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Abstract: Oxygen concentration quantification in the blood (SpO2) has been used as a mean to diagnose and prevent 

critical medical conditions thanks to pulse oximetry. In spite of its theoretical precision, this method suffers 

from intrinsic deviations from the components used in such monitoring devices (PVT) that can lead to SpO2 

measurement errors. In this paper, we propose a multi-domain modeling of a NIRS-based blood oxygen 

saturation monitoring system and its biological environment using SystemC(-AMS) for virtual prototyping, 

to analyze the impact of PVT variations of opto-electrical components, thanks to Monte-Carlo simulation 

correlated with transient analysis. We simulated the blood flow of the finger tissue and the dynamic 

attenuation of the red and infrared light passing through the tissue. The Monte-Carlo simulation method was 

used to analyze different PVT parameters that may cause measurement deviations separately. Finally, we 

found that the red/IR LED peak wavelength deviation and the temperature of the system have an important 

impact on the SpO2 quantification, especially red LED peak wavelength deviation. This result shows that the 

choice of the red light source is of prime importance for accurate SpO2 quantification.
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1 INTRODUCTION 

SpO2 (oxygen saturation) index is measured to show 

the level of oxygenation in blood using an oximeter 

device. It is based on Near-InfraRed Spectroscopy 

(NIRS) and on PhotoPlethysmoGraphy (PPG) 

technologies (Webster, 1997). Typically, as shown 

in Fig.1, two colored light sources (red and infrared) 

are used on body parts, usually a finger, to detect 

volumetric changes of blood. However, deviations 

always occur when performing a measurement. 

Therefore, device calibration is indispensable to 

obtain an acceptable error rate (Maxim, 2019). 

 

Figure 1: The principle of oximeter. 

Many well-known factors have an impact on the 

SpO2 measurement, for instance motion artifacts, 

ambient light, skin color, etc. However, so far, 

influences coming from the system itself haven’t 

been carefully studied. We propose to contribute to 

this field through the study of the impact of PVT 

(Process, Voltage, Temperature) variations in the 

SpO2 monitoring system. To do this, we intend to 

model and simulate the embedded system in 

association with the monitored biological tissue. 

Evaluating PVT variations is difficult to achieve 

through experimental methods, because it is not easy 

to vary certain parameters in the monitoring system 

(such as the peak wavelength of the red/IR LED 

spectrum, the spectral sensitivity of the photo-

detector, etc.) to evaluate their impact on SpO2 

quantification. Parasitic signals and noise might also 

influence the results. Therefore, we will add these 

features in our modeling methodology, to give us a 

better knowledge of the measurement device. 

We chose the SystemC and SystemC-AMS 

modeling tools to develop our models due to three 

main advantages compared to other modeling 

tools/languages, which are summarized in Table 1: 

 Multi models of computation: SystemC/ 

SystemC-AMS offer several Models of 

Computation (MoC) with Discrete Event 

(DE), Timed Data Flow (TDF), Linear Signal 

Flow (LSF) and Electrical Linear Networks 

(ELN). Each MoC operates at different 

abstraction levels and can therefore be chosen 

according to the desired precision; 

 Fast simulation: with well-chosen abstraction 

level and simulation time step, simulation run 

time can be shortened as much as possible; 

 Open source: SystemC and SystemC-AMS are 

freely distributed C++ libraries, which means 

we have access to these tools as well as all 

C++ supported functions. If necessary, it is 

also relatively easy to integrate other software 

in our model by implementing interfaces. 

Other advantages, like high data accuracy, 

lightweight installation and simplicity of usage, are 

also reasons why we chose this tool. We used 

versions 2.3.2 of SystemC and 2.1 of SystemC-

AMS. Both of these libraries can be freely 

downloaded on Accellera's website (Accellera, n.d.). 
SystemC/SystemC-AMS was proposed as an 

efficient tool for modeling complex systems, 
especially in the biomedical domain (Pecheux, et al., 
2010), but it doesn’t natively include Monte-Carlo 
(MC) statistical analysis method (Menčík, 2016). 
Indeed, this analysis is particularly relevant to 
observe the impact of key parameters on the system 
behavior. Therefore, a MC simulation method in 
SystemC-AMS must be developed. 

Nowadays, modeling and simulation analysis 
methods have been widely used in the field of bio-

Table 1: SystemC/SystemC-AMS versus other modeling tools. 

 



medicine (e.g. bionic nervous systems modeling 
(Cacciapuoti, 2015)) and the research of medical 
device (Mundt, 2000). The interaction modeling 
between medical device and the human body also 
exists, such as the interaction between ears and 
cochlear implants (Tran, 2015), and the interaction 
simulation between the cardiac rhythm and 
pacemakers (Greenhut, 1993). 

In this context, the main objective of this article 

is to present our modeling and simulation approach 

of a highly multi-domain application with open-

source tools, and to explore impacts of PVT 

variations in this biomedical device. 

The paper is organized as follows. In section 2, 

we present our model structure. Then, the simulation 

process and the model validation method are shown 

in section 3. PVT variation analysis is described in 

section 4. Finally, we conclude in the last section. 

2 MODEL STRUCTURE 

There are mainly two parts in our model: the 

monitoring system, with opto-electrical components 

and the biological environment. Figure 2 shows the 

model block diagram (with the MoC used for each 

sub_block), with the finger as the monitored 

biological medium. 

In this figure, Num_core block was modeled in 

SystemC, and a state machine was implemented to 

emulate a micro-controller. This block was also used 

to provide pulsed power supply for both LEDs by 

controlling a LED Driver, and to receive data from 

the ADC channel. 

2.1 LED 

A red LED (LHQ974) and an IR LED (SFH4080) 

manufactured by OSRAM were modeled in 

SystemC-AMS (note that any other type of light 

source can subsequently be modeled, as long as 

parameters describing it are available). Both LED 

models are similar, except for their optical and 

electronic parameters. The LED model is divided 

into five sub-blocks to simulate static and dynamic 

behaviors, in association with its optical 

characteristics. Sub-block TDF_R, simulates the 

static behavior described by Shockley equation (Sze, 

et al., 2006), mainly. Blue sub-blocks are 

implemented with the ELN MoC to simulate the 

dynamic behavior of the LED. Figure 3 (left) shows 

the physical equivalent circuit of both LHQ974 and 

SFH4080 sub-blocks. In this equivalent circuit, Cd 

and Cj represent the diffusion and the junction 

capacitance, respectively. iD0 is the equivalent 

current source, which takes the value of the output 

current of TDF_R and TDF_IR. The feedback sub-

blocks are used to transfer two feedback parameters: 

the current iD and the voltage VD of the LED, from 

LHQ974 to TDF_R or from SFH4080 to TDF_IR. 

Figure 3 (right) represents the equivalent circuit of 

LHQ974o and SFH4080o, which are used to take 

into account the intrinsic opto-electrical effect of the 

device. iequ is equal to iD. The RC pole, represented 

by the resistance RRC and the capacitance CRC, 

designates the frequency characteristic of the LED 

(Bian, et al., 2008). Then, the P_R and P_IR sub-

blocks are used to convert the output current iR of 

LHQ974o and SFH4080o into luminous intensity in 

Watt. The actual spectral distribution of both LEDs 

is usually modeled by a Gaussian curve (Tsiakaka, et 

al., 2020) and the total radiant flux is the integral of 

the entire spectrum.  

For the oxygen rate calculation, since the molar 

extinction ε(λ) varies according to the wavelength, 

the attenuation for different wavelengths of light is 

calculated separately, when a beam of light passes 

through the biological tissue. Therefore, we should 

 

Figure 2: Model structure to emulate oximeter on finger in SystemC/SystemC-AMS. 



 
Figure 3: Equivalent circuit of LED in dynamic mode. 

On the left is the physical equivalent circuit. The block 

on the right has no physical reality, but is used to 

consider the device intrinsic opto-electrical effect.  

separate the luminous intensity of each wavelength 

in the LED model. Still, we cannot consider all 

wavelengths of the LED spectrum, since it would 

greatly increase the amount of calculation and, 

therefore, the simulation time. As a result, we 

approximated the LED spectrum by dividing it into 

five intervals around the peak wavelength. For the 

red LED (LHQ974), the peak wavelength is ideally 

660nm. Thus, we chose five wavelengths from 

640nm to 680nm with an interval of 10nm. For the 

IR LED (SFH4080), with its peak at 880nm, the 

chosen range was 860nm to 900nm, with the same 

interval. 

2.2 Photo-detector 

A model of the BP104S photo-detector (PD), also 

manufactured by OSRAM, was developed. The PD 

operates in reverse bias. It provides a spectral 

sensitivity in accordance with the spectrum of the 

received light to convert the light intensity into 

electric power. The current generated by the PD 

mainly consists of two parts: 

 Iph: the photonic current generated by the light 

received from the external environment by the 

PD, which carries the detection information; 

 Idc: the parasitic dark current generated by the 

PD in the absence of wanted light. 

Sub-block BP104S in Fig. 2 is used to describe 

the PD spectral sensitivity and the dark current. 

ELN_RC and ELN_2 are made to simulate the 

dynamic behavior, as in Fig. 3. The PD output is 

sent to the ADC block, so that the pulsed current can 

be sampled, after amplification and voltage 

conversion, and data can be registered in Num_core. 

2.3 Biological environment 

A model of a finger was constructed to simulate the 

oxygen concentration variation in the blood and its 

detection with lights through the tissue. In the blood, 

there are mainly two chromophores that impact the 

measurement of SpO2: HbO2 (oxy-hemoglobin) and 

HHb (deoxy-hemoglobin). The light attenuation by 

the biological tissue is given by the Beer-Lambert 

Law, shown in equation (1): 
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with I0(λ) the input light intensity at the wavelength 

λ, I(λ) the output light intensity passing through and 

attenuated by the biological tissue, εHbO2, εHHb the 

molar extinction of HbO2 and HHb, respectively,  

[HbO2] and [HHb] the concentration of HbO2 and 

HHb, and d the length of optical path. 

The change of blood volume according to time is 

simulated by the normalized equation (2), where f0 is 

the cardiac frequency in Hz. 
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3 SIMULATION PROCESS AND 

MODELS VALIDATION 

This section first introduces the simulation process. 

Then, in subsection 3.2, the accuracy of our models 

(at the device and at the system level) is evaluated 

by comparing our simulation with other 

experimental results in the existing literature. 

3.1 Simulation process 

Once all models were implemented, basic transient 

simulation was performed to get two PPG signals 

that represent the red and IR responses generated by 

the PD after passing through the biological medium. 

Then, as shown in Figure 2, data was sampled every 

1ms by the ADC block. The result is presented in 

Figure 4, where inputs for each LED are light pulses 

of 150µs every 1ms. The simulation step was set to 

1µs, to be able to observe the devices transient 

behaviors. The heart rate was set to 10Hz (10 times 

higher than in reality), to reduce the simulation time. 

In this figure, the pink signal is the pulsed current 

generated by the PD. The top envelope corresponds 

to the IR LED, while the bottom envelope is due to 

the red LED. The red LED signal amplitude is lower 

because the luminous intensity of red light is 



 
Figure 5: PPG obtained with red and IR sources for three 

SpO2 value. IR LED curves (in blue) also feature variation 

of the peak wavelength. 

 
Figure 4: Red signal (bottom), IR signal (top) generated by 

photo-detector and the samples of the signals (crosses on 

the top and on the bottom). 

relatively weaker, when the same voltage is applied 

to both LEDs. The crosses (in the zoomed block) are 

samples of LED signals. On a laptop with an Intel 

Core i5 9
th
 Gen processor (2.4GHz, 8 CPUs) and 

8192M of RAM, it takes 29s to simulate a 0.1s 

duration. 

Then, after detecting the peak and valley of the 

red/IR signals by signal processing (filtering and 

extremum detection, mainly), we can calculate the 

ROS (Ratio-of-ratio) value with the following 

equation (Webster, 1997): 
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Here, RL, RH are the valley and peak value of the red 

signal, respectively, and IRL, IRH correspond to the 

valley and peak value of the IR signal. 

SpO2 value was set before simulation run-time, 

by setting [HbO2] and [HHb] in the biological 

environment, according to equation (4) (Webster, 

1997). We set [HbO2] + [HHb] = 0.3mM, which is 

an approximate value for the human body (Dash, et 

al., 2010). In any case, in the simulation, the value of 

SpO2 can be easily and dynamically changed by 

modifying the ratio of [HbO2] and [HHb]. 
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With a single period of both PPG (red and IR 

responses), only one ROS value can be obtained for 

one specific SpO2 value. However, to obtain a 

quadratic SpO2-ROS curve (Maxim, 2019), we need 

to vary this SpO2 value. In our simulation, we varied 

this parameter from 90% to 100% (a below 90% 

SpO2 value means the person is in a danger state). 

Figure 5 shows several simulation periods. Red lines 

correspond to PPG due to the red source for three 

different SpO2 settings (90%, 95%, and 100%). For 

IR responses (blue curves), a shift of the peak 

wavelength has also been taken into account, to 

illustrate PVT variation, albeit in a basic manner. 

We chose four values above and four values below 

the 880nm nominal value, each with a 5nm step 

increment, to constitute nine peak wavelength values 

in the [860nm; 900nm] interval. Combined with the 

three different SpO2 parameter values, we were able 

to simulate twenty-seven configurations. Section 4 

will present a more thorough approach to evaluate 

the influence of PVT variations. 

3.2 Models validation 

There are two steps to validate our models. First, we 

individually validate each component (i.e. both 

LEDs and PD) by comparing the simulation output 

data with key-parameters in the datasheets. These 

results are summarized in Table 2 (obtained by time 

domain simulation). Only the optical parameters 

weren’t very well modeled, but with acceptable 

errors according to datasheets. We assume it was 

due to approximations made to model certain 

characterizations and also to the fact that we had the 

influence of the other parameters. In any case, we 

can calibrate this error rate by ourselves in the 

modeling, to be closer to the datasheet value.  

The second step is to validate the whole system 

by comparing our simulation data with previous 

results (Tsiakaka, et al., 2020), where authors used 

six different pairs of red/IR LED to plot six SpO2-

ROS curves. We were able to measure these LEDs 

optical and electrical characteristics, in order to 

simulate these devices with our developed model. 

For the PD, a model of the BP104S was used. As for 

the biological medium, we applied the same finger 



 
Figure 6: a) Simulation result with our models for the six 

different red/IR LED pairs; b) SpO2 deviation curves 

between our works and (Tsiakaka, et al., 2020). 
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Table 2: Models key-parameters compared to datasheets. 

 

model. Results are presented in Figure 6.a. It shows 

the “110-25ROS” curve, as it is a widely used 

reference to basically estimate SpO2. We then 

compared our simulations to Figure 9.b in (Tsiakaka, 

et al., 2020), with the only difference being the used 

PD (BP104S for us and FDS100 for the previous 

work). Figure 6.b shows the SpO2 deviation curves 

between our models and the previous results, for all 

six red/IR LED pairs. We can notice that the 

absolute value of ΔSpO2 is always less than 1%. 

Then, we also calculated the SpO2 Root-Mean-

Square Deviation (RMSD) for each pair of SpO2-

ROS curves in both works. It ranges from 0.22% to 

0.77%, which proves that our simulation results 

correlate well with the previous results. In this way, 

our whole system model is validated.  

4 PVT VARIATION ANALYSIS 

The dispersion of the IR LED peak wavelength, as 

simulated in Figure 5, relies on a deterministic 

approach. For a more in-depth analysis of the impact 

of PVT variations, it is necessary to introduce a 

randomness factor. As a result, we performed a MC 

analysis on our system, based on the variation of 

selected parameters. As their impact on SpO2 

quantification can be rather unpredictable, a Corner 

simulation will not necessarily give us enough 

information. Therefore, MC analysis will allow us to 

get a more complete view of the system behavior. 

4.1 MC simulation in SystemC-AMS 

In this analysis, we varied selected parameters in a 

reasonable range, with a chosen Probability Density 

Function (PDF) of amplitude centered in a specific 

value. Since this feature isn’t natively included in 

SystemC-AMS, we had to develop our own code. 

Firstly, we wrote a function to generate a set of 

numbers varying within a certain range in a specific 

distribution around 1. In this article, we used a 

Gaussian distribution. However, other PDF are 

possible (e.g., uniform). Then, these numbers were 

multiplied by the nominal value of the parameter to 

be varied. It constituted a set of input values. Then, 

we assigned these input values to a SystemC signal 

and connected it to the systemC-AMS input port of 

the target parameter. A loop was then implemented 

in the top file, where we assigned the random input 

values to the SystemC signal, one by one, to do 

repeated simulations. Finally, we generated a .dat 

file to save the output data.  

4.2 Introduction of different PVT 
parameters in the system 

PVT considers the variation of selected parameters 

in an electronic system: Process (P) dispersion due 

to manufacturing, mainly, supply Voltage (V) of the 

various system components, and the operating 

Temperature (T) of the device. The parameters we 

took into account are presented in Table 3, with their 

typical values and variation ranges. 

T-variation in the device is mainly due to self-

heating during operation and also to the light sources 

during emission. Note that a variation of more than 

4K is generally unacceptable in a medical device. 



 
Figure 7: Simulation result of the variation of three key 

factors in the same time. 

90 91 92 93 94 95 96 97 98 99 100

SpO2 (%)

0.2

0.4

0.6

0.8
a)

b)

93 94 95 96 97 98 99

SpO2 (%)

0

10

20

30

40

110-25R
OS

A device power supply voltage is often affected 

by many factors causing instability and fluctuations 

(IR-drop due to current draw, crosstalk because of  

electromagnetic interference, etc.). Moreover, in an 

embedded system with battery, the voltage supply 

decreases with the battery usage. Such instability 

may impact the accuracy of our SpO2 measure. In 

this study, we focused on the power supply of both 

LEDs and of the PD, knowing that the VREF for the 

ADC doesn’t result in any error at all. 

P-variation is the deviation of component 

attributes during fabrication. For both LEDs, n is the 

ideality factor, a key parameter describing the diode 

junction and a solar cell’s electrical behavior (Hadj, 

et al., 2018). n can slightly vary during fabrication. 

As shown in equation (5), it has an influence on the 

forward current I, which is directly proportional to 

the optical power of the light source. VF, the 

threshold voltage of the LED is also affected by 

manufacturing dispersion. Both of the parameters 

can be concatenated in a same Gaussian PDF. 
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In equation (5), IS is the saturation current, and 

VT the thermal voltage. We found in the datasheets 

that the maximal VF for the red and IR LED is 2.5V 

and 1.8V, respectively. From simulations, we 

estimated the maximal value of n for both LEDs. It 

is 2.55 and 1.64, respectively, and can’t be less than 

1 (Sze, et al., 2006). So, we varied n from 1 to 2.55 

for the red LED and from 1 to 1.64 for the IR LED. 

Deviation of the LED peak wavelength is 

another relevant parameter. Even for the same type 

of LED, the peak wavelength of the optical spectrum 

is subject to deviation due to the fabrication process. 

We found a typical range of ±20nm for the peak 

wavelength of both LEDs in their datasheets. 

The FWHM (Full Width at Half Maximum) 

parameter of the optical spectrum can also be 

impacted by process dispersion. Based on 

experimental results found in (Filippo, et al., 2017), 

we chose a range of ±10% of the typical value. 

Finally, the PD spectral sensitivity is also 

affected by an offset due to process variation. Thus, 

we studied the impact of this factor by shifting the 

PD optical response spectrum vertically and laterally. 

4.3 Simulation Results 

To get an idea of the influence of each of the 

parameters presented above, we first performed the 

MC simulation (consisting of 200 runs), varying 

only one single parameter. We were then able to 

calculate for this parameter the maximal SpO2 

RMSD for its two extreme values. These results are 

presented in the last line of Table 3. We found that 

the main factors that impact the SpO2 quantification 

come from the deviation of both LED peak 

wavelengths (RMSD is 11.31% for the red LED and 

1.79% for the IR LED) and from temperature 

(RMSD is 3.19%). The gap between both LED 

RMSD values can be explained by the fact that 

around the red light band (660nm), the slope of 

molar extinction curves of HbO2 and HHb is greater 

than around the IR light band (880nm). The impact 

of other parameters is negligible. 

After that, we investigated the combined 

influence of several parameters dispersion on the 

quantification of SpO2. Figure 7 presents the result 

of the MC simulation correlated with transient 

analysis. We varied the three key parameters (both 

LED peak wavelengths and T). We performed 400 

runs (i.e., different configurations) to obtain 400 

SpO2-ROS curves, as in Figure 7.a. To get these 

results, the simulation time was around 11h. Figure 

7.b shows the distribution of SpO2 when ROS is equal 

to 0.4. The RMSD of SpO2 for the two extreme cases 

Table 3: PVT parameters to be varied and analyzed in the system. 

 



is 9.32% in the critical 90–100% saturation window, 

which is close to the dispersion value associated to 

the red LED peak wavelength variation. 

Consequently, it could be said that the red LED peak 

wavelength variation has the greatest impact. 

We can conclude from the above results that in 

the oximeter manufacturing process, it is necessary 

to tightly control the peak wavelength deviation of 

the light source, to avoid an otherwise necessary 

calibration. At the same time, the device operating 

temperature influence on the SpO2 measurement 

accuracy cannot be ignored. For other parameters of 

our discussion, there is no strict requirement. 

5 CONCLUSION 

In this paper, the process to quantify SpO2 on the 

finger with an oximeter is simulated with an opto-

electronic model built in SystemC/SystemC-AMS. 

Then, the impact of PVT variations in the device on 

the SpO2 quantification is explored, through a MC 

method combined with transient simulation, 

performed on the developed models. We found that 

the main parameters of PVT variations on the 

quantification of SpO2 were the red/IR LED peak 

wavelength deviation and temperature. Other factors 

seem to have a negligible impact individually. 

This modeling method in SystemC/SystemC-

AMS, which associates the monitoring system, 

including its opto-electronic components, and the 

biological environment, is proved fast, accurate and 

flexible. This methodology can be employed for any 

cyber-physical system to estimate its performances, 

to optimize the design phase, and to help the 

understanding of measurement data (e.g. reproduce 

results close to the experimental measurements in 

the simulation and vary certain parameters to 

understand their impacts). 
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