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Abstract

We introduce a new general identifiable framework for principled disentanglement
referred to as Structured Nonlinear Independent Component Analysis (SNICA).
Our contribution is to extend the identifiability theory of deep generative models
for a very broad class of structured models. While previous works have shown
identifiability for specific classes of time-series models, our theorems extend this to
more general temporal structures as well as to models with more complex structures
such as spatial dependencies. In particular, we establish the major result that
identifiability for this framework holds even in the presence of noise of unknown
distribution. The SNICA setting therefore subsumes all the existing nonlinear
ICA models for time-series and also allows for new much richer identifiable
models. Finally, as an example of our framework’s flexibility, we introduce the
first nonlinear ICA model for time-series that combines the following very useful
properties: it accounts for both nonstationarity and autocorrelation in a fully
unsupervised setting; performs dimensionality reduction; models hidden states; and
enables principled estimation and inference by variational maximum-likelihood.

1 Introduction

A central tenet of unsupervised deep learning is that noisy and high dimensional real world data is
generated by a nonlinear transformation of lower dimensional latent factors. Learning such lower
dimensional features is valuable as they may allow us to understand complex scientific observations
in terms of much simpler, semantically meaningful, representations (Morioka et al., 2020; Zhou and
Wei, 2020). Access to a ground truth generative model and its latent features would also greatly
enhance several other downstream tasks such as classification (Klindt et al., 2020; Banville et al.,
2021), transfer learning (Khemakhem et al., 2020b), as well as causal inference (Monti et al., 2019;
Wu and Fukumizu, 2020).

A recently popular approach to deep representation learning has been to learn disentangled features.
Whilst not rigorously defined, the general methodology has been to use deep generative models such
as VAEs (Kingma and Welling, 2014; Higgins et al., 2017) to estimate semantically distinct factors
of variation that generate and encode the data. A substantial problem with the vast majority of work
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on disentanglement learning is that the models used are not identifiable – that is, they do not learn
the true generative features, even in the limit of infinite data – in fact, this task has been proven
impossible without inductive biases on the generative model (Hyvärinen and Pajunen, 1999; Locatello
et al., 2019). Lack of identifiability plagues deep learning models broadly and has been implicated as
one of the reasons for unexpectedly poor behaviour when these models are deployed in real world
applications (D’Amour et al., 2020). Fortunately, in many applications the data have dependency
structures, such as temporal dependencies which introduce inductive biases. Recent advances in both
identifiability theory and practical algorithms for nonlinear ICA (Hyvärinen and Morioka, 2016, 2017;
Hälvä and Hyvärinen, 2020; Morioka et al., 2021; Klindt et al., 2020; Oberhauser and Schell, 2021)
exploit this and offer a principled approach to disentanglement for such data. Learning statistically
independent nonlinear features in such models is well-defined, i.e. those models are identifiable.

However, the existing nonlinear ICA models suffer from numerous limitations. First, they only
exploit specific types of temporal structures, such as either temporal dependencies or nonstationarity.
Second, they often work under the assumption that some ’auxiliary’ data about a latent process is
observed, such as knowledge of the switching points of a nonstationary process as in Hyvärinen
and Morioka (2016); Khemakhem et al. (2020a) . Furthermore, all the models cited above, with the
exception of Khemakhem et al. (2020a), assume that the data are fully observed and noise-free, even
though observation noise is very common in practice, and even Khemakhem et al. (2020a) assumes
the noise distribution to be exactly known. Lastly, the identifiability theorems in those works usually
restrict the latent components to a specific class of models such as exponential families (but see
Hyvärinen and Morioka (2017)).

In this paper we introduce a new framework for identifiable disentanglement, Structured Nonlinear
ICA (SNICA), which removes each of the aforementioned limitations in a single unifying framework.
Furthermore, the framework guarantees identifiability for a very rich class of models, in a much
more general sense than done previously. Importantly, our identifiability results are able to exploit
dependency structures of any arbitrary order, and therefore can extend identifiability for instance to
spatially structured data. This is the first major theoretical contribution of our paper.

The second important theoretical contribution of our paper proves that models within the SNICA
framework are identifiable even in the presence of additive output noise of arbitrary, unknown
distribution. We achieve this by extending the theorems by Gassiat et al. (2020b,a). The subsequent
practical implication is that SNICA models can perform dimensionality reduction to identifiable latent
components and de-noise observed data. We note that noisy-observation part of the identifiability
theory is not even limited to nonlinear ICA but applies to any system observed under noise.

Third, we give mild sufficient conditions, relating to the strength and the non-Gaussian nature of the
temporal or spatial dependencies, enabling identifiability of nonlinear independent components in
this general framework. An important implication is that our theorems can be used, for example, to
develop models for disentangling identifiable features from spatial or spatio-temporal data.

As an example of the flexibility of the SNICA framework, we present a new nonlinear ICA model
called ∆-SNICA . It achieves the following, previously unattainable, very practical properties: the
ability to account for both nonstationarity and autocorrelation in a fully unsupervised setting; perform
dimensionality reduction; model latent states; and to enable principled estimation and inference by
variational maximum-likelihood methods. We demonstrate the practical utility of the model in an
application to noisy neuroimaging data that is hypothesized to contain meaningful lower dimensional
latent components and complex temporal dynamics.

2 Background

We start by giving some brief background on Nonlinear ICA and identifiability. Consider a model
where the distribution of observed data x is given by pX(x;θ) for some parameter vector θ. This
model is called identifiable if the following condition is fulfilled:

∀(θ,θ′) pX(x;θ) = pX(x;θ′)⇒ θ = θ′ . (1)
In other words, based on the observed data distribution alone, we can uniquely infer the parameters
that generated the data. For models parameterized with some nonparametric function estimator f , such
as a deep neural network, we can replace θ with f in the equation above. In practice, identifiability
might hold for some parameters, not all; and parameters might be identifiable up to some more or
less trivial indeterminacies, such as scaling.
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In a typical nonlinear ICA setting we observe some x ∈ RN which has been generated by an invertible
nonlinear mixing function f from latent independent components s ∈ RN , with p(s) =

∏N
i=1 p(s

(i)),
as per:

x = f(s) , (2)

Identifiability of f would then mean that we can in theory find the true f , and subsequently the
true data generating components. Unfortunately, without some additional structure this model is
unidentifiable, as shown by Hyvärinen and Pajunen (1999): there is an infinite number of possible
solutions and these have no trivial relation with each other. To solve this problem, previous work
(Sprekeler et al., 2014; Hyvärinen and Morioka, 2016, 2017) developed models with temporal
structure. Such time series models were generalized and expressed in a succinct way by Hyvärinen
et al. (2019); Khemakhem et al. (2020a) by assuming the independent components are conditionally
independent upon some observed auxiliary variable ut: p(st|ut) =

∏N
i=1 p(s

(i)
t |ut) . In a time series

context, the auxiliary variable might be history, e.g. ut = xt−1, or the index of a time segment to
model nonstationarity (or piece-wise stationarity). (It could also be data from another modality, such
as audio data used to condition video data (Arandjelovic and Zisserman, 2017).)

Notice that the mixing function f in (2) is assumed bijective and thus dimension reduction is not
possible in most of the above models. The only exception is Khemakhem et al. (2020a) who
achieve this by assuming that we know the distribution of some additive noise on the observations
x = f(s) + ε , and by choosing f as injective rather than bijective. This allows to estimate posterior
of s by an identifiable VAE (iVAE). We will take a similar strategy in what follows.

3 Definition of Structured Nonlinear ICA

In this section, we first present the new framework of Structured Nonlinear ICA (SNICA) – a broad
class of models for identifiable disentanglement and learning of independent components when data
has structural dependencies. Next, we give an example of a particularly useful specific model that fits
within our framework, called ∆-SNICA , by using switching linear dynamical latent processes.

3.1 Structured Nonlinear ICA framework

Consider observations (xt)t∈T = ((x
(1)
t , . . . , x

(M)
t ))t∈T where T is a discrete indexing set of arbitrary

dimension. For discrete time-series models, like previous works, T would be a subset of N. Crucially,
however, we allow it to be any arbitrary indexing variable that describes a desired structure. For
instance, T could be a subset of N2 for spatial data, which no previous work has allowed for.

We assume the data is generated according the following nonlinear ICA model. First, there exist
latent components s(i) = (s

(i)
t )t∈T for i ∈ {1, . . . , N} where for any t, t′ ∈ T, the distributions of

(s
(i)
t )16i6N and (s

(i)
t′ )16i6N are the same, which is a weak form of stationarity. Second, we assume

that for any m ∈ N∗ and (t1, . . . , tm) ∈ Tm, p(st1 , . . . , stm) =
∏N
i=1 p(s

(i)
t1 , . . . , s

(i)
tm): that is, the

components are unconditionally independent. We further assume that the nonlinear mixing function
f : RN → RM with M > N is injective, so there may be more observed variables than components.
Finally, denote observational noise by εt ∈ RM and assume that they are i.i.d. for all t ∈ T and
independent of the signals s(i). Putting these together, we assume the mixing model where for each
t ∈ T,

xt = f(st) + εt , (3)

where st = (s
(1)
t , . . . , s

(N)
t ). Importantly, εt can have any arbitrary unknown distribution, even with

dependent entries; in fact, it may even not have finite moments.

The main appeal of this framework is that, under the conditions given in next section, we can now
guarantee identifiability for a very broad and rich class of models. First, notice that all previous
Nonlinear ICA time-series models can be recast and often improved upon when viewed through this
new unifying framework. To see this, consider the model in Hälvä and Hyvärinen (2020) which
captures nonstationarity in the independent components through a global hidden Markov chain.
We can transform this model into the SNICA framework if we instead model each independent
component as its own HMM (Figure 1a), with the added benefit that we now have marginally
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Figure 1: Graphical models for the SNICA framework

independent components and are able to perform dimensionality reduction into low dimensional
latent components. Nonlinear ICA with time-dependencies, such as in an autoregressive model,
proposed by Hyvärinen and Morioka (2017) is also a special case of our framework (Figure 1b),
but again with the extension of dimensionality reduction. Furthermore, this framework allows for
a plethora of new Nonlinear ICA models to be developed. As described above, these do not have
to be limited to time-series but could for instance be a process on a two-dimensional graph with
appropriate (in)dependencies (see Figure 1c). However, we now proceed to introduce a particularly
useful time-series model using our framework.

3.2 ∆-SNICA : Nonlinear ICA with switching linear dynamical systems

While the above framework has great generality, any practical application will need a specific model.
Next we propose one, again with the goal of subsuming previous models used in nonlinear ICA. In
particular, we combine the two statistical properties of "non-stationarity"(e.g HMMs) and stationary
temporal dependencies (e.g. autoregressive models). No model has combined these two aspects in the
context of nonlinear ICA. Yet, real world processes, such as video/audio data, financial time-series,
and brain signals, exhibit these properties – disentangling latent features in such models would hence
be very useful.

Our new model is depicted in Figure 1d. The independent components are generated by a Switching
Linear Dynamical System (SLDS) (Ackerson and Fu, 1968; Chang and Athans, 1978; Hamilton,
1990; Ghahramani and Hinton, 2000) with additional latent variables to express rich dynamics.
Formally, for each independent component i ∈ {1, . . . , N}, consider the following SLDS over some
latent vector y

(i)
t :

y
(i)
t = B(i)

ut y
(i)
t−1 + b(i)

ut + ε(i)
ut , (4)

where ut := u
(i)
t is a state of a first-order hidden Markov chain (u

(i)
t )t=1:T . Crucially, we assume that

the independent components at each time-point are the first elements y(i)
t,1 of y

(i)
t = (y

(i)
t,1, . . . , y

(i)
t,d)

T ,

i.e. s(i)
t = y

(i)
t,1. The rest of the elements in y

(i)
t are latent variables modelling hidden dynamics.

The great utility of using such a higher-dimensional latent variable is that this model allows us, for
example, as a special case, to consider higher-order ARMA processes, thus modelling each s(i)

t as
switching between ARMA processes of an order determined by the dimensionality of yt. We call the
ensuing model ∆-SNICA ("Delta-SNICA", with delta as in "dynamic").

4 Identifiability

In this section, we present two very general identifiability theorems for SNICA. We basically decouple
the problem into two parts. First, we consider identifying the noise-free distribution of f(st) from
noisy data. Theorem 1 states conditions—on tail behaviour, non-degeneracy, and non-Gaussianity—
under which it is possible to recover the distribution of a process based on noisy data with unknown
noise distribution. Second, we consider demixing of the nonlinearly mixed data. Theorem 2 provides
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general conditions—on temporal or spatial dependencies, and non-Gaussianity—that allow recovery
of the mixing function f when there is no more noise. We then consider application of these theorems
to SNICA. In particular, they enable identifiability based on either the "nonstationarities" or the
temporal dependencies, thus generalizing results of previous work.

4.1 Identifiability with unknown noise distribution

Consider the model
xt = zt + εt , (5)

where (zt)t∈T is a family of random variables in RM such that all zt, t ∈ T, have the same marginal
distribution, and (εt)t∈T is a family of independent (over t) and identically distributed random
variables, independent of (zt)t∈T. Let P be the common distribution of each εt, for t ∈ T. Let t1
and t2 in T, and consider the following assumptions.

• (A1) [Tail behaviour] For some ρ < 3, there exist A and B such that for all λ ∈ RN ,

E[exp(〈λ, zt1〉)] 6 A exp(B‖λ‖ρ) .

• (A2) [Non-degeneracy] For any η ∈ CM , E[exp{〈η, zt2〉}| zt1 ] is not the null random
variable.

• (A3) [Non-Gaussianity] The following assertion is false: there exist a vector η ∈ RM and
independent random variables z̃ and u, such that u is a non dirac Gaussian random variable
and 〈η, zt1〉 has the same distribution as z̃ + u.

We defer the detailed discussion on the practical meaning of the assumptions (A1-A3) in the context
of SNICA to Section 4.3. We next present Theorem 1 which establishes identifiability under unknown
noise (its proof is postponed to Section A.1 in the Supplementary Material):

Theorem 1 Assume that assumptions (A1), (A2) and (A3) hold for some (t1, t2) ∈ T2. Then, up
to translation, for all m > 2, for all (t3, . . . , tm) ∈ Tm−2, the application that associates the
distribution of (zt1 , . . . , ztm) and P to the distribution of (xt1 , . . . ,xtm) is one-to-one.

Here, up to translation means that adding a constant vector to all εt, and substracting this constant to
all zt, t ∈ {t1, . . . , tm}, does not change the distribution of (xt1 , . . . ,xtm). The proof of Theorem 1
extends that of Theorem 1 in (Gassiat et al., 2020b), see also (Gassiat et al., 2020a), which assumed
sub-Gaussian noise-free data. Our extension allows the noise-free data to have heavier tails, which is
important since (noise-free) data in many real-world applications is super-Gaussian, i.e. heavy-tailed,
as is well-known in work on linear ICA (Hyvärinen et al., 2001).

Importantly, there is no assumption on the unknown noise distribution in Theorem 1. In fact, it does
not even assume a mixing as in ICA, and thus extends greatly outside of the framework of this paper.

4.2 Identifiability of the mixing function

Based on Theorem 1, it is possible to recover the distribution of the noise-free data in SNICA in (3)
by setting zt = f(st). Next, we consider under which conditions the mixing function f is identifiable.
Denote by S = S(1) × · · · × S(N) the support of the distribution of all st. We consider the situation
where each S(i) ⊂ R, 1 6 i 6 N , is connected, so that each S(i) is an interval. We assume moreover
that the injective mixing function f is a C2 diffeomorphism between S and a C2 differentiable
manifoldM ⊂ RM . Formally, this means that there exists an atlas {ϕϑ : Uϑ → RN}ϑ∈Θ ofM
such that for all ϑ, ϑ′ ∈ Θ, the map ϕϑ ◦ ϕ−1

ϑ′ is a C2 map, and f is a bijection RN →M such that
for all ϑ ∈ Θ, ϕϑ ◦ f and f−1 ◦ ϕ−1

ϑ have continuous second derivatives. The sets Uϑ, ϑ ∈ Θ, cover
M and are open inM. The proof of Theorem 2 is postponed to Section A.2 in the Supplementary
Material.

Theorem 2 Assume that there exist m > 2 and (t1, . . . , tm) ∈ Tm such that the vector
(s

(i)
t1 , . . . , s

(i)
tm) has a density p

(i)
m which is C2 on (S(i))m. Assume moreover that there exist

(k, l) ∈ {1, . . . ,m}2 with k 6= l such that the following assumptions hold with Q(i)
m = log p

(i)
m .
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• (B1) (Uniform (k, l)-dependency). For all i ∈ {1, . . . , N}, the set of zeros of ∂2

∂s
(i)
tk
∂s

(i)
tl

Q
(i)
m

is a meagre subset of (S(i))m, i.e. it contains no open subset.

• (B2) (Local (k, l)-non quasi Gaussianity). For any open subset A ⊂ Sm, there exists at
most one i ∈ {1, . . . , N} such that there exists a function α : Rm−1 → R and a constant
c ∈ R such that for all s ∈ A,

∂2

∂s
(i)
tk
∂s

(i)
tl

Q(i)
m = c α(s

(i)
tk
, s

(i)
(−tk,−tl))α(s

(i)
tl
, s

(i)
(−tk,−tl)) , (6)

where s
(i)
(−tk,−tl) is (s

(i)
t1 , . . . , s

(i)
tm) without the coordinates tk and tl.

Then, f−1 can be recovered up to permutation and coordinate-wise transformations from the distribu-
tion of (f(st1), . . . , f(stm)).

4.3 Applications to SNICA

In this section, we provide additional comments on the assumptions (A1-A3) and (B1-B2) and their
verification in the context of SNICA.

Assumption (A1) is a condition on the tails of the noise-free data: it allows tails that are somewhat
heavier than Gaussian tails. It is in fact equivalent to assuming that for some ρ̃ > 3/2, there exists
A′, B′ > 0 such that for all t > 0, P(‖zt1‖ > t) 6 A′ exp(−B′tρ̃).

Assumption (A2) is a non-degeneracy condition likely to be fulfilled for any randomly chosen
SNICA model parameters. As an example, consider a model such as Fig. 1c, where there exist hidden
variables (ut)t∈T taking values in a finite set {1, . . . ,K} such that the pairs of variables (zt, ut) have
the same distribution for all t ∈ T, and such that conditioned on (ut)t∈T, the variables (zt)t∈T are
independent and the distribution of zt only depends on ut. (As a special case, this model includes
the temporal HMM setting described in Fig. 1a.) Let (t1, t2) ∈ T2. For all u, v ∈ {1, . . . ,K}, let
π(u) = put1 (u) be the mass function of ut1 , Q(u, v) = put2 |ut1 (v|u) be the transition matrix from
ut1 to ut2 , and γu(z) = pzt1 |ut1 (z|u) be the density of zt1 conditionally to ut1 = u. By assumption,
it is also the density of zt2 conditionally to ut2 = u. Theorem 3 provides sufficient conditions for
assumption (A2) to hold:

Theorem 3 Assume that Q has full rank, minu π(u) > 0 and the (γu)16u6K are linearly indepen-
dent, then (A2) is satisfied as soon as the functions (η 7→

∫
exp(〈η, z〉)γv(z)dz)16v6K do not have

simultaneous zeros.

Besides the non-simultaneous zeros assumption, the assumptions of Theorem 3 are reminiscent of
those used for the identifiability of non-parametric hidden Markov models, see for instance Gassiat
et al. (2016); Lehéricy (2019). The key element is that zt1 and zt2 are not independent. Thus, we see
that (A2) holds if the π and the γ are not degenerate (in the precise sense given by Theorem 3), for the
latent state models in Figs. 1a,1c.Another situation where (A2) holds is when zt2 is a complete statistic
(Lehmann and Casella, 2006) in the statistical model {Pzt2 |zt1 (·|zt1)}zt1 , where Pzt2 |zt1 (·|zt1) is
the distribution of zt2 conditionally to zt1 . Consider the two following examples where this holds: 1)
When the model {Pzt2 |zt1 (·|zt1)}zt1 is an exponential family. In this situation, complete statistics
are known. 2) Autoregressive models with additive innovation of the form zt2 = h(zt1) + vt2 for
some bijective function h when the additive noise vt2 is a complete statistics in the statistical model
{Pvt2 |zt1 (·|zt1)}zt1 (note that vt2 cannot be independent of zt1 here). The case in Fig. 1b is typically
covered by this example.

Assumption (A3) states that no direction of the noise free data has a non Dirac Gaussian variable
component. It holds as soon as zt = f(st) and the range of f is such that its orthogonal projection on
any line is not the full line. This assumption holds for instance in the following cases: 1) The range
of f is compact, or 2) the range of f is contained in a half-cylinder, that is, there exists a hyperplane
such that the range of f is only on one side of this hyperplane and the projection of the range of f on
this hyperplane is bounded.
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Assumption (B1) and Assumption (B2) are similar to those in (Hyvärinen and Morioka, 2017;
Oberhauser and Schell, 2021) in the special case of time-series, i.e. T = N. (B1) then entails
that there must be sufficiently strong statistical dependence between nearby time points. (B2) is a
condition which excludes Gaussian processes and processes which can be trivially transformed to be
Gaussian. (For treatment of the Gaussian case, see Appendix B in Supplementary Material.) We can
further provide a simple and equivalent formulation when the independent components s(i) follow
independent and stationary HMMs with two hidden states, which is a special case of SNICA. Denote
by γ(i)

0 and γ(i)
1 the densities of s(i)

t conditionally to {u(i)
t = 0} and {u(i)

t = 1} respectively.

Theorem 4 Assume that the stationary distribution π of the hidden chain is such that 0 < π(0) < 1
and that its transition matrix is invertible. Then (B1) and (B2) are satisfied with m = 2 if and only if
on any open interval, γ(i)

0 and γ(i)
1 are not proportional.

Thus, a very simple HMM leads to these conditions being verified. Hyvärinen and Morioka (2017)
already showed that the conditions (B1) and (B2) also hold in the case of non-Gaussian autoregressive
models. Thus, we see that our identifiability theory applies both in the case HMM’s (Fig 1a) and
autoregressive models (Fig 1b), the two principal kinds of temporal structure proposed in previous
work, while extending them to further cases and combinations such as in Fig 1c,1d.

5 Experiments

Estimation method One challenge is that it is not practically possible to learn ∆-SNICA by exact
maximum-likelihood methods. However, by framing the model within conjugate exponential families
we are able to perform learning and inference using Structured VAEs (Johnson et al., 2017) – the
current state-of-art in variational inference for structured data. Despite lacking consistency guarantees
(but see Wang and Blei (2018)), we find that our model performs very well. A detailed treatment of
estimation and inference of ∆-SNICA is given in Supplementary Material. Our code will be openly
available at https://github.com/HHalva/snica.

5.1 Experiments on simulated data

The identifiability theorems stated above hold in the limit of infinite data. Additionally, a consistent
estimator would be required to learn the ground-truth components. In the real world, we are limited
by data and estimation methods and hence it is unclear as to what extent we are actually able to
estimate identifiable components – and whether identifiability reflects in better performance in real
world tasks. To explore this, we first performed experiments on simulated data. We compared the
performance of our model to the current state-of-the-art, IIA-HMM (Morioka et al., 2021).

Investigating identifiability and consistency We simulated 100K long time-sequences from the ∆-
SNICA model and computed the mean absolute correlation coefficient (MCC) between the estimated
latent components and ground truth independent components (see Supplementary material for further
implementation details). More precisely, to illustrate the dimensionality reduction capabilities
we considered two settings where the observed data dimension M , was either 12 or 24 and the
number of independent components, N was 3 and 6, respectively. Since IIA-HMM is unable to do
dimensionality reduction, we used PCA to get the data dimension to match that of the latent states.
We considered four levels of mixing of increasing complexity by randomly initialized MLPs of the
following number of layers: 1 (linear ICA), 2, 3, and 5. The results in Figure 2a) illustrate the clearly
superior performance of our model. This is expected as IIA-HMM has a much simpler model of
dynamics, and no noise model, and likely lost information due to PCA pre-processing. Details and
more evaluations are provided in the Supplementary Material.

Application to denoising ∆-SNICA is able to denoise time-series signals by learning the generative
model and then performing inference on latent variables. We illustrate this using the same settings
as above, with the exception that we now use our learned encoder and inference to get the posterior
means of the independent components and then use these in the ground-truth decoder to get predicted
noise-free observations, denoted as f̂(st) – we measured the correlation between f̂(st) and the
ground-truth f(st). Note that IIA-HMM, or any other latent variable nonlinear ICA model, is not
able to perform this task. The results in Figure 2b) show that our model performs well in this task.
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Figure 2: (a) Mean absolute correlation coefficients between ground true independent components
and their estimates by ∆-SNICA (solid lines), with different orders of complexity (number of layers)
and two different dimensions of observed (12, 24) and latent (6, 12) data. Results for IIA-HMM
(dashed line) shown for comparison. (b) Mean absolute correlation coefficient between estimated
noise free data and ground true noise free data for ∆-SNICA .

5.2 Experiments on real MEG data

To demonstrate real-data applicability, ∆-SNICA was applied to multivariate time series of electrical
activity in the human brain, measured by magnetoencephalography (MEG). Recently, many studies
have demonstrated the existence of fast transient networks measured by MEG in the resting state and
the dynamic switching between different brain networks (Baker et al., 2014; Vidaurre et al., 2017).
Additionally, such MEG data is high-dimensional and very noisy. Thus this data provides an excellent
target for ∆-SNICA to disentangle the underlying low-dimensional components.

Data and Preprocessing We considered a resting state MEG sessions from the Cam-CAN dataset.
During the resting state recording, subjects sat still with their eyes closed. In the task-session data,
the subjects carried out a (passive) audio–visual task including visual stimuli and auditory stimuli.
We exclusively used the resting-session data for the training of the network, and task-session data
was only used in the evaluation. The modality of the sensory stimulation provided a class label that
we used in the evaluation, giving in total two classes. We band-pass filtered the data between 4 Hz
and 30 Hz (see Supplementary Material for the details of data and settings).

Methods The resting-state data from all subjects were temporally concatenated and used for
training. The number of layers of the decoder and encoder were equal and took values 2, 3, 4.
We fixed the number of independent components to 5. To evaluate the obtained features, we
performed classification of the sensory stimulation categories by applying feature extractors trained
with (unlabeled) resting-state data to (labeled) task-session data. Classification was performed using
a linear support vector machine (SVM) classifier trained on the stimulation modality labels and
sliding-window-averaged features obtained for each trial. The performance was evaluated by the
generalizability of a classifier across subjects. i.e., one-subject-out cross-validation. For comparison,
we evaluated the baseline methods: IIA-HMM and IIA-TCL (Morioka et al., 2021). We also
visualized the spatial activity patterns obtained by ∆-SNICA , using the weight vectors from encoder
neural network across each layer.

Results Figure 3 a) shows the classification accuracies of the stimulus categories, across different
methods and the number of layers for each model. The performances by ∆-SNICA were consistently
higher than those by the other (baseline) methods, which indicates the importance of the modeling of
the MEG signals by ∆-SNICA . Figure 3 b) shows an example of spatial patterns from the encoder
network learned by the ∆-SNICA . We used the visualization method presented in (Hyvärinen and
Morioka, 2016). We manually picked one out of the hidden nodes from the third layer in encoder
network, and plotted its weighted-averaged sensor signals, We also visualized the most strongly
contributing second- and first-layer nodes. We see progressive pooling of L1 units to form left lateral
frontal, right lateral frontal and parietal patterns in L2 which are then all pooled together in L3
resulting in a lateral frontoparietal pattern. Most of the spatial patterns in the third layer (not shown)
are actually similar to those previously reported using MEG (Brookes et al., 2011).

8



L1

L2

L3

a b

Figure 3: ∆-SNICA on MEG data. (a) Classification accuracies of linear SVMs newly trained with
auditory-visual task data to predict stimulus category, with feature extractors trained by ∆-SNICA in
advance with resting-state data. Each point represents a testing accuracy on a target subject (chance
level: 50%). (b) Example of spatial patterns of the components learned by ∆-SNICA (L=3). Each
topography corresponds to one spatial pattern. L3: approximate total spatial pattern of one selected
third-layer unit. L2: the patterns of the three second-layer units maximally contributing to this L3
unit. L1: for each L2 unit, the two most strongly contributing first-layer units.

6 Related work

The SNICA setting is much broader than any previous work, in fact it subsumes most existing time-
series nonlinear ICA models (Hyvärinen and Morioka, 2017; Oberhauser and Schell, 2021; Hälvä and
Hyvärinen, 2020). Furthermore, we extend identifiability to models exploiting any higher ordered
structures in data rather than just time-dependencies used in previous work. Another major theoretical
contribution here is to show that identifiability with noise of unknown, arbitrary distribution, while
previous work on noisy nonlinear ICA assumed noise of known distribution and known variance
(Khemakhem et al., 2020a).

Importantly, the SNICA framework is fully probabilistic and thus accomodates for higher order
latent variables, leading to "purely unsupervised" learning. This is in large contrast to previous
research which have been developed for the case where we are able to observe some additional
auxiliary variable, such as audio signals accompanying video (Hyvärinen et al., 2019; Khemakhem
et al., 2020a,b), or heuristically define the auxiliary variable based on time structure (Hyvärinen and
Morioka, 2016). In practice this means that we are able to estimate our models using (variational)
MLE, which is more principled than the heuristic self-supervised methods in most earlier papers. The
only existing frameworks allowing MLE (Hälvä and Hyvärinen, 2020; Khemakhem et al., 2020a)
used model restricted to exponential families, and had either no HMM or a very simple one.

The switching linear dynamical model, ∆-SNICA in Section 3.2, shows the above benefits in the
form of a single model. That is, unlike any existing model, it combines: 1) temporal dependencies
and "non-stationarity" (or HMM) in a single model 2) dimensionality reduction within a rigorous
maximum likelihood learning and inference framework, and 3) a separate observation equation with
general observational noise. This results in a very rich, realistic, and principled model for time series.

Very recently, Morioka et al. (2021) proposed a related model by considering innovations of time
series to be nonstationary. However, their model is noise-free, restricted to exponential families
of at least order two, and not applicable to the spatial case, thus making our identifiability results
significantly stronger. From a more practical viewpoint, their model suffers from the fact that it either
does not allow for dimensionality reduction (if an HMM is used) or requires a manual segmentation
(if HMM is not used). Nor does it have a clear distinction into a state dynamics equation and a
measurement equation which allows for cleaning or denoising of the data.

Limitations Our identifiability theory makes some restrictive assumptions, and it remains to be
seen if they could be lifted in future work. In particular, the data is not allowed to have too heavy tails;
the noise must be additive, and independent of the signal; and the practical interpretation of some
of the assumptions, such as (A3) is difficult. Regarding practical applications, our specific model
only scratches the surface of what is possible in this framework. In particular, we did not develop a
model with spatial distributions, nor did we model non-Gaussian observational noise – our main aim
was to lay the foundations for the relevant identification theory. Future work should aim to make the
estimation more efficient computationally; this is a ubiquitous problem in deep learning, but specific
solutions for this concrete problem may be achievable (Gresele et al., 2020).
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7 Conclusion

We proposed a new general framework for identifiable disentanglement, based on nonlinear ICA
with very general temporal dynamics or spatial structure. Observational noise of arbitrary unknown
distribution is further included. We prove identifiability of the models in this framework with high
generality and mathematical rigour. For real data analysis, we propose a special case which still
subsumes all existing time series models in nonlinear ICA, while generalizing them in many ways
(see Section 6 for details). We hope this work will contribute to wide-spread application of identifiable
methods for disentanglement in a highly principled, probabilistic framework.
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A Appendix

A.1 Proof of Theorem 1

Let m > 2 and (t1, . . . , tm) ∈ Tm. Let Rm and R̃m be two possible distributions for (zt1 , . . . , ztm)

that satisfy assumptions (A1), (A2) and (A3) and let P and P̃ be two possible distributions for
εt1 . Assume that the distribution of (xt1 , . . . ,xtm) in the model (5) is the same under (Rm, P ) and
(R̃m, P̃ ).

Write ΦRm the characteristic function of Rm, and likewise ΦR̃m , ΦP and ΦP̃ . Following the proof
of Theorem 1 of Gassiat et al. (2020b) on the distribution of (zt1 , zt2), as in Assumption (A1) we
have ρ < 3 , by Hadamard’s factorization theorem, there exist a polynomial function Q with total
degree at most 2 and a neighborhood V of 0 in RM such that for all u ∈ V ,

ΦP (u) exp{Q(u)} = ΦP̃ (u) . (7)
For completeness we provide at the end of this section the sketch of proof of (7).

Writing the characteristic function of (zt1 , . . . , ztm) under the two sets of parameters yields, for all
(u1, . . . ,um) ∈ V m,

ΦRm(u1, . . . ,um)

m∏
k=1

ΦP (uk) = ΦR̃m(u1, . . . ,um)

(
m∏
k=1

ΦP (uk)

)(
m∏
k=1

exp(Q(uk))

)
. (8)

Since ΦP is continuous and non-zero at 0, we may divide both sides by
∏m
k=1 ΦP (uk) on a neigh-

borhood of zero. Under assumption (A1), ΦRm and ΦR̃m can be extended into multivariate analytic
functions:

ΦRm : (CM )m −→ C

(u1, . . . ,um) 7−→
∫

exp
(
iu>1 zt1 + · · ·+ iu>mztm

)
dRm(zt1 , . . . , ztm) .

We will need the following statement used in Gassiat et al. (2020a) and Gassiat et al. (2020b). We
provide a proof at the end of the section for completeness, see also Shabat (1992).

Lemma 1 If a multivariate function is analytic on the whole multivariate complex space and is the
null function on an open set of the multivariate real space or on an open set of the multivariate purely
imaginary space, then it is the null function on the whole multivariate complex space.

Thus, equation (8) can be extended on (CM )m, which shows that for all (u1, . . . ,um) ∈ (CM )m,

ΦRm(u1, . . . ,um) = ΦR̃m(u1, . . . ,um)

m∏
k=1

exp{Q(uk)} .

As ΦRm and ΦR̃m are characteristic functions,Q has no constant term. The degree 1 term corresponds
to a translation parameter. Without loss of generality, assume that zt1 is centered under Rm and R̃m,
then

iERm [zt1 ] = ∇u1
ΦRm(0) = ∇u1

ΦR̃m(0) +∇Q(0) = iER̃m [zt1 ] +∇Q(0) ,

which entails ∇Q(0) = 0. Thus, Q only has terms of degree 2, which means it is a quadratic form in
RM . Writing Q(u) = u>(Q+ −Q−)u where Q+ and Q− are the positive semi-definite matrices
corresponding to the positive and negative eigenvalues of Q respectively, yields

ΦRm(u1, . . . ,um)

m∏
k=1

exp
{
−u>k Q+uk

}
= ΦR̃m(u1, . . . ,um)

m∏
k=1

exp
{
−u>k Q−uk

}
.

From this decomposition, we deduce that if z ∼ Rm, z̃ ∼ R̃m, and (vk)16k6m (resp. (ṽk)16k6m)
are i.i.d. multivariate Gaussian random variables with mean 0 and covariance matrices 2Q+ (resp.
2Q−) that are independent of z (resp. z̃), then (ztk + vk)16k6m has the same distribution as
(z̃tk + ṽk)16k6m. In particular, the supports of the vk, 1 6 k 6 m and of the ṽk, 1 6 k 6 m, are
orthogonal.

Let Π− be the orthogonal projection on the support of ṽk, then Π−ztk = Π−z̃tk + ṽk, which by
assumption (A3) entails Q− = 0 (otherwise, take a non-zero η in the support of ṽk). Since z̃ satisfies
the same assumptions as z, Q+ = 0 for the same reason. Thus, Q = 0, so that ΦRm = ΦR̃m , and
then Rm = R̃m, and likewise P = P̃ .
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Proof of (7). Since the distribution of (xt1 ,xt2) in the model (5) is the same under (R2, P ) and
(R̃2, P̃ ) (likewise for the distribution of xt under (R1, P ) and (R̃1, P̃ ) for any t), we get that for all
u ∈ RM ,

ΦP (u)ΦR1(u) = ΦP̃ (u)ΦR̃1
(u) (9)

and for all (u1,u2) ∈ (RM )2,
ΦP (u1)ΦP (u2)ΦR2(u1,u2) = ΦP̃ (u1)ΦP̃ (u2)ΦR̃2

(u1,u2) . (10)

There exists a neighborhood W of 0 in RM such that ΦP and ΦP̃ do not vanish on W , so that
equations (9) and (10) give that for all (u1,u2) ∈W 2,

ΦR2
(u1,u2)ΦR̃1

(u1)ΦR̃1
(u2) = ΦR̃2

(u1,u2)ΦR1
(u1)ΦR1

(u2) . (11)

Application of Lemma 1 yields now that (11) holds for all (u1,u2) ∈ (CM )2. Using Assumption (A2)
and Lemma 1 we easily deduce from (11) that the set of zeros of ΦR1 and ΦR̃1

are equal. Then, using
Assumption (A1) and Hadamard’s factorization Theorem, see Stein and Shakarchi (2003) (Chapter
5 Theorem 5.1), and arguing variable by variable, we deduce that there exists a function Q on CM
such that, for all i = 1, . . . ,M , Q is a polynomial function with degree at most 2 (and coefficients
depending on (u(1), . . . , u(i−1), u(i+1), . . . , u(M))) and for all u = (u(1), . . . , u(M)) ∈ CM ,

ΦR1
(u) = ΦR̃1

(u) exp(Q(u)).

Using again Assumption (A1) allows to deduce thatQ has total degree 2. Coming back to equation (9)
yields for all u ∈ RM ,

ΦP (u)ΦR̃1
(u) exp(Q(u)) = ΦP̃ (u)ΦR̃1

(u) (12)

which, on the neighborhood V of 0 in RM where ΦR̃1
does not vanish, proves (7).

Proof of Lemma 1 We prove the statement by induction on the number d of variables. If h is
analytic on C and is not the null function, then h has isolated zeros, so that Lemma 1 holds for d = 1.
Assume that the lemma holds for analytic functions on Cd and let h be an analytic function on Cd+1

which is the null function on an open set A of Rd+1. Then, there exists open sets B1, . . . , Bd+1 of R
such that B1 × · · · ×Bd+1 ⊂ A. For any t ∈ Bd+1, let ht : Cd → C such that ht(·) = h(·, t), then
ht is analytic on Cd and is the null function on B1 × · · · ×Bd so that by the induction hypothesis,
for all z ∈ Cd, ht(z) = 0, that is h(z, t) = 0 for all z ∈ C and for all t ∈ Bd+1. Therefore, for any
z ∈ Cd, the function h(z, ·) is analytic on C and is the null function on Bd+1 so that for any z0 ∈ C,
h(z, z0) = 0 and h is the null function. The proof when h is the null function on an open set of the
multivariate purely imaginary space is similar.

A.2 Proof of Theorem 2

In the following, the index m may be dropped in the notations p(i)
m and Q(i)

m when there is no
confusion. Let p(i), p̃(i), f and f̃ be such that if s ∼ p(i) and s̃ ∼ p̃(i), then f(s) and f̃(s̃) have the
same distribution. Write g = f−1 and g̃ = f̃−1.

Let x1, . . . ,xm ∈ M. For each k ∈ {1, . . . ,m}, let ϑk ∈ Θ such that xk ∈ Uϑk and let
wk = ϕϑk(xk). Writing the density of the random vector (ϕϑ1(f(st1)), . . . , ϕϑm(f(stm))) at
(w1, . . . ,wm) with respect to the Lebesgue measure for the two parameterizations, yields

m∏
k=1

|Jg◦ϕ−1
ϑj

(wk)|
N∏
i=1

p(i)((g(i) ◦ ϕ−1
ϑ1

)(w1), . . . , (g(i) ◦ ϕ−1
ϑm

)(wm))

=

m∏
k=1

|Jg̃◦ϕ−1
ϑk

(wk)|
N∏
i=1

p̃(i)((g̃(i) ◦ ϕ−1
ϑ1

)(w1), . . . , (g̃(i) ◦ ϕ−1
ϑm

)(wm)) . (13)

Let k, ` ∈ {1, . . . ,m} and u, v ∈ {1, . . . , N} be such that k 6= `, then by (13),

N∑
i=1

∂2

∂w
(u)
k ∂w

(v)
`

log p(i)((g(i) ◦ ϕ−1
ϑ1

)(w1), . . . , (g(i) ◦ ϕ−1
ϑm

)(wm))

=

N∑
i=1

∂2

∂w
(u)
k ∂w

(v)
`

log p̃(i)((g̃(i) ◦ ϕ−1
ϑ1

)(w1), . . . , (g̃(i) ◦ ϕ−1
ϑm

)(wm)) ,

14



that is

N∑
i=1

∂2 log p(i)

∂s
(i)
k ∂s

(i)
`

(
(g(i) ◦ ϕ−1

ϑ1
)(w1), . . . , (g(i) ◦ ϕ−1

ϑm
)(wm)

) ∂(g(i) ◦ ϕ−1
ϑk

)

∂w(u)
(wk)

∂(g(i) ◦ ϕ−1
ϑ`

)

∂w(v)
(w`)

=

N∑
i=1

∂2 log p̃(i)

∂s
(i)
k ∂s

(i)
`

(
(g̃(i) ◦ ϕ−1

ϑ1
)(w1), . . . , (g̃(i) ◦ ϕ−1

ϑm
)(wm)

) ∂(g̃(i) ◦ ϕ−1
ϑk

)

∂w(u)
(wk)

∂(g̃(i) ◦ ϕ−1
ϑ`

)

∂w(v)
(w`) .

For all (s1, . . . , sm) ∈ Sm, let

qi,(k,`) =
∂2 log p(i)

∂s
(i)
k ∂s

(i)
`

, q̃i,(k,`) =
∂2 log p̃(i)

∂s
(i)
k ∂s

(i)
`

,

Dk,`(s1, . . . , sm) = diag
(
qi,(k,`)

(
s

(i)
1 , . . . , s(i)

m

))
16i6N

,

D̃k,`(s1, . . . , sm) = diag
(
q̃i,(k,`)

(
(g̃(i) ◦ g−1)(s1), . . . , (g̃(i) ◦ g−1)(sm)

))
16i6N

,

so that, writing (Ja)ij = ∂ai/∂xj the Jacobian matrix of the map a and sj = g(xj) for each
j ∈ {1, . . . ,m},

Jg◦ϕ−1
ϑk

(wk)>Dk,`(s1, . . . , sm)Jg◦ϕ−1
ϑ`

(w`) = Jg̃◦ϕ−1
ϑk

(wk)>D̃k,`(s1, . . . , sm)Jg̃◦ϕ−1
ϑ`

(w`) .

Note that for all w ∈ ϕϑk(Uϑk),

Jg̃◦ϕ−1
ϑk

(w)(Jg◦ϕ−1
ϑk

(w))−1 = Jg̃◦g−1((g ◦ ϕ−1
ϑk

)(w)) ,

so that for all (s1, . . . , sm) ∈ Sm,

Dk,`(s1, . . . , sm) = Jg̃◦g−1(sk)>D̃k,`(s1, . . . , sm)Jg̃◦g−1(s`) . (14)

Consider the following assertion.

• (P) For all s in a dense subset of S, there exist integers k, ` ∈ {1, . . . ,m} with k 6= ` and
s1, . . . , sk−1, sk+1, . . . , sm ∈ S such that all entries of the vector(

qi,(k,`)(. . . , s
(i), . . . , s(i), . . . )qi,(k,`)(. . . , s

(i)
` , . . . , s

(i)
` , . . . )

qi,(k,`)(. . . , s(i), . . . , s
(i)
` , . . . )2

)
16i6N

are distinct (s(i) and s(i)
` are in the positions k and ` in the equation above).

Assume that (P) holds. [We shall prove below that (P) holds under the assumptions of Theorem 2]. Let
s = (s1, . . . , sm) ∈ S such that Dk,`(s1, . . . , sm) is invertible (any s in a dense subset of S works
thanks to assumption B1). For ease of notation in the following sequence of equations, we drop all
unused subscripts and parameters, thus writing J(sk) instead of Jg̃◦g−1(sk) and D(sk, s`) instead of
Dk,`(s1, . . . , sk, . . . , s`, . . . , sm) (and likewise for J̃ and D̃). We follow the arguments of the proof
of Lemma 2 in Hyvärinen and Morioka (2017) to deduce from (14) an eigenvalue decomposition.
Write (14) for several parameters:

D(sk, sk) = J(sk)>D̃(sk, sk)J(sk),

D(sk, s`) = J(sk)>D̃(sk, s`)J(s`)

= J(s`)
>D̃(sk, s`)J(sk) by symmetry,

D(s`, s`) = J(s`)
>D̃(s`, s`)J(s`),

which altogether entails

D(sk, s`)
−1D(s`, s`)D(sk, s`)

−1D(sk, sk)

= J(sk)−1
[
D̃(sk, s`)

−1D̃(s`, s`)D̃(sk, s`)
−1D̃(sk, sk)

]
J(sk).
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The vector in assertion (P) contains the diagonal entries of this diagonal matrix. If they are all distinct,
the eigenvalue decomposition is unique, which means that J(sk) is the product of a permutation
matrix and a diagonal matrix.

Thus, Jg̃◦g−1 is the product of a permutation matrix with a diagonal matrix on a dense subset of S,
and hence on S by regularity of g and g̃.

For any permutation matrix P , the set of all s ∈ S where Jg̃◦g−1(s) is the product of P with an
invertible diagonal matrix D(s) is both open (by continuity of Jg̃◦g−1 ) and closed (if sn → s are such
that Jg̃◦g−1(sn) = PDn for all n, then by continuity the permutation matrix at s is also P and since
the jacobian is always invertible by the diffeomorphism assumption, limnDn exists and is invertible).
Thus, by connexity of S, the permutation is the same for all s ∈ S. For the next paragraph, we
assume without loss of generality that it is the identity permutation.

Therefore, since for all j and s(j) ∈ S(j), the set S(1) × · · · × S(j−1) × {sj} × S(j+1) × · · · × S(N)

is connected, (g̃ ◦ g−1)(j) is constant on this set, and thus it depends on s(j) only. It is bijective on
S(j) because both g and g̃ are. Thus, g = g̃ up to a permutation of the coordinates and a bijective
transformation of each coordinate.

Let us now prove that assertion (P) is true. The negation of (P) is that there exists an open
set A ⊂ S such that for all s ∈ A, for all k, ` ∈ {1, . . . ,m} with k 6= ` and for all
(s1, . . . , sk−1, sk+1, . . . , sm) ∈ Sm−1, there exists i, j ∈ {1, . . . , N} with i 6= j such that

qi,(k,`)(. . . , s
(i), . . . , s(i), . . . )qi,(k,`)(. . . , s

(i)
` , . . . , s

(i)
` , . . . )

qi,(k,`)(. . . , s(i), . . . , s
(i)
` , . . . )2

=
qj,(k,`)(. . . , s

(j), . . . , s(j), . . . )qj,(k,`)(. . . , s
(j)
` , . . . , s

(j)
` , . . . )

qj,(k,`)(. . . , s(j), . . . , s
(j)
` , . . . )2

. (15)

Let s ∈ A, k, ` ∈ {1, . . . ,m} with k 6= `. For all (i, j) ∈ {1, . . . , N}2 with i 6= j, define S̃i,j the
subset of Sm−1 such that for all (s1, . . . , sk−1, sk+1, . . . , sm) ∈ S̃i,j , equation (15) holds. Since
the sets S̃i,j , (i, j) ∈ {1, . . . , N}2, i 6= j, form a partition of Sm−1, which has non-empty interior,
there exists at least one pair (i, j) such that the closure of S̃i,j contains a non-empty open subset
Oi,j . Since qi,(k,`) and qj,(k,`) are non zero almost everywhere by the uniform (k, `)-dependency
assumption, we may assume without loss of generality that the denominators of equation (15) are
non zero for all (s1, . . . , sk−1, sk+1, . . . , sm) ∈ Oi,j . Thus, by continuity of qi,(k,`) and qj,(k,`), the
terms of equation (15) do not depend on the choice of element in Oi,j : write fi,(k,`)(s(i), Oi,j) the
left hand term and fj,(k,`)(s(j), Oi,j) the right hand term.

Let k, ` ∈ {1, . . . ,m} with k 6= `. Let (Vn)n>1 be a basis of open sets of (RN )m−1. For all
(i, j) ∈ {1, . . . , N}with i 6= j and n ∈ N∗, letA(i,j),n be the subset ofA such that for all s ∈ A(i,j),n

and all (s1, . . . , sk−1, sk+1, . . . , sm) ∈ Vn, equation (15) holds. Then, A =
⋃
n>1

⋃
i6=j A(i,j),n

(sinceOi,j contains at least one of the sets of the basis (Vn)n>1) and thus there exists i 6= j and n such
that the interior of the closure of A(i,j),n is non-empty (otherwise A would be a meagre set and thus
have empty interior by Baire’s category theorem, which is absurd since A is a non-empty open set).
Let i, j, n be such that the closure of A(i,j),n has non-empty interior, and B be a non-empty subset of
the closure ofA(i,j),n. Since qi,(k,`) and qj,(k,`) are non zero almost everywhere by the uniform (k, `)-
dependency assumption, we may take an open set V ⊂ Vn and assume without loss of generality
that the denominators of equation (15) are non zero for all (s1, . . . , sk−1, sk+1, . . . , sm) ∈ V and all
s ∈ B. Thus, by continuity of qi,(k,`) and qj,(k,`), the terms of equation (15) do not depend on the
choice of element in B or V .

To summarize, this means that for all k, ` ∈ {1, . . . ,m} with k 6= `, there exists (i, j) ∈ {1, . . . , N}
with i 6= j, a constant c and an open set A′ ⊂ Sm such that for all s = (s1, . . . , sm) ∈ A′,

qi,(k,`)(. . . , s
(i)
k , . . . , s

(i)
` , . . . )2 = cqi,(k,`)(. . . , s

(i)
k , . . . , s

(i)
k , . . . )qi,(k,`)(. . . , s

(i)
` , . . . , s

(i)
` , . . . ) ,

qj,(k,`)(. . . , s
(j)
k , . . . , s

(j)
` , . . . )2 = cqj,(k,`)(. . . , s

(j)
k , . . . , s

(j)
k , . . . )qj,(k,`)(. . . , s

(j)
` , . . . , s

(j)
` , . . . ) .

This situation is excluded by the local (k, `)-non quasi Gaussianity assumption, therefore the negation
of (P) is false, therefore g = g̃ up to permutation and bijective transformation of each coordinate.
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A.3 Proof of Theorem 3

For all η ∈ Cm,

E [exp {〈η, zt2〉}| zt1 ] =

∑
u,v π(u)Q(u, v)γu(zt1)

∫
exp(〈η, z〉)γv(z)dz∑

u π(u)γu(zt1)

=

∑
u αu(η)π(u)γu(zt1)∑

u π(u)γu(zt1)
,

with αu(η) =
∑
v Q(u, v)

∫
exp(〈η, z〉)γv(z)dz.

Assume that the emission densities (γu)16u6K are linearly independent and π(u) > 0 for all
u ∈ {1, . . . ,K}, then the only situation where E[exp{〈η, zt2〉}|zt1 ] is the null random variable is
when αu(η) = 0 for all u ∈ {1, . . . ,K}. If the functions (η 7→

∫
exp(〈η, z〉)γv(z)dz)16v6K do

not have simultaneous zeros and Q has full rank, this is not possible.

A.4 Proof of Theorem 4

We prove that the result holds for all i = 1, . . . , N and drop the index i in this proof for ease of
notation. Denote by

Λ :=

(
1− p p
q 1− q

)
the transition matrix of the hidden chain. Then, the stationary distribution is given by π(0) = q/(p+q),
π(1) = p/(p+ q), and the distribution of 2 consecutive observations is given by, for all (a, b) in the
support:

p2(a, b) =
q(1− p)
p+ q

γ0(a)γ0(b) +
qp

p+ q
γ0(a)γ1(b) +

pq

p+ q
γ1(a)γ0(b) +

p(1− q)
p+ q

γ1(a)γ1(b) .

If Q2 = log p2 then simple computations lead to

(p+ q)2p2(a, b)2 ∂
2Q2

∂a∂b
= pq(1− p− q)(γ0(a)γ′1(a)− γ′0(a)γ1(a))(γ0(b)γ′1(b)− γ′0(b)γ1(b)) .

Since γ0(a)γ′1(a) − γ′0(a)γ1(a) = 0 for a in an open subset of the support if and only if on this
interval γ0 and γ1 are proportional, assumption (B1) is satisfied if and only if on any open interval
γ

(i)
0 and γ(i)

1 are not proportional. Moreover, on the set of couples (a, b) such that ∂
2Q2

∂a∂b 6= 0,

log

(
∂2Q2

∂a∂b

)
= log[|pq(1− p− q)|]− 2 log(p+ q)− 2 log p2(a, b) + h(a) + h(b) ,

where h(a) = |γ0(a)γ′1(a)− γ′0(a)γ1(a)|. We deduce easily that (B2) is satisfied if and only if on
any open interval γ(i)

0 and γ(i)
1 are not proportional.

B Identifiability in Gaussian case

Theorem 2 has a condition on "non-quasi-Gaussianity" which is a generalization of the property of
non-Gaussianity typical in ICA. Here, we consider the case of Gaussian noise-free data. Separation is
actually possible by the temporal dependencies, but under a stricter condition. We put together results
by Hyvärinen and Morioka (2017) and Belouchrani et al. (1997), and arrive at the following result:

Theorem 5 Assume the data follows the noise-free mixing model xt = f(st) where st is a Gaussian
process with independent components, and f is a C2 diffeomorphism with M = N . Assume further
that

• The autocovariance functions ci(τ) = cov(s
(i)
t , s

(i)
t−τ ) are all distinct (i.e. any two of them

for i, i′ are not equal). (Here, τ takes values in the set allowed by the definition of the index
set.)

Then, f−1 and f can be recovered up to permutation and coordinate-wise linear transformations
(applied on the components s

(i)
t ) from the distribution of xt.
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The proof is a straightforward implication of two theorems proven earlier: The nonlinear part is
identifiable according to Theorem 2 by Hyvärinen and Morioka (2017) but a linear indeterminacy
remains; here we need to note that ᾱ in (Hyvärinen and Morioka, 2017) is a linear function for
a Gaussian process. Subsequently the linear part can be identified, thanks to the autocovariance
assumption above, as in Theorem 2 of Belouchrani et al. (1997).

Note that in the Gaussian case, it is not possible to apply Theorem 1 since (A3) cannot hold. Thus,
Theorem 5 only applies for noise-free data.

C Learning and inference for ∆-SNICA

The ∆-SNICA generative model, as introduced in Section 3.2 can be written as:

p(u
(i)
1 ) =

K∏
k=1

(π
(i)
k )δ(u

(i)
1 =k) (16)

p(u
(i)
t | u

(i)
t−1) =

K∏
k=1

K∏
l=1

(A
(i)
kl )δ(u

(i)
t =k)δ(u

(i)
t−1=l) (17)

p(y
(i)
1 | u

(i)
1 ) =

K∏
k=1

N (y
(i)
1 ; b̄

(i)
k , Q̄

(i)
k )δ(u

(i)
1 =k) (18)

p(y
(i)
t | y

(i)
t−1, u

(i)
t ) =

K∏
k=1

N (y
(i)
t ; B

(i)
k y

(i)
t−1 + b

(i)
k ,Q

(i)
k )δ(u

(i)
t =k) (19)

p(xt | st) = N (xt; f(st),R) (20)

where the superscript (i) again denotes that each independent component i ∈ {1, . . . , N} follows
its own switching linear dynamical system. Also, as explained in Section 3.2, each independent
component is part of a higher dimensional latent component y

(i)
t = (s

(i)
t , y

(i)
t,2, . . . , y

(i)
t,d). The

mixing function f and other variables are defined as in the main text. The log-joint logL =

log p(x
(1:N)
1:T ,y

(1:N)
1:T , u

(1:N)
1:T ) can be written as:

logL =

T∑
t=1

log p(xt | st) +

N∑
i=1

(
log p(u

(i)
1 ) + log p(y

(i)
1 | u

(i)
1 )

T∑
t=1

log p(u
(i)
t | u

(i)
t−1) + log p(y

(i)
t | y

(i)
t−1, u

(i)
t )

)
. (21)

The marginal likelihood is intractable and hence we instead optimize the variational evidence lower
bound (ELBO), denoted here log L̂, under the assumption that the posterior factorizes as per

q(z
(1:N)
1:T , u

(1:N)
1:T ) =

N∏
i=1

q(z
(i)
1:T )q(u

(i)
1:T ). (22)
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The ELBO can thus be written as:

log L̂ = Eq
[

log
p(x1:T ,y

(1:N)
1:T , u

(1:N)
1:T )

q(y
(1:N)
1:T , u

(1:N)
1:T )

]

= Eq
[ T∑
t=1

log p(xt | s(1)
t , ..., s

(N)
t ) +

N∑
n=1

log
p(y

(i)
1:T | u

(i)
1:T )p(u

(i)
1:T )

q(y
(i)
1:T )q(u

(i)
1:T )

]

= Eq
[ T∑
t=1

log p(xt | s(1)
t , ..., s

(N)
t )

]
+

N∑
n=1

(
−KL

[
q(u

(i)
1:T )

∣∣∣∣p(u(i)
1:T )

]
+ H

[
q(y

(i)
1:T )

]

+ Eq
[

log p(y
(i)
1:T | u

(i)
1:T )

])

= Eq
[ T∑
t=1

log p(xt | s(1)
t , ..., s

(N)
t )

]
+

N∑
n=1

(
−KL

[
q(u

(i)
1:T )

∣∣∣∣p(u(i)
1:T )

]
+ H

[
q(s

(i)
1:T )

]

+ Eq
[

log p(s
(i)
1 | u

(i)
1 )

]
+

T∑
t=2

Eq
[

log p(s
(i)
t | s

(i)
t−1, u

(i)
t )

])
(23)

where H denotes Gaussian differential entropy, and q is always with respect to the relevant variables.
As long as all the distributions are conjugate-exponential families, we can use the Structured VAE
Johnson et al. (2017) framework for inference and learning. We provide further detail on these two
steps below.

Inference Notice that we can write the latent variable part of our generative model in the following
useful exponential family forms:

p(u
(i)
1 ) =

K∏
k=1

π
(i)δ(u

(i)
1 =k)

k = exp

{
K∑
i=1

δ(u
(i)
1 = k) log π

(i)
k

}
= exp

{
〈η(i)

π , δ(i)
u1
〉
}

p(u
(i)
t | u

(i)
t−1) =

K∏
k=1

K∏
j=1

A
(i)
δ(u

(i)
t−1

=k)δ(u
(i)
t =l)

kl = exp
{
〈η(i)

A , δ(i)
ut−1,ut〉

}
(24)

p(y
(i)
1 | u

(i)
1 ) =

K∏
k=1

N (y
(i)
1 ; b̄

(i)
k , Q̄−1(i)

k )δ(u
(i)
1 =k)

= exp

{
K∑
k=1

δ(u
(i)
1 = k)

(
〈h(i)

1,k,y
(i)
1 〉+ y

(i)T

1 J
(i)
1,ky

(i)
1 − logZ

(i)
1,k

)}
h

(i)
1,k = Q̄

(i)
k b̄

(i)
k

J
(i)
1,k = −1

2
Q̄

(i)
k ,
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where logZ
(i)
1,k is the log-normalizer, and similarly

p(y
(i)
t | y

(i)
t−1, u

(i)
t ) =

K∏
k=1

N (y
(i)
t ; B

(i)
k y

(i)
t−1 + b

(i)
k ,Q−1(i)

k )δ(u
(i)
t =k)

= exp

{
K∑
k=1

δ(u
(i)
t = k)

(〈
h

(i)
k ,y

(i)
t−1,t

〉
+ z

(i)T

y−1,tJ
(i)
k z

(i)
y−1,t − logZ

(i)
k

)}
y

(i)
t−1,t = (y

(i)
t−1,y

(i)
t )T

h
(i)
k =

(
B

(i)T

k Q
(i)
k B

(i)
k −B

(i)T

k Q
(i)
k

−Q
(i)
k B

(i)
k Q

(i)
k

)(
0

b
(i)
k

)

J
(i)
k = −1

2

(
B

(i)T

k Q
(i)
k B

(i)
k −B

(i)T

k Q
(i)
k

−Q
(i)
k B

(i)
k Q

(i)
k

)
.

Applying standard results from structured mean-field inference, the updates for the approximate
posterior of the HMM latent variables is as follows:

q(u
(i)
1:T ) ∝ exp

{
log p(u

(i)
1 ) +

T∑
t=2

log p(u
(i)
t | u

(i)
t−1)

+ E
q(y

(n)
1 )

[
log p(y

(i)
1 | u

(i)
1 )
]

+ E
q(y

(i)
t−1,t)

[
log p(y

(i)
t | y

(i)
t−1, u

(i)
t )
]}

.

And by plugging in the distributions explicitly gives

q(u
(i)
1:T ) ∝ exp

{
〈ηπ(i) , δ(i)

u1
〉+ 〈δ(i)

u1
,ρ

(i)
1 〉+

T∑
t=2

〈ηA(i) , vec
(
δ(i)
ut−1

δ(i)T

ut

)
〉+ 〈δ(i)

ut ,ρ
(i)
t 〉

}
,

(25)

where we have defined

E
q(y

(i)
t−1,t)

[
log p(y

(i)
t | y

(i)
t−1, u

(i)
t )
]

=

K∑
k=1

δ(u
(i)
t = k)E

q(z
(ni
t−1,t)

[〈
h

(i)
t,k, z

(i)
t−1,t

〉
+

y
(i)T

t−1,tJ
(i)
t,ky

(i)
t−1,t − logZ

(i)
t,k
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Equation (25) can be viewed as a factor graph of unnormalized potentials – we can therefore use
standard message passing algorithms for efficient inference. For instance, the forward-pass is:
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Similarly, the standard mean-field updates for the dynamical system latent variables gives:
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. (27)

The problem here is that we would like to write all the factors in terms of st and yt conditonal on xt.
However, due to the nonlinear mixing function, we can’t write this directly in conjugate exponential
family form. To resolve this, we follow Johnson et al. (2017) and use a decoder neural network to
predict approximate natural parameters such that they are in conjugate form, namely:

E∏
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(i)
t )

[log p(xt | st)] ∝ 〈vt(xt;φ), st〉+ sTt Wt(xt;φ)st ,
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where vt,Wt are thus the outputs of the decoder network, with the latter term assumed to have
diagonal structure with negative entries to ensure it’s an appropriate Gaussian natural parameter.
Further, due to the factored approximation assumption over y

(1)
t , . . . ,y

(N)
t and thus s
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t , . . . , s

(N)
t ,

above can be written as:
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= 〈ṽt(i),y(i)
t 〉+ y

(i)T

t W̃(i)y
(i)
t (28)

where ṽt
(i),W̃(i) are zero everywhere except in their first indices. The other expectations in Equation

(27) are just responsibility weighted natural parameters. For instance:
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The approximate posterior in (27) can therefore be written as:
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This can again be viewed as a factor graph on which to perform message passing. The initial forward
message is
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which is an unnormalized Gaussian distribution, and we have dropped superscripts for convenience.
The forward equations can be derived as follows, shown here for t− 1 = 1, t = 2:
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Thus, the message passing on the linear dynamical system ends up as updates on the natural parame-
ters:

α(y2) = exp
{
〈ṽ2 + η2, z2〉+ yT2

(
W̃ + P2

)
y2

}
,

which is analogous to the Kalman filter updates. Similar update equations can be derived for the
backward pass and the marginal posteriors are given by the normalized product of the forward and
backward passes. Since the resulting distributions are Gaussian, it is easy to compute the expected
sufficient statistics required in the inference step described above for q(u1:T ). In practice, we will
cycle between these two inference steps until convergence, after which the M-step is carried out.

Learning After repeating the inference step until convergence, we perform stochastic gradient
updates by maximizing the ELBO (Equation (23)) with respect to all the model parameters. In
particular, to optimize the first term:
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t , ..., s
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]
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t ),∀t ∈ (1, . . . , T ) , and parameterize the mixing function with a decoder
neural network f(·;θ):

p(xt | st) = N (xt; f(st;θ),R) . (30)

D Details on experiments on simulated data

Simulated data We simulated 100K long time-sequences from the ∆-SNICA and computed the
mean absolute correlation coefficient (MCC) between the estimated latent components and ground
true independent components. The switching linear dynamical system was simulated to have two
latent hmm states, one that induced strong mean reverting behaviour upon the linear dynamical system,
and another with oscillatory dynamics. The dimension of the linear dynamical system state-space
was also set to 2 (1 + independent component). The HMM transition matrix was close to diagonal
with 0.99 probability of staying in current state and 0.01 probability of transitioning to the other
state, at each time step of the 100k long sequence. The code at [redacted for anonymity] provides the
exact simulation details. To illustrate the dimensionality reduction capabilities we considered two
settings where the observed data dimension M , was either 12 or 24 and the number of independent
components, N was 3 and 6, respectively. Therefore the model consist of N independent processes
of Equation (4). Observations were created by the mixing function (Eq. (3)) and additive Gaussian
diagonal noise. We considered four levels of mixing of increasing complexity by randomly initialized
MLPs of the following number of layers: 1 (linear ICA), 2, 3, and 5.

Training details All the experiments were run for ten times to compute error bars. The model
parameters, including the mixing function, were estimated using the inference and learning algorithm
described above. All parameters were trained in ordered to increase the ELBO of the model; Adam
with learning rate 1e-2 was used. The number of layesr in the encoder and decoder networks was set
equal to the number of mixing layers for both ∆-SNICA and IIA-HMM benchmark. The number of
hidden units was set to 64 for all models. In order to avoid local minima, we started training from 20
different inital seeds and chose the model that reached the highest ELBO, for both ∆-SNICA and the
IIA-HMM model. The models were trained on [redacted] cluster until convergence, which in practice
was approximately 12 hours on most settings. All training was done on CPUs only. Memory used for
a single model to be trained was 10G RAM.

E Further experiment on simulated data

Size of training data The theoretical identifiability results presented in this paper hold in the limit
of infinite data. Hence, we hypothesized that the amount of training data may have large impact in
any practical situations – in addition to the usual benefits of increased dataset size. To explore this,
we trained our model for varying lengths of datasets, with the results shown in Figure 4. We observed
much better results for the largest dataset. Due to limited compute available to us, we leave it for
future works to investigate even larger data sizes.
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Figure 4: Mean absolute correlation coefficient between estimated and ground true independent
components for varying lengths of training data for ∆-SNICA (N=3, M=12), for equal training time.
Result shown for two different numbers of mixing layers L=2 and L=5

F Details on MEG experiment

Data and Preprocessing The MEG data used were from the open Cam-CAN data repository3

(available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/), and released under Creative Commons
license. (Taylor et al., 2017; Shafto et al., 2014). The MEG dataset was collected using a 306-channel
VectorView MEG system (Elekta Neuromag, Helsinki), consisting of 102 magnetometers and 204
orthogonal planar gradiometers with sampling 1000Hz. MEG data was preprocessed by temporal
signal space separation (tsss; MaxFilter 2.2, Elekta Neuromag Oy, Helsinki, Finland) to remove noise
from external sources and from HPI coils and head-motion was corrected (see (Taylor et al., 2017)
for more details of the preprocessing). During the resting state recording, subjects sat still with their
eyes closed for at least 8 min and 40 s. In the task-session data, the subjects carried out a (passive)
audio–visual task including 120 trials of unimodal stimuli (60 visual stimuli: bilateral/full-field
circular checkerboards; 60 auditory stimuli: binaural tones), presented at a rate of approximately 1
per second. In this study, We applied the method to 10 subjects’ data and downsampled it to 128 Hz
for saving computational resources, and only data from the planar gradiometers (204 channels) were
used. We further band-pass filtered the data between 4 Hz and 30 Hz and normalized them to have
zero-mean and unit variance. For the task-session data, we cropped each trial from -300ms to 600ms
after the onset. The MNE package (Gramfort et al., 2013) was used for preprocessing.

SNICA setting We only used resting-state data for training. For saving memory, we selected
5-min long resting-state data from each subject. We temporally concatenated segments of each
subject to form a dataset (5*60*128*10 = 384k time points) for training. We fixed the number of
independent components to 5, and set the number of hidden markov states and the dimension of the
linear dynamical system to 2. The number of layesr in the encoder and decoder networks was set
equal, and the number of hidden units was set to 32. Otherwise, all the settings were as in Simulation.

Evaluation Methods For evaluation, we used the model trained with (unlabeled) resting-state data
as feature extractors to perform a downstream task for classification of (labeled) task-session data. We
carried out classification of the stimulus modality (auditory or visual) by using the estimated features.
Classification was performed using a linear support vector machine (SVM) classifier trained on the
stimulation modality labels and sliding-window-averaged features (width=10 and stride=3 samples)
for each trial. The performance was evaluated by the generalizability of a classifier across subjects,
i.e., one-subject-out cross-validation (OSO-CV). The hyperparameters of the SVM were determined
by nested OSO-CV without using the test data. For comparison, IIA-HMM and IIA-TCL for the
nonlinear vector autoregressive model (NVAM) were applied as baseline methods. Since IIA-HMM
is not able to reduce the dimensionality, PCA was performed on the concatenated resting-state data

3Acknowledgment for Cam-CAN data: Data collection and sharing for this project was provided by the
Cambridge Centre for Ageing and Neuroscience (CamCAN). CamCAN funding was provided by the UK
Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1), together with support
from the UK Medical Research Council and University of Cambridge, UK.
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to reduce the dimension to 5 for fair comparison. For IIA-TCL, we used segments of equal size,
of length 10 s or 1280 data points, and also set the number of independent innovation to 5 for fair
comparison.

We visualized the spatial patterns of the estimated features by plotting the weight vectors of units from
encoder MLP in the topography map space. For the first layer, we have weight vectors (columns of
the weight matrix W1) across sensors for each unit, and directly mapped them into brain topography
space. And the weight matrix W2 multiplied by W1 to obtain weight vectors (columns of W1W2)
of sensors for each unit in the second layer, and so on for subsequent layers.
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