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The spin ice compound Dy2Ti2O7 stands out as the first topological magnet in three dimensions,
with its tell-tale emergent fractionalized magnetic monopole excitations. Its real-time dynamical
properties have been an enigma from the very beginning. Using ultrasensitive, non-invasive SQUID
measurements, we show that Dy2Ti2O7 exhibits a highly anomalous noise spectrum, in three qualita-
tively different regimes: equilibrium spin ice, a ‘frozen’ regime extending to ultra-low temperatures,
as well as a high-temperature ‘anomalous’ paramagnet. We show that in the simplest model of spin
ice, the dynamics is not anomalous, and we present several distinct mechanisms which give rise to a
coloured noise spectrum. In addition, we identify the structure of the single-ion dynamics as a cru-
cial ingredient for any modelling. Thus, the dynamics of spin ice Dy2Ti2O7 reflects the interplay of
local dynamics with emergent topological degrees of freedom and a frustration-generated imperfectly
flat energy landscape, and as such should be relevant for a broad class of magnetic materials.

I. INTRODUCTION

Spin ice materials are a paradigmatic example of three-
dimensional topological behaviour [1]. Their prominence
as a model system is supported by a remarkable level
of quantitative agreement between experiment and rel-
atively simple theoretical models, which has allowed for
detailed understanding of the mechanisms underpinning
their exotic equilibrium behaviour, in a way that is rare
in strongly interacting many-body physics.

Dy2Ti2O7 (DTO) typifies topological spin ice behav-
ior. It has a nearly flat band of low-lying spin configura-
tions that satisfy ice rules, with magnetic monopole de-
fects as excitations, Fig. 1. The dynamics and annealing
within the band are determined by the motion of these
monopoles. When the band is highly entropic, spin ice
has an elegant analogy with emergent electrostatics, and
DTO shows this Coulomb phase over a range of temper-
atures.

Given the importance of spin models to the under-
standing of cooperative phases and transitions, it is all
the more remarkable how enigmatic the dynamics of spin
ice systems remains to date. Different experiments in
DTO [2–5] indicate a rapid slowdown of the dynam-
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ics upon lowering temperature. On a qualitative level,
this can be understood by combining the well-established
classical model Hamiltonian with a single-spin-flip dy-
namics appropriate for Ising systems [6–8]. Under the as-
sumption of a unique and temperature-independent spin-
flip time scale, e.g., due to single-ion quantum spin tun-
neling [9] (which we denote as τu), a Lorentzian form for
the magnetic susceptibility is predicted [6]. To leading
order, this has a characteristic magnetic relaxation time
scale obeying an Arrhenius law at low temperatures, in-
versely proportional to the monopole density, which is in-
deed activated [7]. This theory, however, fails to account
for the non-Lorentzian shape of the curve, while quan-
titatively strongly underestimating the actual growth of
the timescale (see Fig. 3 for a review of data in the lit-
erature), as well as failing to capture the nature of the
irreversibility appearing around Tirr ≈ 0.6 K.

Here we address the origin of the anomalous cooper-
ative dynamics, and whether it is intrinsic to spin ice.
Attempts to explain such discrepancies resulted in mod-
els invoking finite-size effects, open boundary conditions,
a temperature dependent time scale, and chemical sub-
stitution disorder [4, 10–14]. Recently, an intriguing
analogy between spin ice phenomenology and genera-
tion/recombination noise in semiconductors was drawn
based on high-temperature SQUID measurements [15].
In general, the anomalous behaviour of spin ice materi-
als is often related to the physics of supercooled liquids
and a possible avoided phase transition [3, 16–18]. How-
ever, it is fair to say that a satisfactory understanding is
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FIG. 1: Magnetic structure, monopole hopping and anomalous noise measurements in DTO. (A) The spins in DTO are located
on a pyrochlore lattice. The magnetic interaction pathways are shown in color. These, together with long-range dipolar
interactions, constrain the spin configurations to follow two-in two-out ice rules. (B) Breaking the ice rules results in the
creation of a monopole anti-monopole pair which can separate leaving behind a Dirac string. Monopoles are constrained by
the other spins to travel over a restricted manifold shown in grey. (C) As the monopoles move, they flip spins, detected as
magnetic noise in the time domain. (D) The PSD signal for a selection of temperatures covering the full temperature range.
The displayed temperatures are given in the legend. Each curve is composed of two data sets with different sampling rates
(and hence different frequency windows), causing the gap in the PSD around 103 Hz.

still very much missing.
We report non-invasive SQUID noise measurements

with unprecedented sensitivity and access to low temper-
atures (Fig. 1), enlarging the experimental data for the
dynamics across a broad range of temperatures and fre-
quencies. We also present a detailed set of Monte Carlo
simulations investigating different model families for spin
ice systems. We show intrinsic anomalous dynamics in
spin ice originating from memory effects of monopole
motion in the imperfect flat band of Dy2Ti2O7; but we
also observe important contributions from more complex
single-ion tunneling.

II. SQUID NOISE MEASUREMENTS

We use an ultrasensitive SQUID microsusceptometer
to measure in a direct way magnetic noise across a broad
temperature window from 0.08 K to 4 K. The exper-
iment was set up in an adiabatic demagnetization re-
frigerator at the Physikalisch-Technische Bundesanstalt
(PTB), Berlin. The SQUID-based setup allows measure-
ment sensitivities of 10−15 tesla in the magnetic field due
to the sample (for details see Supplementary Note I).

A high-quality single crystal of Dy2Ti2O7 was mounted
on top of the SQUID sensor and the magnetic flux was
recorded as a function of time, spanning the frequency
range ν from 0.01 Hz to 105 Hz. The measurements were
started at base temperature, and undertaken over a pe-
riod of 24 hours while the sample slowly warmed.

The single crystal was isotopically enriched to result in

zero nuclear moment to ensure that the magnetic signal
emanates exclusively from the electronic moments.

III. RESULTS

Fig. 1D summarises the results, displaying the noise
power spectral density (PSD) from 0.08 K to 3.8 K. Two
datasets were combined to improve the statistics. The
experimental noise measurements cover about seven or-
ders of magnitude in frequency and nine orders of mag-
nitude in noise power, demonstrating the sensitivity and
dynamical range of the apparatus.

At high temperature, the curves exhibit a plateau at
low frequency and a decay at high frequency. These fea-
tures are separated by a knee which moves to lower fre-
quencies as the temperature is lowered until it is eventu-
ally squeezed out of the measurement window, while the
total noise power also decreases. We distinguish three
different temperature regimes. The high temperature
paramagnetic regime crosses over to the spin-ice regime
around T ≈ 1 K as the spin-ice correlations gradually
develop. As temperature is lowered below Tirr ≈ 0.6 K,
the irreversibility temperature of magnetisation measure-
ments, the system enters a non-equilibrium regime char-
acterised by extremely long magnetic relaxation times.

We start by focusing on the spin ice regime, which is of
central interest to this study. The central panel of Fig. 2
shows the frequency dependence of the noise power at



3

FIG. 2: The raw (transparent lines) and window averaged (opaque points) PSD signal at three temperatures. Left: At low
temperatures, the PSD acquires an ‘S’ shape suggestive of (at least) two distinct contributions at low and high frequency. The
black and red lines are guides to the eye and have approximate slopes 0.98 and 1.12 respectively. Middle: In the range between
750 mK and 1.5 K, a Cole-Cole form (dotted black line) fits the data well. Right: At higher temperatures (& 1.5 K), the knee
between plateau and scaling behaviour broadens. The high-frequency scaling regime is less clearly established and fitting for
the exponent becomes more uncertain. The fitted values of the exponent α and the time scale τ are shown in Fig. 3.

T = 0.8 K alongside a fit to a Cole-Cole form

SCC(ν) =
A

1 + (2πντ)α
. (1)

The fit works very well over the full frequency range; the
main deviation is at the lowest frequencies, where the ex-
perimental data exhibit a weak rise rather than a perfect
plateau. Two features stand out in the fit. Firstly, it cov-
ers a region of more than six orders of magnitude along
both axes, i.e., frequency and noise power. Secondly, it
exhibits an anomalous exponent, α ≈ 1.5, as opposed to
the α = 2 of a simple Lorentzian. More details on the
data analysis and fitting procedure are given in the Sup.
Info.

Indeed, this is our first central experimental result:
spin ice is well-known to be fully equilibrated at these
temperatures, as hysteresis, history dependence and
other signatures of out of equilibrium behaviour only set
in around Tirr. Nonetheless its noise spectrum exhibits
a form otherwise familiar from the study of glasses and
supercooled liquids.

Turning towards the paramagnetic regime at higher
temperatures, right panel of Fig. 2, the shape of the curve
evolves slowly, with the knee softening somewhat. The
dynamical range accessible in noise power decreases with
the strength of the overall signal, and the uncertainty in
the fitting parameters grows (see discussion in the Sup.
Info.).

Thirdly, in the non-equilibrium low temperature
regime, the curve becomes more complex entirely. Fur-
thermore, the absence of a plateau makes the fit to
Eq. (1) somewhat poorly constrained. However, even in
the accessible data window, it is apparent that there are
(at least) two different portions with different anomalous
slopes at intermediate and high frequency, with a pos-
sible further upturn (which however may be caused by
the sensor noise), endowing the curve with an ‘S’-shape,
see left-hand panel of Fig. 2. A simple fitting form like

(random walk/perfect paramagnet)a = 2

FIG. 3: Anomalous exponent (top panel) and characteris-
tic relaxation time scale τ (bottom) extracted from Cole-Cole
fits to the experimentally measured PSD. The characteristic
time is compared with values found in the literature using
various techniques, and with an Arrhenius law. The shaded
background indicates the three different temperature regimes:
paramagnetic (orange), spin ice (white) and non-equilibrium
(blue). The dashed line in the upper panel is an extrapola-
tion of the high temperature behaviour of α into the spin ice
regime.

the one used in equilibrium therefore no longer suffices.
Additionally, the system is out of equilibrium and the de-
tails of the curve can depend on the preparation history
of the measurement.

If one takes the parameters obtained from the equi-
librium regimes at face value, two things are notable.
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First, the temperature dependence of the characteris-
tic timescales τ(T ) (purple circles in the lower panel of
Fig. 3) is close to those obtained previously by means
of AC susceptibility measurements [16], specific heat [5],
and high temperature SQUID noise experiments [15] on
single crystals. Second, the power α (upper panel in
Fig. 3) does not get close to 2 (Lorentzian behaviour)
at any temperature. Indeed, it seems to become even
smaller, i.e., more anomalous, with increasing tempera-
ture.

IV. MODELING

The highly non-Lorentzian relaxation is perhaps the
most striking aspect of the dynamics in the spin ice
regime where we know the system equilibrates and does
not exhibit any glassy behaviour. The fact that it be-
comes less Lorentzian as the temperature is increased,
where spin ice increasingly resembles a conventional para-
magnet, is a separate surprise.

In order to determine the possible sources of this be-
haviour, we have conducted extensive simulations of the
dynamics of spin ice. To do so, we have adopted the
τu-dynamics introduced above [6–8]. This is a stochastic
model of incoherent dynamics, which only has the single
timescale τu as input parameter. The timescale can be
thought of as an effective (inverse) spin flip attempt rate
that an isolated moment in spin ice would have. The
actually observed spin flip rate then also takes into ac-
count the exchange field due to its interaction partners,
via an acceptance probability p = min{1, exp(−β∆E)}
given by standard Metropolis dynamics at temperature
T for an energy difference ∆E between initial and final
states. An appraisal of this assumption a posteriori will
form an important part of our discussion.

We next present our analysis of such dynamics in
a physically motivated set of spin ice models. These
are based on the current best effective DTO Hamilto-
nian HOP [19]. HOP involves strong nearest neigh-
bor (nn) and dipolar interactions with weaker second
and third neighbor interactions and reproduces equilib-
rium as well as irreversible behavior. Our further models
are the simple nn spin ice model, Hnn; extension to in-
clude dipolar coupling, Hdip; and further addition of the
third-neighbor interaction, HJ′

3
(see Sup. Info. for de-

tailed definitions). We finally contrast these to an unre-
stricted random-walk process for the monopoles yielding
a straightforward Lorentzian behaviour. (We note that
Hdip and HOP undergo thermodynamic ordering transi-
tions at T ≈ 0.18 K.)

We first compare the behaviour of these models with
experiment in the equilibrated spin ice regime (T = 0.8
K), Fig. 4. It is immediately apparent that the random
walk produces essentially perfect Lorentzian behaviour,
with Hnn likewise only deviating by an almost imper-
ceptible amount matching theoretical expectations. Sur-
prisingly, anomalies become apparent in Hdip and even

more so for HOP. α is in fact quite tunable, and it drifts
considerably as the strength of the further-neighbour in-
teraction J ′3 is varied (see Sup. Info.). For HJ′

3
the best

match to the data (J ′3 = 0.4 K) results in strong anoma-
lous behaviour (see panels C and D of Fig. 4).

Crucially, we have thus identified a group of quite sim-
ple, disorder-free model Hamiltonians which exhibit vari-
ably anomalous noise, implying a broad distribution of
timescales, even though the microscopic spin dynamics is
parameterized by a single rate.

We next address the high-temperature regime, only
briefly as there is a fine recent pioneering study devoted
to this, which studied the noise in spin ice down to a
temperature T = 1.2 K [15]. In this regime, the narrow
range in frequency can artificially lower the value of α
(see Supplementary notes IV and VI). Be the uncertainty
in the fitting procedure as it may, the central finding is
that experiments depart significantly from a Lorentzian
behaviour at high temperatures, whereas Monte Carlo
simulations do not.

The root of this departure must therefore lie in features
not included in the model with τu dynamics. As argued
below, it would seem rather natural that more complex
spin flip behaviour, rather than a purely cooperative ef-
fect of the spins, plays a role here, with an interplay
of phonons, higher crystal field levels and a broadening
distribution of local environments standing out as likely
culprits.

We finally turn to the low-temperature regime, where
spin ice falls out of equilibrium at Tirr ≈ 0.6 K. This
regime has been extensively studied, using neutron scat-
tering and susceptibility measurements [2, 3, 10, 20, 21]
as well as a number of time-dependent protocols for, e.g.,
the magnetisation, aimed at eliciting details of the non-
equilibrium behaviour [12, 22–25]. Although the dynami-
cal origin of this freezing is still not very well understood,
the irreversibility is captured byHOP [19]. Thanks to the
wide temperature and frequency range our data provide
some new insights: Firstly, as expected, the knee ter-
minating the low-frequency plateau moves towards low
frequencies upon cooling. This simply reflects the well-
known slowing down of the dynamics in spin ice [2] as the
monopoles become sparser [6]. The latter is also evident
in the noticeable decrease of the total noise power as the
temperature is lowered below Tirr.

Additional structure emerges in the noise spectrum
as can occur when there are two (parametrically) dis-
tinct timescales present. Most simply two superposed
Lorentzians, with the slow one corresponding to a larger
signal, would yield an S-shape profile as observed. It
is tempting to speculate that here we have on the one
hand the relatively fast motion of monopoles trapped in
their individual surroundings, where however the con-
fined paths cannot lead to a large change of the magneti-
sation; and on the other hand rare longer-distance ex-
cursions of monopoles, towards e.g., another local trap.
Naturally, one can extend such an argument to a phe-
nomenology based on an ensemble of Lorentzians with
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FIG. 4: A) PSD of (from top to bottom): a random walk on a diamond lattice, Monte Carlo simulations of the four spin ice
Hamiltonians Hnn, Hdip, HOP and HJ′

3
and experimental SQUID data at T = 0.8K (shifted vertically for clarity). The spin ice

Monte Carlo simulations were performed on a system of size L = 10 with periodic boundary conditions and a 16 spin cubic unit
cell. The dotted black curves are fits of the form A/(1 + τ2ν2), showing how the models display more anomalous decay as we
move down the plot. B) Characteristic relaxation time scale τ , and C) anomalous exponent for the model Hamiltonians Hnn,
Hdip, HOP and HJ′

3
. Parameters extracted from Cole-Cole fits to Monte Carlo data (see Sup. Info. for details). D) Comparison

of the experimental curves (symbols) and Monte Carlo simulations (black lines) for the Hamiltonian HJ′
3
. Temperatures from

top to bottom are listed in the legend; the PSD curves are shifted vertically for clarity.

a distribution of characteristic timescales chosen to fit
experiment [6].

V. DISCUSSION

Taken together, the theoretical modelling situation
can be perhaps succinctly summarised as follows. An
entirely memory-free, unconstrained random motion of
monopoles with a single, temperature independent flip-
ping rate, τu, yields the normal (Lorentzian) power α =
2. This, however, is modified by two mechanisms origi-
nating in single-ion and cooperative effects, with opposite
predominance at high and low temperatures.

The cooperative effects have several origins. First, the
Dirac strings lead to anticorrelations in the monopole
hops; their effect on α, however, turns out to be tiny.
Next are the long-range dipolar interactions, which can
be meaningfully broken down [26] into its (‘projectively
equivalent’) Coulomb component, which preserves a flat
energy landscape for the ground states, and quadrupo-
lar and higher order corrections, which do not. We find
that the contribution due to the former is also tiny (not
shown), whereas the latter leads to a visibly anomalous

behaviour, albeit still far from that observed experimen-
tally. HOP and HJ′

3
then include additional features in

the form of further-neighbour interactions, yielding yet
more anomalous behaviour.

Therefore, frustration yields an approximately flat en-
ergy landscape, in which the spin ice regime with its
monopoles as topological defects arises. Due to this
flatness, the monopoles remain mobile and their mo-
tion produces a noise signal over a broad temperature
range. Thanks to our sensitive low-T measurements, this
signal remains detectable even in the regime where the
monopoles become sparse.

In a featureless energy landscape, the monopole motion
is well approximated by a featureless ’Lorentzian’ walk,
α ≈ 2. It is when the energy landscape becomes complex
in the presence of perturbations away from the ideal spin
ice model that the anomalous behaviour sets in. Inter-
estingly, our results suggest that entropic and energetic
contributions that retain the degeneracy between the ice
states, and hence do not lead to ordering, are also least
(if at all) effective at producing anomalous behaviour.
By contrast, the progressive increase in anomalous be-
haviour suggests that the leading effect on the noise is
due to interactions that ultimately cause spin ice to or-
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der, and it is evident even far above the corresponding
ordering temperature – the ‘opposite’ of supercooling, as
it were.

This combination of frustration-induced flatness and
perturbation-induced complexity of the landscape we be-
lieve should be a general conceptual framework for un-
derstanding the anomalous noise in topological magnets.

Returning to the actual material, neither HOP , nor
HJ′

3
can accurately describe the thermodynamics and dy-

namical behavior of DTO.HOP has its origin in a detailed
machine-learning based analysis of equilibrium neutron
scattering, susceptibility and specific heat data and can
accurately reproduce a number of thermodynamic prop-
erties of DTO beyond those used for its training. It qual-
itatively shows the expected anomalous noise behaviour,
but quantitatively falls short of the mark. Variations
on its parameters to better fit the noise pattern result
in HJ′

3
at the expense of the correct thermodynamical

description of the material. Furthermore, none of the
simulations capture the high-temperature experimental
behaviour, that becomes progressively more, rather than
less, anomalous as temperature is increased. This is sur-
prising, from the perspective of the τu model, whose sin-
gle spin flip dynamics (appropriate for a paramagnet)
yields a simple Lorentzian at high temperatures.

Let us revisit the central dynamical assumption of a
single, temperature independent flipping rate encoded by
τu. The underlying spin flip process involves the flip-
ping of a large spin with a considerable Ising barrier, in
the presence of a ‘bath’ of phonons with temperature-
dependent occupancies and structure in its density of
states [9, 27]. The Ising barrier itself microscopically de-
rives from a complex crystal-field level scheme, which in
turn allows various flipping paths, involving activation
over, or tunnelling through, the barrier. Their respec-
tive rates will in general depend on temperature, allow-
ing a complex temperature dependence of the resulting
net rate. In addition, these flip rates depend on the lo-
cal spin configurations, e.g., via the local distribution of
transverse fields providing effective matrix elements be-
tween the crystal field levels. As the temperature rises,
more flipping paths contribute, and the distribution of
local environments broadens both spatially and tempo-
rally, so that one would expect increasing complexity of
the resulting dynamics.

Turning to the signatures of complex spin-flip dynam-
ics in detail, we note that already at low temperature,
there is a divergence of the dynamical timescale τ(T ) ex-
tracted from experiment which is in excess of the cost
of an isolated monopole, generally expected to set the
single-spin flip time scale [6]. The simplest reason for
such a discrepancy would be an autonomous Arrhenius
law of the effective spin flip attempt rate, rather than a
cooperative effect.

In turn, the anomalous behaviour of α in DTO (Fig. 3)
can be understood in terms of two counterveiling mech-
anisms: as the temperature is lowered starting in the
paramagnetic regime, the anomaly with its origin in the

spin-flip dynamics decreases, with the corresponding in-
crease in α, which should eventually reach α = 2 (dashed
line in Fig. 3) were it not counteracted by the second ef-
fect, the gradual onset of cooperative effects within the
spin model. Together, these opposing tendencies lead to
a levelling off of α, before in the frozen phase an analysis
in terms of a single exponent no longer accounts for the
complexity of the anomalous behaviour entirely.

In this picture, the size of the anomaly has two sizeable
contributions at 0.8 K, a spin-flip and a cooperative one.
Absent a detailed analysis of the former, their respective
sizes are not available quantitatively. An initial starting
assumption suggested by the data is for both contribu-
tions to be roughly of equal size in this regime. In that
case, the size of the anomaly observed in simulations of
HOP would actually be consistent with the experimental
results.

This scenario has the attraction that it fits all the ther-
modynamic experimental data – heat capacity, neutron
scattering, noise, magnetic susceptibility, magnetisation,
etc. – within the purview of HOP; but it still requires fu-
ture work to obtain a detailed description of the single ion
dynamics needed to complete the numerical modelling of
the dynamic properties of these systems.

Independently of this sharpening of our understanding
of the modelling of the DTO spin ice material, a cen-
tral theoretical insight is that the anomalous behaviour,
encoded by the downturn of α, can arise cooperatively
– but not entirely straightforwardly. In particular, our
simulations demonstrate that it is a phenomenon due
to corrections beyond the Coulomb phase description:
neither Dirac strings nor Coulomb interactions between
monopoles produce a sizeable anomaly, but it is rather
farther range interactions which endow the energy land-
scape for monopole motion with additional structure that
make a large contribution. The resulting behaviour re-
sembles a supercooled liquid but it can evidently happen
above any thermodynamic transition temperature.

From a more conceptual perspective, a finite-frequency
response, such as the one probed here, will inevitably
be sensitive to a combination of universal behaviour –
such as phase ordering – and non-universal microscopic
details. Both turn out to be very interesting in spin ice
materials.

VI. CONCLUSION

Our ultrasensitive SQUID study reveals many facets
of anomalous dynamics in Dy2Ti2O7. Frustration yields
an unusual topological magnetic state supporting mag-
netic monopole excitations. While the simplest nearest-
neighbour and dipolar spin ice models show (close to)
Lorentzian behaviour, experiments as well as more re-
alistic model Hamiltonians show evidence of intrinsic
anomalous dynamics. We identify a family of models
that show how perturbations which generate a complex
energy landscape result in memory effects. Although
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supercooled-like, this robustly non-Lorentzian behaviour
can occur as a precursor far above the actual ordering.
Further, compelling evidence for complex spin-flip dy-
namics contributing to the anomalous behaviour, most
strikingly at high temperature, is also given.
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Supplementary Material

SI. TECHNICAL DETAILS ABOUT THE SQUID
SUSCEPTOMETER SETUP

Sensitive measurements of magnetic noise have been
performed using a SQUID microsusceptometer, a device
that is designed with microscale dimensions and fabri-
cated using reliable multilayer thin-film processes. It in-
tegrates gradiometric pick-up loops to detect the signal
of a sample, field coils to produce an excitation magnetic
field at the location of the sample, and a superconduct-
ing quantum interference device (SQUID) to read out the
magnetic flux from the pick-up loops. We used a micro-
susceptometer of the type “C6 SM” designed and pro-
duced at PTB as part of the mask set “C6” in 2010 [28].
This device uses a first-order SQUID series gradiometer
made up of two circular pick-up loops with a diameter
of 60 µm and a distance (baseline) of 350 µm. Fig. S1
shows an SEM image of the main parts of the micro-
susceptometer, which is hosted on a 3.3 × 3.3 mm2 chip
also carrying a SQUID current sensor. The susceptome-
ter SQUID was read out by a second-stage SQUID array
(PTB type “C6 X216FB”) on a separate chip, followed
by a room-temperature flux-locked loop (FLL) electron-
ics (type Magnicon XXF-1). The main advantage of this
two-stage SQUID readout is to minimize the effective in-
trinsic noise, as the noise contribution from the SQUID
electronics is reduced.

Both SQUID chips were integrated on a printed circuit
board (PCB) (FR4, 1.6 mm thick). Its copper surface
layers were structured into fine combs to maintain a good
heat conduction, but to reduce eddy currents as well as
thermal magnetic noise. For this reason, the actual sus-
ceptometer was placed above a hole in the PCB. All these
components were enclosed in a superconducting shield
made of Nb, its central part being a tube with an inner
diameter dshield = 9.2 mm and a length lshield = 68 mm.
The Dy2Ti2O7 sample investigated was prepared from
a single crystal in the form of a slab (0.2 mm thick)
with approximate lateral dimensions of 0.9× 0.5mm2. It
was mounted on the microsusceptometer with Apiezon N
grease, covering completely pick-up loop and field coil at
one side of the susceptometer, see Fig. S2. For the noise
measurements on a sample (noise as a signal) it is impor-
tant not only to minimize intrinsic noise from the sus-
ceptometer, but also to suppress the coupling to external
magnetic fields. The residual sensitivity is determined
by (the product of) three quantities: (a) the imbalance
of the first-order SQUID gradiometer (better than 0.35
%, normalized to the area of a single pick-up loop, Ap),
(b) the shielding of the superconducting enclosing (de-
pending on the aspect ratio of the tube, dshield/lshield),
and (c) the shielding of a few layers of high-permeability
magnetic shielding foil around the superconducting en-
closing. In addition to that, the gradiometer balance
with respect to the applied field produced by the inte-
grated field coils (better than 0.11 %, normalized to Ap)

counts to diminish background signals.

The SQUID susceptometer was operated in an adi-
abatic demagnetization refrigerator (ADR) capable of
reaching temperatures as low as 75 mK. It was based on a
dewar from Infrared Laboratories (similar to the HDL se-
ries) with liquid nitrogen and liquid helium pre-cooling,
incorporated a bi-stable mechanical heat switch, a su-
perconducting magnet surrounded by a magnetic high-
permeability shield to reduce stray fields and a param-
agnetic salt pill unit with two stages held in place by a
string suspension. The first stage of the salt pill unit
contained about 143 g of the gadolinium gallium gar-
net Gd3Ga5O12 (GGG) and was used for heat sinking
purposes at an intermediate temperature. The second
stage contained about 50 g of ferric ammonium alum
Fe2(NH4)2(SO4)424H2O (FAA) and held the platform
carrying the susceptometer setup. The superconduct-
ing solenoid was not equipped with a persistent switch
so that the finite field for a given temperature required
permanent current supply and control by the external
power supply. To cover a wide range of temperatures
with minimum fluctuations, we decided to cool down the
ADR to the lowest temperature and measure during the
natural warm-up caused by the intrinsic heat leak. The
warming rate is then determined by the (variable) in-
trinsic heat leak to the FAA stage and the temperature
dependent heat capacities of its main components (FAA,
Cu). We can specify this warm-up by the relative warm-
ing rate (dT/dt)/T , for which we observed 1.5×10−5 s−1

at 80 mK, a maximum of 4.3×10−5 s−1 occurring at 570
mK, and 3.4× 10−5 s−1 at 1 K followed by further drop-
ping values up to 4 K. Another advantage of this practice
with zero coil current (and disconnected external power
supply) is that it avoids any potential influence from a
varying stray field of the magnet.

The output voltage from the SQUID electronics was
sampled using 24-bit data acquisition cards with inte-
grated anti-aliasing filters (National Instruments PCI-
4461 and NI PCI-4462) at sample rates up to 200 kSa/s.
The intrinsic noise of the susceptometer setup was mea-
sured in an independent run with the empty microsus-
ceptometer, i.e., without any sample. Fig. S3 shows this

intrinsic flux noise S
1/2
Φ (f) at various temperatures in

comparison with the flux noise obtained in the sample
measurement. At 80 mK, the white noise is equal to

≈ 0.5 µΦ0/Hz1/2, (Φ0 = h/2e ≈ 2.068× 10−15 Vs being
the magnetic flux quantum), while the noise increases to

≈ 19 µΦ0/Hz1/2 at 0.1 Hz. For increasing temperature,
we observe the usual increase of the white noise as well as
a decrease of the 1/f noise component at low frequencies.
As is visible in Fig. S3 for temperatures below 600 mK,
the sample signal approaches the intrinsic white noise
level at the highest frequencies (above ∼ 10 kHz), which

results in a slight upturn of S
1/2
Φ (f). However, at low fre-

quencies (< 100Hz), the intrinsic noise can be neglected
at all temperatures investigated in this study.
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FIG. S1: SEM image of a microsusceptometer consisting of
two 60 µm diameter loops connected in series as part of the
SQUID circuit, each of them surrounded by an 11-turn field
coil. The center-to-center separation between the loops (base-
line of the first-order gradiometer) is 350 µm.

FIG. S2: Part of the susceptometer setup with two 3.3 ×
3.3 mm2 chips assembled on a printed circuit board (PCB).
The actual microsusceptometer is centered over the hole in the
PCB and partly covered by the sample, which is appearing
in dark gray color. The area enclosed by the red rectangle
corresponds to the image shown in Fig. S1.

SII. MODEL HAMILTONIANS

The simplest model considered here is the standard
nearest-neighbour spin ice Hamiltonian

Hnn = −Jeff

∑
〈i,j〉

~Si · ~Sj , (2)

where the sum is over nearest neighbour pairs. The
nearest-neighbour model is an approximation of the dipo-
lar Hamiltonian, which consists of long-range dipolar spin
interactions and antiferromagnetic nearest-neighbour ex-

FIG. S3: Flux noise (S
1/2
Φ , corresponding to the square

root of the PSD) measured with the SQUID susceptometer
setup with Dy2Ti2O7 sample (full lines) and without sample
(dashed lines), respectively, at various temperatures.

change,

Hdip = Da3
∑
i<j

 ~Si · ~Sj
r3
ij

−
3
(
~Si · ~rij

)(
~Sj · ~rij

)
r5
ij


+ J1

∑
〈i,j〉

~Si · ~Sj , (3)

where D is the dipolar coupling constant and a is the
spin nearest-neighbour distance. The exchange strength
Jeff used in the simulations was chosen as a function of
temperature so that the monopole densities of Hnn and
Hdip match as well as possible across the temperature
range of interest. This was done as our numerical analy-
sis indicates that the monopole density is the dominant
parameter controlling the behaviour of the noise observed
in both Hnn and Hdip.

We further consider two additional Hamiltonians HOP

and HJ′
3
, where further-neighbour exchange terms were

included, connecting each spin to their second- and
third-neighbours. The second-neighbour exchange has
strength J2 and connects each spin to twelve others.
There are two types of third-neighbour interactions, each
connecting a spin to six of its neighbours. The first of
these has strength J3 and lies parallel to the nearest-
neighbour interactions. The second has strength J ′3 and
connects spins across the hexagonal loops. These interac-
tions are shown in Fig. S4, and the resulting Hamiltonian
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FIG. S4: Section of the pyrochlore lattice with the two types
of tetrahedra shown in green and light blue, and the spin
positions marked as dark blue spheres. The red lines indicate
second-neighbour exchange (J2) for a specific spin, and the
solid and dashed black lines indicate the two types of third-
neighbour exchange (J3 and J ′3, respectively).

is

H = Da3
∑
i<j

 ~Si · ~Sj
r3
ij

−
3
(
~Si · ~rij

)(
~Sj · ~rij

)
r5
ij


+ J1

∑
〈i,j〉

~Si · ~Sj + J2

∑
〈i,j〉2

~Si · ~Sj

+J3

∑
〈i,j〉3

~Si · ~Sj + J ′3
∑
〈i,j〉3′

~Si · ~Sj .

(4)

In the three Hamiltonians with dipolar interactions,
we set the interaction strength D = 1.3224 K/a3 and
the nearest neighbour exchange J1 = 3.41 K. HOP

is optimised to reproduce neutron scattering, magnetic
susceptibility and specific heat experimental data, and
has further-neighbour exchange strengths J2 = 0.0 K,
J3 = −0.00466 K and J ′3 = 0.0439 K. HJ′

3
is chosen

to match the SQUID noise measurements as well as we
could, and only has further-neighbour exchange across
the hexagons, namely J2 = J3 = 0 K and J ′3 = 0.4 K.

SIII. NUMERICAL SIMULATIONS

All results presented here were obtained from Monte
Carlo simulations using the standard Metropolis algo-
rithm. A system of linear size L = 10 with periodic
boundary conditions and a 16 spin cubic unit cell was

used, corresponding to Ns = 16 × 103 spins. The dipo-
lar interactions were included using the Ewald summa-
tion technique. 104 to 105 cooling steps (1 step = Ns
spin flip attempts) were used to equilibrate the system,
depending on the measurement temperature. The net
magnetisation of the system was then measured at fixed
temperature, with a sampling rate of 16 measurements
per MC step for a total time window of between 3.3×104

and 4.0× 106 MC steps. Because the plateau extends to
larger frequencies as the temperature increases, a shorter
time window was sufficient at the higher temperatures.
The PSD was calculated from the magnetisation data
using Welch’s method of power spectra estimation.

To ensure that the cooling process was sufficient to
reach equilibrium, a small number of control measure-
ments were performed at the lowest temperature T =
600 mK. The system was allowed to evolve at this tem-
perature for an additional 106 MC steps before the mag-
netisation was measured as described above. The PSD
calculated from these simulations showed no significant
difference from the one calculated after the standard 105

cooling steps.
The number of monopoles present in the system fluc-

tuates naturally about an average value that is a func-
tion of temperature. To avoid significant finite size ef-
fects, the simulations were kept at temperatures where
a non-vanishing density of monopoles was present at
all times throughout the measurement. For a system
of size L = 10 as used here, this gives us a minimum
computationally accessible temperature of approximately
600 mK.

SIV. FITTING PROCEDURE

We performed both Cole-Cole and Davidson-Cole fits,

SCC(ν) =
A

1 + (2πντ)α
, SDC(ν) =

A

(1 + 2πντ)α
. (5)

using linear regression to the logged window averaged
PSD. Three fitting parameters were used: plateau height,
time scale and exponent. To ensure that a fit was found,
it was necessary to apply a bound to the plateau height
search. In our analysis it was limited to a range from 0.2
to 10 times the mean of the first five data points of the
window averaged PSD at low frequency.

A. Experiments

Two experimental measurements with different period
and sampling rate were performed at each temperature,
resulting in two PSDs covering different frequency win-
dows. These were combined to form PSD curves like
those shown in Fig. 1D in the main text, and the gaps
in the data at ν ≈ 103 Hz show where the datasets were
joined. The PSDs were window averaged over all fre-
quencies to reduce the noise.
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In the spin ice regime (temperatures between approxi-
mately 750 mK and 1500 mK) the Cole-Cole form gives a
better fit to the experimental data (top panel of Fig. S5),
with the Davidson-Cole fits generally overshooting the
plateau at low frequency. At higher temperature (bot-
tom panel of Fig. S5), the shape of the curve evolves
slowly, with the knee softening somewhat. As a result,
the optimal fitting form becomes less clear, with both
forms giving similarly good fits to the data. Notice that
the dynamical range accessible in noise power decreases
with the strength of the overall signal, and the uncer-
tainty in the fitting parameters grows (see discussion in
Sec. SVI below).

One should notice that even though both Cole-Cole
and Davidson-Cole forms give good fits, their extracted
exponents differ by ∼ 15% and the curves will separate if
extended to larger frequencies. This difference provides
an idea of the large systematic error bar on the measured
exponent. Overall, the Cole-Cole form produces better
fits across the broadest temperature range and therefore
we chose not to present Davidson-Cole fits in the main
text.

B. Simulations

For the simulation data, the Cole-Cole form was by
far more consistent with the PSDs at all temperatures
(see e.g., the example fits in Fig. S8), and therefore we
chose to discard the Davidson-Cole form altogether. The
fitting was performed using the same procedure as for
the experimental results. The PSDs from simulations
were fitted over a frequency window ν1 < ν < ν2. In all
cases ν1 was the smallest non-zero frequency available for
the relevant set of data. As long as ν1 is chosen to lie
firmly in the plateau regime, its value has no significant
effect on the extracted parameters. The choice of ν2 was
rather more subtle. For ν � 1/(2πτ0), where τ0 = 1
MC step is the fastest microscopic timescale, the PSD
always displays a decay with α = 2; this is because at
the single spin flip level, MC implements a Poissonian
process with a single characteristic time scale, leading
to a corresponding short-time exponential decay of the
autocorrelation function. This puts a limit on the largest
sensible value for ν2. On the other hand, the fits were
found to be unstable if one chose ν2 too close to the knee
to the low frequency plateau. To enable a fair comparison
between models and temperatures, we therefore chose to
perform all our Cole-Cole fits up to ν2 = 1/(2π) (MC
step)−1. This ensures that the fits cover as much of the
power-law regime of the PSD as possible, avoiding any
fits that terminate close to the knee, whilst not being
dominated by the regime of (trivial) ν−2 decay at ν & 1
(MC step)−1. For temperatures greater than ∼ 1.1 K

FIG. S5: The raw (transparent lines) and window averaged
(opaque points) PSD signal at two example temperatures.
Top panel: In the range between 750 mK and 1.5 K, a Cole-
Cole (dotted black line) fits the data better than a Davidson-
Cole (dashed black line) form. Bottom panel: At higher tem-
peratures (& 1.5 K), the knee between plateau and scaling
behaviour broadens. The high-frequency scaling regime is
less clearly established and fitting for the exponent becomes
more uncertain. Cole-Cole (dotted black) and Davidson-Cole
(dashed black) fits give almost indiscernible curves.

the knee shifts to frequencies close to ν2 = 1/(2π) (MC
step)−1, and a stable fit is no longer possible.

The fits to the simulated PSDs of the Hamiltonians
considered in this work are shown in Fig. S6, S7, S8
and S9. The results of the fits are shown in Fig. 4B
and 4C in the main text.

SV. DRIFT OF THE ANOMALOUS EXPONENT
WITH J ′3

As the strength J ′3 of the third-neighbour exchange
terms across the hexagonal loops is increased, the PSD
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FIG. S6: Monte Carlo data and fits for the nearest neighbour
model (Hnn). Cole-Cole fits are denoted by dotted lines, with
fitting parameters shown in Fig. 4B and 4C in the main text.
The curves have been shifted vertically for clarity.
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FIG. S7: Monte Carlo data and fits for the dipolar spin ice
model (Hdip). Cole-Cole fits are denoted by dotted lines, with
fitting parameters shown in Fig. 4B and 4C in the main text.
The curves have been shifted vertically for clarity.

curves go from being only weakly anomalous (α ' 2) for
J ′3 = 0.0 K (corresponding to Hdip, see Fig. S7) to being
approximately as anomalous as the experimental results
for J ′3 = 0.4 K (corresponding to HJ′

3
, see Fig. S9) down

to T = 600 mK. The relaxation timescale also grows
more rapidly as the temperature is decreased for large J ′3.
For an intermediate strength J ′3 = 0.2 K at T = 1.1 K
the exponent α falls approximately halfway between the
exponents for J ′3 = 0.0 K and J ′3 = 0.4 K, see Fig. S10.
However, at T = 0.6 K the PSDs are almost as anomalous
for J ′3 = 0.2 K as for J ′3 = 0.4 K.

The relaxation timescale τ for J ′3 = 0.2 K is compa-
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FIG. S8: Monte Carlo data and fits for the “optimal pa-
rameters” (HOP), with Cole-Cole fits (dotted black lines).
Davidson-Cole fits are shown for comparison only at the low-
est and highest temperatures (dashed black lines). The Cole-
Cole form is more consistent with the data, and the fitting
parameters for it are shown in Fig. 4B and 4C in the main
text. The curves have been shifted vertically for clarity.
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FIG. S9: Monte Carlo data and fits for the dipolar hamilto-
nian with J ′3 = 0.4 K (HJ′

3
). Cole-Cole fits are denoted by

dotted lines, with fitting parameters shown in Fig. 4B and 4C
in the main text. The curves have been shifted vertically for
clarity.

rable to (if not smaller than) for J ′3 = 0.0 K at high
temperature, as shown in Fig. S10. This is most likely
because the antiferromagnetic J ′3 exchange counteracts
the ferromagnetic dipolar interactions across the hexago-
nal loops, effectively reducing the average energy cost of
flipping a spin at high temperature. As the temperature
is reduced the non-zero third-neighbour exchange cause
further ordering in the system, and generates a complex
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FIG. S10: Characteristic relaxation time scale τ (dotted lines,
left-hand-side vertical axis) and anomalous exponent α (solid
lines, right-hand-side vertical axis) for the model Hamiltonian
with dipolar interactions and third-neighbour exchange across
the hexagons with three different strengths of J ′3. Parameters
extracted from Cole-Cole fits to Monte Carlo data. The values
J ′3 = 0.0 K and J ′3 = 0.4 K correspond to the Hamiltonians
we have called Hdip and HJ′

3
, respectively.

energy landscape for the magnetic monopoles to move
through (see discussion in the main text). This leads
to reduced monopole mobility and a significantly larger
relaxation time for nonzero J ′3 at low temperature.

SVI. DRIFT OF THE ANOMALOUS
EXPONENT FROM UNDERSAMPLING

The upper frequency limit of the PSD is the sampling
frequency. At the high frequency tail of the PSD calcu-
lated using Welch’s method there is always a deviation
from power-law behaviour due to aliasing effects. If one
only samples the magnetisation once per MC step and
then computes the PSD, these aliasing effects occur at
ν & 1. Such sampling of the magnetisation data can
hence lead to corruption of the high frequency data. At
high temperatures the effect of undersampling can over-
lap with the knee at the end of the low frequency plateau,
and result in a smaller exponent α if one attempts to per-
form a Cole-Cole fit to the data. This is demonstrated
in Fig. S11.
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FIG. S11: This figure shows PSD curves from simulations of Hdip, and demonstrates the difficulty of deciding on a proper fitting
procedure for Monte Carlo simulations at high temperature. The crossover from the low-frequency plateau to the high-frequency
power law behaviour occurs close to the cutoff frequency ν ∼ 1 inverse MC steps. If we sample MC time in fractions of the
MC step unit, we can access higher frequencies but this necessarily results in the ν−2 scaling discussed in Sec. SIV. If instead
we sample MC time in MC step units, any Cole-Cole or similar fits are deeply affected by the spurious high-frequency upturn
in the PSD curves. This conundrum is illustrated in the figure with the aid of straight lines as guides to the eye. The legends
indicate temperatures in mK. Left: PSDs from data sampled once every Monte Carlo step for a selection of temperatures. The
dashed and solid black lines are guides to the eye and correspond to ν1.2 and ν1.8, respectively. Right: PSDs from simulations
sampled either 16 or 1 time per Monte Carlo step at three temperatures. The dotted black and dashed red lines indicate the
approximate slopes (extracted by eye) from the low and high sampling frequency curves. The exponents of the dotted black
(dashed red) lines are, from top to bottom, 1.15 (1.94), 1.29 (1.94), and 1.61 (1.92).
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