
HAL Id: hal-03301611
https://hal.science/hal-03301611v1

Submitted on 27 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluate on-the-job learning dialogue systems and a case
study for natural language understanding

Mathilde Veron, Sophie Rosset, Olivier Galibert, Guillaume Bernard

To cite this version:
Mathilde Veron, Sophie Rosset, Olivier Galibert, Guillaume Bernard. Evaluate on-the-job learning
dialogue systems and a case study for natural language understanding. Workshop NeurIPS 2020
Human in the Loop Dialogue Systems, Dec 2020, Virtual only, United States. �hal-03301611�

https://hal.science/hal-03301611v1
https://hal.archives-ouvertes.fr

Evaluate on-the-job learning dialogue systems and a
case study for natural language understanding

Mathilde Veron1,2, Sophie Rosset1, Olivier Galibert2, Guillaume Bernard2

1LIMSI, Université Paris-Saclay, CNRS - firstname.name@limsi.fr
1LNE - firstname.name@lne.fr

Abstract

On-the-job learning consists in continuously learning while being used in pro-
duction, in an open environment, meaning that the system has to deal on its own
with situations and elements never seen before. The kind of systems that seem to
be especially adapted to on-the-job learning are dialogue systems, since they can
take advantage of their interactions with users to collect feedback to adapt and im-
prove their components over time. Some dialogue systems performing on-the-job
learning have been built and evaluated but no general methodology has yet been
defined. Thus in this paper, we propose a first general methodology for evaluating
on-the-job learning dialogue systems. We also describe a task-oriented dialogue
system which improves on-the-job its natural language component through its user
interactions. We finally evaluate our system with the described methodology.

1 Introduction

When deploying a system and making it available to real users, any developer wishes that the system
would continue learning on its own when being used. Such a system would be able to continuously
improve its components, adapt to unforeseen elements and situations and extend its domain without
intervention from developers or domain experts. Especially, developers would avoid manual log
analysis and system modifications. This capability is related to Lifelong Learning (LL) (Thrun and
Mitchell, 1995; Chen and Liu, 2016) and never-ending learning (Carlson et al., 2010; Mitchell et al.,
2018). Recently Liu (2020) explicitly incorporated on-the-job learning in the definition of LL. It
consists in continuously learning while being used in production, in an open environment, meaning
that the system has to deal on its own with situations and elements never seen before.

The kind of systems that seem to be especially adapted to on-the-job learning are dialogue systems,
since they can take advantage of their interactions with users and collect feedback in order to adapt
and improve their components over time. Two categories of dialogue systems can be described:
task-oriented dialogue systems and conversational dialogue systems. A conversational dialogue
system aims at finding the most accurate answer to a user’s utterance in an open domain (chit chat). A
task-oriented dialogue system aims at fulfilling user’s needs relative to a specific domain, like finding
information or elements given some criteria (i.e. restaurant hours, a recipe) or performing a specific
task (i.e. booking a flight). Such a system is usually composed of different components which can be
grouped in the following categories : the language abilities, the strategy and the knowledge. Each of
these components could be improved in a lifelong learning scenario.

Some dialogue systems performing on-the-job learning have been built and evaluated but no general
methodology has been defined yet (see Section 2). Moreover, only few systems making their Natural
Language Understanding (NLU) component learn on-the-job have been built, although this step is
the first of the dialogue system and is crucial for correctly achieving the task. Thus we describe in
this paper the following contributions:

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

• a first attempt at a general methodology to evaluate on-the-job learning dialogue systems.

• a task-oriented dialogue system which improves on-the-job its NLU component by collecting
and inferring new training examples thanks to its interactions with users.

• an evaluation framework applying the described methodology on the previous NLU compo-
nent with user simulation and Knowledge Base (KB) completion simulation to demonstrate
the described evaluation methodology.

2 Related work

Liu (2020) described the three main steps of on-the-job learning under the machine learning paradigm.
These three steps can be extended to a system composed of different components (which can rely or
not on machine/deep learning algorithms) and thus be defined as following: 1) detect when a new
piece of knowledge can be learned, 2) retrieve and identify the new piece of knowledge and 3) adapt
the component associated to the new piece of knowledge. As illustrated in this section, the type of
the new piece of knowledge and the methods that can be used to perform these three steps depend on
the component to improve.

Mazumder et al. (2019a) focused on improving the understanding component and built an application
independent natural language interface that matches user’s commands to patterns (e.g. “draw a X1
circle at X2”) associated to a specific action (Natural Language to Natural Language). Their approach
relies basically on learning on-the-job new patterns. To detect that a new piece of knowledge can be
learned, their system explicitly asks if it correctly understood the user, by only taking advantage of
negative examples. The user tells explicitly what was the correct requested action, so that the system
can extract a pattern from the initial user’s query so that a new paraphrased command can be added
to the system. The learning process is thus continuous but under the closed world assumption. To
evaluate their different system’s versions - including ones that did not learn on-the-job, they collected
user’s commands and computed the accuracy on the associated system’s answers. However this does
not allow the comparison over time of different system’s states since the data used to make the system
learn on-the-job (production) and evaluate it are the same.

A Knowledge Base (KB) can also be improved on-the-job as shown by Mazumder et al. (2019b).
The authors developed an engine to help dialogue systems improve their factual KB thanks to their
interactions with users. When the user asks a question referring to unknown elements (relation or
entity), the system asks the user for an example of fact containing the unknown elements. These new
facts allow the system to infer other new facts which can help answer the initial question. This way
of improving the KB through this inference process is close to the definition of LL. However, the
authors decided to focus on the inference engine and directly worked with triple queries instead of
natural language, which greatly simplify the detection step and the retrieval of new elements to learn.
To simulate the production environment, they made use of a simulated user which can ask queries
with unknown relations and entities. Then they evaluated their system on the sames queries at the end
of the production phase, meaning that the evaluation process is not continuous. Moreover they did
not compare their system with an initial one that did not learn on-the-job.

On the other hand, Hancock et al. (2019) built a conversational dialogue system which collects new
training examples during conversation with its users and which periodically adapts its models thanks
to these new training examples (not a continuous on-the-job learning process). They first perform
the detection step by inferring the user satisfaction. If the user seems satisfied, the system stores the
dialogue as a new training example (imitation). Otherwise it asks the user to give a more appropriate
answer and the system’s answer is replaced in the dialogue by the answer provided by the user so that
it can be used as a new training example. To make their system learn on-the-job, they simulated a
production environment on a crowdsourcing platform and evaluated different variants of their system
on a separated test dataset at the end on the learning process. Thus they did not evaluate their models
in a continuous manner.

Regarding the LL evaluation methodologies, Chen and Liu (2016) described a commonly used
evaluation methodology for lifelong machine learning. This methodology does not propose a
continuous evaluation either and consists in a general evaluation.

Since there is no consensus about how to evaluate on-the-job learning dialogue systems, we state that
a general methodology needs to be defined. Thus we describe in the next section a first attempt at

2

such an evaluation methodology, which takes the continuous aspect into account and clarifies the
difference between data used for the production and the evaluation phases. Since no work has been
done on improving on-the-job the slot-filling task independently, we describe and give the evaluation
results of a task-oriented dialogue system which improves on-the-job this task in the cooking domain
in Section 5.

3 General methodologies to evaluate on-the-job learning dialogue systems

We consider a dialogue system that can continuously and autonomously adapt one of its components
on one specific task while interacting with users in production (on-the-job learning). The task itself
would stay the same over time but the scope or even the domain could evolve. We consider that
the system has access to initial data, resulting in the initial state of the system along with an initial
performance (e.g. trained model with the initial data). The system is then exposed to unknown
situations and elements while being used in production (open environment) and should adapt to them
over time, leading to different system states.

The main questions considering such a system are: (1) Does the system forget what it initially
learned/knew while being used and while adapting itself - called catastrophic learning in continual
learning (Parisi et al., 2019)? (2) Does the system actually learn/accumulate the new elements that
appear while being used, does it improve when adapting itself? (3) Does the system manage to infer
additional knowledge from what it learned/accumulated while being used, in order to generalize?
In order to be able to truly compare all different system states with each other, the performance of
each system state on the specified task has to be evaluated by always using the same test dataset. This
dataset is actually composed of three different datasets: testINITIAL: data that look like the initial
data, in order to evaluate the feature (1); testLEARN : data that contain elements that the system is
supposed to learn/accumulate when being used, in order to evaluate the feature (2); testUNKNOWN :
data that contain elements that are not in the initial data and that are not going to appear when the
system will be used, in order to evaluate the feature (3).

Additionally, the system adaptation has to be autonomous, that means that the system has to adapt
without the help of domain experts or developers. Knowing that, the only inputs accepted during
the evaluation are interactions with end users, in natural language. Moreover, in a real scenario it is
not possible to define beforehand testLEARN and testUNKNOWN . That is why the evaluation is
based on user simulation - a common method to evaluate dialogue systems (Deriu et al., 2020)) - in
order to simulate the production phase. Thus, the data used for the simulation have to be similar to
testINITIAL and testLEARN but be separate from testUNKNOWN .

The system’s continuous learning also has to be evaluated. In fact it could be problematic if the
user had to correct the system for the same error again and again, waiting for the system to adapt.
Moreover, interactions with users and feedback collection should seem as natural as possible for the
user. It is necessary if we want the adaptation process to be successful and keep the user willing to
help the system to improve. As a consequence, the system performance has to be evaluated after each
interaction with a user.

To summarize, the evaluation methodology consists in simulating the user interactions and eval-
uating after each interaction the current system’s performance on testINITIAL, testLEARN and
testUNKNOWN . We believe this methodology can be adapted to any on-the-job learning dialogue
system in any domain.

4 A task-oriented dialogue system improving on-the-job its understanding
component

The system that we built is a task-oriented dialogue system in the cooking domain which can
continuously and autonomously improve when interacting with users (on-the-job learning). The
operation of the system is described in Figure 1.

4.1 Description of the task and the model

In this paper, we focus on the improvement of the Natural Language Understanding (NLU) component.
NLU is usually composed of two steps: slot-filling and intent detection, but for first experimentation

3

Figure 1: System operation and evaluation during production (simulated). 1) Training of the
initial model on trainINITIAL, 2) Initialization of the NLU model, 3) Interactions with users, 4)
Continuous extraction of new pieces of knowledge (mentions, patterns, training examples) and update
of the STM, 5) evaluation on testINITIAL, testLEARN , testUNKNOWN and testREAL at the end
of each dialogue and 6) If one of the conditions for model adaptation is validated, generation of
trainLEARN,n from past mentions/patterns and from new mentions/patterns and model fine-tuning.

we decided to consider only slot-filling. Slot-filling can be considered as a sequence labelling task
which aims at retrieving from a user’s utterance a set of concepts. A concept correspond to a tuple
(type of concept, mention). For the first experimentation we decided to work on the recipe domain
and defined the following 8 types of concepts to detect: recipe type, ingredient, preparation technique,
origin, origin adjective, meal, event, other category. For instance, given the following user query
"I’d like to prepare chocolate cake for my son’s birthday", the concepts to detect
are (ingredient, ’chocolate’), (recipe type, ’cake’) and (event, ’birthday’). To
take negative contexts into account we added the negative variant of each concept (e.g. for "I don’t
like bananas" the concept to detect is (negative ingredient, ’bananas’)).

Slot-filling is often performed using deep neural networks. We decided to use a BiLSTM architecture
which is known to achieve good performances on classical slot-filling tasks (Béchet and Raymond,
2018). Before the simulated production phase, we trained a double layered BiLSTM1 with layers of
size 128 on trainINITIAL,TRN (see Section 5.2). The embedding layer is initialized with Word2Vec
CBOW (Mikolov et al., 2013) vectors pre-trained on Wikipedia (Ghannay et al., 2020). Model
selection was done by taking the highest F1-score on the development set (trainINITIAL,DEV , see
Section 5.2).

4.2 Collecting new pieces of knowledge

To build this on-the-job learning dialogue system, the main idea is to take advantage of interactions
with users to collect new training examples to adapt the NLU model. The first step for collecting
new pieces of knowledge is to detect that one can be learned. This step is performed by detecting
a posteriori that an NLU error occurred (Hancock et al., 2019): first the user addresses the system
which answers him/her and tells him/her the concepts it detected (NLU output); if the user continues
the conversation, the NLU output is supposed to be correct - principle of progessivity (Albert and

1Model hyperparameters: Adam optimizer with initial learning rate of 0.001, Word2Vec size 300, CrossEn-
tropy loss.

4

Ruiter, 2018); if the system detects that the user is notifying that it misunderstood him/her, the NLU
output is considered as incorrect 2.

The next step is the extraction and the identification of the new piece of knowledge, consisting here
in labelling the initial user query. If the NLU output is correct, the initial user query is labelled with
the concepts detected and stored. If the NLU output is incorrect, the system tries to correct itself.
This correction is then proposed to the user: as previously, if the user keeps going, he/she implicitly
confirms the correction, if not it means that the new piece of knowledge cannot be extracted. To
correct the initial NLU output we make the assumption that the user will rephrase his/her initial query
after notifying the system that it misunderstood him/her (e.g. “You misunderstood me, I asked for a
cake recipe without eggs”). Note that in practice it is not always true (Hough, 2014, p.29). Under this
assumption, the system compares the initial user query and the paraphrase by removing stop words
and keeping only the common chunks (e.g. for the initial query "Do you have cake recipes
for people allergic to eggs?" and the previous paraphrase, the common chunks are cake
and eggs). Then it checks in the KB associated to the dialogue system if an element associated to the
chunks exists and tries to extract the type of concept associated. If it manages to extract the type, the
initial user’s query can be labelled. This step is crucial but depends highly on the quality of the KB
and on its capability to be adapted to the concepts to detect.

Since learning on-the-job involves an open world environment, new elements that are not originally
in the KB may appear over time. This can impact the performance of the NLU model since it will
have to detect new mentions it never saw during the initial training. The KB should thus evolve
over time to mitigate this issue. We decided to incorporate this phenomenon in our experiments.
To do it we intentionally removed some elements from the KB and simulate the completion of
the KB when the system detects that the user refers to an element missing in the KB. In a real
case, we can consider that this completion would be performed by extracting information about
the missing element from the web for instance. Moreover, since the labelled training examples
collected during interactions with users would be too few to adapt the model, we decided to make
the system inferring additional knowledge to augment the number of labelled training examples.
To do it the system uses a basic method based on patterns. For instance, for the user’s query
"Tonight I have a barbecue, can you suggest me something to prepare?" with the
concept (event, ’barbecue’), the pattern "Tonight I have a $event, can you suggest
me something to prepare?" can be extracted. The system can then generate multiple labelled
training examples from this new pattern. The new pieces of knowledge that can be collected consist
thus in new mentions, new patterns or new training examples (if the pattern if not new).

4.3 Adapting natural language understanding

Since the continuous learning aspect is important and since a neural network needs time to be adapted,
a short term memory which can directly use the knowledge learned from past dialogues has been
added to the NLU component. To the best of our knowledge, it is the first time a short term and a
long term memory (in our case the adapted model) have been jointly used for learning on-the-job.
The NLU component can be then adapted in two ways: a continuous adaptation with the Short
Term Memory (STM) or an incremental adaptation with the adaptation of the NLU model. In this
experiment, only new mentions and their associated concept type are considered in the STM. In fact,
we consider that a user will expect the system to directly remember new mentions introduced in past
dialogues and that he/she will consider that the dialogue system is not learning on-the-job if it is not
able to do it. This is less true for patterns. Note that when the model is adapted, the STM is cleared.
After detecting the concepts in the user query thanks to the NLU model, the output is updated through
the STM as described in Algorithm 1. The strategy followed has been defined empirically through
preliminary experiments. We observed in particular that taking into account the negative context
really impacts the NLU update.

To adapt the NLU model, the current model is fine-tuned on the new labelled training examples
extracted during interactions with users (trainLEARN,n on Figure 1). The adaptation process is
triggered if one of the conditions about the number of new mentions, new patterns or new examples
is validated. We decided to use replay to prevent catastrophic forgetting (Parisi et al., 2019) so
that trainLEARN,n is generated from both patterns and mentions from initial training and past
adaptations and from the current new mentions and patterns. For each adaptation the system always

2To perform this first step we used basic regular expressions (e.g. r".*wrong.*", r".*not what I.*").

5

generates 1000 training examples and adds the new examples collected during the interactions. For
the fine-tuning, a new model modeln is initialized with the weight of the previous model modeln−1

and trained on trainLEARN,n
3. Two kinds of replay are tested: 1) Replay on Patterns and Mentions

(RPM) and 2) Replay on Mentions only (RM).

Algorithm 1 Natural Language Understanding update strategy through Short Term Memory
Input: user’s utterance u
Output: concepts detected in u

1: procedure GET_CONCEPTS(u)
2: conceptsmodel = get_concepts_from_model(u)
3: conceptsstm = get_concepts_from_stm(u)
4: initialize concepts as an empty list of concepts
5: if conceptstm then
6: for cmodel in conceptsmodel do
7: for cstm in conceptsstm do
8: if cmodel.mention == cstm.mention and cmodel.type == cstm.type then
9: add cmodel to concepts

10: else if cmodel.mention == cstm.mention and is_negative(cmodel.type) then
11: add (negative(cstm.type), cstm.mention) to concepts
12: else if cmodel.mention in cstm.mention then
13: add cstm to concepts
14: else if cstm.mention in cmodel.mention then
15: if cmodel.mention in KB then
16: add cmodel to concepts
17: else
18: add cstm to concepts

19: if nothing added to concepts then
20: add cmodel to concepts

21: else
22: concepts = conceptsmodel

23: return concepts

5 Evaluation framework and results

5.1 User simulation

A stated in Section 3, a user simulation is used to simulate the production phase in order to evaluate the
system. The simulated user consists here in a ruled-based program. Only the first dialogue utterance
is generated (the set of first utterances corresponds to the dataset simulation). The simulated user
follows the following scenario: 1) the user asks for a recipe by providing some criteria (i.e. the type
of recipe, the ingredient, etc) 2) the system provides an answer and gives the criteria it detected (the
concepts) 3) if the criteria detected by the system don’t match the ones of the user, he/she tells the
system "You misunderstood me. I want a recipe with $concepts." with the concepts
in natural language in place of $concepts, otherwise he/she behaves normally 4) if it was wrong the
system provides a corrected answer and gives the criteria it corrected 5) if the corrected concepts
match the user’s criteria he/she behaves normally, otherwise he/she tells goodbye 4. Note here that
with this simple user simulation, the first step of on-the-job learning - which consists here in detecting
that the system misunderstood the user - becomes trivial.

5.2 Data preparation and evaluation

To train, simulate and evaluate our on-the-job learning dialogue system the following datasets
are needed: trainINITIAL,TRN (20k), trainINITIAL,DEV (4k), simulation (20k), testINITIAL

(1k), testLEARN (1k) and testUNKNOWN (1k). Because we initially had no data for the concept
detection task, we decided to generate the data using patterns and mentions. The patterns were

3The parameters are the same than for the initial training except for the epoch size which is set to the length
of trainLEARN,n. The same development dataset is also used.

4The decision diagram describing the user’s and the system’s behaviour is is part of supplementary materials.

6

Figure 2: F1-score evolution during simulation on testINITIAL, testLEARN , testUNKNOWN and
testWEIGHTED with data prepared with random seed 1 (F1WEIGHTED = F1INITIAL ∗ 0.2 +
F1LEARN ∗ 0.4 + F1UNKNOWN ∗ 0.4).

written manually by two people from the research domain and the mentions were scraped from the
internet. Moreover, generating data from patterns and mentions allowed us to have more control on
the new pieces of knowledge to learn during the simulated production phase. The sets of patterns and
mentions are randomly split into disjoint sets, namely INITIAL, LEARN and UNKNOWN to
then generate the respective datasets. For simulation we made the assumption that the probability to
have a new pattern in a user’s query is equal to 0.7 and that the probability to have a new mention is
equal to 0.3 (a user can convey the same intention using plenty of different sentences construction but
have less variety in the mentions he/she uses). The simulation dataset is built from INITIAL and
LEARN with a mention and patterns distribution following this assumption 5. For the development
dataset, we made the same assumption and also split the set INITIAL into to disjoint sets so that
trainINITIAL,DEV consists in some mentions and patterns known in trainINITIAL,TRN and some
others that are unknown in order try to select the model which is the best at generalizing in an open
world environment. Since all the datasets have been generated, we added a real test dataset testREAL

(744 annotated queries), composed of questions relative to the cooking domain 6.

To evaluate the performance of the NLU component, the F1-score is computed with the conlleval.pl
script (Tjong Kim Sang and Buchholz, 2000) at the end of each simulated dialogue after the compo-
nent’s adaptation. To assess if the initial random splits for the data preparation impact the results, we
prepared 4 different set of datasets with different random seed values. For each set of datasets an
initial NLU model is trained and 2 simulations with the two kinds of replay are conducted.

5.3 Results and discussion

Figure 2 shows the evolution of the F1-score during simulation 7. We did not observe significant
performance differences when the system adapts its component using Replay on Patterns and Men-
tions (RPM) or using Replay with Mentions only (RM). On testLEARN both F1-scores increase
significantly at the beginning of the simulation suggesting that learning new mentions is in our

5For the first experiment, we removed from the KB around 40% of the less frequent ingredients so that the
unknown mentions in LEARN only consists in unknown ingredient mentions.

6collected as part of the ERA-Net CHIST-ERA LIHLITH project.
7We do not show the F1-score evolution for the experiments with data prepared with other random seed

values since the behaviour is the same.

7

testINITIAL testLEARN testUNKNOWN testWEIGHTED testREAL

modelINITIAL 98.99 89.33 68.26 82.83 36.18
modelLEARN,STM 98.50 (-0.49) 91.61 (+2.28) 67.52 (-0.74) 83.36 (+0.53) -

modelLEARN,RPM,n=N 98.56 (-0.43) 97.48 (+8.15) 71.11 (+2.85) 87.15 (+4.32) 37.16 (+0.98)
modelLEARN,RM,n=N 99.14 (-0.15) 97.63 (+8.30) 70.79 (+2.53) 87.20 (+4.37) 37.70 (+1.52)

modelSIMU 99.94 (+0.95) 99.60 (+10.27) 71.49 (+3.23) 88.42 (+5.59) 41.24 (+5.06)

Table 1: F1-scores on the test datasets with data prepared with random seed 1. N is the index of the
last fine-tuning at the end of the simulation (here N=322/327 for RPM/RM). modelLEARN,STM

corresponds to modelINITIAL adapted only with the STM (no fine-tuning during simulation).
modelSIMU corresponds to modelINITIAL fine-tuned on the simulation dataset.

case more profitable for the system when adapting its component (since simulation is generated
randomly there are more new mentions to learn at the beginning of the simulation). However we
can see that RM is performing better than RPM (about 2 more points) and that RPM increases
progressively until achieving similar F1-score than RM at the end of the simulation. This again
suggests that learning new mentions is more profitable since the new mentions will be two times less
represented in trainLEARN,n for RPM compared to RM. Moreover, the fact that they both seem to
reach a plateau shows the limitations of an experimental protocol relying on generated data.

Since the count of fine tunings during the simulation is high (322/327 for RPM/RM), the continuous
evolution is not visible on this figure. We computed the F1-score difference between each model
fine-tuning to better analyse the impact of the STM. We observed that during the simulation the STM
improves the F1-score of maximum 0.43 points (between simulated dialogues 318 and 390 with 16
new mentions) and reduces the F1-score of a maximum of 0.04 points on testLEARN with RPM
(mean: 0.01, median: 0).

The Table 1 shows the F1-scores of different models on the test datasets. The results for
modelLEARN,RPM,n=N and modelLEARN,RM,n=N compared to modelINITIAL show that the
NLU component is improving with the simulated interactions thanks to the collection and adaptation
methods described in Section 4. Comparison with modelLEARN,STM shows that the STM alone is
not sufficient. When comparing with modelSIMU we observe similar scores except on testLEARN

and testREAL. We suppose that it comes from the fact that all the new pieces of knowledge available
in the simulated dialogues could not be extracted by the system. From the system’s log we observe in
particular that only 0.14 percent of the user’s initial queries could be correctly annotated after the
user rephrases his/her query because the system misunderstood him/her. This shows that the KB was
not completely adapted for the concepts that have to be detected.

Considering the fact that simple methods have been implemented to perform the three steps of
on-the-job learning - as described in Section 4 - we obtain promising results suggesting that using
more sophisticated methods could lead to generalisation capabilities demonstrating the possibility of
a truly LL task-oriented dialogue system.

6 Conclusion and future work

In this paper we described a first attempt at a general methodology to evaluate in a continuous manner
the capability of a dialogue system to learn on-the-job. To the best of our knowledge it is the first
general methodology defined of this kind. This methodology consists basically in simulating the user
interactions and evaluating after each interaction the current system’s performance on the following
test datasets: testINITIAL (data similar to initial ones), testLEARN (data that contain elements that
the system is supposed to learn during simulation) and testUNKNOWN (data that contain elements
that are not in the initial data and that are not going to appear during simulation). We also built a
task-oriented dialogue system which can continuously and autonomously improve its understanding
component thanks to its interactions with users and evaluated it thanks to user simulation according
to the described evaluation methodology. Our methodology enabled us to compare over time the
different adaptation methods and identify how they were different, whereas the evaluation protocols
used in other works could not have allowed this analysis.

For future work we plan to adapt this experiment to other domains and to add to the evaluation
methodology a way to evaluate the system’s robustness to noise (e.g. user providing a wrong
correction).

8

Acknowledgments

This work has been supported by a CIFRE convention, funded by ANRT (France, convention
2019/0628), and by ERA-Net CHIST-ERA LIHLITH Project, funded by ANR (France, project
ANR-17-CHR2-0001-03).

References
Albert, S. and Ruiter, J. D. (2018). Repair: The interface between interaction and cognition. Topics

in Cognitive Science, 10:279 – 313.

Béchet, F. and Raymond, C. (2018). Is ATIS too shallow to go deeper for benchmarking spoken
language understanding models? In Proc. Interspeech 2018, pages 3449–3453.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., and Mitchell, T. M. (2010). Toward
an architecture for never-ending language learning. In AAAI.

Chen, Z. and Liu, B. (2016). Lifelong Machine Learning. Morgan & Claypool Publishers.

Deriu, J., Rodrigo, A., Otegi, A., Echegoyen, G., Rosset, S., Agirre, E., and Cieliebak, M. (2020).
Survey on evaluation methods for dialogue systems. Artificial Intelligence Review, pages 1–56.

Ghannay, S., Neuraz, A., and Rosset, S. (2020). What is best for spoken language understanding:
small but task-dependant embeddings or huge but out-of-domain embeddings? In ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8114–8118.

Hancock, B., Bordes, A., Mazare, P.-E., and Weston, J. (2019). Learning from dialogue after
deployment: Feed yourself, chatbot! In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3667–3684, Florence, Italy. Association for Computational
Linguistics.

Hough, J. (2014). Modelling Incremental Self-Repair Processing in Dialogue. PhD thesis, Queen
Mary University of London.

Liu, B. (2020). Learning on the job: Online lifelong and continual learning. In Proceedings of 34th
AAAI Conference on Artifical Intelligence (AAAI-2020), New York City, USA.

Mazumder, S., Liu, B., Wang, S., and Esmaeilpour, S. (2019a). Building an application independent
natural language interface. ArXiv, abs/1910.14084.

Mazumder, S., Liu, B., Wang, S., and Ma, N. (2019b). Lifelong and interactive learning of factual
knowledge in dialogues. In Proceedings of the 20th Annual SIGdial Meeting on Discourse and
Dialogue, pages 21–31, Stockholm, Sweden. Association for Computational Linguistics.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J., Carlson, A., Dalvi,
B., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole,
N., Platanios, E., Ritter, A., Samadi, M., Settles, B., Wang, R., Wijaya, D., Gupta, A., Chen,
X., Saparov, A., Greaves, M., and Welling, J. (2018). Never-ending learning. Commun. ACM,
61(5):103–115.

Parisi, G., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual lifelong learning
with neural networks: A review. Neural networks : the official journal of the International Neural
Network Society, 113:54–71.

Thrun, S. and Mitchell, T. M. (1995). Lifelong robot learning. In Steels, L., editor, The Biology and
Technology of Intelligent Autonomous Agents, pages 165–196, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Tjong Kim Sang, E. F. and Buchholz, S. (2000). Introduction to the CoNLL-2000 shared task
chunking. In Fourth Conference on Computational Natural Language Learning and the Second
Learning Language in Logic Workshop.

9

	Introduction
	Related work
	General methodologies to evaluate on-the-job learning dialogue systems
	A task-oriented dialogue system improving on-the-job its understanding component
	Description of the task and the model
	Collecting new pieces of knowledge
	Adapting natural language understanding

	Evaluation framework and results
	User simulation
	Data preparation and evaluation
	Results and discussion

	Conclusion and future work

