us
emphasize that the frequency of the defect mode inside the
the computed results. Fig. M, recalls the frequency of the gap depends on the length of the defect segment, whereas the
localized mode as a function df, as well as the location of intensity of the peak in the transmission spectrum depends
the bulk bands of the perfect infinite SLS. on the numbeN of loops in the SLS and the location of the

defect segment.

2. Asymmetric SLS

. . . s V. SUMMARY AND CONCLUSIONS
An example of the dispersion curve in an infinite asym-

metric SLS is depicted in Fig. 18 (full lines) for AL=d, In this article, we have considered quasi-1D serial loop
—d3=0.29 m andL=1 m. These curves are in good agree-structures exhibiting very large photonic band g&pBGs.

ment with experimental measuremeritbotted curvesob-  Compared to other 1D systems such as star-waveguides, the
tained from the amplitudg¢Fig. 12b)] and the phasénot observed gaps in SLS are significantly larger. The theoretical
shown) of the transmission through a finite-sized SLS mademodel assumed the cross sections of the waveguide and of
of N=4 loops. In comparison with symmetric SU&ig. the loops small compared to their linear dimensions. This
4(a)], asymmetric SLS may exhibit larger gajf§igs. 12a) ensures monomode propagation of the electromagnetic
and 12b)]. The width of the bandgaps discussed earlier maywaves. These serial loop structures may present large stop
be enlarged by associating in tandem two or several succebands and are good candidates for PBG materials. Although
sive SLSs that differ by their physical characteristics. Anthey are limited to one dimension and are void of polariza-
example of this association is shown in Figs(tdzand 1Zc)  tion effects, their properties are also described by Maxwell's
for two different asymmetric SLSs(i) a SLS with AL equations, and some liné&r? and nonlinea properties
=0.29 m andL=1m (i.e., d,=0.65 m andd;=0.36 m)  similar to those encountered in optical PBG materials have
[Fig. 12b)] and (ii) a SLS withAL=L=0.5m (i.e., d, been reported. The measurements of the amplitude and the
=0.5m andd;=0) [Fig. 12c)]. In these two casesl;  phase of the transmission coefficients through the finite-sized
=0.5m. Figure 1&) exhibits a large gap at frequencies SLS enables us to deduce several properties on the wave
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