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Variable Length Memory Chains:

characterization of stationary probability measures

Peggy Cénac∗, Brigitte Chauvin†, Camille Noûs‡, Frédéric Paccaut§ and Nicolas Pouyanne†

April 20, 2020

Abstract

Variable Length Memory Chains (VLMC), which are generalizations of finite order Markov
chains, turn out to be an essential tool to modelize random sequences in many domains, as well as
an interesting object in contemporary probability theory. The question of the existence of stationary
probability measures leads us to introduce a key combinatorial structure for words produced by
a VLMC: the Longest Internal Suffix. This notion allows us to state a necessary and sufficient
condition for a general VLMC to admit a unique invariant probability measure.

This condition turns out to get a much simpler form for a subclass of VLMC: the stable VLMC.
This natural subclass, unlike the general case, enjoys a renewal property. Namely, a stable VLMC
induces a semi-Markov chain on an at most countable state space. Unfortunately, this discrete time
renewal process does not contain the whole information of the VLMC, preventing the study of a
stable VLMC to be reduced to the study of its induced semi-Markov chain. For a subclass of stable
VLMC, the convergence in distribution of a VLMC towards its stationary probability measure is
established.

Finally, finite state space semi-Markov chains turn out to be very special stable VLMC, shedding
some new light on their limit distributions.

MSC 2010: 60J05, 60C05, 60G10.

Keywords: Variable Length Memory Chains, stationary probability measure, Longest Internal Suffix,
stable context trees, Semi-Markov Chains.
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1 Introduction

In a Variable Length Memory Chain (VLMC), unlike fixed order Markov chains, the probability to
predict the next symbol depends on a possibly unbounded part of the past, the length of which depends
on the past itself. These relevant parts of pasts are called contexts. They are stored in a context tree.
With each context is associated a probability distribution prescribing the conditional probability of
the next symbol, given this context.

In this paper we obtain some necessary and sufficient conditions to ensure existence and uniqueness
of a stationary probability measure for a general VLMC.

Pending a complete presentation in Section 2, let us now introduce a few objects, notably the combi-
natorial notion of alpha-LIS (LIS for Longest Internal Suffix ), on which our main result is based. Let
A be a finite set, called the alphabet. A so-called context tree is a saturated tree T on this alphabet,
i.e. a tree such that each node has 0 or #A children. The leaves and the infinite branches of T are
called contexts. The set of contexts, supposed to be at most countable, is denoted by C .

To each context c ∈ C is attached a probability distribution qc on A . Endowed with this probabilistic
structure, such a tree is named a probabilised context tree. Let R be the set of right-infinite words
on the alphabet A . The related VLMC is defined as the R-valued Markov chain (Un)n>0 whose
transitions are given by

∀n > 0, ∀α ∈ A , P (Un+1 = αUn|Un) = qcont(Un) (α) ,

where cont(u) ∈ C is defined as the only prefix of the right-infinite word u appearing as a context.
See Figure 1 for an example of context tree.

If π is a probability measure on R, asking π to be stationary for such a Markov chain (Un)n amounts
to saying that, for any finite word w which writes w = αv where α ∈ A and where v is a non-internal
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finite word of the context tree,
π (wR) = qcont(v) (α)π (vR) . (1)

In this equality, wR denotes the set of all right-infinite words that begin by w. This formula applies
again for π (vR), and so on, and so forth, until... it is not possible anymore, which means that the
suffix of w is of the form αs where α ∈ A and s is an internal word of the context tree. This leads to
pointing out the following unique decomposition of any finite word w:

w = β1β2 . . . βpwαwsw,

where
• pw is a nonnegative integer and βi ∈ A , for all i = 1, . . . , pw,
• sw is the longest internal strict suffix of w,
• αw ∈ A .

In this decomposition, sw is called the LIS of w and αwsw the alpha-LIS of w. Consequently, for any
stationary measure π and for any finite non-empty word w, write w = vαwsw where v is a finite word
and αwsw is the alpha-LIS of w so that iterating Formula (1) gives

π (wR) = casc(w)π (αwswR) , (2)

where casc(w), the cascade of w, is defined as

casc(w) =
∏

16k6pw

qcont(βk+1...βpwαwsw)
(βk).

Elementary arguments on measures show thus that any stationary probability measure on R is deter-
mined by its value on the cylinders based on alpha-LIS of contexts. Denote by S the set of alpha-LIS
of finite contexts. This set is at most countable. Using Formulas (1) and (2), as developed in the
proof of Theorem 2.18, it turns out that, whenever π is stationary, all the π (αsR), for αs ∈ S are
related by the linear system

π (αsR) =
∑
βt∈S

π (βtR)Qβt,αs,

where the square matrix Q = (Qαs,βt)(αs,βt)∈S 2 is defined by

Qαs,βt =
∑
c∈C f

c=t···
c=···[αs]

casc (βc) .

In this formula, C f denotes the set of finite contexts, the notation c = · · · [αs] means that αs is the
alpha-LIS of c, while c = t · · · means that t is a prefix of c. In otherwords, (π (αsR))αs∈S is a left-fixed
vector of the matrix Q. The study of the matrix Q indexed by the alpha-LIS of contexts is a key tool
to characterize a stationary measure for the VLMC. Our main result, namely Theorem 2.18, has the
following weaker version that can be now stated.

Theorem. Let (T , q) be a probabilised context tree and U the associated VLMC. Assume that ∀α ∈ A ,
∀c ∈ C , qc(α) 6= 0. Then U admits a unique stationary probability measure if and only if the three
following points are satisfied:

(i) ∀αs ∈ S , the cascade series
∑

c∈C f , c=···[αs]

casc(c) converge. The sum is denoted by καs.
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(ii) The matrix Q admits a unique line of left-fixed vectors.

(iii) For any left-fixed vector (vαs)αs∈S of Q,
∑
αs∈S

vαsκαs < +∞.

The state space R of a VLMC is uncountable, placing the question of existence and unicity of its
invariant probability measures outside of the well marked out theory of Markov chains on countable
state spaces. Theorem 2.18 comes down to searching and studying left-fixed vectors of the at most
countable matrix Q.

When S is finite, condition (iii) in the previous theorem is automatically satisfied as soon as (i) holds.
Furthermore, in that case, preceding condition (ii) gets a complete answer thanks to finite dimensional
linear algebra. In the very particular case of stable context trees (see hereafter for a definition) having
a finite set of context alpha-LIS, Theorem 3.24 gives a complete characterization of VLMC’s that
admit stationary probability measures, which reduces to the convergence of the cascade series.

Note that the characterization given in the previous theorem is expressed via the cascades and the
probability distributions qc. Nevertheless, the role of context alpha-LIS suggests that the shape of the
context tree matters a lot.
The case of stable trees is particularly interesting, Section 3 is devoted to this case. In particular,
when a context tree is stable, the corresponding VLMC ends up owning renewal properties, which is
not the case for a non-stable VLMC – see Remark 3.5.
A tree is said stable when it is stable by the shift. In other words, for any letter α ∈ A and for
any finite word w, if αw ∈ T then w ∈ T . See Section 3.1 for a complete definition. In the stable
case, the crux of the matter is that the matrix Q is always stochastic and can be interpreted as the
transition matrix of some Markov chain on the set of context alpha-LIS. Indeed, when a VLMC (Un)
is stable, if one denotes by Zn the alpha-LIS of cont(Un), it turns out that the process (Zn) is an
S -valued semi-Markov chain. This induced semi-Markov chain brings out some renewal times which
are the moments cont(Un) changes its alpha-LIS. All this is detailed in Section 3.2.2.
It should be noticed that studying a stable VLMC (Un) is not just about studying the semi-Markov
chain (Zn) mentioned above. Indeed, the trajectories of (Un) cannot be recovered from the trajectories
of (Zn). See Remark 3.13. However, it is the properties of the matrix Q detailed in Section 3.3 that
provide increasingly simple and manipulable necessary and sufficient condition for existence and unicity
of a stationary probability measure for (Un) in Theorem 3.19 and Theorem 3.24. The latter theorem
also provides the convergence of the distributions of Un to the stationary probability measure.

As a final remark, we add in Section 3.5 another link between semi-Markov chains and VLMC: it is
shown that any semi-Markov chain on a finite state space is a VLMC associated with some particular
infinite stable probabilised context tree. Consequently, one deduces from Theorem 3.24 a necessary
and sufficient condition for a non-null semi-Markov chain to admit a limit distribution. The same
condition already appears in Barbu and Limnios [2008] for aperiodic irreducible semi-Markov chains
as a sufficient condition.

Throughout the text, without drowning the reader in a multitude of examples of context trees, we
chose to present enough cases of context trees that:
- answer natural questions about the different assumptions
- sometimes provide explicit calculations
- illuminate results and proofs.

Let us now indicate a non exhaustive range of domains where Variable Length Memory Chains are
commonly used. VLMC are random models for character strings. When they have a finite memory,
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they have been introduced in Rissanen [1983] to perform data compression. They provide a parsimo-
nious alternative to fixed order Markov chain models, in which the number of parameters to estimate
grows exponentially fast with the order; they are also able to capture finer properties of character
sequences. When they have infinite memory – this will be our case of study – they provide a tractable
way to build models which are not finite order Markov chains. Furthermore they may be considered
as a subclass of “châınes à liaisons complètes” (Doeblin and Fortet [1937]) or “chains with infinite
order” (Harris [1955]).
Variable length memory chains are also a particular case of processes defined by a g-function (where the
g-function is piecewise constant on a countable set of cylinders). Stationary probability measures for
VLMC are g-measures. The question of uniqueness of g-measures has been adressed by many authors
when the function g is continuous (in this case, the existence is straightforward), see Johansson and
Öberg [2003], Fernández and Maillard [2005]. Recently, interest raised also for the question of existence
and uniqueness when g is not continuous, see Gallo [2011], Gallo and Garcia [2013], De Santis and
Piccioni [2012] for a perfect simulation point of view and the more ergodic theory flavoured Gallo and
Paccaut [2013] and Ferreira et al. [2019].
VLMC are used in bioinformatics, linguistics or coding theory to modelize how random words grow or
to classify words. In bioinformatics, both for protein families and DNA sequences, identifying patterns
that have a biological meaning is a crucial issue. Using VLMC as a model enables to quantify the
influence of a meaning pattern by giving a transition probability on the following letter of the sequence.
In this way, these patterns appear as contexts of a context tree (Bejerano and Yona [2001]). An
appropriate model requires to consider possibly unbounded lengths. In addition, when the context
tree is recognised to be a signature of a family (of proteins say), this gives an efficient statistical
method to test whether or not two samples belong to the same family (Busch et al. [2009]).
Therefore, estimating a context tree is an issue of interest and many authors (statisticians or not,
applied or not) stress the fact that the height of the context tree should not be supposed to be bounded.
This is the case in Galves and Leonardi [2008] where the algorithm CONTEXT is used to estimate an
unbounded context tree and also in Garivier and Leonardi [2011]. Furthermore, as explained in
Csiszár and Talata [2006], the height of the estimated context tree grows with the sample size so that
estimating a context tree by assuming a priori that its height is bounded is not realistic.
Classical random walks have independent and identically distributed increments. In the literature,
Persistent Random Walks refer to random walks having a Markov chain of finite order as an increment
process. For such walks, the dynamics of trajectories has a short memory of given length and the
random walk itself is not Markovian any more. Recently, as pointed in Cénac et al. [2013, 2018],
Cénac et al. [2017], Cénac et al. [2019], persistent random walks can be viewed as Random Walks with
increments built from VLMC for an infinite context tree.
In biology, persistent random walks are one possible model to address the question of anomalous
diffusions in cells (see for instance Fedotov et al. [2015]). Actually, such random walks are non
Markovian, the displacements and the jumping times are correlated.
There is a large literature on constructing efficient estimators of context trees, as well for finite or
infinite context trees. Our point of view is not a statistical one, and we focus here on the probabilistic
properties of infinite memory VLMC as random processes, and more specifically on the main property
of interest for such processes: existence and uniqueness of a stationary measure.
In Section 2, the definitions of a general VLMC, LIS and alpha-LIS of finite words are given, leading to
the main theorem (Theorem 2.18). Section 3 is devoted to the stable case, providing a necessary and
sufficient condition for the existence and unicity of an invariant probability measure for the VLMC.
The correspondence with semi-Markov model is detailed. Proofs are postponed in Section 4. Finally,
Section 5 is devoted to open problems and conjectures.
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2 Definitions, notations and main results in the general case

2.1 Probabilised context trees and VLMC

In the whole paper, A denotes a finite set having at least two elements, called the alphabet. Its
elements are called letters. All main results in the article hold for an arbitrary A but, for readability
reasons, the proofs are written taking A = {0, 1} whenever this assumption can be made without loss
of generality. Let R be the set of right-infinite words on the alphabet, written by simple concatenation:

R = {αβγ · · · : α, β, γ · · · ∈ A } .

The set of finite words, sometimes denoted by A ∗ in the literature, will be denoted by W :

W =
⋃
n∈N

A n,

the set A 0 := {∅} being reduced to the empty word1. When v, w ∈ W and r ∈ R, the concatenation
of v and w (resp. w and r) is denoted by vw (resp. wr). Moreover, a finite word w being given,

wR

denotes the cylinder made of right-infinite words having w as a prefix.

A VLMC is an R-valued Markov chain, defined by a so-called probabilised context tree. We give
hereunder a compact description. One can refer to Cénac et al. [2012] for an extensive definition2.

A context tree is a rooted tree T built on the alphabet A , which has an at most countable set of
infinite branches; an infinite sequence r ∈ R is an infinite branch of T whenever all its finite prefixes
belong to T . As usual, the nodes of the tree are canonically labelled by words on A . In the example
of Figure 1, the alphabet is {0, 1} and the tree has two infinite branches: (01)∞ and 1∞. For a finite
word w ∈ W , w∞ denotes the right-infinite word www · · · . A node of a context tree T will be called
a context when it is a finite leaf or an infinite branch of T . The sets of all contexts, finite leaves and
infinite branches are respectively denoted by

C , C f and C i.

These sets are at most countable. A finite word w ∈ W will be called an internal node when it is
strictly internal as a node of T ; it will be called non-external whenever it is internal or a context. In
the same vein a finite word or a right-infinite sequence will be said external when it is strictly external
and non-internal when it is external or a context. The set of internal words is denoted by

I .

Remark 2.1. An infinite tree on a finite alphabet being given, the fact that it is a context tree or not
is not directly related to the growth of the number f(n) of leaves at height n when n tends to infinity.
Indeed, f(n) may grow slowly whereas the set of infinite branches is not countable. Conversely, f(n)
may grow rapidly while the set of infinite branches is countable. One can refer to the first appendix
in Ferreira et al. [2019] for more precise statements.

1In the whole paper, N = {0, 1, . . . } denotes the set of non-negative integers.
2In Cénac et al. [2012], and in most of the literature on the subject, VLMC are processes on left-infinite words,

growing to the right. This convention forces to make frequently use of reversed words in the discourse. Because of this
drawback, we make here the opposite choice.
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Definition 2.2 (cont of a non-internal word). Let T be a context tree and w be a non-internal finite
or infinite word. Then, cont(w) denotes the unique prefix of w which is a context of T .

For a more visual representation, hang w by its head (its left-most letter) and insert it into the tree,
the head of w being placed at the root; the only context through which the word goes out of the tree
is its cont – see Figure 1.

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

∅

0 1

00
11

0100

170

1∞(01)∞

c
c = 01011 = cont(010111101000 · · · )

Figure 1: an example of context tree on the alphabet A = {0, 1}. It has two infinite branches: 1∞

and (01)∞. The cont of any right-infinite word or finite word beginning by 010111101000 · · · is the
context 01011.

A probabilised context tree is a context tree T endowed with a family of probability measures q =
(qc)c∈C on A indexed by the (finite and infinite) contexts of T . To any probabilised context tree,
one can associate a VLMC (Variable Length Memory Chain), which is the R-valued Markov chain
(Un)n>0 defined by its transition probabilities given by

∀n > 0, ∀α ∈ A , P (Un+1 = αUn|Un) = qcont(Un) (α) .

The set R is endowed with its cylinder σ-algebra, generated by the cylinders wR, w ∈ W . In the whole
paper, the left-most letter of the sequence Un ∈ R is denoted by Xn so that the random sequences
grow by adding successive letters X0, X1, X2, . . . on the left of U0:

∀n > 0, Un+1 = Xn+1Un.

Remark 2.3. A context tree is never empty because it contains at least its root. The smallest context
tree is thus reduced to its root ∅. Once probabilised by a single probability measure q∅ on A , this tree
gives rise to the simplest VLMC which consists in a sequence of i.i.d. q∅-distributed random variables
(Xn)n. Besides, the tree {∅} is the only context tree that does not get any internal node. Since the
combinatorial aspect of our study is heavily based on internal nodes of context trees (notion of LIS,
see Section 2.2), we make the following small restriction.

– In the whole paper, all context trees are supposed not to be reduced to their root. –

Remark 2.4. When the context tree has at least one infinite context, the initial letter process (Xn)n>0

is generally not a Markov process. When the context tree is finite, (Xn)n>0 is a usual A -valued Markov
chain whose order is the height of the tree, i.e. the length of its longest branch.
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This section ends by two definitions that will be used in the sequel: our main results on VLMC hold
for non-null ones and the shift appears as a useful technical tool.

Definition 2.5 (non-nullness). A probabilised context tree (T , q) is non-null whenever qc(α) 6= 0 for
every c ∈ C and every α ∈ A . A non-null VLMC is a VLMC defined by a non-null probabilised
context tree.

Definition 2.6 (shift mapping). The shift mapping σ : R → R is defined by σ (αβγδ · · · ) = βγδ · · · .
The definition is extended to finite words (with σ(∅) = ∅).

The k-th iteration of σ is denoted by σk (and σ0 denotes the identity map on R or W ).

2.2 LIS and alpha-LIS, cascades and cascade series

As pointed out in the introduction, the study of invariant probability measures naturally leads to the
following notion of Longest Internal Suffix. If w ∈ W is a non-empty finite word, w can be uniquely
written as

w = β1β2 . . . βpwαwsw,

where
• pw > 0 and βi ∈ A , for all i ∈ {1, . . . , pw},
• αw ∈ A ,
• sw is the longest internal strict suffix of w.
Note that sw may be the empty word. When pw = 0, there are no β’s and w = αwsw.

Definition 2.7 (LIS and alpha-LIS). Let T be a context tree and w a finite non-empty word on A .
With the notations above, the Longest Internal Suffix sw is abbreviated as the LIS of w; the non-
internal suffix αwsw is called the alpha-LIS of w.

To compute the LIS of a non-empty finite word w = β1β2 . . . βn, check whether β2β3 . . . βn is internal
or not. If it is internal, that is the LIS of w. If not, check whether β3β4 . . . βn is internal or not, etc.
The first time you get an internal suffix (this happens inevitably because ∅ is always an internal word,
the context tree being not reduced to its root, see Remark 2.3), this suffix is the LIS of w.
Any word has an alpha-LIS, but the objects of main interest are the alpha-LIS of contexts. The set of
alpha-LIS of finite contexts of T will be denoted by S (T ), or more shortly by S :

S =
{
αcsc, c ∈ C f

}
;

this is an at most countable set (like C ). For any u, v, w ∈ W , the notations

v = u · · · and w = · · · [u] (3)

stand respectively for “u is a prefix of v” and “u is the alpha-LIS of w”.

Example 2.8 (computation of a LIS).

In this example, the alphabet is A = {0, 1} and the context
tree is defined by its finite contexts which are the following
ones: (01)p00, (01)r1, 01r0, 1q00, 1q01, p > 0, q > 1, r > 2.
Take for example the context 010100, colored red in the con-
text tree. Remove successively letters from the left until you
get an internal word: 10100 is external, 0100 is noninternal,
100 is noninternal, 00 is noninternal. In this sequence, the
suffix 0 is the first internal one: this is the LIS of 010100.
The last removed letter is α = 0 so that the alpha-LIS of
010100 is 00.

8



In the following array, the left-hand column consists in the list of alpha-LIS of all the finite contexts
of the tree. For every αs ∈ S , the list of all finite contexts having αs as an alpha-LIS is given in the
right-hand column.

αs ∈ S finite contexts having αs as an alpha-LIS

00 1q00, (01)p00, p > 0, q > 1
101 1q01, q > 1

01011 (01)r1, r > 2
01r0, r > 2 01r0

Remark 2.9. The finiteness of the set C i of infinite branches on one side, and that of the set S
of context alpha-LIS on the other side are not related. In Example 3.26, one finds a context tree for
which S is finite while C i is infinite. In the tree of Example 2.8, S is infinite while C i is finite.
The left-comb of left-combs has infinite C i and S (see Remark 3.16). Finally, the double bamboo (see
page 15) has finite C i and S .

Definition 2.10 (cascade). Let (T , q) be a probabilised context tree. If w ∈ W writes w = β1β2 . . . βpαs
where p > 0 and where αs is the alpha-LIS of w, the cascade of w is defined as

casc(w) =
∏

16k6p

qcontσk(w) (βk) ,

where an empty product equals 1, which occurs if and only if w is equal to its own alpha-LIS. In the
above formula, σ denotes the shift mapping, see Definition 2.6. The cascade of ∅ is defined as being 1.

Note that casc(αs) = 1 for any αs ∈ S . In Example 2.8, casc(010100) = q101(0)q0100(1)q100(0)q00(1).

Remark 2.11. Assume that A = {0, 1}. For any w ∈ W , casc(w) = casc(0w) + casc(1w) if and only
if w is non-internal; indeed, if w is internal, the sum equals 2 whereas casc(w) 6 1. This equivalence
generalizes straightforwardly to an arbitrary alphabet.

Definition 2.12 (cascade series). For every αs ∈ S , the cascade series of αs (related to (T , q)) is
the at most countable family of cascades of the finite contexts having αs as their alpha-LIS. In other
words, with notations (3), it is the family

(casc(c))c∈C f , c=···[αs] .

Since the cascades are positive numbers, the summability of a family of cascades of a probabilised
context tree is equivalent to the convergence of the series associated to any total order on the set of
contexts indexing the family. The assertion

∀αs ∈ S ,
∑
c∈C f

c=···[αs]

casc(c) < +∞ (4)

will be called convergence of the cascade series. For every αs ∈ S and k > 1, denote

καs(k) =
∑

c∈C f , c=···[αs]
|c|=|αs|+k−1

casc(c). (5)

9



When the cascade series converge, καs denotes the sum of the cascade series relative to αs ∈ S :

καs =
∑
c∈C f

c=···[αs]

casc(c) =
∑
k>1

καs(k). (6)

In the following sections, the convergence of cascade series turns out to be an important part of
the characterization of stationary probability measures. This is made precise by Theorem 2.18 and
Theorem 3.19. In some particular cases, the convergence of cascade series just becomes a necessary and
sufficient condition for existence and unicity of an invariant probability measure (see Theorem 3.24).

2.3 Alpha-LIS matrix Q and left-fixed vectors

For any (αs, βt) ∈ S 2, with notations (3), define

Qαs,βt =
∑
c∈C f

c=t···
c=···[αs]

casc (βc) ∈ [0,+∞]. (7)

As the set S is at most countable, the family Q = (Qαs,βt)(αs,βt)∈S 2 will be considered a matrix,

finite or countable, for an arbitrary order on S . The convergence of the cascade series of (T , q) is
sufficient to ensure the finiteness of Q’s entries.

The matrix Q plays a central role in the statement of Theorem 2.18, which is the main result of the
paper.

Definition 2.13 (left-fixed vector of a matrix). Let A = (a`,c)(`,c)∈E 2 be a matrix with real entries,
indexed by a totally ordered set E supposed to be finite or denumerable. A left-fixed vector of A is
a row-vector X = (xk)k∈E ∈ RE , indexed by E , such that XA = X. In particular, this implies that
the usual matrix product XA is well defined, which means that for any c ∈ E , the series

∑
` x`a`,c is

convergent. Note that, whenever X and A are infinite dimensional and have nonnegative entries, this
summability does not depend on the chosen order on the index set E .

2.4 Stationary measures for a VLMC

Definitions and notations of the previous sections allow us to state results on stationary measures for a
VLMC. In this section no assumption is made on the shape of the context tree. After two key lemmas,
we state the main Theorem 2.18 that establishes precise connections between stationary probability
measures of the VLMC and left-fixed vectors of the matrix Q defined in Section 2.3. Theorem 2.18 is
valid for any context tree. Section 3 shows what happens to this result when assumptions (stability,
mainly) are made on the shape of the tree. In particular, Remark 3.25 shows how Theorem 2.18 (or
Theorem 3.24) applies in the case of finite trees.

Definition 2.14 (stationary probability measure for a VLMC). Let U = (Un)n>0 be a VLMC. A
probability measure π on R is said U -stationary (or also U -invariant) whenever π is the distribution
of every Un as soon as it is the distribution of U0.

Assume that π is a probability measure on R, invariant for a VLMC defined on a given context tree.
As already mentioned in the introduction, π (wR) = qcont(v) (α)π (vR) for any letter α and any non-
internal finite word w = αv. The cascade of w is the product that arises after the largest number
of possible iterations of that formula, so that π (wR) = casc(w)π (αwswR). These formulae are the
subject of the simple but very useful Lemma 2.15, named Cascade Formulae. Equality (10) can be
seen as a founding formula that leads to Theorem 2.18.
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Lemma 2.15. (Cascade formulae)
Let (T , q) be a probabilised context tree and π be a stationary probability measure for the corresponding
VLMC.
(i) For every non-internal finite word w and for every α ∈ A ,

π (αwR) = qcont(w)(α)π (wR) . (8)

(ii) For every right-infinite word r ∈ R and for every α ∈ A ,

π (αr) = qcont(r)(α)π (r) . (9)

(iii) For every finite non empty word w, if one denotes by αwsw the alpha-LIS of w, then

π (wR) = casc(w)π (αwswR) . (10)

A proof of Lemma 2.15 can be found at the beginning of Section 4 on page 26.
The following lemma ensures that a stationary probability measure weights finite words and only finite
words.

Lemma 2.16. Let π be a stationary probability measure of a non-null VLMC. Then
(i) ∀w ∈ W , π (wR) 6= 0;
(ii) ∀r ∈ R, π(r) = 0.

For a proof of this lemma, see Section 4, page 27.

Remark 2.17. Thanks to Lemma 2.16(ii), when π is a stationary probability measure, both members
of Equality (9) vanish. In fact, all formulae in Lemma 2.15 remain true when π is a σ-finite invariant
measure. In this case, Formula (9) may be an equality between two non-zero real numbers. See
Remark 2.21 and Section 6 for further comments on σ-finite invariant measures.

Everything is now in place to state the main theorem. Denote by M1 (R) the set of probability
measures on R. For a given context tree T , define the mapping f as follows:

f : M1 (R) −→ [0, 1]S

π 7−→
(
π (αsR)

)
αs∈S

.
(11)

Theorem 2.18. Let (T , q) be a non-null probabilised context tree and U the associated VLMC.

(i) Assume that there exists a finite U -stationary probability measure π on R. Then the cascade
series (4) converge. Furthermore, using notation (6),∑

αs∈S

π (αsR)καs = 1. (12)

(ii) Assume that the cascade series (4) converge. Then, f induces a bijection between the set of
U -stationary probability measures on R and the set of left-fixed vectors (vαs)αs∈S of Q that have
non-negative entries and which satisfy ∑

αs∈S

vαsκαs = 1.
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The proof of Theorem 2.18 is given in Section 4, page 28.

This theorem naturally calls for several questions and remarks: for instance, does everything boil down
to Q? Can the theorem be extended to σ-finite invariant measures? Can Theorem 2.18 be improved
for particular context trees? For finite ones? What role does the non-nullness assumption play?

Remark 2.19. One could be tempted to see f(π) as an invariant measure for some Markov chain
associated with the matrix Q, reducing the study of invariant probability measures of a VLMC to the
study of stationary probability measures of the Markov chain associated with Q. This is generally not
true.

First, even when it is finite-dimensional, Q is generally not stochastic, excluding any hope of inter-
preting it as the transition matrix of some Markov chain. Take for instance the small context tree on
the alphabet A = {0, 1} pictured hereunder. It gets three context alpha-LIS we order the following
way: 00, 10 and 1. The matrix Q writes straightforwardly as follows. For instance, its first line’s sum
equals 1 + q00(1).

1

00

010 011

Q =

 casc(000) casc(100) casc(100)

casc(0010) casc(1010) casc(1010)

casc(0011) casc(1011) casc(1011) + casc(11)



Second, even when Q is row-stochastic (which is the case when the context tree is stable, see Proposi-
tion 3.15), its probabilistic interpretation is not that simple. In the stable case, Q can be seen as the
transition matrix of the underlying Markov chain of some semi-Markov chain, namely the process of
the context alpha-LIS of the VLMC. Section 3.2 is devoted to this fact.

Finally, in general, even in the case of stable VLMC, one cannot reconstruct the VLMC from the
process of its alpha-LIS: both processes are not equivalent, the VLMC being strictly richer than the
process of its alpha-LIS. See Remark 3.13 for an example and further comments.

Remark 2.20. Non-nullness appears as some irreducibility assumption on the Markov process on
right-infinite words. One can find in Cénac et al. [2012] simple examples of not non-null VLMC’s
defined on infinite context trees that admit infinitely-many invariant probability measures.

Remark 2.21. One may wonder whether a non-null VLMC can admit invariant σ-finite measures
that have an infinite total mass. The answer is clearly affirmative as can be seen on the left comb,

which is the context tree shaped as follows, the alphabet being A = {0, 1}: . Once this tree has

been probabilised by the non-null family (q0n1)n>0, define cn as being

cn := casc (0n1) =
n∏
k=0

q0k1(0).

Then, as soon as cn tends to 0 when n tends to infinity whereas the series
∑
cn diverges, the correspond-

ing VLMC gets an invariant σ-finite measure with infinite total mass. This can be straightforwardly
checked – however, computation details can be found in Cénac et al. [2012].

Moreover, the same argument as in the proof of Lemma 2.16(ii) shows that a U -invariant σ-finite
measure always vanishes on rational right-infinite words, i.e. on eventually periodic words. One may
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thus wonder whether a non-null VLMC can admit invariant σ-finite measures that have an infinite
total mass and take a positive value on some irrational infinite word. The answer is also affirmative.
An example is developed in the appendix, based on a context tree which has irrational contexts and
whose Q matrix is (necessarily) transient.

3 The stable case

In this section, a restriction on the shape of the tree is put, called stability, defined in Section 3.1.
As already said in the introduction, although being very particular, the set of stable trees appears
as a very rich class, notably through its links with semi-Markov chains. These links, detailed in
Section 3.2.2 (stochasticity and irreducibility of Q, construction of the induced semi-Markov chain
denoted by (Zn)n>0), exhibit renewal properties of the VLMC.
The extra structure brought by the stability enables to simplify the statement of Theorem 2.18,
turning it into a necessary and sufficient condition for existence and unicity of a stationary probability
measure, for countable S (Theorem 3.19) and finite S (Theorem 3.24, where the convergence of the
law of (Un) towards the invariant measure is also obtained).
It must be once again emphasized that the trajectories of the VLMC (Un) cannot be recovered from
the trajectories of the underlying semi-Markov chain (Zn) (See Remark 3.13). Our results on stable
VLMC cannot straightforwardly be deduced from those existing in the semi-Markov literature.

3.1 Definitions

Proposition 3.1. Let T be a context tree. The following conditions are equivalent.

(i) ∀α ∈ A , ∀w ∈ W , αw ∈ T =⇒ w ∈ T . In other words, σ(T ) ⊆ T .

(ii) If c is a finite context and α ∈ A , then αc is non-internal.

(iii) T ⊆ A T , where A T = {αw, α ∈ A , w ∈ T }.

(iv) For any VLMC (Un)n associated with T , the process (Cn)n∈N := (cont (Un))n∈N is a Markov
chain with state space C .

A proof of this Proposition 3.1 can be found in Section 4.2, page 30.

Definition 3.2 (shift-stable tree, stable VLMC). A context tree is shift-stable3, shortened in the
sequel as stable when one of the four equivalent conditions of Proposition 3.1 is satisfied. A VLMC
is also called stable when it is defined by a probabilised stable context tree.

The following two lemmas, which do not hold for general trees, will be used to get an accurate
description of the structure of the context alpha-LIS process, as developed in Section 3.2.2.

Lemma 3.3. Let T be a stable context tree.
(i) Any context alpha-LIS is a context. In otherwords, S ⊆ C .
(ii) Assume that c is a finite context having αs as an alpha-LIS. Then all σk(c), 0 6 k 6 |c| − |αs|
are also contexts having αs as an alpha-LIS.

Proof. Let αs ∈ S and let c = · · · [αs] ∈ C f (notation (3)). Since T is stable, for any k ∈ N,
the node σk(c) is either internal or a context. By maximality of s, this implies that the σk(c), for
0 6 k 6 |c|− |αs|, have αs as a suffix and are noninternal, thus contexts. This proves (ii), thus (i).

3This property of trees is also called 0-subperiodic by some authors, like Lyons [1990], Lyons and Peres [2017] or
shift-invariant by Furstenberg [1967].
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Lemma 3.4. Let T be a stable context tree and c ∈ C . Let Ac := {α ∈ A , αc /∈ C }. Then,

1. if Ac = ∅, then c does not admit any context LIS as a prefix;

2. for every α ∈ Ac, there exists a unique context LIS tα such that

(i) c = tα · · ·
(ii) αtα ∈ C .

Furthermore, for every β /∈ Ac, βtα /∈ C .

The proof of this lemma is given in Section 4, page 31.

Note in passing the following formula, proven during the proof of Proposition 3.1 and valid in the case
of stable context trees: if s ∈ R is a right-infinite word and if α ∈ A is any letter, then

cont(αs) = cont (α cont(s)) .

This formula is the foundation for the renewal properties of stable VLMC’s, as described hereunder.
For any n > 0 and for any letter β, because of this formula, cont (βUn) depends on Un only through
its cont. More precisely, if Cn denotes cont (Un), then cont (βUn) = cont (βCn). Furthermore, thanks
to Lemma 3.4, if c is any finite context having αs as an alpha-LIS and if β is any letter, two disjoint
cases may occur: either βc is a context which has again αs as an alpha-LIS, or βc is an external
word, cont(βc) being its own alpha-LIS. This fact contains in germ the announced renewal property
of a stable VLMC, as completely formalized in Proposition 3.12, the context alpha-LIS’s constituting
renewal patterns of a stable VLMC: once Un has begun by a context alpha-LIS, the process will never
make use of letters in the past beyond this alpha-LIS.

Remark 3.5. A general (non-stable) VLMC does not enjoy such a renewal phenomenon.

The filament of all words

Consider for instance the context tree built as follows on the
alphabet A = {0, 1}. Take the right-infinite word u =
0100011011000001 · · · obtained by concatenating all finite words
ordered by increasing length and alphabetical order: 0, 1, 00, 01,
10, 11, 000, etc. Let Tu be the context tree spanned by u – namely
the smallest context tree that contains u as infinite branch. We
name Tu the filament of all words. Let also U be a non-null VLMC
obtained by probabilising Tu. Relatively to this tree, any finite word
is the suffix of some internal node. Let thus w be an arbitrary finite
prefix of U0, and p be a finite word such that pw is internal. With
positive probability, U|p| = pw · · · so that cont

(
U|p|
)

has pw as a
strict prefix: the transition from U|p| to U|p|+1 depends on a prefix
of U0 strictly longer than w. Consequently, no finite prefix of U0

can play the role of a renewal pattern for the random process U .

Remark that this situation is generic in the following sense: a right-infinite word r on {0, 1} drawn
uniformly at random has the following property. For any finite word w ∈ W , almost surely, w is a
pattern of r. Thus, the phenomenon just described for Tu holds for any context tree having this infinite
word r as an infinite branch.

Let (Un)n be a stable VLMC. For every n, let Cn = cont (Un). As seen in Proposition 3.1, the process
(Cn)n is a Markov chain. In addition, C f is an absorbing set for the chain (Cn)n – as soon as a finite
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context is seen, all the following contexts will be finite. This is a consequence of the renewal property
described above. Therefore, the chain induced by (Cn)n on the absorbing set C f is again a Markov
chain that enjoys the following properties.

Lemma 3.6. Let U = (Un)n be a non-null stable VLMC. For any n, let Cn = cont (Un). Then, the
Markov chain induced by (Cn) on C f is irreducible and aperiodic.

The proof of this lemma is made in Section 4, page 31.

In view of this lemma, it would be tempting to try to study the recurrence properties of this Markov
chain (Cn)n and then to apply the classical results on countable Markov chains to get a stationary
probability measure for the VLMC itself. First, it appears that these recurrence properties are not at all
obvious. Moreover, this would mean ignoring the crucial renewal properties of the alpha-LIS process,
which are highlighted in Section 3.2.2. That is why it is more fruitful to work with the matrix Q
– in general a smaller matrix than the transition matrix of (Cn)n. Nevertheless, the irreducibility
and aperiodicity of (Cn)n will help proving the convergence of the law of (Un)n towards the invariant
measure of the VLMC, in the case of finitely many alpha-LIS (see Theorem 3.24).

Definition 3.7 (stabilizable tree, stabilized of a tree). A context tree T is stabilizable whenever

the stable tree
⋃
n∈N

σn (T ) has at most countably many infinite branches, i.e. when the latter is again

a context tree. When this occurs,
⋃
n∈N

σn (T ) is called the stabilized of T ; it is the smallest stable

context tree containing T .

For example, the left-comb is stable. On the contrary, the bamboo blossom is

non-stable; it is stabilizable, its stabilized being the double bamboo .

Remark 3.8. A context tree is not necessarily stabilizable as the following examples, built on the
alphabet {0, 1}, show.
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This context tree consists in saturating the infinite word
010212 . . . 0k1k · · · by adding hairs. This filament tree
is stabilizable, its stabilized being the context tree hav-
ing the {0`1k0k+11k+1 · · · } and the {1`0k1k+10k+1 · · · },
k > 1, 0 6 ` 6 k−1 as internal nodes. Its countably many
infinite branches are the 0k1∞ and the 1k0∞, k > 0.

As defined in Remark 3.5, the filament of
all words Tu is not stabilizable. Indeed,
any finite word belongs to the smallest
stable tree that contains Tu, the latter be-
ing thus the complete tree {0, 1}N, which
has uncountably many infinite branches.

Remark 3.9. Let (T , q) be a stabilizable probabilised context tree and T̂ its stabilized. For every

context c of T̂ , define q̂c = qcont(c) where the function cont is relative to T . Then (T , q) and (T̂ , q̂)
define the same VLMC.

This is straightforward because both
VLMC, as Markov processes on R, have
the same transition probabilities. The
example of the opposite figure illustrates
this construction for the bamboo blossom
and its stabilized tree, the double bamboo.

q1

q011

q01011

q0101011

q00

q0100

q010100

;

(T , q)

q1

q1

q1

q1

q1

q1

q00

q0100

q010100

q011

q01011

q0101011(
T̂ , q̂

)
3.2 Stable VLMC and Semi-Markov Chains

In this section, semi-Markov chains are defined, following Barbu and Limnios [2008]. Section 3.2.2 is
devoted to show that any stable VLMC (Un)n>0 induces an underlying semi-Markov chain (Zn)n>0:
the state space is the set S of the context alpha-LIS and Zn is the alpha-LIS of the context cont (Un).
This semi-Markov chain entirely describes the renewal property that arises in a stable VLMC and
gives an explicit interpretation of the matrix Q. Nevertheless, the trajectories of the VLMC cannot be
recovered from those of the induced semi-Markov chain – see Remark 3.13. Despite this, interestingly,
when the set of context alpha-LIS is finite, Theorem 3.24 and Theorem 3.29 below make it possible to
derive equivalences between NSC for the VLMC to admit a stationary probability measure and NSC
for the associated semi-Markov chain to have a limit distribution. This is developed in Section 3.6.

3.2.1 Definitions

Semi-Markov chains are defined thanks to so-called Markov renewal chains – see Barbu and Limnios
[2008].

Definition 3.10 (Markov Renewal Chain). If E is any set, a Markov chain (Jn, Tn)n>0 with state
space E ×N is called a (homogeneous) Markov Renewal Chain (shortly MRC) whenever the transition
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probabilities satisfy: ∀n ∈ N, ∀a, b ∈ E , ∀j, k ∈ N,

P
(
Jn+1 = b, Tn+1 = k

∣∣Jn = a, Tn = j
)

= P
(
Jn+1 = b, Tn+1 = k

∣∣Jn = a
)

=: pa,b(k)

and ∀a, b ∈ E , pa,b(0) = 0. For such a chain, the family p = (pa,b(k))a,b∈A ,k>1 is called its semi-Markov
kernel.

Definition 3.11 (Semi-Markov Chain). Let (Jn, Tn)n>0 be a Markov renewal chain with state space
E × N. Assume that T0 = 0. For any n ∈ N, let Sn be defined by

Sn =
n∑
i=0

Ti.

The semi-Markov chain associated with (Jn, Tn)n>0 is the E -valued process (Zj)j>0 defined by

∀j such that Sn 6 j < Sn+1, Zj = Jn.

Note that the sequence (Sn)n>0 is almost surely increasing because of the assumption pa,b(0) = 0
(instantaneous transitions are not allowed) that guarantees that Tn > 1 almost surely, for any n > 1.
The Sn are jump times, the Tn are sojourn times in a given state and Zj stagnates at a same state
between two successive jump times. The process J = (Jn)n, called the internal (or underlying) chain
of the semi-Markov chain (Zn)n, is a Markov chain on E . For this Markov chain, the transition
probability between states a and b is the number pa,b =

∑
k>1 pa,b(k).

Definitions 3.10 and 3.11 make transitions of J to the same state between time n and time n + 1
possible. Nevertheless, one can boil down to the case where pa,a(k) = 0 for all a ∈ E , k ∈ N, thus
obtaining a semi-Markov chain with true jumps. Indeed, suppose that there exist some a ∈ E and
k ∈ N such that pa,a(k) 6= 0 for a certain semi-Markov chain (Zn). Consider the chain (Z ′n) obtained
from (Zn) by forgetting the jumps to the same position. It is the semi-Markov chain associated with
the MRC (J ′n, T

′
n)n>0 defined by T ′0 = 0, J ′0 = J0 a.s. and by the following semi-Markov kernel p′: for

a, b ∈ E , a 6= b, p′a,b(1) = pa,b(1) and for k > 2,

p′a,b(k) = P
(
J ′1 = b, T ′1 = k

∣∣J0 = a
)

(13)

= pa,b(k) +
k−1∑
i=1

pa,a(i)p
′
a,b(k − i)

(and thus p′a,a(k) = 0 for any k > 0). Note that even if the semi-Markov chains (Zn) and (Z ′n) do not
have the same internal chains, they get the same trajectories. It is worth noticing that the conditional
expectations of T1 and T ′1 are simultaneously finite or infinite. Indeed, a straightforward calculation
from (13) leads to: for a ∈ E ,

E
(
T ′1|J ′0 = a

)
×

(
1−

∑
i>1

pa,a(i)

)
= E (T1|J0 = a) . (14)

Moreover, denoting pa,b =
∑

k>1 pa,b(k) and p′a,b =
∑

k>1 p
′
a,b(k), one gets p′a,b =

pa,b∑
c6=a pa,c

, as shortly

mentioned in Barbu and Limnios [2008]. Since we make use of both versions of a semi-Markov chain
in the paper – with true jumps or not, it seemed important to us to devote these few lines to underline
how they are connected.
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3.2.2 A semi-Markov chain induced by a stable VLMC

A stable VLMC always induces a semi-Markov chain, as described in the following.
Let (Un)n>0 be a stable non-null VLMC and assume that C0 = cont (U0) is a finite context. Recall
that S denotes the set of context alpha-LIS of the VLMC. For every n > 0, let Cn be the context of
Un and Zn be the alpha-LIS of Cn:

Cn := cont (Un) and Zn := αCnsCn . (15)

Sn

Sn + 1

Sn + i

Sn+1 = Sn + i+ 1

Tn+1

time

USnsα

CSn

USn+1sα

CSn+1

USn+isαβ1βi

CSn+i

Jn = Zj = αs

Sn 6 j 6 Sn+1 − 1

USn+1β t

CSn+1

USn+1+1
β t

CSn+1+1

Jn+1 = ZSn+1
= βt

Figure 2: Evolution of a VLMC (Uj) between two “jumping” times Sn and Sn+1. On the figure,
right-infinite words USn , USn+1, . . . grow to the left when time increases from the bottom to the top.
Their respective cont ’s (which are contexts) are CSn , CSn+1, . . . , they are colored. On the figure, the
successive alpha-LIS are marked in blue, they stagnate at αs during the time Tn+1 = Sn+1 − Sn and
jump at βt at time Sn+1 = Sn + i+ 1 .

Let us describe the evolution of these two processes, when the VLMC (Uj)j is growing by adding
successively a letter on the left. One can refer to Figure 2 as a visual support of this description. For
j > 0, assume that Cj = · · · [αs] has αs as an alpha-LIS. When adding a letter β, two cases can occur
(recall that since the context tree is stable, if c is a context and β ∈ A , then βc is non-internal – see
Proposition 3.1(ii)):
– either βCj is a context and then Cj+1 = βCj = · · · [αs]. In this case the process Z stagnates at αs;
– or βCj is not a context and then by Lemma 3.4, Cj begins with some LIS t and βt is a context
being its own alpha-LIS. In that case, Cj+1 = βt and Z jumps at βt. Notice that the term jumps is
not completely adequate because αs = βt could occur. With this evolution in mind, let (Sn)n>0 be
the increasing sequence of times defined by S0 = 0 and for any n > 1,

Sn := inf {k > Sn−1, |Ck| 6 |Ck−1|} , (16)
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with the usual convention that it equals +∞ whenever ∀k > Sn−1, |Ck| > |Ck−1|. Let also T0 = 0 and,
for every n > 1, denote by Tn the difference

Tn := Sn − Sn−1. (17)

Finally, for any n > 0, let
Jn := ZSn . (18)

With these notations, the processes (Tn)n>0 and (Jn)n>0 evolve as follows. Assume that Jn = CSn =
ZSn = αs ∈ S for some n > 0. For i > 1, when adding a letter β, as long as βCSn+i−1 remains
a context, then ZSn+i = ZSn = αs = Jn. The first time when βCSn+i is not a context (we shall
see that this occurs almost surely if and only if Assumption (19) is fulfilled), then Sn+1 = Sn + i,
CSn+i = βt ∈ S and Jn+1 = βt. It turns out that (Zn)n>0 is a semi-Markov chain having (Jn, Tn)n>0

as an underlying (Markov renewal) chain, as specified in the following proposition.

Proposition 3.12. Let (Un)n>0 be a stable non-null VLMC such that

∀αs ∈ S , lim
k→∞

καs(k) = 0, (19)

where καs(k) is defined in (5). Assume that C0 = cont (U0) is a finite word. Then with the above
notations (15), (16), (17) and (18),

(i) Sn and Tn are almost surely finite. Furthermore, for every αs ∈ S and every n > 1,

E
(
Tn
∣∣Jn−1 = αs

)
= καs ∈ [0,+∞].

See (6) where καs =
∑

k>1 καs(k) is defined;

(ii) the jump times Sn can also be written Sn = inf {k > Sn−1, Ck ∈ S };

(iii) (Zn)n>0 is an S -valued semi-Markov chain associated with the Markov renewal chain (Jn, Tn)n>0.
The associated semi-Markov kernel writes: ∀αs, βt ∈ S , ∀k > 1,

pαs,βt(k) =
∑

c∈C , c=t···
c=···[αs]

|c|=|αs|+k−1

casc (βc) .

Moreover, Q is the transition matrix of the S -valued Markov chain (Jn)n>0.

One can find a proof of Proposition 3.12 on page 31.

Remark 3.13. The semi-Markov chain (Zn) contains less information than the chain (Un). To
illustrate this, here is an example with a finite context tree on the alphabet {0, 1}.

alpha-LIS αs contexts having αs as an alpha-LIS

10 10,010,110,0010,0110
000 000
111 111,0111

0011 0011

In this example, 0010 and 0110 are two contexts of the same length, with the same context alpha-LIS
10 and beginning by the same context LIS 0. Hence if we know that Jn = 10, Sn+1 − Sn = 3 and
Jn+1 = 10, then Zj is uniquely determined between the two successive jump times, whereas there are
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two possibilities to reconstruct the VLMC (Un). With the notations above, there are two cascade terms
in p10,10(3):

p10,10(3) = P (CSn+1 = 010, CSn+2 = 0010, CSn+3 = 10010|CSn = 10)

+ P (CSn+1 = 110, CSn+2 = 0110, CSn+3 = 10110|CSn = 10)

= q10(0)q010(0)q0010(1) + q10(1)q110(0)q0110(1)

= casc(10010) + casc(10110).

3.3 Properties of Q in the stable case

For a given probabilised context tree, the matrixQ, that has been defined in Section 2.3 by Formula (7),
plays a central role in our main Theorem 2.18. In the case of stable trees, Proposition 3.12 gives a
probabilistic interpretation of Q as the transition matrix of some Markov chain. This section is devoted
to gathering properties of Q (or of the Markov chain Q is the transition matrix of).

Definition 3.14. A square (finite or denumerable) matrix (ar,c)r,c having non-negative entries is said
to be row-stochastic whenever all its rows (are summable and) sum to 1, i.e.

∀r,
∑
c

ar,c = 1.

The following assertion is a consequence of Proposition 3.12, (iii). Remember that the numbers καs(k)
are defined by (5). Notice also that one can also make a direct combinatorial proof using Lemma 3.4.

Proposition 3.15. Let (T , q) be a stable probabilised context tree. Assume that

∀αs ∈ S , lim
k→∞

καs(k) = 0. (20)

Then, the matrix Q has finite entries and is row-stochastic.

The row-stochasticity of Q writes

∀αs ∈ S ,
∑
βt∈S

Qαs,βt = 1.

Remark 3.16. Any stochastic matrix with strictly positive coefficients A = (ai,j)i>0,j>0 is the matrix Q
associated with some non-null probabilised stable context tree. It may be realised for instance with a
left-comb of left-combs as follows.

The left-comb of left-combs is the con-
text tree on the alphabet {0, 1} as drawn
on the left: the finite contexts are the
0p10q1, p, q > 0. A left-comb of left-
combs is a stable context tree. Its has in-
finitely many infinite branches, namely
0∞ and the 0p10∞, p > 0.

For any p, q > 0, the alpha-LIS of 0p10q1 is 10q1. In particular, the set S of alpha-LIS of contexts is
infinite. In this case, for any q > 0, the set of contexts having 10q1 as an alpha-LIS is also infinite.
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Probabilise this context tree by a family (qc)c of probability measures on {0, 1}. Denote, for every
q, p > 0,

cq,p = casc (0p10q1) =
∏

06k6p−1
q0k10q1(0).

Assumption (20) is equivalent to cq,p converging to 0 when p tends to ∞, for any q. The square
matrix Q is infinite and, under the latter assumption, its entries write

Q10q1,10p1 = casc (10p10q1) = cq,p − cq,p+1.

A row-stochastic positive infinite matrix A being given, a simple calculation shows that if one defines
the probability measures q0p10q1 of a left-comb of left-combs by

q0p10q1(1) =
aq,p

1−
∑p−1

k=0 aq,k
,

then Q10q1,10p1 = aq,p. The question whether any stochastic matrix (with some zero coefficients) can
be realized as the Q matrix of some non-null stable VLMC seems to be more difficult. Namely, zero
coefficients in Q assuming non-zero qc(α) constraint the shape of the context tree.

Proposition 3.17. Let (T , q) be a non-null stable probabilised context tree. Then the matrix Q is
irreducible.

See Section 4 page 33 for a proof of this proposition.

3.4 Stationary measure for a stable VLMC vs recurrence of Q

The following result links the existence and the uniqueness of a stationary probability measure of a
VLMC to the recurrence of Q. Let us recall the definition of recurrence and state a necessary and
sufficient condition to get a (unique) invariant probability measure for stable trees. In the sequel, a
stochastic matrix is a row-stochastic one – see Definition 3.14. Note that the powers of a stochastic
matrix are well defined and also stochastic.

Definition 3.18. Let A = (ai,j)i,j be a stochastic irreducible countable matrix. Denote by a
(k)
i,j the

(i, j)-th entry of the matrix Ak. The matrix A is recurrent whenever there exists i such that

∞∑
k=1

a
(k)
i,i = 1.

Any stochastic irreducible countable matrix may be viewed as the transition matrix of an irreducible
Markov chain with countable state space. The recurrence means that there is a state i (and this is true
for every state because of irreducibility) for which the first return time is a.s. finite. When in addition
the expectation of the return times are finite, the matrix is classically called positive recurrent.

Theorem 3.19. Let (T , q) be a non-null probabilised context tree. Assume that T is stable. Then,
the following assertions are equivalent.

1. The VLMC associated with (T , q) has a unique stationary probability measure

2. The VLMC associated with (T , q) has at least a stationary probability measure

3. The three following conditions are satisfied:
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(c1) the cascade series (4) converge

(c2) Q is recurrent

(c3)
∑

αs∈S vαsκαs < +∞, where (vαs)αs is the unique non-negative left-fixed vectors of Q, up
to multiplication by a positive real number.

A proof of Theorem 3.19 is given in Section 4.2, page 33. Notice that Theorem 3.19 is a direct conse-
quence of Theorem 2.18 and of the fact that Q is stochastic. In the present article, the stochasticity
of Q is deduced from its interpretation as the transition matrix of some semi-Markov chain (Proposi-
tion 3.12). Notice, as already mentioned just before Proposition 3.15, that this stochasticity can also
be proved by a direct combinatorial proof. In this sense, Theorem 3.19 can be understood as being
independent from the fact that the process (Zn)n of successive context alpha-LIS of the VLMC (Un)n
is a semi-Markov chain (our current notations).

Remark 3.20. Actually, as shown in the end of the proof, when Q is recurrent and when the series∑
αs∈S vαsκαs converges, then Q is positive recurrent. Furthermore, all the vαs are then positive,

thanks to Lemma 2.16.

Remark 3.21. There exist non-null stable probabilised context trees such that (c1) and (c2) are fulfilled,
but not (c3), hence with no stationary probability measure. Here is an example based on a left-comb
of left-combs, already introduced in Remark 3.16.

Let vp = 1
p+1 −

1
p+2 and Rp =

∑
q>p vq = 1

p+1 for every p > 0 (more generally, on can build similar
examples based on positive sequences (vp)p such that

∑
p>0 vp = 1 and

∑
p pvp diverges). Define S by

S(x) =
∑
q>0

vqx
1
q+1 .

This series is normally convergent on the real interval [0, 1] so that S is continuous on [0, 1] and
satisfies S(0) = 0 and S(1) = 1. Furthermore, S is derivable and increasing on [0, 1] since the derived

series converges normally on any compact subset of ]0, 1]. Finally, S(x) > vqx
1
q+1 on [0, 1] for every

q > 0. Consequently, for every t > 0, there exists Ct > 0 such that

∀x ∈ [0, 1], S−1(x) 6 Ctx
t. (21)

Take now the probabilised left-comb of left-combs defined by the relations (see notations in Remark 3.16)

∀q, p > 0, cq,p = S−1 (Rp)
1
q+1 .

Note that these equations fully define the corresponding VLMC because the probabilities q0p10q1 are
characterized by these cq,p via the equalities q0p10q1(0) = cq,p+1/cq,p. The definition of S implies that∑

q>0 vqcq,p = Rp for every p > 0, which precisely means that v = vQ (the row-vector v is a left-fixed
vector for Q). Besides, for any q > 0, applying (21) for t = 2(q + 1) leads to inequalities

∀p > 0, cq,p 6 C2(q+1)

(
1

p+ 1

)2

.

Thus, the positive sequences (vq)q and (cq,p)p,q satisfy the following properties.

1. ∀q > 0,
∑

p cq,p <∞,

2. ∀p > 0,
∑

q>0 vqcq,p =
∑

q>p vq,
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3.
∑

q vq <∞,

4.
∑

q,p>0 vqcq,p = +∞.

In terms of the VLMC, with general notations of Section 2.2, these properties translate into:

1. the cascade series converge (for αs = 10q1, καs =
∑

p cq,p),

2. v = (vαs)αs∈S is a left-fixed vector for Q,

3.
∑

αs∈S vαs <∞,

4.
∑

αs∈S vαsκαs = +∞.

Therefore, (c1) is fulfilled and (c3) is not. Finally, the stability of the context tree and the con-
vergence of cascade series imply the stochasticity of Q by Proposition 3.15, which force the vector
u = (1, 1, . . . , 1, . . . )> to be a right-fixed vector for Q. Moreover, 〈v, u〉 =

∑
αs∈S vαs < ∞. Remark-

ing that Q is aperiodic (for it is strictly positive) and using Remark 7.1.17 p. 207 of Kitchens [1998],
this implies the positive recurrence of Q.

Remark 3.22. One may wonder whether (c1) =⇒ (c2). The answer is no. There exists a VLMC
defined by a stable tree such that the cascade series converge and the matrix Q is transient.
To build such an example, recall that, by Remark 3.16, any stochastic matrix with strictly positive
coefficients can be realized as the matrix Q of a stable tree (take for example a left-comb of left-combs).
The matrix A = (ai,j)i>1,j>1 defined by

• ai,i+1 = 1− 1
(i+1)2

for all i > 1,

• ai,j = 1
(i+1)22j−1 if j > i+ 2,

• ai,j = 1
(i+1)22i+1−j if j 6 i

is stochastic and transient. Indeed, if one associates a Markov chain to the stochastic matrix A and
if one denotes by T1 the return time to the first state,

P(T1 =∞) >
∏
i>1

ai,i+1 >
∏
i>2

(
1− 1

i2

)
=

1

2
.

Consider now the VLMC defined by a left-comb of left-combs probabilised in the unique way such that
Q10q1,10p1 = aq,p for every (p, q), like in Remark 3.16. A simple computation shows that the series of
cascade converges (geometrically). Simultaneously, since Q is transient, Theorem 3.19 shows that the
VLMC admits no stationary probability measure.

Notice that Theorem 3.19 also provides results for non-stable trees as the following corollary shows,
using Remark 3.9.

Corollary 3.23. Let (T , q) be a non-null probabilised context tree. Suppose that T is stabilizable and

denote by T̂ its stabilized. Using the notations of Remark 3.9, if
(
T̂ , q̂

)
satisfies the conditions of

Theorem 3.19, then the VLMC associated with (T , q) admits a unique invariant probability measure.
If not, it does not admit any invariant probability measure. In particular, a VLMC associated to a
stabilizable context tree never admits several stationary probability measures.
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When the matrix Q is finite dimensional, stochastic and irreducible, it admits a unique left-fixed vector
up to scalar multiplication. This leads to the following theorem.

Theorem 3.24 (finite number of alpha-LIS). Let (T , q) be a non-null probabilised context tree and
U = (Un)n be the VLMC it defines. Assume that T is stable and that #S < ∞. Then (i), (ii) and
(iii) are equivalent.
(i) U admits at least a stationary probability measure.
(ii) U admits a unique stationary probability measure.
(iii) The cascade series (4) converge.
Moreover, whenever one of the previous assertion is true then, for every distribution of U0 that does
not charge any infinite context, for every finite word w,

P (Un ∈ wR) −→
n→∞

π (wR)

where π denotes the unique U -invariant probability measure.

The proof of Theorem 3.24 is made in Section 4, page 33.

Remark 3.25 (Case of finite trees). Assume that U is a non-null VLMC defined by a finite context
tree. One gets an equivalent process Û by properly probabilising the stabilized context tree – see
Remark 3.9. Since there are finitely many contexts, all the cascade series converge – they are all finite
sums. Then, Theorem 3.24 applies, showing that Û – thus U – always admits a unique stationary
probability measure. This is not surprising because in that case, U can be seen as an ordinary irreducible
Markov chain whose order is the height of its context tree – see Remark 2.4.

The following example shows how one can apply Theorem 3.24.

Example 3.26. The so-called left-comb of right-combs is particularly simple because if has only one
context alpha-LIS. The left-comb of right-combs augmented by a cherry stem, a variation of the former
one, gets four context alpha-LIS. Because of Theorem 3.24, both corresponding VLMC have a (unique)
stationary probability measure if and only if their cascade series converge.

The left-comb of right-combs, built on the alphabet {0, 1}, is
drawn on the left. Its finite contexts are the 0p1q0, p > 0,
q > 1. It has infinitely many infinite branches, namely
the 0p1∞, p > 0. This context tree is stable and all finite
contexts have 10 as an alpha-LIS. The matrix Q, which is
thus 1-dimensional, is reduced to (1). The convergence of
the unique cascade series consists in the summability of the
double sum

∑
p>0,q>1

p−1∏
j=0

q0j1q0(0)

q−1∏
k=1

q1k0(1).

The left-comb of right-combs with a cherry stem consists in
simply replacing the context 10 of the preceding tree by the
cherries 100 and 101. The tree is still stable and it has four
context alpha-LIS, as resumed in the array.

alpha-LIS αs contexts having αs as an alpha-LIS

100 100
101 101
010 0p10, p > 1
110 0p1q0, p > 0, q > 2
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In this last example, the convergence of the cascade series is equivalent to the finiteness of both sums

κ010 =
∑
p>1

p−1∏
k=1

q0k10(0) and κ110 =
∑

p>0, q>2

p−1∏
j=0

q0j1q0(0)

q−1∏
k=2

q1k0(1).

3.5 A semi-Markov chain is a stable VLMC

In this section, it is shown that any semi-Markov chain on a finite state space is a VLMC associ-
ated with some particular infinite stable probabilised context tree. Consequently, one deduces from
Theorem 3.24 a necessary and sufficient condition for a non-null semi-Markov chain to admit a limit
distribution. This condition already appears in Barbu and Limnios [2008].

Definition 3.27. If b > 2, the b-comb is the context tree on an alphabet A of cardinality b having{
αkβ : α, β ∈ A , α 6= β, k > 1

}
as a set of finite contexts.

Figure 3: The b-comb for b = 4

Theorem 3.28. Let b be an integer, b > 2. Every semi-Markov chain with true jumps on a state
space having b elements is the process of initial letters of a VLMC on the b-comb.

In the proof, placed in Section 4 on page 35, the correspondance between the b-comb and the semi-
Markov chain is made explicit. More precisely, the probability distributions at each context of the
b-comb are given, such that the initial letter process of the VLMC has the same distribution as a given
semi-Markov chain with b states.

Theorem 3.29. Let (Zn)n>0 be a semi-Markov chain with true jumps on a finite state space E . Denote
by p = (pα,β(k))α,β∈E ,k>1 its semi-Markov kernel and assume that for any α, β ∈ E , α 6= β, k > 1,

pα,β(k) 6= 0. Then, the following properties are equivalent.

(i) (Zn)n>0 admits a limit distribution.

(ii) For every α ∈ E , the series

mα :=
∑
k>1

k

∑
γ∈E

pα,γ(k)


is convergent.

A proof of Theorem 3.29 can be found in Section 4, page 36.

Remark 3.30. The sum mα is readily seen as a mean sojourn time: mα = E
(
T1
∣∣J0 = α

)
. The-

orem 3.29 establishes that mα < ∞ for any α ∈ E is a necessary and sufficient condition for a
semi-Markov chain with true jumps and with a positive semi-Markov kernel to admit a limit distribu-
tion. Thus, the sufficient assumption mα < ∞ for any α ∈ E in Barbu and Limnios [2008] becomes
a NSC when also assuming that for any α, β ∈ E , α 6= β, k > 1, pα,β(k) 6= 0.
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3.6 From a VLMC to its induced SMC and back (finite number of alpha-LIS)

The above allows us to go a little further for a non-null stable VLMC (Un) and its associated semi-
Markov chain (Zn) of its successive context alpha-LIS, in the case when there are finitely many
alpha-LIS’s. Remark 3.13 asserts that one cannot recover the VLMC (Un) from the semi-Markov
chain (Zn) (see Section 3.2.2). Nevertheless, one may ask whether the NSC for existence of a limit
distribution for the semi-Markov chain (Zn) is the same as the NSC for existence and unicity of a
stationary probability measure for the VLMC (Un). The answer is yes.
Indeed, under the assumptions of Theorem 3.24 (finite number of alpha-LIS), the induced S -valued
semi-Markov chain (Zn) has a finite number of states. Thus, Theorem 3.29 applies and gives a NSC
for (Z ′n), the semi-Markov chain with true jumps deduced from (Zn) by formulas (13). This NSC
writes m′αs < +∞ where

m′αs = E
(
T ′1|J ′0 = αs

)
=
∑
k>1

k

 ∑
βt 6=αs

p′αs,βt

 .

Besides, thanks to (14), m′αs < +∞ is equivalent to mαs < +∞ since, as already noticed in Re-
mark 3.30, mαs = E (T1|J0 = αs). Thanks to Proposition 3.12(i) and its proof, E (T1|J0 = αs) = καs,
so that

καs = mαs.

Moreover, in Theorem 3.24, καs < +∞ for any αs ∈ S is the NSC for existence and unicity of a
stationary probability measure for a stable VLMC with a finite number of alpha-LIS. Summarizing,
the following holds.

Proposition 3.31. Let (Un)n be a non-null stable VLMC admitting a finite number of alpha-LIS. Let
(Zn)n be the S -valued process of its alpha-LIS – see Formula (15). Then, the following properties are
equivalent.

(i) (Un)n>0 admits a unique stationary probability measure.

(ii) The cascade series (4) converge.

(iii) (Zn)n>0 admits a limit distribution.

4 Proofs

4.1 Proofs of Section 2 (general case)

Proof of lemma 2.15 (Cascade formulae).
(i) Assume first that π (wR) 6= 0. Then, since w is noninternal, cont(w) is well defined so that, by
stationarity,

π (αwR) = Pπ (U1 ∈ αwR)

= Pπ (U1 ∈ αwR|U0 ∈ wR) Pπ (U0 ∈ wR)

= qcont(w)(α)π (wR)

proving (8). If π (wR) = 0, then, by stationarity, π (αwR) = Pπ (U1 ∈ αwR) 6 Pπ (U0 ∈ wR) = 0
so that (8) remains true.
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(ii) By an argument similar to the one above, if π(r) = 0, then

π(αr) = Pπ (U1 = αr) 6 Pπ (U0 = r) = π(r) = 0.

If, on the contrary, π(r) 6= 0, then

π(αr) = Pπ (U1 = αr) = Pπ (U1 = αr|U0 = r) Pπ (U0 = r) = qcont(r)(α)π(r),

which proves (ii).
(iii) Direct induction from Formula (8).

Proof of lemma 2.16. (i) We prove that if w is a finite word and if α ∈ A , then [π (αwR) = 0] ⇒
[π (wR) = 0]. An induction on the length of w is then sufficient to prove the result since π(R) = 1.
Remember that I stands for the set of finite internal words.

1. Assume that w /∈ I and that π (αwR) = 0. Then, as a consequence of the cascade formula (8),
0 = π (wR) qcont(w)(α). As no qc vanishes, π (wR) = 0.

2. Assume now w ∈ I and π (αwR) = 0. Then, by disjoint union and Lemma 2.15, since π is
stationary,

0 = π (αwR) =
∑
c∈C f

c=w···

π (αcR) +
∑
c∈C i

c=w···

π (αc) =
∑
c∈C f

c=w···

π (cR) qc(α) +
∑
c∈C i

c=w···

π (c) qc(α).

As no qc vanishes, all the π (cR) and the π(c) necessarily vanish so that, by disjoint union,

π (wR) =
∑
c∈C f

c=w···

π (cR) +
∑
c∈C i

c=w···

π (c) = 0.

(ii) Denote r = α1α2 · · · and rn = αnαn+1 · · · its n-th suffix, for every n > 1. Since π is stationary,
an elementary induction from Formula (9) implies that, for every m > 1,

π (r) =

(
m∏
k=1

qcont(rk+1) (αk)

)
π (rm+1) . (22)

1. Assume first that r = st∞ is ultimately periodic, where s and t are finite words, t = β1 · · ·βT
being nonempty. Then, because of (22), π(r) 6 π (t∞) and π (t∞) = ρπ (t∞) where

ρ =

T∏
k=1

qcont(βk+1···βT t∞) (βk) .

In this product, the term obtained for k = T writes qcont(t∞) (βT ). Since the probability measures
qc are all assumed never to vanish, they cannot take 1 as a value so that ρ < 1, which implies that
π (t∞) = 0. Note that this argument proves that an invariant probability measure π vanishes on
ultimately periodic infinite words as soon as the qc never take 1 as a value (this assumption is
weaker than non-nullness).

2. Assume on the contrary that r is aperiodic. Then, m 6= n =⇒ rn 6= rm for all n,m > 1: the rn
are all distinct among the infinite branches of the context tree. Thus, by disjoint union,∑

n>1

π (rn) 6
∑
c∈C i

π (c) 6 π (R) = 1,

which implies in particular that π (rn) tends to 0 when n tends to infinity. Since π (r) 6 π (rn)
because of Formula (22), this leads directly to the result.
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Proof of theorem 2.18. The proof is given for the alphabet A = {0, 1}. It can be straightforwardly
adapted to the case of an arbitrary finite alphabet.
Proof of (i). If π is a stationary probability measure, disjoint union, Lemma 2.16(ii) and the Cascade
Formula (10) imply that

1 =
∑
c∈C f

π (cR) =
∑
c∈C f

casc(c)π (αcscR) .

Gathering together all the contexts that have the same alpha-LIS leads to

1 =
∑
αs∈S

π (αsR)

 ∑
c∈C f , c=···[αs]

casc(c)

 .

Now, by Lemma 2.16(i), π (αsR) 6= 0 for all αs ∈ S . This forces the sums of cascades to be finite.

Proof of (ii).
1) Injectivity. Let π be a stationary probability measure on R. As the cylinders based on finite words
generate the whole σ-algebra, π is determined by the π (wR), w ∈ W . Now write any w ∈ W \ {∅}
as w = pαs where αs is the alpha-LIS of w and p ∈ W (beware, αs may not be the alpha-LIS of
a context). As π is stationary, the cascade formula (10) entails π (wR) = casc(w)π (αsR). As a
consequence, π is determined by its values on the words αs where s ∈ I is internal and α ∈ A . Now,
as s ∈ I , by disjoint union, cascade formula (8) and Lemma 2.16(ii),

π (αsR) =
∑

c∈C f , c=s···

π (cR) qc (α) .

This means that π is in fact determined by the π (cR) where c is a finite context. Lastly, as above,
the stationarity of π, the cascade formula (10) and the decomposition of any context c into c = pcαcsc
where αcsc is the alpha-LIS of c together imply that π is determined by the π (αsR) where s ∈ S
(remember, S denotes the set of all alpha-LIS of contexts). This proves that the restriction of f to
stationary measures is one-to-one.

2) Image of a stationary probability measure. Let π ∈ M1 (R) be stationary. By disjoint union, as
above, if αs ∈ S ,

π (αsR) =
∑

c∈C f , c=s···

π (cR) qc (α) .

Applying the Cascade Formula (10) to all contexts in the sum and noting that casc(αc) = qc(α) casc(c),
one gets

π (αsR) =
∑

c∈C f , c=s···

casc(αc)π (αcscR) .

Gathering together all the contexts that have the same alpha-LIS entails

π (αsR) =
∑
βt∈S

π (βtR)

 ∑
c∈C f

c=s···=···[βt]

casc(αc)

 =
∑
βt∈S

π (βtR)Qβt,αs.

This means that the row vector (π (αsR))αs∈S is a left-fixed vector for the matrix Q. We have
shown that f sends a stationary probability measure to a left-fixed vector for Q with positive entries.
Moreover, as in the proof of (i), Equality (12) holds.
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3) Surjectivity.
Let (vαs)αs∈S ∈ [0,+∞[S be a row vector, left-fixed by Q, that satisfies

∑
αs∈S vαsκαs = 1. Let µ be

the function defined on S by µ (αs) = vαs. Denoting by αwsw the alpha-LIS of any finite non-empty
word w, the function µ extends to any finite non-empty word in the following way:

∀w ∈ W \ {∅}, µ(w) = casc(w)
∑
c∈C f

c=sw···

casc(αwc)µ (αcsc) ∈ [0,+∞]. (23)

Notice that this definition actually extends µ because of the fixed vector property, and that, at this
moment of the proof, µ(w) might be infinite. Notice also that this implies µ(w) = casc(w)µ(αwsw)
for any w ∈ W , w 6= ∅.
For every n > 1 and for all w ∈ W such that |w| = n, define πn (w) = µ (w). This clearly defines a
[0,+∞]-valued measure πn on An =

∏
16k6n A . Besides, π1 is a probability measure. Indeed, because

of Definition (23) and Remark (2.11),

µ(0) + µ(1) =
∑
c∈C f

(casc (0c) + casc (1c))µ (αcsc) =
∑
c∈C f

casc (c)µ (αcsc)

which can be written

µ(0) + µ(1) =
∑
αs∈S

µ (αs)
∑
c∈C f

c=···[αs]

casc(c) =
∑
αs∈S

vαsκαs = 1,

the last equality coming from the assumption on (vαs)αs.
In view of applying Kolmogorov extension theorem, the consistency condition states as follows:
πn+1(wA ) = πn(w) for any w ∈ W of length n. This is true because

µ(w0) + µ(w1) = µ(w). (24)

Indeed, for any a ∈ A , since sw is internal, swa is either internal or a context. Furthermore,

• if swa ∈ I then swa = swa, αwa = αw and casc(wa) = casc(w) so that

µ(wa) = casc(w)
∑
c∈C f

c=swa···

casc (αwc)µ (αcsc) ; (25)

• if swa ∈ C then denote κ = swa so that casc(wa) = casc(w) casc (αwκ), αwa = ακ and swa =
sκ. Thus, µ(wa) = casc(wa)

∑
c=sκ··· casc (ακc)µ (αcsc) = casc(w) casc (αwκ)µ (ακsκ), which

implies that (25) still holds, the sum being reduced to one single term since swa is itself a
context.

Valid in all cases, Formula (25) easily implies Claim (24). Consequently all the πn are probability
measures. By Kolmogorov extension theorem, there exists a unique probability measure π on R such
that π|An = πn for every n. Note that this result implies that vαs = π (αsR) 6 1, for every αs ∈ S .
Furthermore, π(c) = 0 for any infinite context c. Indeed, one has successively,

1 =
∑
c∈C f

π (cR) +
∑
c∈C i

π (c)

=
∑
c∈C f

µ(c) +
∑
c∈C i

π (c)
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and, besides,∑
c∈C f

µ(c) =
∑
c∈C f

casc(c)µ (αcsc) =
∑
αs∈S

µ (αs)
∑
c∈C f

c=···[αs]

casc(c) =
∑
αs∈S

vαsκαs = 1

so that
∑

c∈C i π (c) = 0.
Finally, the stationarity of π follows from the identity µ(0w) + µ(1w) = µ(w) for any finite word w.
Namely:

• if w /∈ I , then for a ∈ A , saw = sw, αaw = αw hence

µ(0w) + µ(1w) = (casc(0w) + casc(1w))
∑
c∈C f

c=sw···

casc (αwc)µ (αcsc) .

Now, Remark 2.11 entails the claim.

• if w ∈ I , then for a ∈ A , saw = w, αaw = a and casc(aw) = 1 thus

µ(aw) =
∑
c∈C f

c=w···

casc(ac)µ (αcsc) .

Using again Remark 2.11, it comes

µ(0w) + µ(1w) =
∑

c∈C f , c=w···

(casc(0c) + casc(1c))µ(αcsc)

=
∑

c∈C f , c=w···

casc(c)µ(αcsc)

=
∑

c∈C f , c=w···

µ(c)

=
∑

c∈C f , c=w···

π (cR)

= π (wR)−
∑
c∈C i

c=w···

π (c) = µ(w),

the last equality being valid because π vanishes on infinite contexts. Since f(π) = (vαs)αs, this
concludes the proof.

4.2 Proofs of Section 3 (stable case)

Proof of Proposition 3.1. (i) =⇒ (ii). Take c ∈ C and α ∈ A . Assume that αc ∈ I . So, if β ∈ A
is any letter, then αcβ ∈ T . The item (i) implies therefore that cβ ∈ T , which contradicts c ∈ C .
(ii) =⇒ (i). Take α ∈ A and w ∈ W such that αw ∈ T . If w /∈ T then there exists a finite context
c such that w = cw′ with w′ 6= ∅. It comes αcw′ ∈ T , which implies αc ∈ I and this contradicts (ii).
(i) ⇐⇒ (iii) is straightforward.
(ii) =⇒ (iv) What needs to be proved is that cont (Un+1) only depends on Un through cont (Un). In
other words, we shall prove that for all s ∈ R, α ∈ A , cont (αs) only depends on s through cont(s).
This is clear because

cont(αs) = cont (α cont(s)) .
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Indeed, cont(s) ∈ C and if cont(s) ∈ C f , then (ii) implies α cont(s) /∈ I (if cont(s) is an infinite
context, this means that s = cont(s) and the above equality is straightforward). Therefore α cont(s)
writes cw with c ∈ C and w ∈ W . On one hand, this entails cont (α cont(s)) = c. On the other hand,
this means that cw is a prefix of αs thus cont(αs) = c.
(iv) =⇒ (ii) We shall prove the contrapositive. Assume there exists c ∈ C f and α ∈ A such that
αc ∈ I . Let s ∈ R such that cont(s) = c. As αc ∈ I , cont(αs) is a context which has αc as a strict
prefix. Therefore, cont(αs) does not only depend on cont(s), but on a prefix of s strictly longer than
cont(s). Thus, conditionally to Cn, the transition to the context Cn+1 does not depend on Cn but on
a strictly longer prefix of Un. This proves that (Cn)n is not Markovian.

Proof of Lemma 3.4. 1. Assume that t is a context LIS such that c = t · · · , then, by definition of a
context LIS, there exists α ∈ A such that αt is a context alpha-LIS. Since T is stable, Lemma 3.3
implies that αt is a context, therefore αc /∈ C because two different contexts cannot be prefix of one
another. Thus Ac 6= ∅.
2. Let α be in Ac so that αc is not a context. As T is stable, αc is not internal, thus it is an external
node. Let c′ = cont(αc). The context c′ is a strict prefix of αc. Since T is stable, σ(c′) is non-external.
But σ(c′) cannot be a context because it is a prefix of c which is a context. Thus σ(c′) is internal.
This implies that tα := σ(c′) is the LIS of c′ and a prefix of c as well, and that αtα = c′ ∈ C . Besides,
whenever (i) and (ii) are satisfied, tα writes necessarily tα = σ (cont (αc)). Thus existence and unicity
of tα are proven. Finally, since c′ = αtα = cont(αc), tα is a prefix of c, so that for every β /∈ Ac, βtα
is a prefix of the context βc. Consequently, βtα /∈ C because two different contexts cannot be prefix
of one another.

Proof of Lemma 3.6. Irreducibility. Let c and c′ be finite contexts. Denote c′ = αk . . . α2α1, k > 1.
In order to prove that the Markov chain (Cn) has a non null transition from c to c′, let us add the
successive letters of c′ (starting from α1) to the left of c and prove that at each time, the transition is
possible and non-null. Assume that C0 = c and consider the word α1c. As T is shift-stable α1c /∈ I
and c1 := cont(α1c) is a (possibly not strict) prefix of α1c which may be written c1 = α1w1 with w1

a prefix (possibly empty) of c. The transition equals qc(α1) and is therefore non-null. Let us add the
second letter and consider the word α2α1w1 = α2c1. Again α2α1w1 /∈ I and c2 := cont (α2α1w1) is a
prefix of α2α1w1. Here, the point is that c2 cannot be α2 otherwise we would have σk−2(c′) = α2α1 /∈ T
which would contradict the shift-stability of T . Therefore c2 = α2α1w2 with w2 a prefix of w1.
By adding successively the letters of c′, with the same arguments, one gets a sequence of contexts
cj = cont (αjcj−1) = αjαj−1 . . . α1 . . . . The last step necessarily writes ck = αk . . . α1 = c′ because c′

is a context. At each step, the transition is non zero because all the qc(α) are non-null.
Aperiodicity. Let us prove that, given c ∈ C f , the g.c.d. of the lengths of the admissible paths from c
to itself equals 1. Let k be the length of c. The above proof of the irreducibility shows that there exists
an admissible path of length k joining c to itself. Using similar arguments, let α be any letter and let
c′ be the context c′ = cont (αc). There is an admissible path of length 1 joining c to c′. Using again
the proof of the irreducibility, there is also an admissible path of length k joining c′ to c. Combining
these two paths provides a path of length k+ 1 that joins c to itself. Since gcd(k, k+ 1) = 1, the chain
is aperiodic.

Proof of Proposition 3.12. The initial context C0 = cont (U0) is assumed to be finite. Since the con-
text tree is stable, this implies that all Cn = cont (Un) are also almost surely finite words – see
Proposition 3.1(ii). Thanks to this fact, the definition of (Zn)n makes sense (see (15)).

Let us prove (i), i.e. that Tn is almost surely finite (and Sn as well), by induction on n > 1. Remember
that S0 = 0. To lighten the computation, assume that C0 is a context alpha-LIS. If not, C0 writes
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β1 . . . βpαs and a term casc(C0) has to be added to the successive equalities without modifying the
argumentation.

P(T1 = +∞) =
∑
αs∈S

P(T1 = +∞|C0 = αs) P(C0 = αs).

It is sufficient to prove that, for all αs ∈ S , P(T1 = +∞|C0 = αs) = 0. Now

P(T1 = +∞|C0 = αs) = lim
k→∞

P(T1 > k|C0 = αs).

With the description of the process in Section 3.2.2, see also Figure 2,

P (T1 > k|CS0 = αs) =
∑

β1,...,βk−1∈A
∀i6k−1, βi...β1αs∈C

qαs (β1) qβ1αs (β2) . . . qβk−2...β1αs (βk−1)

=
∑

β1,...,βk−1∈A
∀i6k−1, βi...β1αs∈C

casc (βk−1 . . . β1αs)

=
∑

c∈C , c=···[αs]
|c|=|αs|+k−1

casc c

= καs(k),

which, by assumption, tends to 0 when k tends to infinity. Consequently, T1 and S1 = T1 is a.s. finite.

Now, assume that, for all n > 1, Sn−1 is a.s. finite. Repeat the above argument, replacing S0 by Sn−1
and T1 by Tn. It appears that for all n > 1,

P (T1 > k|CS0 = αs) = P
(
Tn > k|CSn−1 = αs

)
= καs(k),

so that Tn is a.s. finite and Sn as well. Note that this proves in passing that the Tn are almost surely
finite if and only if all the καs(k) tend to 0 when k tends to infinity, which has been evoked in the
description of the process (Zn)n, a few lines before Proposition 3.12’s statement.
Remembering the description of the process at the beginning of Section 3.2.2, (ii) is straightforward.
Moreover, CSn−1 = Jn−1 so that summing on k gives E

(
Tn
∣∣Jn−1 = αs

)
= καs. This makes the proof

of (i) complete.

For (iii), based on the description of the process and the finiteness of the Tn and Sn, it is clear that
the distribution of (Jn+1, Tn+1) conditioned on the past only depends on (Jn, Tn), so that (Jn, Tn)n>0

is a Markov process. For j > 0, k > 2, αs ∈ S , βt ∈ S ,

P
(
Jn+1 = βt, Tn+1 = k

∣∣Jn = αs, Tn = j
)

= P
(
ZSn+k = βt, ZSn+k−1 = · · · = ZSn+1 = αs

∣∣ZSn = αs
)
.

Notice that this expression does not depend on j, ensuring that (Jn, Tn)n>0 is a Markov renewal chain.
Continuing the computation leads to

P
(
Jn+1 = βt, Tn+1 = k

∣∣Jn = αs, Tn = j
)

= P
(
Jn+1 = βt, Tn+1 = k

∣∣Jn = αs
)

=
∑

β1,...,βk−1

P
(
USn+k = βt · · · , USn+k−1 = βk−1 · · ·β1αs · · · , . . . , USn+1 = β1αs · · ·

∣∣USn = αs · · ·
)

=
∑

β1,...,βk−1

qβk−1···β1αs(β) . . . qβ1αs(β2)qαs(β1),
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where the sum concerns the letters β1, . . . , βk−1 such that c = βk−1 · · ·β1αs is a context that begins
with the LIS t, and βc is not a context. This can be shortly written under the form

P
(
Jn+1 = βt, Tn+1 = k

∣∣Jn = αs, Tn = j
)

=
∑

c∈C , c=t...
c=...[αs]

|c|=|αs|+k−1

casc(βc). (26)

For k = 1, the calculation reduces to the following: let j > 0, αs ∈ S , βt ∈ S and assume that αs
begins with the LIS t. Then

P
(
Jn+1 = βt, Tn+1 = 1

∣∣Jn = αs, Tn = j
)

= P
(
ZSn+1 = βt

∣∣ZSn = αs
)

= qαs(β)

which equals casc(βc) for c = αs.
This computations prove that the semi-Markov renewal kernel of the Markov renewal chain (Jn, Tn)n>0

is indeed given by (26). Moreover, summing on k in (26) gives

P
(
Jn+1 = βt

∣∣Jn = αs
)

=
∑

c∈C , c=t...
c=...[αs]

casc (βc) = Qαs,βt.

The latter provides that (Jn)n is a Markov process, with transition matrix Q and therefore that Q is
stochastic. It gives a proof of Proposition 3.15.

Proof of Proposition 3.17. Let U be the VLMC defined by (T , q). As before in the text, for every n,
let Cn = cont (Un) and Zn be the alpha-LIS of Cn. Let also J be the internal chain of the semi-Markov
process Z = (Zn)n – see Definition 3.11 and Proposition 3.12. Since the context tree is assumed to be
stable, any context alpha-LIS is a finite context (Lemma 3.3). Besides, the Markov chain C = (Cn)n
induced on C f has been shown to be irreducible (Proposition 3.6). Therefore, two arbitrary finite
contexts are joined by an admissible path relative to the Markov chain C. In particular, two arbitrary
context alpha-LIS αs and βt are joined by an admissible path relative to the Markov chain C. Taking
the alpha-LIS of such a path of contexts provide a path of context alpha-LIS joining αs to βt for
the process Z, which means that conditioning by Z0 = αs, there is some n > 0 such that the event
Zn = βt occurs with positive probability. Restricting this path to jump times provides an admissible
path joining αs to βt relative to the Markov process J .

Proof of Theorem 3.19 (Invariant probability measures for a stable VLMC).
(3. =⇒ 1.) Since Q is recurrent and irreducible, there exists a unique line Rv of left-fixed vectors
for Q. Let v = (vαs)αs∈S be such a vector having non-negative entries (see for example [Seneta, 2006,
Theorem 5.4]). Theorem 2.18(ii) coupled with the assumption on the series

∑
αs∈S vαsκαs entails

directly the existence and uniqueness of a stationary probability measure.
(2. =⇒ 3.) If there exists a stationary probability measure, then Theorem 2.18(i) and Lemma 2.16
assert that the cascade series converge and that Q admits at least one left-fixed vector v with positive
entries such that

∑
αs∈S vαsκαs <∞. Besides, every καs is greater than 1. Indeed, the cascade of any

alpha-LIS is 1 and, in the stable case, any alpha-LIS is a context (Lemma 3.3). Thus, v is summable
and Q is positive recurrent (see for instance [Seneta, 2006, Corollary of Theorem 5.5]). Since it is
irreducible (Proposition 3.17), it admits a unique direction of left-fixed vectors Rv, proving (3.) by
Theorem 2.18.

Proof of Theorem 3.24 (finite number of alpha-LIS).
Thanks to Theorem 3.19, (i) and (ii) are equivalent. Moreover, (i) =⇒ (iii) is contained in Theo-
rem 2.18(i). Assume reciprocally that the cascade series converge. Since Q is stochastic, irreducible
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and finite dimensional, it admits a unique direction of left-fixed vectors, so that Theorem 2.18(ii)
allows us to conclude.
Convergence towards π. Denote by πC f the measure on C f induced by π, defined by πC f (c) = π (cR).
For any n > 0, denote also by Cn the cont of Un. Thanks to Lemma 2.16(ii), πC f is a probability
measure on C f . Thus, since the process induced by (Cn)n on C f is an irreducible aperiodic Markov
chain (Lemma 3.6) on a denumerable state space that admits πC f as an invariant probability measure,
the distribution of Cn converges to πC f as soon as C0 is finite (and πC f is the unique invariant
probability measure on C f for the Markov chain induced by (Un)n on C f ). In particular, if ν is a
distribution of U0 that does not charge infinite contexts, for any context c ∈ C f ,

Pν (Un ∈ cR)−→
n→∞

π (cR) . (27)

Now, for any finite word w, use again the notation w = β1 · · ·βpwαwsw where the βk and αw are
letters, pw is a nonnegative integer and sw the LIS of w. Take w ∈ W .

1© Assume first that w is noninternal and that n > pw. Then,

Pν (Un ∈ wR) = casc(w) Pν (Un−pw ∈ αwswR)

Since αwsw is a context (Lemma 3.3(i)), this entails by (27) that

Pν (Un ∈ wR)−→
n→∞

casc(w)π (αwswR) = π (wR) .

2© Assume now that w is an internal word. In this case, for any n > 0, by disjoint union, since Un
does not charge any infinite word (because U0 does not)

Pν (Un ∈ wR) =
∑

c∈C f , c=w···

Pν (Un ∈ cR).

Distinguish then the long enough contexts from other ones by defining αn(w) and βn(w) as the real
numbers

αn(w) =
∑

c∈C f , c=w···
pc6n

Pν (Un ∈ cR) and βn(w) =
∑

c∈C f , c=w···
pc>n+1

Pν (Un ∈ cR).

Deal first with αn(w) that can be written,

αn(w) =
∑
αs∈S

∑
c∈C f

c=w···=···[αs]
pc6n

Pν (Un ∈ cR) =
∑
αs∈S

∑
c∈C f

c=w···=···[αs]
pc6n

casc(c) Pν (Un−pc ∈ αsR). (28)

For a given αs ∈ S , by hypothesis, the cascade series∑
c∈C f

c=···[αs]

casc(c)

converges. Thus, the convergence in the last sum of (28) is dominated so that, using (27) again,∑
c∈C f

c=w···=···[αs]
pc6n

casc(c) Pν (Un−pc ∈ αsR)−→
n→∞

∑
c∈C f

c=w···=···[αs]

casc(c)π (αsR) .
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Since S is finite, one gets finally

αn(w) =
∑
αs∈S

∑
c∈C f

c=w···=···[αs]
pc6n

casc(c) Pν (Un−pc ∈ αsR)−→
n→∞

∑
αs∈S

∑
c∈C f

c=w···=···[αs]

casc(c)π (αsR) = π (wR) .

3© Extend now the definition of the αn and βn to any finite word, by denoting

αn(w) = Pν (Un ∈ wR) and βn(w) = 0

whenever w is noninternal. With this notation, if w is any finite word

Pν (Un ∈ wR) = αn(w) + βn(w) (29)

and it is shown in 1© and 2© that

αn(w)−→
n→∞

= π (wR) and βn(w) > 0. (30)

Take finally any finite word w and denote its length by N . By disjoint union, if n > 1,

1 =
∑

v∈W , |v|=N

Pν (Un ∈ vR) =
∑

v∈W , |v|=N

αn(v) +
∑

v∈W , |v|=N

βn(v). (31)

Using (30), this sum being finite, one gets∑
v∈W , |v|=N

αn(v)−→
n→∞

∑
v∈W , |v|=N

π (vR) = 1, (32)

the last equality resulting from disjoint union. Putting (31) and (32) together shows that

lim
n→∞

∑
v∈W , |v|=N

βn(v) = 0.

In particular, if w is any finite word,
lim
n→∞

βn(w) = 0. (33)

Thus, (29), (30) and (33) show the result.

Proof of Theorem 3.28 (A semi-Markov chain on a finite state space is a stable VLMC).
Let (Zn)n>0 be a semi-Markov chain with true jumps on a state space of cardinality b. Without lack
of generality, for technical convenience, take A = Z/bZ. Denote by (JN )N>0 the internal chain of
(Zn)n, namely the process of the successive different states of (Zn)n>0 and by (TN )N>0 the process of
the successive sojourn times in the visited states, with the convention T0 = 0. Assuming that (Zn)n>0

is semi-Markov amounts to supposing that almost surely, for every N > 0, α ∈ A , k > 1,

P
(
JN+1 = α, TN+1 = k

∣∣J0, · · · , JN , T1, · · · , TN) = P
(
JN+1 = α, TN+1 = k

∣∣JN) .
Denote by p = (pα,β(k))α,β∈A ,k>1 the semi-Markov kernel of the process:

pα,β(k) = P
(
JN+1 = β, TN+1 = k

∣∣JN = α
)
.

For any n > 0, define the right-infinite random sequence

Vn = ZnZn−1 · · ·Z1Z0 (1 + Z0)Y−2,
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where Y−2 is any non atomic distribution on R. Remember that the process (Zn)n>0 takes its values
in the set A = Z/bZ. The semi-Markov property of (Zn)n>0 guarantees that the R-valued process
(Vn)n>0 is Markovian.

Define now (Un)n>0 as the VLMC on the b-comb with alphabet A , with the following parameters.
As an initial state, take U0 = Z0 (1 + Z0)Y−2. As a transition probability associated with the context
β`γ where β, γ ∈ A , β 6= γ and ` > 1, take the probability measure qβ`γ on A :

∀α ∈ A , qβ`γ(α) =



pβ,α(`)∑
k>`

(∑
δ∈A

pβ,δ(k)

) if α 6= β

1−

∑
δ∈A

pβ,δ(`)

∑
k>`

(∑
δ∈A

pβ,δ(k)

) =

∑
k>`+1

(∑
δ∈A

pβ,δ(k)

)
∑
k>`

(∑
δ∈A

pβ,δ(k)

) if α = β.

(34)

Note that qβ`γ does not depend on γ and that the convergence of the series is guaranteed by the
properties of the semi-Markov kernel p.

We show that both R-valued Markov processes (Un)n>0 and (Vn)n>0 have the same distribution stating
that, for any α ∈ A and n > 0, almost surely,

P
(
Vn+1 = αVn

∣∣Vn) = qcont(Vn)(α).

Since V0 and U0 have the same distribution, this will entail the result.

Let r ∈ R, not of the form β∞, β ∈ A ; write r = β`s where ` > 1, β ∈ A and s ∈ R starts with a
letter different from β. Denote, by Sn the partial sum of Tk, as in Definition 3.11. For any α ∈ A ,
α 6= β and for any n > 0, as soon as N is such that SN 6 n 6 SN+1 − 1,

P
(
Vn+1 = αVn

∣∣Vn = r
)

= P
(
JN+1 = α, TN+1 = `

∣∣JN = β, TN+1 > `, Vn−` = s
)
.

Because of the semi-Markov property, this entails that

P
(
Vn+1 = αVn

∣∣Vn = r
)

= P
(
JN+1 = α, TN+1 = `

∣∣JN = β, TN+1 > `
)
.

Using the semi-Markov kernel, this leads to

P
(
Vn+1 = αVn

∣∣Vn = r
)

=
P
(
JN+1 = α, TN+1 = `

∣∣JN = β
)

P
(
TN+1 > `

∣∣JN = β
) =

pβ,α(`)∑
δ∈A

∑
k>`

pβ,δ(k)
.

This shows that Formulae (34) are the suitable ones to ensure that both Markov processes (Un)n>0

and (Vn)n>0 have the same distribution.

Proof of Theorem 3.29 (Limit distribution of a semi-Markov chain).
Let b be the cardinal of the state space E . Let U be the VLMC defined on the b-comb (Definition 3.27)
by the transition probabilities of Formula (34). This context tree (the b-comb) is defined on the
alphabet A = E ; it admits a finite number of context alpha-LIS, namely the words αβ where α and β
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are two distincts elements of E ; furthermore, in this tree, the set of contexts having αβ as an alpha-LIS
is
{
α`β : ` > 1

}
. The processes (Zn)n and U are related by Theorem 3.28. Moreover, Theorem 3.24

applies to U . Indeed, thanks to Formulas (34), the assumption on the positivity of the semi-Markov
kernel p implies that the associated VLMC U is non-null.

By Theorem 3.24, the convergence of the cascade series implies the convergence P (Un ∈ wR) →
π (wR) when n tends to infinity, for any finite word w. As a consequence, as soon as the cascade
series converge, P (Zn = β|Z0 = α) converges to π (βR) when n tends to infinity, and this limit does
not depend on α. In other words, (Zn)n>0 admits (π (βR))β∈E as a limit distribution.

Conversely, assume that (Zn)n admits a limit distribution µ. In terms of the VLMC (Un)n, this
implies that P (Un ∈ αR) tends to µ(α) when n tends to infinity, for every α ∈ E . Let α, β ∈ E be
two distinct letters, so that αβ ∈ S . For every n > 1,

P (Un ∈ αβR) = P (Zn = α,Zn−1 = β) = pβ,α(1) P (Zn−1 = β)

so that
P (Un ∈ αβR) −→

n→∞
pβ,α(1)µ(β).

This has two consequences.
Firstly, µ(α) 6= 0 for every α ∈ E . Indeed, since µ is a probability measure, all these numbers cannot
simultaneously vanish; let thus β ∈ E such that µ(β) 6= 0. Let also α ∈ E \ {β}. For any n > 1, as
before,

P (ZnZn−1 = αβ) = pβ,α(1) P (Zn−1 = β) .

Assume that µ(α) = 0. Since P (ZnZn−1 = αβ) 6 P (Zn = α), the left hand side of this equality
tends to 0 when n tends to infinity, which is impossible because the limit right hand side, namely
pβ,α(1)µ(β), is non-null. Thus, µ(α) 6= 0.
Secondly, for every ` > 1,

P
(
Un ∈ α`βR

)
= casc

(
α`β

)
P (Un−l+1 ∈ αβR) −→

n→∞
casc

(
α`β

)
pβ,α(1)µ(β).

Thus, if L is a positive integer,

L∑
`=1

P
(
Un ∈ α`βR

)
−→
n→∞

[
L∑
`=1

casc
(
α`β

)]
pβ,α(1)µ(β). (35)

For any n, the left hand side of Formula (35) if less than 1 because it is bounded above by the
whole sum

∑
c∈C f P (Un ∈ cR) +

∑
c∈C i P (Un = c) which equals 1 by disjoint union. Thus, the right

hand side is also bounded. In particular, since pβ,α(1) and µ(β) are non-null, the series of positive
numbers

∑
` casc

(
α`β

)
converge. Besides, the cascade series of the context alpha-LIS αβ is precisely

καβ =
∑

`>1 casc
(
α`β

)
. This allows us to conclude that the existence of a limit distribution for the

process (Zn)n implies the convergence of all the cascade series.

It suffices now to show that condition (ii) is equivalent to the convergence of every cascade series∑
`>1

casc
(
α`β

)
.

Let α and β be two distinct elements of A . For any ` > 1, since

casc
(
α`β

)
=

`−1∏
k=1

qαkβ(α),
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an immediate reading of Formula (34) shows that

casc
(
α`β

)
=

∑
k>`

∑
γ∈A

pα,γ(k)


∑
k>1

∑
γ∈A

pα,γ(k)

 ,

so that the sum of these cascades writes

∑
`>1

casc
(
α`β

)
=

∑
k>1

k

∑
γ∈A

pα,γ(k)


∑
k>1

∑
γ∈A

pα,γ(k)

 ∈ [0,+∞],

leading to the result. Note that the cascade series
∑

`>1 casc
(
α`β

)
does not depend on β, because all

the probability measures one has to associate with the leaves of a given context of the comb are all
the same ones, as can be seen on Formula (34).

5 Open problems and conjectures

5.1 Right-fixed vectors for Q

Take a probabilised context tree. When the tree is stable and whenever the sequence (καs(n))n
converge to 0 for every αs ∈ S , the square matrix Q can be seen as the transition matrix of some
S -valued Markov chain, so that it turns out to be stochastic – see Proposition 3.15. This is not true
in general if one removes the stability assumption (Remark 2.19). We nevertheless make the following
conjecture.

Conjecture 5.1. For any probabilised context tree, whenever the sequence (καs(n))n converge to 0
for every αs ∈ S , the matrix Q always admits 1 as a right-eigenvalue.

In particular, thanks to Theorem 2.18, if a context tree has a finite set of alpha-LIS and if this
conjecture is true, then the corresponding VLMC always admits at least one invariant probability
measure as soon as its (finitely many) cascade series converge.

5.2 Convergence of cascade series

Consider two very simple examples on the alphabet A = {0, 1}, pictured hereunder: the left comb
and the bamboo blossom – see Cénac et al. [2012] for a complete treatment of stationary probability
measures for these VLMC. It turns out that the left comb gets one context alpha-LIS and thus
one cascade series, that can be convergent or not depending on the distributions qc. The bamboo
blossom gets two context alpha-LIS, both cascade series being always convergent with geometrical
rates whatever the (non-null) distributions qc are. This phenomenon, which seems to be generalizable,
leads us to the following conjecture.
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The left comb The bamboo blossom

Conjecture 5.2. Take a non-null probabilised context tree. When the tree does not have any infinite
shift-stable subtree, all the cascade series converge, with geometrical rates.

5.3 Vanishing of cascades and σ-finite invariant measures

Take a stable probabilised context tree. As recalled just above (Section 5.1), whenever the sequence
(καs(n))n converge to 0 for every αs ∈ S (we call this assumption vanishing of cascades), the square
matrix Q is stochastic by Proposition 3.15. Moreover, Theorem 2.18 or Theorem 3.19 asserts that the
convergence of cascade series is a necessary condition for the VLMC to admit an invariant probability
measure. As stated herunder, the vanishing of cascades is conjectured to be a necessary condition for
the VLMC to admit an invariant σ-finite measure.

Conjecture 5.3. Let U be a VLMC defined by a probabilised stable context tree. Assume that U
admits an invariant σ-finite measure. Then, for every αs ∈ S , the sequence (καs(n))n tends to 0
when n tends to infinity (and, consequently, Q is stochastic).

6 Appendix: an example of invariant σ-finite measure that charges
irrational infinite contexts

A soon as a non-null VLMC admits an invariant probability measure, all infinite words are negligible –
see Lemma 2.16(ii). Besides, the same argument as in the proof of that lemma shows that an invariant
σ-finite measure always vanishes on rational right-infinite words, i.e. on eventually periodic words.
This appendix provides an example of non-null VLMC that admits an invariant σ-finite measure which
gets positive values on infinitely many (necessarily irrational) contexts4.

In this appendix, a “σ-finite measure” denotes a positive non-zero measure on R which is finite on all
cylinders cR based on finite contexts c, and also, necessarily, on infinite contexts. In particular, since
the contexts induce a partition of R, such a measure is truly σ-finite. As usual in the field of Markov
chains, when U is a VLMC, the definition of an U -invariant probability measure can be extended to
σ-finite measures using the transition probability kernel PU , defined by

PU (r,B) =
∑
α∈A

qcont(r)(α)11{αr∈B}

on Borel sets B and right-infinite words r: this kernel acts on σ-finite measures π through the formula

πPU (B) :=

∫
R
PU (x,B)dπ(x)

(this is an action on the right), and a σ-finite measure π is said U -invariant whenever πPU = π.

4In particular, one cannot get rid of the finiteness assumption of an invariant measure to prove Lemma 2.16(ii).
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In what follows, we describe the announced example in the form of a sequence of hints and assertions
that can be easily (but sometimes laboriously) verified.

Consider the irrational right-infinite word a = 10102103104 . . . . Define as follows the stabilised
arithmetic tree, denoted by Ta: it is the stable context tree on the alphabet A = {0, 1} spanned by a,
i.e. the smallest context tree that contains all the shifted words σn(a), n > 0 (see Definition 2.6). On
the left side of the following picture, one can find drawings of the successive context trees tn spanned
by the shifted infinite word σn(a), n > 1. They are used to give a representation of Ta on the right
side of the picture.

· · ·
Tree c1 := σ(a)

· · ·
Tree c2 := σ2(a)

n
le
av
es

cn+1

Tree cn = σn(a), n > 1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11. . .

c3

c4

c5

c6

c7

c8

c9

c10. . .

c4

c5

c6

c7

c8

c9. . .

c5

c6

c7

c8. . .

c6

c7. . .. . .

· · ·

Stable context tree Ta, generated by a = 10102103 . . .

Computing the contexts leads to show that Ta admits two one-parameter families of context alpha-
LIS, namely 0q10q1, q > 0 and 10N10N+2, N > 1. They are coloured red in the pictures. Thus the
related matrix Q is infinite – see (7) for a definition of Q. Moreover, the infinite contexts of Ta are
the following ones: on one side, the 0∞ and the 0n10∞, n > 0 which are rational; on the other side,
the σn(a) which are irrational.
Given a non-null probabilising of Ta, assume that an invariant σ-finite measure µ exists. Reasoning like
in the proof of Theorem 2.18, for every αs ∈ S , decompose the number µ (αsR) through the partition
of sR induced by cylinders based on finite contexts that have s as a prefix and by such infinite contexts
as well. These writings show that Q’s entries are necessarily finite (sums of summable families) as well
as the sums

∑
c∈C i, c=s... qc(α)µ(c). Note further that Q is row-stochastic because Ta is a stable tree

(see Proposition 3.15). Since all infinite contexts are shifted from a and since µ is invariant, all the

numbers µ(c), c ∈ C i can be written as µ(c) = µ(a)
pc

where pc is a finite product of qσk(a)(β), k > 0,
β ∈ A . Consequently, all the sums

`αs :=
∑
c∈C i

c=s...

qc(α)

pc

are also finite – note that the sums `0q10q1, q > 1 are reduced to a single term, all other `αs’s being
true infinite sums.
Finally, like in the proof of Theorem 2.18, the above decompositions lead to the following statement:
a σ-finite measure µ is invariant if and only if it satisfies the (infinite) matricial equation

µ(a)`+ µSQ = µS (36)
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where ` and µS denote the infinite row-vectors ` = (`αs)αs∈S and µS = (µ (αsR))αs∈S . Notice that
after a straightforward continuation of the function f to σ-finite measures, µS = f(µ) (see (11)).
Using the vocabulary of Kitchens [1998], one finally gets the following result.

Proposition 6.1. Let U be some non-null VLMC defined from the context tree Ta and let Q be its
Q-matrix (see (7)).
(i) If Q is positive recurrent, then U admits a unique half-line of invariant σ-finite measures. All of
them are finite ones.
(ii) If Q is null recurrent, then U admits a unique half-line of invariant σ-finite measures. None of
them are finite ones, but they turn all infinite words negligeable.
(iii) If Q is transient, then U does not admit any invariant probability measure.

We build an example of VLMC on Ta that admits an invariant σ-finite measure that charges (all)
irrational infinite contexts. Proposition 6.1 shows that the corresponding Q-matrix is necessarily
transient.

To exhibit such an example, one first have to compute the “form” of Q (check which entries vanish, see
below) and to make explicit the way how `’s and Q’s entries are expressed in terms of the qc. This being
done, one sees that any row-stochastic matrix A having the form of Q (same positive entries, same
zero ones) is the Q-matrix of a probabilised context tree Ta (choice of the qc, c ∈ C f ). Furthermore, if
X is any positive row-vector that satisfies XA < X (strict inequality for every coordinate), the vector
X −XA can be chosen as the `-vector of such a probabilised Ta (choice of the qc, c ∈ C i).

Therefore, thanks to Equation (36), an example of invariant σ-finite measure that charges (all) irra-
tional infinite contexts is given by any row-stochastic matrix A having the required form, together
with a positive row-vector X that satisfies XA < X. Note that such an A is necessarily transient and
that a corresponding X has necessarily non summable coordinates (see Kitchens [1998]). Below, we
give such a matrix A.

Order the context alpha-LIS by increasing length, placing 10q−110q+1 before 0q10q1 (both alpha-LIS
have the same length). For this order, the form of Q is written hereunder, a ∗ denoting a positive
entry. As heuristic hint, remark first that the (transient) matrix V given hereunder and the positive
vector X = (1, 3, 2, 5, 4, 7, 6, 9, 8 . . . ) satisfy XV < X.

Q =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ 0 0 0 0 0 0 0 0 0 . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ 0 ∗ 0 0 0 0 0 0 0 . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ 0 ∗ 0 ∗ 0 0 0 0 0 . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ 0 ∗ 0 ∗ 0 ∗ 0 0 0 . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 . . .
...

...
...

...
...

...
...

...
...

...
...

. . .


V =



0 0 1 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 1 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 1 0 0 · · ·
0 0 0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 1 · · ·
0 0 0 0 0 0 0 1 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 1 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .


The (transient) matrix A we give is a deformation of V that has the form of Q. It satisfies XA < X
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for the row-vector X given above. Let r, s ∈]0, 1[ and let A be the matrix

A =



r2

0!
r3

1!
R1(r)

r5

3!
r6

4!
r7

5!
r8

6!
r9

7!
r10

8!
r11

9!
r12

10!
· · ·

r3

0!
r4

1!
r5

2!
r6

3!
R2(r)

r8

5!
r9

6!
r10

7!
r11

8!
r12

9!
r13

10!
· · ·

s 1− s 0 0 0 0 0 0 0 0 0 · · ·
r5

0!
r6

1!
r7

2!
r8

3!
r9

4!
r10

5!
R4(r)

r12

7!
r13

8!
r14

9!
r15

10!
· · ·

s2

2!
s2

2!
0 1− s2

1!
0 0 0 0 0 0 0 · · ·

r7

0!
r8

1!
r9

2!
r10

3!
r11

4!
r12

5!
r13

6!
r14

7!
R6(r)

r16

9!
r17

10!
· · ·

s3

3!
s3

3!
0 s3

3!
0 1− s3

2!
0 0 0 0 0 · · ·

r9

0!
r10

1!
r11

2!
r12

3!
r13

4!
r14

5!
r15

6!
r16

7!
r17

8!
r18

9!
R8(r) · · ·

s4

4!
s4

4!
0 s4

4!
0 s4

4!
0 1− s4

3!
0 0 0 · · ·

r11

0!
r12

1!
r13

2!
r14

3!
r15

4!
r16

5!
r17

6!
r18

7!
r19

8!
r20

9!
r21

10!
· · ·

s5

5!
s5

5!
0 s5

5!
0 s5

5!
0 s5

5!
0 1− s5

5!
0 · · ·

...
...

...
...

...
...

...
...

...
...

...
. . .


where R1(r) = 1 + r4

2 − r
2er and Rn(r) = 1 + r2n+3

(n+2)! − r
n+1er when n > 2 so that A is row-stochastic.

It turns out that A satisfies XA < X as soon as r and s are small enough. More precisely, 0 < r < 1/3
and 0 < s < 1/10 is a sufficient condition. All this can be checked by patient but simple calculations.
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