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Concurrent multiscale model of an atomic crystal coupled with elastic continua
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A methodology based on a Green’s function formalism, which enables the coupling between atomic and
continuous systems, is employed to evaluate the dynamical properties of concurrent elastic multiscale models.
Boundary conditions satisfying the continuity of displacement and stress across interfaces between a harmonic
crystal and continua are insufficient to establish seamless coupling at high frequency. The elastic mismatch in
coupled discrete/continuous models is inherently linked to the difference in dispersion of the constitutive
media.
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[. INTRODUCTION tonian for the atoms and the FE nodes in the transition region
by weighing their contributions with respect to their distance
Multiscaling has recently received much attention in sev-away from the middle of the interface. Ogagaall! used a

eral branches of physical science. Existing multiscale simusimilar algorithm to study chemical reactions and their inter-
lation methodologies can be characterized as serial or complay with mechanical phenomena in materials, such as in the
current. Within serial methods, a set of calculations at aoxidation of the Si111) surface.
fundamental levelsmall length scaleis used to evaluate In the case of dynamical simulations, interfaces between
parameters as input for a more phenomenological model thatomistic systems and the coarser FE mesh will suffer un-
describes a system at longer length scales. For example theanted reflections as the second medium cannot support
guasicontinuum method is a zero temperature technique witbhort-wavelength vibrational modes. This problem could be
a formulation based on standard continuum mechdmeigs, overcome by coupling an atomistic system to a true con-
the finite element{FE) method with the additional feature tinuum and not one of its discretized forms. Indeed, a con-
that the constitutive equations are drawn from calculations a@inuum exhibits a linear dispersion relation for all frequen-
the atomic scalé>* In contrast, concurrent methods build cies. Here we consider an approach based on Green's
around the idea of describing the physics of different regiongunctions wherein a hybrid system is constructed by interfac-
of a material with different models and linking them via a seting a harmonic cubic crystal and an elastic continuum
of boundary conditions. The archetype of concurrent meththrough appropriate boundary conditions. The boundary con-
ods divides the space into atomistic regions coupled with @itions satisfy the continuity of elastic displacements and the
continuum modeled via the FE methdfi.Coarse graining continuity of stresses. The method naturally avoids undesir-
has been proposed as a mean to couple seamlessly a molealde effects due to the discretization of the continuum. It
lar dynamics(MD) region to a FE mesh.Coarse-grained retains, however, the inherent difference in vibrational be-
MD produces equations of motion for a mean-displacemenhavior of the nonlinear dispersive atomic system and of the
field at the nodes of a coarse-grained mesh partitioning thBnear dispersive continuum. The investigation of the effect
atomistic system. Other algorithms that allow the couplingof this difference on the propagation of elastic waves in
between atomistic and continuum regions have beewliscrete/continuum composite media constitutes the core of
proposed 1! Broughtonet al® presented an algorithm in- the present study. We consider two hybrid systems, namely,
volving hand shaking between FE and MD methods. ThigA) a semi-infinite continuum/semi-infinite crystal ariB) a
algorithm was able to dynamically track a crack propagatindinite crystal slab sandwiched between two semi-infinite con-
through silicon. The handshaking between the MD and FEinua. The first system provides a window on the properties
regions was achieved by drawing an imaginary surface beaf a single interface between continuum and atomic media.
tween them. Within the range of the MD interatomic poten-The necessity for multiscale modeling and simulation of hy-
tial from this surface, FE mesh points were located at equibrid continuum and atomic systems finds its roots in a need
librium atomic sites. Any FE element that crosses thefor minimization of computational effort. To that effect, the
interface contributes half its weight to a conservative Hamil-atomic scale region typically takes on finite dimensions and
tonian. Similarly any MD interaction that crosses the inter-is embedded into a continuum with larger dimensions. The
face also contributes half its weight to this Hamiltonian. continuum/discrete/continuum systé®) provides the basis
Kohlhoff et al® introduced a similar transition region be- for the quantification of undesirable effect in such hybrid
tween the atomic and continuous regions. They also scaleslystems.
down the finite element size to the atomic scale in this tran- In Sec. Il, we present in details the Green’s function-
sition region. Unlike Broughtoret al's work, the interface based methodology enabling the coupling between elastic
was of finite size and not sharp. Abrahamnall° combined  continua and harmonic crystals. Plane waves propagating
the above two techniques by constructing an explicit Hamilthrough the hybrid systems are used to probe and quantify
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1 2 L-1 L In Eq. (2),  is the usual delta function. The elastic constant

C,4 is related to the density and transverse speed of sound

through C,= \/C4/p. a is defined by the relatiom?=k?
— (w/Cy)? which, atk,=0 yields a;= —i(w/Cy).

(B) The atomic system will be taken to be a simple-cubic
crystal with lattice parameter The atoms have mass The
lattice vibrations of the crystal are described with the
Montroll-Potts model® The interactions between nearest

neighbor atoms are harmonic with the isotropic force con-
FIG. 1. Projections of(A) the semi-infinite harmonic atomic stant coefficientg8. The equation of motion for transverse

crystal/semi-infinite  continuum and(B) the semi-infinite ~Waves in the discrete system f&y;=0 is that of a one-
continuum/crystal slab/semi-infinite continuum sandwich. The graydimensional monoatomic harmonic crystal, namely,
areas represent the continua. See the text for details.
mwzun_ﬁ(un+l_Zun"'unfl)zo- (4)
the coupling between the continuum and discrete media. In
Sec. I, we report the transmission coefficient of the hybridThe indexn refers to an atomic site along the01] direction.
systemsA) and (B) as a function of the angular frequency.  From Eq.(4) and usinge=m/a,’ it is straightforward to
Conclusions concerning the applicability and limitations ofobtain a relationship dimensionally equivalent to E2).that
concurrent discrete/continuous multiscale models are drawflefines the Green’s function of the discrete systef,
in Sec. IV.
BGYn+1,n")—yG%n,n")+BGYn—-1n")=as, .,
Il. MODELS AND METHODOLOGY ®)

We treat two coupled systems, namély) a semi-infinite ~ Wheredn n+ is the Kroenecker symbol ang= 2B-mao?. In
continuum/semi-infinite crystal, and) a finite crystal slap  deriving Eq.(5), it is worth noting that the Kroenecker sym-
sandwiched between two semi-infinite continua. In bothPoO! is a dimensionless quantity while the delta function in
cases, the interfaces are taken to be parallel @04 plane Eq.(2) hag dimension ofl}he in\_/ers_e of a length. The solution
(see Fig. 1 We exploit the periodicity of the continuum and t© EQ.(5) is well known,” and is given as
of the crystal in the direction parallel to the interface to de- )
compose the elastic and the vibrational Green’s functions d , aZ tih-n'l+1
(and displacemehtof the semi-infinite media and slab in G%(n,n ):Eﬁ' (6)
Fourier series in the coordinatés,, parallel to the inter-
faces. For the sake of simplicity, we reduce the problem tawith
wave propagation along the direction perpendicular to the

interfaces by settinﬁ,,=5. We also limit this study to trans- E—(E-1) if &1

verse modes of vibration. The equation of motion in the con- s _

tinuum simplifies to the one-dimensional elastic wave equa- EXVE-D) i E<-1 @)
tion. Assuming that the excitations execute harmonic motion E+i(1-¢%) if —1<é<+1
with pulsationw (w=2mv wherev is the frequencyand a

time dependence exp(iwt), the continuum equation of and

motion becomes

,_..
Il

Y

J2u &= 28

pw’u+Cy—, =0, (1)

o The transverse speed of soud], in the continuum me-
whereu is the displacement anxl the direction[001]. The  dium is related to the long-wavelength limit of the crystal
elastic continuum has the density, The Green’s function of wave velocity according t€,=a+/8/m. The elastic Green’s
the bulk continuous elastic mediung®, is given by the function for the semi-infinite continuum with a stress free
equation surface located at=0, g¢ was also reported in Ref. 12:
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paCy //
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The Green’s functions of a semi-infinite discrete crystal, _
gt and of a discrete crystal slab composed Lof(001) 10 e

atomic planes with two parallel ideal free surfacgs:, are
calculated in Ref. 14:

TRANSMISSION COEFFICIENT

———- Amplitude

Ener:
d( : a2 tln—n'l+12-(n+n") y 0. (9 0.5 |- &
gsf(n,n’ )= — if n,n'<0,
B t2—1
0.0 .
) a2 | iy g’ 2L+l 0.0 0.5 1.0
gs n,n’)=—

_|_
B t>—1 (t2—1)(1—t%4 REDUCED ANGULAR FREQUENCY
FIG. 2. Transmission coefficient in ener@golid line) and am-
plitude (dashed lingvs the reduced angular frequency of an inci-
dent plane wave launched from a semi-infinite elastic continuum
and transmitted into the coupled semi-infinite simple cubic har-

monic crystal.

X(tn—n’+tn’—n+t1—n—n'+tn+n’—l)

if 1<n,n'<L. (10

These dynamical response functions depend on the angu- ] ) o
lar frequencyw. We use a general theory of response func-With M;; standing for the interface between the constitutive
tions for partly discrete and partly continuous inhomoge-blocksi andj. M; represents the space of the interfaces of
neous systems, originally applied to a tight binding/nearly blocki. This superposition of the inverses of surface Green's
free electron composite, to the calculation of the Green'dunctions imposes the appropriate boundary conditions of
function of the coupled systemi@) and (B). This theory  continuity of displacements and of continuity of stresses at
builds upon the interface response theory of discrete conthe interfaces. The application of this method to systém
posite systems'® and that of continuous composite is detailed in the Appendix.
materialst’ The elastic displacement field D) everywhere
within the spacéD of the composite system is given by

Ill. RESULTS

u(D)=U(D)-UM)G }{(MM)G(MD)

First we investigate the single interface between a har-
monic crystal and the elastic continudsystem(A)] by cal-

(11) culating, according to Eq11) (see the Appendix the trans-
mitted displacement fieldi in the discrete system when a
whereM refers to the space of the interfac€sstands for the plane wave reference displacement figlds launched in the
bulk Green'’s functions of the constitutive blocks of the com-continuous medium. In Fig. 2, we report the amplitude trans-
posite.U is a bulk reference displacement field also definedmission coefficientr=|u/U|?> and the energy transmission
in the constitutive blocksg(MM) is the Green'’s function of coefficient, defined a¥=(Z4/Z.) 7, as functions of reduced
the composite medium limited to its space of interfaces. Th@ngular frequencyw* = w/ wmay With mnay=2yB/M. Here
elements of the inverse @(MM) belonging to the inter- Z4=pVg andZ.=pC, are the impedances of the continuous
faces between continuous and d|_screte systems are obtaingfly giscrete media, respectively is the group velocity of
as the sum of elements of the inverses of gis of the  he aromic system. It is frequency dependent and determined
abutting constitutive blocks, such that from the dispersion relation of the crystal. At low frequen-
cies and long wavelengths, there is no impedance mismatch

+UM)G {MM)g(MM)G Y{MM)G(MD),

-1 . ’ — H .
g (reMij,r'eMg)=0 if MyeM;, (129 between the continuum and the crystal and both transmission
1 , o , . . coefficients approach the ideal value of 1. The transmission
g (reMj,r'eMy)=gs (reMy,r'eMy) if lz&ljz’b) of energy is impeded as the frequency approaches the upper

limit of the crystal vibrational band. Beyonal,,,,, all waves

are reflected at the interface. The monotonic decrease in the
energy transmission coefficient from 1 to O as the frequency
increases results in part from the fact that the transverse
speed of sound of the continuum remains constant while the
group velocity of the crystal diminishes from the continuum

g HreM :rIEMij):Ek 95 H(reMy,r' e My)

if M KI= M (12C)

ijo
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gy .
1‘0 ] O 1 L 1 1 L
10 20 30 40 50 60 70 80 9 100
(001) plane
0.5 _ | FIG. 4. Spatial variation of the square of the modulus of the
1 amplitude of the displacement field inside the crystal slab coupled
to two semi-infinite continua. The slab has=100 (001) planes,
(b) L=100 and the frequencie&@) and (b) correspond to a maximum and a
| minimum in transmission, respectively.
0'000 0'5 0 number of transmitting frequencies increases with the slab

thickness, the total energy transmitted from one continuum
REDUCED ANGULAR FREQUENCY to the other remains constant at a value of approximately
o N 78.5%. We have defined the total energy transmitted as the
FIG. 3. Transmission coefficient vs the reduced angular freintegral of the transmission coefficient over the complete
quency for the continuum/crystal slab/continuum sandwich. Thc‘brystal band. We also calculate the displacement figldh-
slab crystal haga) 10 and(b) 100 (001 planes. side the finite crystal slab with E¢L1) in the case of a plane
o _ ) wave reference statd. If the crystal slab were part of an
limit to zero at the highest frequency. The amplitude transininite atomic crystal the reference plane wave state would
mission coefficient does not have to be bounded by 1 as ¥ropagate freely and the square of its amplitude would re-
does not need to satisfy a conservation law as is the case f@fain uniform and equal to 1 throughout the entire slab. The
energy. At high frequency the continuum appears relativelyisplacement field inside the coupled slab, however, loses its
stiffer than the crystal yielding an increase in amplitudep|ane wave character. The square of the modulus of the dis-
transmission coefficient. _ placement field is illustrated in Fig. 4 at two high frequencies
In the continuum/discrete/continuum systeB), the  corresponding to a maximum and a subsequent minimum in
spaceM includes two interfaces parallel to tfi€01) plane.  transmission. At maximum transmission the displacement
The slab is finite in the directiofD01]. The thickness of the  amplitude oscillates about the plane wave uniform value of
crystal slab is variable and is defined by the number of 1 A minimum in transmission results from a significant re-
(001) atomic planes perpendicular to that direction. Weqyction in the displacement amplitude. In both cases the am-
launch a plane wave reference displacement in one of thglitude modulus varies spatially. These variations have a
semi-infinite continua, and calculate the transmitted amplistanding wave character and at high frequency exhibit modu-
tude in the other. The transmission coefficients in amplitudgations at short and long spatial scales. These variations are
and in energy are identical in this instance since the emittingye|| seen in the limit of the complex amplitude of the dis-

and receiving media have the same impedance. The variatigflacement field inside the slab far* —1. This limit takes
of the transmission coefficient with reduced angular fre-the form

quency for two slab thicknesses is reported in Fig. 3. Simi-

larly to system(A) and owing to the boundary conditions, a . (1-L)-iL

perfect match between the continua and the finite crystal is U(n,@*)~(—=1)" 1(1_L)2+L22(L—n) V2(1=- %),
achieved at long wavelengths. The transmission vanishes at (13)
the top of the crystal band. Contrary to the single interface, _
however, a 100% transmission occurs at selected frequenciddieren stands for the atomic plane ane<h=<L. In sharp
throughout the vibrational band of the crystal. These frecontrast the reference plane wave state has the limit
guencies correspond to resonances in the continuum band *N o aan—1r 4 YT

associated with the discrete vibrational modes of the finite Upw(Mo™)~(=1)"—1+i2ny2(1-0™)] (14
slab. The number of resonant modes is directly dependent omhose real part remains spatially uniform and non-zero at the
the number of(001) planes constituting the slab. While the top of the crystal band.
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IV. CONCLUSION

Cry— r_ _
In conclusion, we have presented a methodology based on 9s(x=0x"=0)= pa,C?’ (Ala)
Green'’s functions for coupling atomic and continuous media. ’
This approach overcomes the undesirable reflections due to 991(n=0n'=0)= — . (A1b)
the discretization of the continuum commonly encountered B t—1

in hybrid atomic/FE multiscale methods. The boundary con- The inverse of the Green's function of systéf in M is

ditions of continuity of displacements and stresses at the in-h f btained by | ! T Sy d(Alb

terface between the elastic continuum and the atomic hart— erefore obtained by inverting expressidAda) and(Alb)
: X : and inserting them into Eq12¢). That is,

monic crystal yield seamless coupling only at long Bt-1

wavelengths. The transmission of the elastic wave energy is g 40,00== —— (A2)

significantly impeded at frequencies approaching the top of a® t

the vibrational band of the atomic system due to the misy\,e calculate the displacement field at atomic sitein the

match in the dispersion relations of the continuous and disgiscrete medium from a reference unit amplitude plane wave
crete media. A finite atomic crystal embedded in a continuumy, the continuous medium. For syste) with a single in-
supports resonant vibrational modes leading to maxima anférface, Eq(11) takes the simple form

minima in the transmission spectrum of the coupled system. 1 , ,

The size of the finite crystal affects the number of resonances U(M=U(n)—U(x=0)G *(x=0,n"=0)G(n"=0,n)

(i.e., frequencies at which transmission ocg¢urst does not +U(x=0)G~X(x=0,x'=0)g(0,0
impact the total energy that can be transmitted. Short and ’ '
long scale modulations of the displacement field inside the XG Xn'=0,n"=0)G(n"=0,n). (A3)

coupled finite crystal may constitute a strong limitation in theSinceu is only defined in the continuous medium, the first
applicability of concurrent discrete/continuous multi:scale,[errn of equation(A3) vanishes. The inverse of t,he bulk
models in representing correctly the physics of large atomi%reen’s functionG - in the secdnd term of EA3) is not
systems. defined forx=0 andn’ =0 since these locations correspond
to two different media. The second term also vanishes. For
system(A), only the third term of Eq(A3) survives and
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APPENDIX u(n)=— 2patC?’8t+t_n. (A5)

The space of the interfacé], between the discrete and —ZT—PatCtZ
the continuous media in systef) is located atx=0 (n a
=0). Using Egs.(8) and (9), we calculate the surface The transmitted displacement field in systé®) can be ob-
Green’s functions of the two media M: tained in a similar way.
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