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The Wigner function WN (x,p) is a useful quantity to characterize the quantum fluctuations of an
N -body system in its phase space. Here we study WN (x,p) for N noninteracting spinless fermions in
a d-dimensional spherical hard box of radius R at temperature T = 0. In the large N limit, the local
density approximation (LDA) predicts that WN (x,p) ≈ 1/(2π~)d inside a finite region of the (x,p)
plane, namely for |x| < R and |p| < kF where kF is the Fermi momentum, while WN (x,p) vanishes
outside this region, or “droplet”, on a scale determined by quantum fluctuations. In this paper we
investigate systematically, in this quantum region, the structure of the Wigner function along the
edge of this droplet, called the Fermi surf. In one dimension, we find that there are three distinct
edge regions along the Fermi surf and we compute exactly the associated nontrivial scaling functions
in each regime. We also study the momentum distribution ρ̂N (p) and find a striking algebraic tail for
very large momenta ρ̂N (p) ∝ 1/p4, well beyond kF , reminiscent of a similar tail found in interacting
quantum systems (discussed in the context of Tan’s relation). We then generalize these results to
higher d and find, remarkably, that the scaling function close to the edge of the box is universal,
i.e., independent of the dimension d.
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I. INTRODUCTION AND MAIN RESULTS

A. Wigner function: overview

The Wigner function, introduced in quantum mechanics [1] and subsequently in the context of signal processing
[2], has found a wide variety of applications [3, 4], ranging from quantum optics [5, 6], trapped atoms and ions [7–12]
or electrons in quantum Hall systems [13] all the way to time/frequency analysis [14]. It was initially introduced
to provide a description of quantum mechanics in phase space, i.e. in position and momentum space (x, p), aiming
in particular at a better understanding of the classical limit ~ → 0 [15–18]. For a single particle in one-dimension,
described by the wave function ψ(x), the probability density function (PDF) in position space is given by |ψ(x)|2
and in momentum space by |ψ̂(p)|2 where ψ̂(p) is the Fourier transform of ψ(x). However, because of the Heisenberg
uncertainty principle, it is not possible to simultaneously measure x and p. Consequently, one cannot define, strictly
speaking, a joint PDF of x and p but the closest object to such a joint PDF is the so called Wigner function W1(x, p),
defined as [1]

W1(x, p) =
1

2π~

∫ ∞
−∞

dy eipy/~ψ∗
(
x+

y

2

)
ψ
(
x− y

2

)
, (1)

where the subscript ’1’ refers to a single particle. By integrating W1(x, p) over p (respectively x) one can check that

one recovers |ψ(x)|2 (respectively |ψ̂(p)|2). However, as we will see below, W1(x, p) is not necessarily positive and for
this reason it is sometimes called a “pseudo” PDF and, in some cases, the negativity of the Wigner function has been
interpreted as an indicator of non-classicality [19].

The Wigner function can also be defined for many-body systems, either bosons or fermions. In particular it has been
shown that the Wigner function for N fermions trapped in a confining potential, even in the absence of interactions,
which will be our main focus here, displays a rich behavior in the limit of a large number of fermions N � 1. This
was shown in d = 1 and at temperature T = 0 in [20, 21] and more recently in any dimension d ≥ 1 and finite T
[22] for a large class of smooth confining potentials, such as the harmonic potential. In particular, the behavior of the
Wigner function for N particles exhibits, for large N , a “super-universal” scaling behaviour in the (x, p) plane near
the Fermi edge where the Wigner function vanishes. Here the super-universality refers to the fact that the scaling
behaviour of the Wigner function is independent of dimension d as well as the shape of the confining potential so
long as the potential is smooth [22]. However, much less is known about the large N behavior of the Wigner function
in the case of non-smooth or singular potentials, such as the hard box potential (see however [17, 18, 23–25] mainly
in the nuclear physics literature). In this paper, we show that this case also displays very rich behaviors, which are
however markedly different from the one found for smooth potentials.

Let us consider N noninteracting fermions in d dimensions and in the presence of a trapping potential V (x̂). The

many-body Hamiltonian is HN =
∑N
i=1 Ĥ(x̂i, p̂i) expressed in terms of the single particle Hamiltonian

Ĥ(x̂, p̂) =
p̂2

2m
+ V (x̂) , (2)

where m is the mass of the fermions. During the last few years, trapped Fermi gases have generated tremendous
interest, both theoretically [26–38] and experimentally in cold atom systems [39–43]. From the theoretical point of
view, the case of d = 1 is particularly interesting since, for some specific potentials V (x), the positions of the fermions
in the ground state of HN can be mapped to the eigenvalues of certain ensembles of random matrices (for a recent
review see [44]). For instance, the case of the harmonic potential V (x) = mω2x2/2 corresponds to the Gaussian
Unitary Ensemble (GUE) [28, 29], while the hard box potential, i.e., V (x) = 0 if |x| ≤ R and V (x) = +∞ elsewhere,
corresponds to the Jacobi Unitary Ensemble (JUE) of random matrices [34, 36]. These ensembles are well known in
random matrix theory to display rather different behaviours [45, 46]. In both cases, the spatial density of fermions, for
large N , has a finite support, i.e., the density vanishes beyond a certain value, for |x| > xedge, which defines an edge
in the x-space. Of course for the hard box, xedge = R – this is called a hard edge in RMT – while for the harmonic

oscillator xedge =
√

2N/α where α =
√
mω/~ is the inverse oscillator length – this is referred to as a soft edge in RMT.

Similarly, one expects that the density in momentum space also exhibits an edge at some value pedge. In the case
of the harmonic potential the positions and momenta have the same statistics, in particular at the edge. The more
general case of a smooth potential V (x) ∼ x2n with n ≥ 1 and integer was studied in [52] and it was shown that there
exist several different universality classes indexed by n, which have also generated some interest in the mathematical
physics literature [53–55]. However, the case of hard box potentials (which would formally correspond to the limit
n→∞) has not been studied so far. Nevertheless it is natural to expect that they behave differently from the case of
a smooth potential. This strongly suggests that the Wigner function of a hard box potential, not only in d = 1 but
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also in higher dimensions d > 1, will display a large N behavior in phase space (x,p), where x = (x1, x2, · · · , xd) and
similarly p = (p1, p2, · · · , pd), that will be different from the behavior found for smooth potentials [22].

We focus on the zero temperature limit where the system is described by the many-body ground state wave-function
Ψ0(x1,x2, . . . ,xN ). The many-body Wigner function, i.e., the generalization of the formula (1) to any N and d is
given by [1]

WN (x,p) =
N

(2π~)d

∫ ∞
−∞

dydx2 . . . dxN eip·yΨ∗0

(
x +

y

2
,x2, . . . ,xN

)
Ψ0

(
x− y

2
,x2, . . . ,xN

)
. (3)

One can easily check that WN (x,p) in (3) satisfies the relations∫ ∞
−∞

dpWN (x,p) = ρN (x) ,

∫ ∞
−∞

dxWN (x,p) = ρ̂N (p) and

∫ ∞
−∞

dx dpWN (x,p) = N , (4)

where ρN (x) and ρ̂N (p) denote respectively the density in real and momentum space in the ground state, i.e.,

ρN (x) =

N∑
i=1

〈δ(x− xi)〉0 , ρN (p) =

N∑
i=1

〈δ(p− pi)〉0 , (5)

which are both normalized to N , i.e.
∫∞
−∞ dx ρN (x) =

∫∞
−∞ dp ρ̂N (p) = N . In (5) the notation 〈. . .〉0 denotes an

average computed in the many-body ground-state Ψ0.
The many-body Wigner function in Eq. (3) is seemingly a complicated object for finite N as it depends on the details

of the trapping potential V (x). Remarkably however it turns out that in the limit of large N the Wigner function
WN (x,p) reaches a rather simple limiting form which is universal. Indeed, in the limit N →∞, WN (x,p) ' 0 outside
a domain Γ, which is just the region of the space phase (x,p) that is allowed classically. Inside this region Γ the
Wigner function is a constant, i.e., WN (x,p) ' 1/(2π~)d. One can indeed show that, as N → ∞, the expression in
(3) takes the very simple form

WN (x,p) ' 1

(2π~)d
Θ(µ− E(x,p)) (6)

where µ is the Fermi energy and

E(x,p) =
p2

2m
+ V (x) (7)

is the classical energy of a single particle. In Eq. (6), Θ(z) is the Heaviside step function such that Θ(z) = 1 if
z > 0 and 0 otherwise. While the result in (6) can be obtained via semi-classical methods, such as the local density
approximation [56], it was also derived in [22] via a controlled asymptotic analysis of the exact formula in (3). It is
clear from (6) that WN (x,p) vanishes outside the domain Γ – sometimes called a “droplet” – delimited by the surface
(xe,pe) described by

p2
e

2m
+ V (xe) = µ , (8)

which, following Ref. [21], we will call the “Fermi surf”. In Eq. (8), the subscript ’e’ refers to the edge region of the
droplet Γ, i.e. the vicinity of the Fermi surf, as opposed to the bulk region, far from the Fermi surf.

In fact, the simple form in (6) holds only for x and p in the bulk, i.e. for x and p far enough from the Fermi surf
(8). At the edge, i.e. close to (xe,pe), one expects that the sharp step function will be smoothened over a certain
energy scale eN . It is then natural to ask how this scale eN together with the precise form of the Wigner function
close to the Fermi surf (8) depend on the trapping potential V (x) and on the space dimension d. In Ref. [22] this
question was addressed for the wide class of smooth confining potentials, i.e., for potentials that behave for large |x|
as V (x) ∝ |x|m (for some real number m > 0). In this case, it was demonstrated that, in terms of the dimensionless
variable a defined as

a =
1

eN
(E(x,p)− µ) , (9)

where (x,p) is a point in the phase space close to the Fermi surf and eN is an energy scale given by

eN =
(~)2/3

(2m)1/3

(
1

m
(pe · ∇)2V (xe) + |∇V (xe)|2

)1/3

, (10)
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the Wigner function WN (x,p) takes the scaling form

WN (x,p) ' W(a)

(2π~)d
. (11)

Quite remarkably, it was shown in [22] that the scaling function W(a) is “super-universal”, i.e., independent of both
the potential and the space dimension d and is given by [22]

W(a) =

∫ +∞

22/3a

Ai(u)du , (12)

where Ai(u) is the Airy function. The function W(a) has the asymptotic behaviors

W(a) ∼


1 , a→ −∞

(8π)−1/2 a−3/4 exp
[
− 4

3 a
3/2
]
, a→ +∞ .

(13)

In particular, the limit lima→−∞W(a) = 1 ensures a smooth matching with the bulk result (6).

B. Model and main results

The goal of this paper is to investigate the case when the potential V (x) is a non-smooth function. In particular,
we consider the case where V (x) is a hard box potential, i.e.,

V (x) =

{
0, |x| ≤ R
∞, |x| > R .

(14)

It is useful to summarise our main results. For simplicity, in the remaining of this section we set m = ~ = R = 1.

1. One dimension d = 1

Wigner function. In this case, the Wigner function WN (x, p) for the hard box (14) can be computed exactly for
any value of N [see Eq. (38) and Fig. 2]. From the Wigner function, we also obtain the exact expression for the
density in position (40) and momentum (41) space (see also Fig. 4). From Eq. (6), setting V (x) = 0, we immediately
see that the Fermi surf is very simple in this case, and given by the rectangle passing through the four corners (see
Fig. 1)

(−1,−kF ), (1,−kF ), (1, kF ), (−1, kF ) with kF =
√

2µ , in the (x, p) plane , (15)

where kF is the Fermi wave vector. Outside this rectangle, and far enough from the Fermi surf, WN (x, p) ' 0 in the
limit N →∞. We find that the rest of the (x, p) plane is divided in four regions (see Fig. 1), one bulk region (I) well
inside the Fermi surf and three edge regions (II, III, IV and their symmetric counterparts) close to the Fermi surf
where the Wigner function exhibits different scaling regimes in the limit N →∞:

• (I) For −1 < x < 1 and −kF < p < kF the Wigner function is constant, i.e.,

WN (x, p) ' 1

2π
WI(x, p) with WI(x, p) = 1 , N →∞ , (16)

in agreement with the LDA prediction (6).

• (II) For −1 < x < 1 and p close to the momentum edge (|p| − pe) = O(1), the Wigner function takes the scaling
form for large N , say for p close to pe = +kF ,

WN (x, p) ' 1

2π
WII

(
x,

2

π
(p− kF )

)
, WII(x, q) =

1

π

∞∑
m=0

sin((m+ q)π(1− x))

m+ q
. (17)

A plot of the scaling function WII(x, q) is shown in Fig. 2 b) and Fig. 6, while its asymptotic behaviors are
given in Eq. (51) and (52).
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kF

F−k

W(x,p)~0
p

x

III

II

O(1/N)

I

−1 +1

O(N)

W(x,p)=0

IVO(1)

π)W(x,p)~1/(2

FIG. 1. Representation in phase space (x, p) of the various regimes for the Wigner function for the 1d hard box in the limit of
a large number of fermions. The thick black rectangle is the Fermi surf (with kF = Nπ/2). The inside of this rectangle is the
bulk region (I) where the Wigner function is approximately constant and non zero. Outside of this region it is approximately
zero (and strictly zero for |x| > 1). The regions where the various crossovers studied in the text take place, i.e., near the Fermi
momentum (II), near the hard wall (III), and near the corner (IV) are indicated. The region III extends over a momentum scale
of order O(kF ) = O(N), while the region II extends only to order O(1) in momentum space. The blue dashed lines represent
schematically the lines of constant value of the Wigner function.

• (III) For x close to the (right) wall (1−x) = O(1/kF ) = O(1/N) and p = O(kF ) = O(N), we find that WN (x, p)
takes the scaling form for large N

WN (x, p) ' 1

2π
WIII(kF (1− x), p/kF ) , WIII(s̃, p̃) =

Si(2(1 + p̃)s̃) + Si(2(1− p̃)s̃)
π

− sin(2s̃) sin(2p̃s̃)

πp̃ s̃
, (18)

where Si is the sine integral function Si(x) =
∫ x
0

sin(t)/t dt. A plot of the function WIII(s̃, p̃) is shown in Fig. 2
c) and Fig. 7, while its asymptotic behaviours are given in Eqs. (55), (57) and (60).

• (IV) Finally, for x and p near the top right corner region, we identify a scaling region of “mesoscopic” size with
k−1F � 1−x� 1 and 1� |p− kF | � kF but keeping the product (1−x)(p− kF ) = z fixed (of course, a similar
scaling holds near the other three corners of the Fermi surf). In this regime one finds that WN (x, p) takes the
scaling form

WN (x, p) ' 1

2π
WIV ((1− x)(p− kF )) , WIV(z) =

1

2
− Si(2 z)

π
. (19)

As discussed below, this regime smoothly interpolates between the regime II (where (p− kF ) = O(1)) and the
regime III (where 1− x = O(k−1F )). A plot of WIV(z) is shown in Fig. 2 d), while its asymptotic behaviors are
given in Eq. (68).

Mean density in real space and momentum space. It is also interesting to analyse separately the large N behavior
of the densities, both ρN (x) in x-space and ρ̂N (p) in p-space. The analysis of ρN (x) was recently carried out in Refs.
[34, 36]. In the bulk, for −1 < x < 1, the density ρN (x) can be easily obtained by integrating the Wigner function
WN (x, p) in region I in Eq. (16) [see Eq. (4)]

ρN (x) =

∫
WN (x, p) dp ' 1

2π

∫ kF

−kF
dp =

kF
π
, (20)
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II

IV

III

(a) Wigner function WN (x, p) for N = 20 fermions (39).

x

0.0
0.5

1.0
q

−10

0

10

0.00

0.10

WII(x, q)

(b) Scaling function in region II (17):
WII (x, q) 'WN

(
x, p = π

2
(N + q)

)
.

s̃
2.00

4.00
p̃

-1.00

0.00

1.00

0.10

0.20

WIII(s̃, p̃)

(c) Scaling function in region III (18):
WIII (s̃, p̃) 'WN (x = 1− s̃/kF , p = p̃ kF ).

r̃
2.0

4.0 q

0

2

4

0.00

0.05

WIV(r̃ q)

(d) Scaling function in region IV (19):
WIV ((1− x)(p− kF )) 'WN (x, p).

FIG. 2. a): Exact Wigner function WN (x, p) for N = 20 fermions. In the large N limit, the Wigner function exhibits scaling
regimes in different regions of the border of the Fermi surf (see figure 1). The location of the scaling regimes are labelled
by the roman numerals II, III and IV and closer views of the scaling regimes are displayed in the lower panel using rescaled
coordinates. b): Scaling functionWII(x, q) at the momentum edge of the Fermi surf (region II in figure 1). c): Scaling function
WIII(s̃, p̃) near the wall of the hard box (region III in figure 1). d): Scaling function WIV(r̃ q) in the corner of the Fermi surf
(region IV in figure 1). The scaling function WIV(z) only depends on one variable but for illustrative purposes, we used the
rescaled coordinates x = 1− r̃

kα
F

and p = kF + qkαF with α < 1.

i.e., the density is, as expected, uniform in the bulk, i.e. far from the wall [see Fig. 4 a)]. On the other hand, close
to wall, the density vanishes over a scale 1/kF and is described by the scaling form [36]

ρN (x) ' kF
π
F1(kF (1− x)) , F1(s̃) = 1− sin 2s̃

2s̃
. (21)

There are thus two regimes for the density: (i) the bulk for −1 < x < 1 [see Eq. (20)] and (ii) the edge of the box,
near the wall for 1 − x = O(1/kF ) [see Eq. (21)] . We show here that the density in p-space exhibits three different
regimes (see Fig. 3):

• (1) For −kF < p < kF , the density ρ̂N (p) can be obtained by integrating the Wigner function WN (x, p) given,
in region I, in Eq. (16) [see Eq. (4)]

ρ̂N (p) =

∫
WN (x, p) dx ' 1

2π

∫ 1

−1
dx =

1

π
, (22)

i.e., the momentum density is also uniform, as in position space in the bulk (20), [see also Fig. 4 b)].
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kFkF

O(1) FO(k  )

(2)

(1)

p

(3)

−

N
ρ (  ) p

FIG. 3. Sketch of the momentum density ρ̂N (p) vs p for the 1d hard box in the limit of a large number of fermions. In the
region (1), for |p| < kF the density is approximately constant ρ̂N (p) ' 1/π. Outside of this bulk region, we find that there are
two distinct edge regimes: the regime (2), i.e., near the Fermi surf with (p − kF ) = O(1), corresponds to fermions which are
inside the box, i.e. far from the wall, and a far tail regime (3) where p = O(kF ), which corresponds to fermions which are close
to the wall. In the latter regime (3) the density has an algebraic tail ρ̂N (p) ∝ p−4 for |p| � kF

• (2) For p close to kF , with p− kF = O(1), the density takes a nontrivial limiting form

ρ̂N (p) ' 1

π
F̂1

(
2

π
(p− kF )

)
, F̂1(q) =

1

4π2

(
4ψ(1)(q) + cos(πq)

[
ψ(1)

(
q + 1

2

)
− ψ(1)

(q
2

)])
, (23)

where ψ(1)(z) =
∑∞
k=0 1/(k+z)2 is the tri-gamma function. The asymptotic behaviors of this function are given

in Eq. (76) while a plot of F̂1(q) is shown in Fig. 9.

• (3) For p = p̃ kF with p̃ > 1, we find yet another nontrivial regime where the density ρ̂N (p) takes the scaling
form

ρ̂N (p) ' 1

kF
F̂1

(
p̃ =

p

kF

)
, F̂1(p̃) =

p̃+ (1− p̃2) coth−1 p̃

π2p̃ (p̃2 − 1)
, p̃ > 1 . (24)

The asymptotic behaviors of this function are given in Eq. (79) and a schematic plot of the various regimes

for F̂1(p̃) is presented in Fig. 10. Note in particular that, for large p̃, the momentum density has an algebraic

tail F̂1(p̃) ∼ 1/p̃4. In fact, we obtain a more precise formula, valid for any finite N for this momentum tail
distribution

ρ̂N (p) ' π

96p4
N(N + 1)(2N + 1) ' EN

2π

1

p4
'

N→∞

2

3π2

k3F
p4

, (25)

where kF = Nπ/2 and EN is the ground state energy. Interestingly, the same algebraic tail ∼ 1/p̃4 also appears
for particles (bosons or fermions) interacting via a contact repulsion, where it is known under the name of Tan’s
relations [47–51]. Remarkably, we also find a 1/p̃4 decay even for noninteracting fermions but in the presence
of a hard box potential. This can be interpreted as a consequence of the effective repulsion between a fermion
and its image across the hard wall.

In summary we find that the structure of the momentum distribution is quite rich. Indeed we note that the tail
behavior of the momentum distribution in the case of a hard box potential has a markedly different behavior from
that of a smooth confining potential. In the hard box case, we have two distinct edge regimes in the momentum space
(see Fig. 3): the regime (2), i.e., near the Fermi surf with (p− kF ) = O(1), corresponds to fermions which are inside
the box, i.e. far from the wall, and a far tail regime (3) where p = O(kF ), which corresponds to fermions which are
close to the wall. We also note that, when ρ̂N (p) is integrated over these two tail regions (2) and (3), it contributes
to order O(1), indicating that this corresponds to a single outlier with an extremely high momentum. Finally, we
note that the 1/p4 tail for the momentum distribution, found here in the presence of a hard wall, is very different
from the far tail behavior of the momentum distribution in a smooth confining potential, such as the harmonic well
where ρ̂N (p) decays faster than an exponential [52].

Kernel. To quantify the quantum correlations beyond the density and the Wigner function, it is useful to calculate
higher order correlation functions of the fermion positions xi and momenta pi. In the ground state the positions xi’s
form a determinantal point process (DPP), and similarly for the momenta pi’s. A central building block for DPPs
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is the so called kernel KN (x, x′) (in position space) or K̂N (p, p′) (in momentum space). Any n-point correlation
function, either in position or in momentum space, can be expressed as an n× n determinant whose entries are given
by the kernel. Indeed, the Wigner function WN (x, p) discussed so far can also be expressed in terms of the kernel by
the relation [22]

WN (x, p) =
1

2π

∫
dy eipyKN

(
x− y

2
, x+

y

2

)
. (26)

For the hard wall potential, the kernel in real space KN (x, x′) was studied in detail in Ref. [36]. Here we compute the

kernel in momentum space K̂N (p, p′) for the hard wall case. In the region (1) we show that for large N it is given by
the sine-kernel [see Eq. (87)], which is well known in random matrix theory. In the two regions (2) and (3), we show
that it takes different nontrivial scaling forms which we compute explicitly [see Eqs. (91) and (94) respectively].

2. Higher dimensions d > 1

In this case, the Fermi surf is the product of two d-dimensional spheres defined by |x| = 1 and |p| = kF in position
and momentum space respectively. Inside the Fermi surf, i.e. for |x| < 1 and |p| < kF , the Wigner function is given,
in the large N limit, by the LDA prediction [see Eq. (6)], i.e.

WN (x,p) ≈ 1

(2π)d
. (27)

Here, we analyse the behavior of the Wigner function near the hard wall in space at a point close to xw with |xw| = 1,
i.e. the analogue of region III in the one-dimensional case (see Fig. 2). The result in the large N limit is given by
formula (105) where the geometry in momentum space is depicted in Fig. 12. Remarkably, the large N scaling form
of the Wigner function is independent of the spatial dimension. Note that a similar d-independence holds also for
the Wigner function in the case of a smooth potential [22], although in this case the Wigner function is given by a
completely different formula.

The paper is organized as follows. In Section II we compute exactly the Wigner function for N fermions in a one-
dimensional hard box, which we then analyse in detail in the large N limit. In Section III we focus on the statistics
of momenta for N fermions in a one-dimensional hard box and obtain explicit formulae for the density as well as the
kernel in the large N limit. In Section IV, we compute the Wigner function for N fermions in a d-dimensional hard-
box, with a special focus on its large N limiting form near the wall, while Section V contains our conclusions. Some
further discussions have been left in five Appendices. In Appendix A, we recall the semi-classical interpretation of the
Wigner function for a single particle in a hard box, while Appendix B is devoted to the asymptotic analysis of the
scaling function describing the Wigner function in region II. In Appendix C and D we present the exact computation
of the Wigner function in the presence a single hard wall in d = 1 (in Appendix D) and in higher dimensions (in
Appendix D). Finally, in Appendix E we gave some details about the Wigner function for the d-dimensional spherical
hard box.

II. WIGNER FUNCTION FOR FERMIONS IN A HARD BOX IN d = 1

We start with the Wigner function WN (x, p) of N noninteracting spinless fermions in a one-dimensional hard box
(14) in their ground state. We first obtain an exact expression of WN (x, p) for finite N in subsection II A, which we
then analyse in the large N limit in subsection II B.

A. Exact results for finite N

1. Eigenstates

The single particle Hamiltonian (2) in a hard-box potential (14) reads, in d = 1, setting m = ~ = 1

Ĥ = −1

2
∂2x + V (x) , V (x) =

{
0 , −R ≤ x ≤ R ,

+∞ , |x| > R .
(28)
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The single-particle eigenfunctions of Ĥ, and associated eigen-energies, read in position representation

φn(x) =

√
1

R
sin
(nπ

2R
(x+R)

)
1[−R,R](x) , εn =

k2n
2

=
π2

8R2
n2 , n ∈ N∗ , (29)

where 1[a,b](x) denotes the indicator function of the interval [a, b]. For later purposes, it is also useful to compute the
eigenfunctions in the momentum representation where they are given by

φ̂n(p) =
1√
2π

∫ R

−R
e−ipxφn(x) dx = 4

√
R

2π

nπ

[n2π2 − 4(pR)2]
sin
(
pR− nπ

2

)
ei(n+1)π2 . (30)

Note that there is no divergence at pR = ±nπ/2. Furthermore, one can check the normalization condition,∫∞
−∞ |φ̂n(p)|2 dp = 1, using the identity

8n2π

∫ ∞
−∞

1

((nπ)2 − 4x2)2
sin2

(
x− nπ

2

)
dx = 1 , n ∈ N∗ . (31)

2. Wigner function

In the following, for simplicity and without loss of generality, we set R = 1, which amounts to rescaling all the
positions by R and the momenta by 1/R. In the ground-state, the N lowest energy levels εn in (29) are occupied, up
to the Fermi energy µ = k2F /2, where kF = Nπ/2 is the Fermi wave vector. The N -body ground-state wave function
Ψ0(x1, · · · , xN ) is given by the N ×N Slater determinant built from the single particle eigen-state

Ψ0(x1, · · · , xN ) =
1√
N !

det
1≤k,`≤N

φk(x`) . (32)

Inserting this expression (32) in the definition of the N particle Wigner function WN (x, p) in Eq. (3), one can show
that it can be written as (see e.g. [22])

WN (x, p) =
1

2π

N∑
n=1

∫ ∞
−∞

φ∗n(x+ y/2)φn(x− y/2)eipy dy . (33)

Note that because of the indicator function in the eigenfunction in (29) with R = 1, the support of the integral over
y in (33) is actually −2 + 2|x| ≤ y ≤ 2− 2|x|. The generic term of this sum over n, which corresponds to the Wigner
function of a single particle in the n-th excited state (29) can be written as, using sin a sin b = [cos(a−b)−cos(a+b)]/2,

1

2π

∫ ∞
−∞

φ∗n(x+ y/2)φn(x− y/2)eipy dy =
1

4π

∫ 2−2|x|

−2+2|x|
eipy [cos(nπy/2)− cos(nπ(x+ 1))] dy

=
1

4π

[∫ 2−2|x|

−2+2|x|
eipy cos(nπy/2) dy − 2 cos(nπ(x+ 1))

sin(2p(1− |x|))
p

]
. (34)

This form (34) will be useful in the following to analyse the large N limit of WN (x, p) in Eq. (33). Note that the
remaining integral over y in (34) can be explicitly performed, yielding

1

2π

∫
φ∗n(x+ y/2)φn(x− y/2)eipy dy

=
1

4π

(
1

p− nπ/2 sin ((p− nπ/2)(2− 2|x|)) +
1

p+ nπ/2
sin ((p+ nπ/2)(2− 2|x|))

−2 cos(nπ(x+ 1))
sin(p(2− 2|x|))

p

)
. (35)

As discussed in Ref. [18, 24] (see also Appendix A), one can interpret the first two contributions in (35) in terms
of a classical phase-space picture, while the last term in (35) comes from interferences and has a purely quantum
mechanical origin.
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Inserting Eq. (34) into Eq. (33) and permuting the integral with the sum leads to

WN (x, p) =
1

4π

∫ 2−2|x|

−2+2|x|
eipy

(
N∑
n=1

cos(nπy/2)

)
dy −

(
N∑
n=1

cos(nπ(x+ 1))

)
sin(p(2− 2|x|))

2πp
. (36)

Performing the sums over n using the identity

N∑
n=1

cosnπz = πDN (πz)− 1

2
, where DN (z) =

sin ((N + 1/2)z)

2π sin
(
z
2

) (37)

is the Dirichlet kernel [57], one obtains (note that the contributions due to the term −1/2 in the first identity in (37)
cancel between the two sums over n in Eq. (36))

WN (x, p) =
1

π

∫ π(1−|x|)

0

cos

(
2p

π
u

)
DN (u) du−DN (π(1 + x))

sin(2p(1− |x|))
2p

. (38)

An alternative expression for WN (x, p), which will also be useful in the following, can be obtained by performing first
the integral over y in Eq. (36) before the sum over n. This yields

WN (x, p) =
1

2π2

N∑
k=−N

sin
(
(k + 2p

π )π(1− |x|)
)

k + 2p
π

−DN (π(1 + x))
sin(2p(1− |x|))

2p
. (39)

A 3d-plot of the Wigner function WN (x, p) given in (38) is shown in Fig. 2 for N = 20 fermions. This figure shows
striking peaks close to p = 0 and they were the main subject of studies of the previous works on the Wigner function for
fermions in the presence of hard-wall potentials [17, 18] (see also Ref. [15] for a discussion in a more general context).
These Friedel-type oscillations [17] near p = 0 arising from the second term in Eq. (38) are further discussed in
Appendix A. Apart from these peaks, the Wigner function is roughly constant inside the rectangle delimited by the
Fermi surf (15) (see also Fig. 1), which is consistent with the LDA prediction (6). It also shows non-trivial oscillating
behaviors at the edge of the Fermi surf, which we will analyse below in detail in the large N limit. It is somewhat
easier to visualize these edge behaviors for the densities ρN (x) and ρ̂N (p). Indeed, by integrating WN (x, p) over p,
and for this purpose it is convenient to use the expression in (36), one obtains

ρN (x) =
2N + 1

4
− (−1)N

cos ((N + 1/2)πx)

4 cos
(
πx
2

) , (40)

recovering the result of [36]. On the other hand, by integrating over x one finds

ρ̂N (p) =

N∑
k=1

4πk2
(
(−1)k+1 cos(2p) + 1

)
(π2k2 − 4p2)

2 . (41)

It is interesting to note that, for N finite and large p� N , the momentum density has an 1/p4 algebraic tail

ρ̂N (p) =
π

96p4
N(N + 1)(2N + 1− 3(−1)N cos 2p) +O(1/p6) , (42)

which, neglecting the oscillating term, gives the formula (25) given in the introduction. As discussed earlier, this tail
also appears in quantum particle systems with contact repulsion. Here, for noninteracting fermions in the presence of
an infinite wall, the eigenfunctions vanish near the wall as |y|θ(y) where y denotes the distance from the wall [see Eq.
(29)]. Hence, in Fourier space, they behave as 1/p2 at large p [see Eq. (30)], leading to the 1/p4 tail in the momentum
density. In Fig. 4 a) and b) we show a plot of ρN (x) in (40) and ρ̂N (p) in (41) for N = 20 fermions. In both cases, the
densities are uniform over a finite support, displaying oscillations which are enhanced close to the edges. Note also
that the shape of these oscillations, in the position and the momentum space, are seemingly rather different, which
will be confirmed by our computations below.

B. Asymptotic results for large N

We now analyse the Wigner function WN (x, p) given in (38) in the large N limit and analyse separately the four
regions I, II, III and IV discussed above (see Fig. 1) in four different subsections. Without loss of generality, we will
restrict the analysis to the first quadrant of the x-p plane as the Wigner function is symmetric both with respect to
x and p.
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FIG. 4. Density in position space (a) and in momentum space (b) for N = 20 fermions.

1. Region I: bulk (−1 < x < 1 and −kF < p < kF )

We first consider the bulk region I, i.e. −1 < x < 1 and −kF < p < kF , with kF = Nπ/2. We thus set
p = p̃ kF = p̃Nπ/2 and study WN (x, p = p̃Nπ/2) for large N . It is easy to see that the second term in Eq. (38) goes
to zero, while the first one, as we will see, gives a finite contribution. Hence one has

WN

(
x, p = p̃

Nπ

2

)
' 1

4π

∫ 2(1−|x|)

0

dy cos
(
p̃ y N

π

2

) sin
(
(N + 1

2 )πy2
)

sin
(
πy
4

) . (43)

Performing the change of variable y = 2v/(πN) we get

WN

(
x, p = p̃

Nπ

2

)
' 1

π2

∫ ∞
0

dv

v
cos(p̃ v) sin(v) =

1

2π
Θ(1− |p̃|) . (44)

Note that the integral over v in (44) has been simply evaluated by writing cos(p̃v) sin(v) = (sin((p̃+ 1)v)− sin((p̃−
1)v))/2 and using

∫∞
0

sin(av)/v dv = π
2 sgn(a). This result (44) leads to the behavior announced in Eq. (16), which

coincides with the prediction of the LDA (6).
With a bit more work, it is possible to obtain the 1/N correction to this constant value 1/(2π) (44) in the bulk. It

reads, up to terms of order O(1/N)

WN

(
x, p = p̃

Nπ

2

)
' 1

2π
Θ(1− |p̃|) (45)

+
1

N4π2

1

cos
(
πx
2

) 1

p̃(p̃2 − 1)

[
(1 + p̃) cos

(π
2

(1− |x|)(2N(p̃− 1)− 1)
)

+ (p̃− 1) cos
(π

2
(1− |x|)(2N(p̃+ 1) + 1)

)]
.

We have checked numerically that this formula (45) provides a very good approximation of the exact Wigner function
(38) or (39) for all values of x and p, provided x is not too close to the hard wall, for N >∼ 10 (see Fig. 5).

2. Region II: momentum edge (−1 < x < 1 and p = kF +O(1))

In region II, x is in the bulk, −1 < x < 1 (i.e., far from the wall) but p is close to kF = Nπ/2 and we thus set
p = kF + qπ/2 = (π/2)(N + q), with q = O(1). In this regime, and in the limit of large N , the second term in (38)
vanishes as N →∞ while, the first term remains finite in the limit N →∞. Hence the Wigner function in (38) reads
in regime II

WN

(
x, p =

π

2
(N + q)

)
' 1

π

∫ π(1−|x|)

0

cos ((N + q)u)DN (u) du . (46)
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FIG. 5. Plot of the Wigner function WN (x, p) vs −1 < x < 1 (i.e. in the bulk of the box) for fixed p = 0.1 × N π
2

(see
region I in figure 1 and 2). The red dashed line corresponds to the exact value of WN (x, p) for N = 10 while the blue dashed
line corresponds to the formula (45) which includes the first 1/N corrections to the LDA prediction WN (x, p) ≈ 1/(2π). As
N increases, the Wigner function approaches this constant value 1/(2π), while exhibiting oscillations which, as we see, are
accurately described by the 1/N corrections in (45).

Using the explicit expression of the Dirichlet kernel DN (u) from Eq. (37) together with the trigonometric identity
2 cos(a) sin(b) = sin(a+ b)− sin(a− b), the expression in (46) becomes

WN

(
x, p =

π

2
(N + q)

)
' 1

2π

∫ π(1−|x|)

0

[D2N+q(u)−Dq−1(u)] du . (47)

Note that the Dirichlet kernel DN (z) in (37), while originally defined for integer values N , can be straightforwardly
analytically continued to real values of N – see the second equality in (37). Besides, in the limit N → ∞ one can
easily show that

lim
N→∞

∫ a

0

DN (x)f(x) dx =
f(0)

2
, (48)

for any smooth function f(x) [58]. Using this identity (48), we see that the expression in (47) has a good large N
limit, namely

lim
N→∞

WN

(
x, p =

π

2
(N + q)

)
=

1

2π
WII(x, q) , WII(x, q) =

1

2
−
∫ π(1−|x|)

0

Dq−1(u) du . (49)

An alternative expression for the Wigner function in this regime, and thus of the scaling function WII(x, q), can be
obtained by starting from the expression for WN (x, p) given in Eq. (39), where, we recall that in this regime II, the
last term can be neglected compared to the sum over k. Setting p = (π/2)(N + q), performing the change of variable
m = k +N in the sum and taking the limit N →∞ one finds

lim
N→∞

WN (x, p =
π

2
(N + q)) =

1

2π
WII(x, q) , WII(x, q) =

1

π

∞∑
m=0

sin((m+ q)π(1− |x|))
m+ q

, (50)

as announced in the introduction (17). A plot of the scaling function WII(x, q) is shown in Figs. 2 b) and 6.
Although the two formulae (49) and (50) may look different, one can check that they indeed coincide. It is interesting

to analyse the large |q| behavior of this scaling function WII(x, q). As shown in Appendix B, this is conveniently done
starting from the expression (49) and we get

WII(x, q) = Θ(−q) +
1

q

sin
(
πq(1− |x|) + π

2 |x|
)

2π cos πx2
+O(1/q2) , |q| → +∞ . (51)

Note that on both sides, i.e. for q → −∞ and q → +∞, the Wigner function shows oscillations (around its constant
value) whose amplitude decays quite slowly, i.e. ∼ 1/q, as q � 1. In addition, we see from (51) that the Wigner
function, namely for q → +∞, can actually be negative in this region II. These features are in marked contrast with
the behavior found for smooth potentials where the Wigner function is described by Eq. (12). Indeed, in this case
the decay is typically faster than exponential and the Wigner function remains positive.
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FIG. 6. Exact and large N description of a slice of the Wigner function WN (x, p) at the momentum edge p = kF + π
2
q with

q = O(1) along the line x = 1/2 (see region II in figure 1 and 2). As N increases, the Wigner function approaches the scaling
function WII(x, q) given by (17) (blue line).

Finally, although our analysis in this regime holds for −1 < x < 1, i.e. sufficiently far from the wall, it is interesting
to study the limiting behavior of WII(x, q) as x→ 1, which amounts to study the Wigner function near the top right
corner of the Fermi surf in Fig. 1. Indeed, from the representation in Eq. (49) one immediately obtains that

WII(x, q) ∼
1

2
, x→ 1 , (52)

which is thus half the value of the Wigner function in the bulk [see Eq. (16)].

3. Region III: near the wall (1− x = O(1/kF ) and p = O(kF ))

We now analyse the Wigner function in region III, i.e. close to the hard wall (see Fig. 1). In this regime, it is
convenient to start from Eq. (38) and set x = 1− s̃/kF , with s̃ > 0, and p = p̃ kF , with kF = Nπ/2, to obtain

WN (x = 1− s̃/kF , p = p̃ kF ) =
1

π

∫ 2s̃/N

0

cos (Np̃u)DN (u) du−DN

(
2s̃

N

)
sin(2p̃s̃)

πNp̃
. (53)

Performing the change of variable u → u/N and using DN (x/N) ∼ N sin(x)/(πx) as N → ∞, one obtains straight-
forwardly from Eq. (53) that WN (x = 1− s̃/kF , p = p̃ kF ) reads, in the limit N →∞, keeping s̃ and p̃ fixed

lim
N→∞

WN (x = 1− s̃/kF , p = p̃ kF ) =
1

2π
WIII(s̃, p̃) , (54)

with the scaling function WIII(s̃, p̃) given in Eq. (18). A plot of this function is shown in Figs. 2 c) and 7.
It is interesting to study the asymptotic behaviors of this scaling function WIII(s̃, p̃) in various limits. Let us first

consider the small s̃ behavior, i.e. very near the wall. In this limit, it is easy to obtain from the expression given in
Eq. (18) that

WIII(s̃, p̃) =
16

9π
s̃3 +O(s̃5), s̃→ 0 , (55)

independently of p̃. The large s̃ behavior, i.e. in a region towards the bulk, of WIII(s̃, p̃) is a bit more subtle. Indeed,
focusing on the case p̃ > 0, we see on Eq. (18) that WIII(s̃, p̃) exhibits different behaviors depending on p̃ > 1 or
p̃ < 1, since the Sine integral function Si(x), being an odd function, behaves differently for x → +∞ and x → −∞.
Namely, one has

Si(x) = sgn(x)
π

2
− cosx

x
+O(1/x2) , x→ ±∞ . (56)

Hence one finds

WIII(s̃, p̃) =


1

s̃

(p̃+ 1) cos(2(p̃− 1)s̃) + (p̃− 1) cos(2(p̃+ 1)s̃)

2πp̃ (p̃2 − 1)
+O(1/s̃2) , s̃→∞ for p̃ > 1 ,

1 +
1

s̃

(p̃+ 1) cos(2(p̃− 1)s̃) + (p̃− 1) cos(2(p̃+ 1)s̃)

2πp̃ (p̃2 − 1)
+O(1/s̃2) , s̃→∞ for 0 < p̃ < 1 .

(57)
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FIG. 7. Exact and large N description of a slice of the Wigner function WN (x, p) near the wall x = 1− s̃
kF

with s̃ = O(1) along

the line p = p̃ kF with p̃ = 1
3

(see region III in figure 1 and 2). As N increases, the Wigner function approaches the scaling
function WIII(s̃, p̃) given by (18) (blue line).

Such different behaviors for p̃ < 1 (i.e., p < kF ) and p̃ > 1 (i.e., p > kF ) as s → ∞, i.e. far from the wall, are of
course expected given the behavior of the Wigner function in the bulk, i.e. in the region I [see Eq. (16) and Fig. 1].
For p̃ ' 1, there is an interesting crossover region, which is discussed below.

In the limit of vanishing momentum p̃ = 0, the Wigner function in this regime takes the simple form

WIII(s̃, p̃ = 0) =
2

π
(Si(2s̃)− sin 2s̃) . (58)

In particular, in the limit of large s̃ one has

WIII(s̃, p̃ = 0) = 1− 2

π
sin (2s̃) +O(1/s̃) , s̃→ +∞ , (59)

which shows that, in this case, the spatial oscillations are not damped – contrarily to the case 0 < p̃ < 1 (see the
second line in Eq. (57)) where the oscillating term is multiplied by 1/s̃ and thus decays as s̃ → +∞. Finally, it is
also interesting to study the behaviour of WIII(s̃, p̃) for large p̃. From the explicit expression in Eq. (18), and using
the asymptotic behavior in Eq. (56), it is straightforward to obtain

WIII(s̃, p̃) =
1

p̃2
cos(2p̃s̃)(2s̃ cos(2s̃)− sin(2s̃))

2πs̃2
+O(1/p̃3) , p̃→ +∞ , (60)

which, again, decays algebraically with p̃ (modulated by a periodic function), i.e., much slower than the faster than
exponential decay found for smooth potentials [see Eq. (13)]. However, this 1/p̃2 behavior is integrable, as it should
since the total integral of WN (x, p) over p yields the spatial density [see the first relation in Eq. (4)]. In fact, this
implies, using the scaling for the spatial density near the wall in Eq. (21), that WIII(s̃, p̃) obeys the relation∫ ∞

−∞
WIII(s̃, p̃)dp̃ =

4

N
ρN (x) ' 2F1(s̃) , F1(s̃) = 1− sin(2s̃)

2s̃
. (61)

We have checked, using the explicit expressions forWIII(s̃, p̃) in Eq. (18) and F1(s̃) in Eq. (21) that this identity (61)
is indeed satisfied.

It turns out that the scaling function WIII(s̃, p̃) can be obtained directly by using the result for the limiting form
of the kernel near the wall at x = 1, obtained in Ref. [36]. Indeed, in general, WN (x, p) can be written in terms of
the kernel as [22] as given in (26). For the present box potential (14) in d = 1 with R = 1, setting x = 1− s̃/kF and
p = p̃kF and performing the change of variable z = kF y in (26) one has

WN (x = 1− s̃/kF , p = p̃kF ) =
1

2π

∫ 2s̃

−2s̃
dz eip̃z

1

kF
KN

(
1− 1

kF
(s̃+

z

2
), 1− 1

kF
(s̃− z

2
)

)
. (62)

In the limit of large N , one can then use that the kernel near the wall in (62) takes the scaling form (see Ref. [36])
of a “reflected” sine kernel (see also [59])

1

kF
KN

(
1− 1

kF
(s̃+

z

2
), 1− 1

kF
(s̃− z

2
)

)
−→
N→∞

1

π

(
sin z

z
− sin(2s̃)

2s̃

)
. (63)
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Inserting this scaling form (63) into (62) and performing the integral over z one obtains immediately

WN (x = 1− s̃/kF , p = p̃kF ) −→
N→∞

1

2π
WIII(s̃, p̃) , (64)

where WIII(s̃, p̃) is given in (18). This provides an alternative derivation of this scaling function – which can be
extended to higher dimensions d > 1 as we will see later in Section IV.

We end this section by mentioning that the Wigner function WIII(s̃, p̃) in this regime III turns out to coincide
exactly with the Wigner function for noninteracting fermions on the half-line x ≥ 0 in the presence of a hard-wall
potential at x = 0 (see Appendix C 1 for details). Furthermore, in Appendix C 2, we show how this Wigner function
gets modified in the presence of an inverse-square repulsive potential near the origin.

4. Region IV: corner (x→ 1, p− kF →∞ with the product (1− x)(p− kF ) fixed)

In this regime, x and p are close to the top right corner (see Fig. 1), we consider the “mesoscopic” scaling limit
where k−1F � (1 − x) � 1 and 1 � |kF − p| � kF but keeping the (1 − x)(p − kF ) = z fixed. To study this scaling

region, it is is useful to set 1− x = r̃
kαF

and q = kF + qkαF , with 0 < α < 1 and we recall that kF = Nπ/2� 1. In this

limit, it is more convenient to start from the expression for WN (x, p) given in Eq. (38). In this limit, again, it is easy
to see that the second term in (38) is subdominant compared to the first one, i.e.,

WN

(
x = 1− r̃

kαF
, p = kF + qkαF

)
' 1

π

∫ 2α

πα−1
r̃
Nα

0

cos

((
N +

πα−1

2α−1
Nαq

)
u

)
DN (u) du . (65)

Using the trigonometric identity 2 cos(a) sin(b) = sin(a+ b)− sin(a− b), we find that (65) can be written as

WN

(
x = 1− r̃

kαF
, p = kF + qkαF

)
' 1

2π

∫ 2α

πα−1
r̃
Nα

0

D
2N+πα−1

2α−1 qN
α(u)−Dπα−1

2α−1 qN
α−1(u) du . (66)

Finally, performing the change of variable v = uNα 2α−1

πα−1 and taking the limit N →∞, we find

lim
N→∞

WN

(
x = 1− r̃

kαF
, p = kF + qkαF

)
=

1

2π
WIV(r̃ q) , (67)

where the scaling function WIV(z) is given in Eq. (19). Note that this scaling function is independent of α in the
range 0 < α < 1. Its asymptotic behaviors are given by

WIV(z) ∼


1 +

1

2πz
cos (2z) +O(1/z2) , z → −∞ ,

1

2πz
cos(2z) +O(1/z2) , z → +∞ .

(68)

A plot of WIV(z) is shown in Fig. 8.
By looking at Fig. 1 together with the scaling forms in Eqs. (17) and (18), we see that this region IV can be

reached (i) either coming from regime II by letting (1− x)→ 0 and q = (2/π)(p− kF )→∞, keeping q(1− x) = 2
π z

fixed (where we recall that z = (1−x)(p− kF )), or (ii) coming from the regime III by letting s̃ = (1−x)kF →∞ and
p̃ = p/kF → 1 with s̃(p̃− 1) = z fixed. In the first case (i), it is convenient to start from the expression for WII(x, q)
given in Eq. (17). Indeed, in this case, as x → 1, the discrete sum over m can be replaced by an integral and one
obtains

WII(x, q) '
∫ ∞
0

sin (mπ(1− x) + πq(1− x))

m+ q
dm =

1

2
− Si(2(1− x)q) =

1

2
− Si(2(1− x)(p− kF )) , (69)

which matches perfectly with the expression forWIV(z = (1−x)(p−kF )) in (19). Similarly, in the second case (ii), one
immediately sees in the expression of WIII(s̃, p̃) in Eq. (18) that in the limit s̃ = (1− x)kF →∞ and p̃ = p/kF → 1
with s̃(p̃− 1) = z, the last term is subleading compared to the first two ones, which eventually gives

WIII(s̃, p̃) '
1

2
− Si(2s̃(p̃− 1)) =

1

2
− Si(2(1− x)(p− kF )) , (70)

where we have used the first term of the asymptotic behavior of Si(x) given in (56) together with the fact that
Si(−z) = −Si(z). Therefore this expression (70) also matches with the expression for WIV(z) in (19). Hence we see
that this regime IV connects smoothly the regime II and the regime III (see Fig. 1).
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FIG. 8. Contour plot of the large N limit of the Wigner function WN (x, p) in the corner of the Fermi surf k−1
F � 1 − x � 1

and 1 � |p − kF | � kF but keeping the product (1 − x)(p − kF ) = z fixed (see the region IV in figure 1 and 2). For
illustrative purposes, we used the rescaled coordinates x = 1 − r̃

kα
F

and p = kF + qkαF with α < 1. The hyperbolic curves

(1− x)(p− kF ) = r̃ q = z appear clearly in the contour plot. The scaling function in the corner region is given in (19).

III. MOMENTUM STATISTICS FOR FERMIONS IN A HARD BOX IN d = 1

In this section, we focus on the statistics of momenta for noninteracting fermions in a one-dimensional hard box.
We first present the density and then the kernel in momentum space.

A. Density in momentum space

We start with the exact expression for the density in momentum space, given in Eq. (41), which we analyse in the
large N limit. We identify three different regimes which we analyse separately:

−2.5 0.0 2.5 5.0

q = 2
π

(p − kF )

0

1

2

3

ρ̂
N

(p
)

×10−1

N = 2

N = 6

N → ∞

(a) Momentum density ρ̂N (p) (41).

100 102

q

10−3

10−2

10−1

100

F̂
1
(q

)

1
π2 q

1

(b) Scaling function F̂1(q) (23).

FIG. 9. a) Exact and large N description of the momentum density ρ̂N (p) at the momentum edge p = kF + π
2
q with q = O(1).

As N increases, the momentum density approaches the scaling function F̂1(q) given in (23) (blue line). b) Log-log plot of the

scaling function F̂1(q) along with its asymptotic tails obtained in (76).
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• (1) For −kF < p < kF : in this regime, the leading term of the density ρ̂N (p) is easily obtained by integrating
the Wigner function, as given in Eq. (22) in the introduction. In this regime, at leading order for large N , the
density is thus uniform, ρ̂N (p) ' 1/π. From the exact expression for ρ̂N (p) in Eq. (41), it is however possible
to go beyond the leading order and obtain the first terms in the 1/N expansion, which show an intriguing
dependence on the parity of N . Skipping some details, one obtains

ρ̂N (p) ' 1

π
− 4

π3N
+


4

π3N2
sin2(p) +O(1/N3) , if N is even ,

4

π3N2
cos2(p) +O(1/N3) , if N is odd .

(71)

• (2) For p close to kF , with p− kF = O(1): in this regime, we start from the exact formula for the density in Eq.
(41) and set p = (π/2)(N + q). We get

ρ̂N

(
p =

π

2
(N + q)

)
=

1

π3

N∑
k=1

4k2
(
(−1)k+1+N cos(πq) + 1

)
(k2 − (N + q)2)

2 , (72)

where we have used cos(Nπ+πq) = (−1)N cos (πq). In the limit of large N , the sum over k in (72) is dominated
by large k, with k = O(N) and we thus perform the change of variable m = N − k in the sum and expand the
summand to leading order for large N . This yields

ρ̂N

(
p =

π

2
(N + q)

)
' 1

π3

N−1∑
m=0

(−1)m+1 cos(πq) + 1

(m+ q)2
' 1

π3

∞∑
m=0

(−1)m+1 cos(πq) + 1

(m+ q)2
, as N →∞ .(73)

Note that, using the identity (−1)m+1 cos (πq) + 1 = − cos (πq + πm) + 1 = 2 sin2(π/2(m + q)) for integer m,
the last sum in (73) can also be written as

ρ̂N

(
p =

π

2
(N + q)

)
' 2

π3

∞∑
m=0

sin2
(
π
2 (m+ q)

)
(m+ q)2

, (74)

whose structure is rather familiar in the theory of determinantal point processes (see also below). The last
sum can eventually be expressed in terms of the tri-gamma function yielding the result given in Eq. (23). The

asymptotic behaviors of the scaling function F̂1(q) for q → ±∞ can be obtained from the ones for the tri-gamma
function

ψ(1)(z) =


π2(1 + cot2(z)) +

1

z
+

1

2z2
+O(1/z3) , z → −∞

1

z
+

1

2z2
+O(1/z3) , z → +∞ .

(75)

This yields, by injecting these asymptotic behaviors (75) in (23),

F̂1(q) =


1 +

1

π2q
+

1

π2q2
sin2

(πq
2

)
+O(1/q3) , q → −∞

1

π2q
+

1

π2q2
sin2

(πq
2

)
+O(1/q3) , q → +∞ .

(76)

In the limit q → −∞, the behavior in the first line in Eq. (76) indicates that F̂1(q) smoothly matches with the
uniform density profile in the bulk, i.e. with the first term in Eq. (71), albeit with a slow algebraic decaying
correction. A similar slow algebraic decay is observed in the limit q →∞ [see the second line in Eq. (76)]. On
both sides, i.e. for q → ±∞, the oscillations are only visible in the next-to-leading corrections, namely of order
O(1/q2). Finally a plot of this function F̂1(q) given in (23) is shown in Fig. 9.
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(a) Momentum density ρ̂N (p) (41).
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(b) Scaling function F̂1(p̃) (24).

FIG. 10. Left panel: Exact and large N description of the momentum density ρ̂N (p) for large momentum p = p̃ kF with

p̃ > 1. As N increases, the momentum density approaches the scaling function 1
kF

F̂1(p̃) given in (24) (blue line). Right panel:

Logarithmic plot of the scaling function F̂1(p̃) along with its asymptotic tails obtained in (79).

• (3) For p = p̃ kF , with p̃ > 1: in this case, we start from the exact formula given in Eq. (41) with p = p̃ kF =
p̃Nπ/2. Since p̃ > 1, the denominator of the summand, i.e. (π2k2 − 4p2)2 = (π2(k2 − p̃2N2))2 does not vanish,
since k ≤ N and therefore the sum over k can be safely split into two terms

ρ̂N

(
p = p̃

Nπ

2

)
=

N∑
k=1

4πk2
(
(−1)k+1 cos(p̃Nπ) + 1

)
(π2k2 −N2π2p̃2)

2

=

N∑
k=1

4πk2

(π2k2 −N2π2p̃2)
2 + cos (p̃Nπ)

N∑
k=1

4πk2 (−1)k+1

(π2k2 −N2π2p̃2)
2 . (77)

In the limit N →∞, keeping p̃ > 1 fixed, one can show that the second term in (77) is subleading compared to
the first one, because of the alternating factor (−1)k+1, and so

ρ̂N

(
p = p̃

Nπ

2

)
'

N∑
k=1

4πk2

(π2k2 −N2π2p̃2)
2 . (78)

In the large N limit, the discrete sum over k can be replaced by an integral, which can be performed explicitly
yielding the result given in Eq. (24). Note that the associated scaling function F1(p̃) does not exhibit any
oscillatory behavior at all. Its asymptotic behaviors are straightforwardly obtained from the explicit expression
in (24) as

F̂1(p̃) =


1

2π2(p̃− 1)
+

1

π2
log(p̃− 1) +O(1) , p̃→ 1 ,

2

3π2p̃4
+

4

5π2p̃6
+O(1/p̃8) , p̃→∞ .

(79)

Note that the leading term in the first line in Eq. (79), i.e. ρ̂N (p) ' k−1F F̂1(p̃) ' 1/(2π2(p̃−1)) = 1/(2π2(p−kF ))
as p̃ → 1, i.e. p → kF , matches with the large q asymptotic behaviour in the second line of (76), i.e. ρ̂N (p) '
F̂1(q = (2/π)(p−kF )) ' 1/(π3q) = 1/(2π2(p−kF )). Note also the interesting logarithmic subleading correction
in the first line in (79). Finally, one can check that the large p̃ asymptotic behaviour in the second line in Eq.
(79) matches with the large p asymptotic behavior of the exact finite N expression of ρ̂N (p) in Eq. (42). In
Fig. 10 we show a plot of this scaling function F1(p̃).
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Finally, note that the scaling function F̂1(p̃) can also be obtained by integrating the Wigner function WIII(s̃, p̃)
given in Eq. (18), i.e.,

F̂1(p̃) =
1

π

∫ +∞

0

ds̃WIII(s̃, p̃) . (80)

The factor 1/π = 2 × 1/(2π) comes from the fact that one needs to integrate the Wigner function close to x = −1
and x = +1 (both yielding the same contribution) to obtain the full momentum density for p = O(kF ). There exists

a similar “sum rule” that relates F̂1(q) to WII(x, q), i.e.

F̂1(q) =

∫ 1

−1
dxWII(x, q) , (81)

which can easily be checked by comparing the formulae (17) – integrated over x ∈ (−1, 1) – and (74).

B. Kernel in momentum space in d = 1

As mentioned above, the momenta pi’s, with i = 1, 2, · · · , N of the N fermions in the ground-state of the hard-box
potential form a determinantal point process which is fully characterized by the kernel which reads [52]

K̂N (p, p′) =

N∑
k=1

φ̂∗k(p)φ̂k(p′) , (82)

where φ̂k(p)’s are the eigenfunctions in momentum space given in (30). For fixed N , it evaluates to

K̂N (p, p′) =
8

π

N∑
k=1

(kπ)2

((kπ)2 − 4p2)((kπ)2 − 4p′2)
sin

(
kπ

2
− p
)

sin

(
kπ

2
− p′

)
. (83)

In particular, the density in momentum space is given by ρ̂N (p) = K̂N (p, p). Indeed, one can easily check that
evaluating Eq. (83) at coinciding points p = p′ yields back the expression for the density in Eq. (41). In the following,
we compute the large N limiting form of the kernel in the three different regions (1), (2) and (3) that we have identified
in the density.

• (1) For −kF < p, p′ < kF : in this case, one can show that the limiting kernel is given by the expression given in
Eq. (83) setting N → ∞. Using the trigonometric identity 2 sin(a) sin(b) = cos(a − b) − cos(a + b), we rewrite

K̂N (p, p′) for −kF < p, p′ < kF as

K̂N (p, p′) ' 4

π

∞∑
k=1

(kπ)2

((kπ)2 − 4p2)((kπ)2 − 4p′2)

(
cos (p′ − p) + (−1)k+1 cos(p′ + p)

)
. (84)

This sum over k can be evaluated explicitly using the identities

1

π

∞∑
k=1

k2

(k2 − z2)(k2 − z′2)
=
z′ cot(πz′)− z cot(πz)

2(z2 − z′2)
, (85)

1

π

∞∑
k=1

(−1)k+1 k2

(k2 − z2)(k2 − z′2)
=
zcosec(πz)− z′cosec(πz′)

2(z2 − z′2)
(86)

to get

K̂N (p, p′) ∼ sin (p− p′)
π(p− p′) , (87)

which is the celebrated sine-kernel, well known in random matrix theory. Note that the typical scale momentum
scale in this regime is p = O(1/R) (with R set to R = 1 here), while the usual sine-kernel in position space
occurs on microscopic scales of order O(1/kF ).
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• (2) For p and p′close to kF , with p − kF = O(1) and p′ − kF = O(1), setting p = kF + π
2 q = π

2 (N + q) and
p′ = kF + π

2 q
′ = π

2 (N + q′) in (83) we get

K̂N (kF +
π

2
q, kF +

π

2
q′) =

8

π3

N∑
k=1

k2

(k2 − (N + q)2)(k2 − (N + q′)2)
sin
(π

2
(k − q −N)

)
sin
(π

2
(k − q′ −N)

)
.

(88)
By performing the change of variable m = N − k in the sum we obtain

K̂N (kF +
π

2
q, kF +

π

2
q′) =

8

π3

N−1∑
m=0

(N −m)2 sin
(
π
2 (m+ q)

)
sin
(
π
2 (m+ q′)

)
(m+ q)(m+ q′)(2N −m+ q)(2N −m+ q′)

. (89)

Finally, taking the large N limit of the summand and sending the upper limit of the sum N → ∞ yields the
large N limit of the kernel in this regime

lim
N→∞

K̂N (kF +
π

2
q, kF +

π

2
q′) =

2

π3

∞∑
m=0

sin
(
π
2 (m+ q)

)
(m+ q)

sin
(
π
2 (m+ q′)

)
(m+ q′)

. (90)

Note that this form (90) is reminiscent of the form of the kernels found for multi-critical fermions in a potential
V (x) ∼ x2n in the limit n→∞ with continuum integrals replaced by discrete sums [52]. This sum over m can
be evaluated explicitly, leading to

lim
N→∞

K̂N (kF +
π

2
q, kF +

π

2
q′) =

1

π3

[
cos
(π

2
(q − q′)

)
ζ(q, q′)

+ cos
(π

2
(q + q′)

) 1

2

(
ζ

(
q + 1

2
,
q′ + 1

2

)
− ζ

(
q

2
,
q′

2

))]
.

(91)

where ζ(x, x′) = (ψ(0)(x) − ψ(0) (x′))/(x − x′). In particular, one has limx′→x ζ(x, x′) = ψ(1)(x). Note that if
one sets q = q′ in this expression (90), we recover the expression of the scaling function for the density in this
regime (2) given in Eq. (74), as we should.

• (3) For p = p̃ kF , and p′ = p̃′ kF with p̃ > 1: Setting p = p̃kF = p̃
(
Nπ
2

)
and p′ = p̃′kF = p̃′

(
Nπ
2

)
in (83) gives

K̂N

(
p =

Nπ

2
p̃, p′ =

Nπ

2
p̃′
)

=
4

N4π3

N∑
k=1

k2((
k
N

)2 − p̃2)(( kN )2 − p̃′2)
(

cos

[
(p̃′ − p̃)Nπ

2

]
+ (−1)k+1 cos

[
(p̃′ + p̃)

Nπ

2

])
. (92)

In the limit of large N , one can show that the first term in (92), i.e. ∝ cos
[
(p̃′ − p̃)Nπ2

]
dominates the second

term ∝ (−1)k+1 cos
[
(p̃′ + p̃)Nπ2

]
because of the alternating sign of the latter. Hence as N →∞ it is natural to

consider the scaling limit where

(p̃′ − p̃)Nπ
2

= z (93)

is finite. Note that this corresponds to a limit where p̃′ − p̃ = O(1/kF ) = O(1/N). Therefore, from Eq. (89)
one gets in this scaling limit, keeping z fixed (and at leading order for large kF )

K̂N

(
p =

Nπ

2
p̃, p′ =

Nπ

2
p̃′
)
' 1

kF
F1(p̃) cos z , (94)

where the function F1(p̃) is given in Eq. (24). Here also, if we set p = p′ in this expression (94), one recovers
the expression for the density given in Eqs. (24) and (78).
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FIG. 11. Schematic representation of a d-dimensional spherical box of radius R in d = 2 dimensions (14). The potential is zero
inside the box, V (x, y) = 0 for x2 + y2 < R2, and infinite outside of it, V (x, y) = +∞ for x2 + y2 ≥ R2.

IV. WIGNER FUNCTION FOR d > 1

We now consider the case of N fermions in a d-dimensional spherical hard box potential (14) – see also Fig. 11
– in their ground state. Here also we set the radius of the box to unity, i.e. R = 1. In this case, as we did in the
one-dimensional case, it is convenient to write the Wigner function in terms of the d-dimensional kernel KN (x,y)
[22], as in Eq. (26)

WN (x,p) =
1

(2π)d

∫
dy eip·yKN

(
x− y

2
,x +

y

2

)
. (95)

Since the eigenfunctions vanish outside the box, and so does the kernel, the domain of integration over y in (95) is∣∣∣x− y

2

∣∣∣ ≤ 1 &
∣∣∣x +

y

2

∣∣∣ ≤ 1 . (96)

In this case, the kernel KN (x,y) can be explicitly computed – see Eq. (95) of [36] – but the resulting expression is
rather complicated and this would lead, once inserted in Eq. (95), to a quite cumbersome expression of the Wigner
function, whose full asymptotic analysis for large N goes beyond the scope of the present paper.

To study the large N limit, let us instead start with the LDA prediction in Eq. (6). This formula immediately tells us
that for the d-dimensional spherical hard box potential (14) the Fermi surf is the product of two d-dimensional spheres
defined by |x| = 1 and |p| = kF in position. Inside the Fermi surf, the Wigner function is constant WN (x,p) ≈ 1

(2π)d

[see Eq. (27)] while WN (x,p) vanishes outside the Fermi surf. Note that this prediction from the LDA can be obtained
in more controlled way by starting from the exact expression for the Wigner function in (95) and using the large N
limiting form of the kernel KN (x,y) in the bulk, i.e., far from the wall. We refer the reader to Ref. [22] for more
details on this computation of the Wigner function far from the Fermi surf.

Instead, we restrict our study of the Wigner function WN (x,p) to near the wall, i.e. the analogue of the regime III
in the one-dimensional case (see Fig. 1). We thus set, adopting the notations of Ref. [36] (see Fig. 12)

x = xw + k−1F s̃ , p = kF p̃ (97)

where xw labels a point exactly at the wall, hence such that |xw| = 1. For large N , and for |p| = O(kF ) the integral
over y in Eq. (95) is dominated by |y| = O(k−1F ). Therefore, we perform the change of variable ỹ = kFy, leading to

WN (xw + k−1F s̃, kF p̃) =
1

(2π)d

∫
dỹ eip̃·ỹ

1

kdF
KN

(
xw +

1

kF
(̃s− ỹ

2
),xw +

1

kF
(̃s +

ỹ

2
)

)
. (98)

Following Ref. [36], we denote by ut and un, respectively the transverse and the normal component of an arbitrary
vector u (see Fig. 12 where u can represent either s̃ or p̃). In the large N limit, we can then use the limiting form of
the kernel near the wall, i.e., near the edge of the Fermi gas

1

kdF
KN

(
xw +

1

kF
(̃s− ỹ

2
),xw +

1

kF
(̃s +

ỹ

2
)

)
−→
N→∞

Ke
d

(
s̃− ỹ

2
, s̃ +

ỹ

2

)
(99)
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FIG. 12. Schematic representation of the rescaled position vector x = xw + k−1
F s̃ and momentum vector p = kF p̃ in a d-

dimensional box (105). The blue circle represents the edge of the hard box (as in Fig. 11). The subscript n refers to the
component of the vector that is parallel to xw and the subscript t refers to the component that is perpendicular to xw.

where the edge kernel Ke
d was computed in [36]. Note also that the domain of integration for y in (96) translates into

the following domain for ỹ (in the limit N →∞, or equivalently kF →∞)

−2s̃n ≤ ỹn ≤ 2s̃n , ỹt ∈ Rd−1 . (100)

In Ref. [36] different representations of the edge kernel were obtained. Here we present a computation of the Wigner
function at the edge, obtained by substituting the scaling form (99) in (98) and then using a “radial” representation
of Ke

d . In the Appendix E, we provide an alternative derivation using a representation of this kernel in terms of Bessel
functions, yielding of course to the same result.

A useful representation of the hard wall edge kernel is (see Eq. (128) in [36])

Ke
d(u,v) =

∫
|l|<1

dd−1l

(2π)d−1
eil·(ut−vt)

√
1− l2Ke

1(un
√

1− l2, vn
√

1− l2) (101)

Ke
1(x, y) =

sin(x− y)

π(x− y)
− sin(x+ y)

π(x+ y)
. (102)

Inserting (101) and (102) in Eq. (98), using (99), one finds

WN (xw + k−1F s̃, kF p̃)

−→
N→∞

1

(2π)d

∫
dd−1ỹt

∫ 2s̃n

−2s̃n
dỹn e

ip̃t·ỹt+ip̃nỹn

∫
|l|<1

dd−1l

(2π)d−1
e−il·ỹt

√
1− l2

×Ke
1

((
s̃n −

ỹn
2

)√
1− l2,

(
s̃n +

ỹn
2

)√
1− l2

)
. (103)

Under this form (103), we see that the integral over ỹt can be performed straightforwardly, yielding simply
(2π)d−1 δ(p̃t − l). Thus one obtains

WN (xw + k−1F s̃, kF p̃) −→
N→∞

Θ(1− p̃2
t)

(2π)d

√
1− p̃2

t (104)

×
∫ 2s̃n

−2s̃n
dỹn e

ip̃nỹn Ke
1

((
s̃n −

ỹn
2

)√
1− p̃2

t ,

(
s̃n +

ỹn
2

)√
1− p̃2

t

)
.

Finally, performing the integral over ỹn, we find that the Wigner function WN (x,p) for the spherical hard box takes
at large N the following scaling form, which is our main result in dimension d

WN (xw + k−1F s̃, kF p̃) ≈ 1

(2π)d
WIII(s̃, p̃) (105)

WIII(s̃, p̃) =
Θ(1− p̃2

t)

π

[
Si

(
2s̃n(

√
1− p̃2

t + p̃n)

)
+ Si

(
2s̃n(

√
1− p̃2

t − p̃n)

)
− sin (2s̃n

√
1− p̃2

t ) sin (2s̃np̃n)

p̃ns̃n

]
,
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where we recall that Si(x) =
∫ x
0

sin(t)/t dt and the notations p̃t, s̃t, p̃n and s̃n are defined in the Fig. 12. Remarkably,
the form of the scaling function WIII(s̃, p̃) is independent of the dimension d. In particular, in the case d = 1, one
has p̃t = 0 and one can check that WIII(s̃, p̃) = WIII(s̃n, p̃n) given in (18), as it should. The generic structure of
this result for the Wigner function in regime III has an interesting semi-classical interpretation that we discuss in the
Appendix A.

As in the one-dimensional case, one can show (see Appendix D) that the limiting Wigner function in (105) corre-
sponds to the Wigner function for non-interacting fermions on a semi-infinite space xd > 0 – we recall that we use
the notation x = (x1, x2, · · · , xd) – in the presence of a d-dimensional hard wall potential of the form

V (x) =

{
+∞ , xd < 0 ,

0 , xd > 0 .
(106)

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied the Wigner function WN (x,p) for N noninteracting fermions in a d-dimensional
spherical hard box of radius R at temperature T = 0, going far beyond the prediction of the LDA (6). In particular,
we have shown that, near the “Fermi surf” (see Fig. 1), the Wigner function exhibits an edge behavior in the large
N limit which is quite different from the one found previously for smooth potentials [20–22]. For x close to the
wall (regime III in Fig. 1), we have computed explicitly the scaling function describing WN (x,p) and found, rather
remarkably, that it is independent of the space dimension d. It is quite different from the scaling function (of the Airy
type) which describes the Wigner function at the edge for a smooth potential.

Focusing on d = 1, we were able to derive a more complete description of the Wigner function everywhere along the
Fermi surf as explained in Fig. 1. We have computed explicitly three nontrivial scaling functions along the Fermi surf.
Finally, in d = 1 we were also able to compute explicitly the momentum distribution ρ̂N (p) of the fermions for all p
and N . This momentum distribution, for large N , exhibits a remarkable algebraic tail for p� kF , i.e., ρ̂N (p) ∝ 1/p4.
This is very different from the corresponding tail of the momentum distribution for fermions in a smooth potential,
where it has typically a super-exponential tail [52]. However, this 1/p4 tail is also reminiscent of the similar tail found
in interacting quantum systems with contact repulsion.

A natural question is what happens if the infinite wall is replaced by a continuous singular potential of the type
V (x) ∝ 1/xγ with γ > 0? In Ref. [36] it was shown that, for 1 ≤ γ < 2, the kernel near the singularity is identical
to that of a hard wall at x = 0. Hence we expect that, for 1 ≤ γ < 2, the Wigner function will also be described by
the same scaling function WIII(s̃, p̃) as the hard wall case discussed in this paper. The special case γ = 2 is discussed
in Appendix C 2 where the result is different from the hard wall case, as expected. In view of recent works on finite
square well potential [60], it would also be interesting to study the Wigner function in this case.

Finally, in higher dimension d > 1, we have focused on the behavior of the Wigner function when the position x is
close to the wall, while |p| = O(kF ). As in d = 1, it would be interesting to investigate the behavior of the Wigner
function close to the momentum edge |p| − kF = O(1/R) and also the distribution of the momentum. Another
question is what happens at finite temperature? The finite temperature Wigner function near the Fermi surf is
straightforward to compute using the formula (84) in Ref. [22] which relates the finite temperature Wigner function
to its zero temperature counterpart.
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Appendix A: Wigner function for a single particle in hard-wall potentials and semi-classical interpretation

In this section, we briefly recall the Wigner function and its semi-classical interpretation for a single-particle in
hard-wall potentials (see e.g. [18]). We start with a single particle on the infinite line described by a single plane
wave, i.e.,

ϕPW(x) =
1√
2π
eikx , x ∈ R , (A1)
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where the subscript ‘PW’ refers to ’plane wave’. In this case the single-particle Wigner function defined in Eq. (1) is
given by

WPW(x, p) =
1

2π
δ(p− ~k) . (A2)

In this simple case, interpreting the Wigner function as a quasi-distribution in the phase space (x, p), the result (A2)
is what one would expect from a classical analogy. Indeed the state described by ϕPW(x) in (A1) has a well defined
momentum ~k – since this is an eigenstate of the momentum operator p̂ with eigenvalue p = ~k – and therefore the
corresponding Wigner function is WPW(x, p) ∝ δ(p− ~k).

Let us now consider a superposition of two counter-propagating plane waves

ϕ2PW(x) =
1√
π

sin kx =
1

i
√

2

1√
2π
eikx − 1

i
√

2

1√
2π
e−ikx , x ∈ R , (A3)

such that now the state is a linear combination (with equal amplitude) of two states with momentum ±~k. By
substituting this expression (A3) in Eq. (1), it is straightforward to evaluate the Wigner function which reads

W2PW(x, p) =
1

2π

(
1

2
δ(p− ~k) +

1

2
δ(p+ ~k)− cos(2kx)δ(p)

)
. (A4)

The two first delta functions δ(p− ~k) and δ(p+ ~k) can simply be understood, from the classical analogy, from the
interpretation of the wave function in (A3) mentioned above, being a simple extension of (A2). However, the third
term ∝ δ(p) does not have a classical analogue and is the result of “quantum interferences” between the two plane
waves.

Let us now consider the case where the particle is constrained to stay on the semi-infinite line with x ≥ 0 and in
the presence of a hard wall at the origin

V (x) =

{
+∞ , x < 0 ,

0 , x > 0 .
(A5)

Let us now consider an eigenstate

ϕHW(x) =

√
2

π
Θ(x) sin (k x) , k > 0 , (A6)

where the subscript ‘HW’ refers to ’hard wall’. It is similar to the superposition of the two plane waves considered
above (A3) but now the particle is constrained to stay on the half line x > 0. The Wigner function reads in this case

WHW(x, p) =
1

π

(
1

2
fD(x, p− ~k) +

1

2
fD(x, p+ ~k)− cos 2kxfD(x, p)

)
, fD(x, p) =

1

π

sin 2x
~ p

p
. (A7)

By comparing this result for the Wigner function in the presence of the wall (A7) with the one obtained without the
wall in Eq. (A4) we see that they have exactly the same structure except that the Dirac delta function of p in (A4) is
“broadened” by the presence of the wall and is replaced by an x-dependent function fD(x, p). In fact fD(x, p)→ δ(p)
far from the wall, i.e., as x→∞.

Finally, we note that a similar structure (A7) also holds for the Wigner function corresponding to an eigenstate of
a single particle in a hard box x ∈ [−1, 1] [see Eq. (35)]. Indeed, the expression in Eq. (35) – where we have set ~ = 1
– can be written as in Eq. (A7), up to a global prefactor, with the substitution k → nπ/2 and x→ 1− |x|, which is
actually the distance to the nearest hard wall.

Appendix B: Asymptotic analysis of WII(x, q) for large |q|

In this section, we provide some details about the asymptotic analysis of WII(x, q) for large |q|. Our starting point
is the formula in Eq. (49) which we write as

WII(x, q) =
1

2
− I(π(1− x), q) where I(z, q) =

∫ z

0

Dq−1(u) du =
1

2π

∫ z

0

sin
[
(q − 1

2 )u
]

sin(u/2)
du . (B1)

To analyse the function I(z, q) for large |q| and z > 0, it is convenient to write

1

sin(u/2)
=

2

u
+ g(u) , g(u) =

1

sin(u/2)
− 2

u
. (B2)
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As we will see, the advantage of this decomposition (B2) is that g(u) is a smooth function near u = 0. Inserting (B2)
in the definition of I(z, q) in (B1) we get

I(z, q) =
1

π
Si

(
(q − 1

2
)z

)
+

1

2π

∫ z

0

du sin

[
(q − 1

2
)u

]
g(u) , (B3)

where we recall that Si(x) is the Sine-integral function Si(x) =
∫ x
0

(sin t)/t dt. Using its asymptotic behavior given in
(56) one finds

1

π
Si

(
(q − 1

2
)z

)
=

1

2
sgn(q)− 1

π

cos
[
(q − 1

2 )z
]

q z
+O(1/q2) , (B4)

where we have used that z > 0. To obtain the large q behavior of the integral over u in (B3) we perform an integration
by parts [i.e., deriving g(u) and integrating sin((q − 1/2)u)], one gets

1

2π

∫ z

0

du sin

[
(q − 1

2
)u

]
g(u) =

1

2π

(
− g(z)

q − 1/2
cos

[
(q − 1

2
)z

]
+

1

q − 1/2

∫ z

0

du g′(u) cos

[
(q − 1

2
)u

])
, (B5)

where we have used g(0) = 0. Since g′(u) is a perfectly regular function near u = 0 one can again perform an
integration by parts which shows that the remaining integral in (B5) is of order O(1/q2). Hence to leading order for
large |q|, we get

1

2π

∫ z

0

du sin

[
(q − 1

2
)u

]
g(u) = −g(z)

2π q
cos

[
(q − 1

2
)z

]
+O(1/q2) . (B6)

Finally, inserting the asymptotic behaviours (B4) and (B6) in Eq. (B3) we obtain

I(z, q) =
1

2
sgn(q)− cos

[
(q − 1

2 )z
]

2πq

(
2

z
+ g(z)

)
+O(1/q2) =

1

2
sgn(q)− 1

2πq

cos
[
(q − 1

2 )z
]

sin(z/2)
+O(1/q2) . (B7)

Finally, inserting this expansion (B7) with z = π(1− |x|) in Eq. (B1) one obtains the asymptotic expansions given in
Eq. (51) in the text.

Appendix C: Wigner function for a single hard wall in d = 1

1. The case of a flat potential

We first start with the case of N noninteracting spinless fermions in a flat potential with a single hard wall at the
origin

V (x) =

{
+∞ , x < 0 ,

0 , x > 0 .
(C1)

We focus on zero temperature, where the energy levels are filled up to the Fermi energy µ = k2F /2. For such a potential
(C1), the prediction from the LDA (6) is simply (see Fig. 13)

Wµ(x, p) =


1

2π
, (x, p) ∈ S

0 , (x, p) /∈ S
, S =

{
(x, p) | x > 0 & −

√
2µ < p < +

√
2µ
}
. (C2)

It turns out that the structure of the Wigner function in this case is much richer than the one predicted by the
LDA, as can be seen from an exact computation of Wµ(x, p). We start with the exact single particle eigenfunctions
given by

φk(x) =

√
2

π
Θ(x) sin (k x) , k > 0 , (C3)

with corresponding energies εk = k2/2. The Wigner function is obtained by inserting the explicit expression for the
eigenfunctions (C3) in the general formula given in Eq. (33), replacing the discrete sum over n by an integral over k
since we have a continuous spectrum of states in this case. This yields the exact formula

Wµ(x, p) =
1

π2

∫ 2x

−2x
dy eipy

∫ kF

0

dk sin
[
k
(
x− y

2

)]
sin
[
k
(
x+

y

2

)]
. (C4)
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FIG. 13. Illustration of the LDA prediction (6) in the (x, p)-plane for the Wigner function of the ground-state of noninteracting
fermions on the semi-infinite line with a hard wall at the origin (C1). The corresponding Fermi energy is µ. Inside the half-
strip S (blue striped area) the Wigner function is nonzero and constant, i.e. Wµ(x, p) = 1/(2π) while it vanishes outside this
half-strip.

The integral over k is easily done, leading to

Wµ(x, p) =
1

π2

∫ 2x

−2x
dy eipy

[
sin(kF y)

2y
− sin(2kFx)

4x

]
. (C5)

Performing the integral over y one finally obtains

Wµ(x, p) =
Si(2x(kF + p))

2π2
+

Si(2x(kF − p))
2π2

− sin (2kFx) sin (2 p x)

2π2 p x
. (C6)

Note that this result can also be obtained by integrating over k from k = 0 to k = kF the expression for the Wigner
function of a single particle with a hard wall at the origin in Eq. (A7). As discussed in the Appendix A, the first two
sine-integral terms in (C6) are reminiscent of the “broadened” delta-functions, this broadening being caused by the
presence of the wall, while the last term comes from quantum interferences [see Eqs. (A4) and (A7)]. An interesting
consequence of this broadening is that the Wigner function is nonzero even for p > kF =

√
2µ, a property which is

not captured by the LDA prediction (C2).
Finally, in terms of the scaled variables s̃ = kFx [which measures the scaled distance from the wall as in the text,

see Eq. (18)] and p̃ = p/kF the Wigner function in (C6) reads

Wµ(x, p) =
1

2π
WIII (s̃ = kFx, p̃ = p/kF ) , (C7)

where WIII(s̃, p̃) is the scaling function describing the region III of the hard box (see Fig. 1) and is given in Eq. (18).
We emphasize that the result in Eq. (C6) is actually exact for this model (C1). Note finally that if one sets p = p̃kF
in the exact expression for WIII(x, p) in Eq. (C6) and then take the limit µ→∞, or equivalently kF →∞, one finds

lim
kF→∞

WIII(x, p = p̃kF ) = Θ(1− p̃) , (C8)

which coincides with the LDA prediction (C2) in this limit, as expected.

2. The case of an inverse square potential

Here we consider the case of N noninteracting spinless fermions in an inverse square potential and a hard wall at
the origin

V (x) =


+∞ , x < 0 ,

ν(ν − 1)

2x2
, x > 0 ,

(C9)
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FIG. 14. Illustration of the LDA prediction (6) in the (x, p)-plane for the Wigner function of the ground-state of noninteracting
fermions on the semi-infinite line with a hard wall at the origin and in the presence of an inverse square potential (C9). The
corresponding Fermi energy is µ. Inside the blue striped area the Wigner function is nonzero and constant, i.e. Wµ(x, p) =
1/(2π) while it vanishes outside this half-strip.

with ν ≥ 1. We focus on the ground state, where the energy levels are filled up to the Fermi energy µ = k2F /2. For
such a potential (C9), the prediction from the LDA (6) is simply that Wµ(x, p) = 1/(2π) for (x, p) inside the blue
striped area shown in Fig. 14 while Wµ(x, p) = 0 outside this region. Note that for µ→∞, with ν fixed, this yields
back the Wigner function obtained for the semi-infinite system in a flat potential and a hard wall at the origin in
Eq. (C2).

In this case, however, it is also possible to compute exactly the Wigner function, which displays a much richer
structure than the LDA prediction. Indeed, for this potential (C9) the single particle eigenfunctions can be computed
exactly. They are given by

φk(x) =
√
kx Jν−1/2(kx) , k > 0 , (C10)

where Jν(x) is the standard Bessel function of the first kind, and their corresponding energies are εk = k2/2. Note

that in the case ν = 1, using J1/2(x) =
√

2/(πx) sin(x), one recovers the case studied above [see Eq. (C3)]. In the
ground state, the Wigner function is given by inserting the explicit expression for the eigenfunctions (C10) in Eq.
(33) and by replacing the discrete sum over n by an integral of k. This yields

Wµ(x, p) =
1

2π

∫ 2x

−2x
dy eipy

√
x2 − y2

4

∫ kF

0

dk k Jν−1/2

(
k(x− y

2
)
)
Jν−1/2

(
k(x+

y

2
)
)
. (C11)

The integral over k can be performed explicitly, yielding the result (performing also the change of variable z = y/2)

Wµ(x, p) =
kF
4π

∫ x

−x

dz

xz
e2ipz

√
x2 − z2

[
(x+ z)Jν−1/2(kF (x− z))Jν+1/2(kF (x+ z))

−(x− z)Jν+1/2(kF (x− z))Jν−1/2(kF (x+ z))
]
. (C12)

Performing the change of variable z = u/kF one finds that Wµ(x, p) takes the scaling form

Wµ(x, p) =
1

2π
WIII,ν(s̃ = kFx, p̃ = p/kF ) , (C13)

WIII,ν(s̃, p̃) =
1

2s̃

∫ s̃

−s̃

du

u
e2ip̃u

√
s̃2 − u2

[
(s̃+ u)Jν−1/2(s̃− u)Jν+1/2(s̃+ u)

−(s̃− u)Jν+1/2(s̃− u)Jν−1/2(s̃+ u)
]
. (C14)

Interestingly, we see that the Wigner function WIII,ν(s̃, p̃) depends continuously on the parameter ν. In particular,
setting ν = 1 in (C14) one can check that WIII,ν=1(s̃, p̃) = WIII(s̃, p̃) given in Eq. (18), as expected. Note that, for
generic ν, it seems difficult to evaluate the remaining integral over u – although it seems possible (though cumbersome)
for ν = 2, 3, . . .. One can however easily evaluate numerically the integral in Eq. (C14) for different values of ν and
generic values of s̃ and p̃. Note also that this integral representation in Eq. (C14) is in principle also amenable to a
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precise analysis of the various asymptotic behaviours ofWIII,ν(s̃, p̃), similar to the one carried out forWIII,ν=1(s̃, p̃) =
WIII(s̃, p̃) in the text [see Eqs. (55)-(60)].

Let us conclude this Section by recalling that close to the origin, the quantum correlations of the fermions in the
ground state of the inverse square potential in Eq. (C9) are described by the so-called Bessel kernel [36], which is well
known in RMT [46]. This kernel depends continuously on ν and, as ν → ∞, one can show (see e.g. [36]) that the
Bessel kernel, properly centered and scaled, converges to the Airy kernel, which describes the edge properties of the
Fermi gas in the presence of a smooth potential [33]. Therefore one expects that, in this limit ν → ∞, the limiting
scaling function WIII,ν(s̃, p̃) properly centered and scaled should converge to the scaling function W(a) in Eq. (12)
found for smooth potentials [22]. This family of scaling function WIII,ν(s̃, p̃) thus smoothly interpolates between the
hard-wall scaling function WIII(s̃, p̃) discussed in this paper in Eq. (18) as ν → 1 and the one found previously for
smooth potentials, i.e., W(a) in (12), as ν →∞. We have not tried, however, to study this crossover in detail.

Appendix D: Wigner function noninteracting fermions in the presence of a single d-dimensional hard wall

In this Appendix, we compute exactly the Wigner functions for N noninteracting fermions in the presence of the
d-dimensional hard-wall potential given in Eq. (106). In this case, the exact eigenfunctions are indexed by a vector
k = (k1, k2, · · · , kd)

φk(x) =

√
2

π

1

(
√

2π)d−1
Θ(xd) sin (kdxd) e

i
∑d−1
j=1 kj xj =

1

2
d−2
2

1

π
d−1
2

Θ(xd) sin (kdxd)e
ikt·xt ,with kd > 0 , (D1)

where we used the notation xt = (x1, x2, · · · , xd−1) and similarly kt = (k1, k2, · · · , kd−1). The Wigner function in the
ground state of fermions with Fermi energy µ =

√
2kF is then given by the generalization of Eq. (C4) to d dimensions,

i.e.,

Wµ(x,p) =
1

(2π)d

∫
dd−1kt

∫ ∞
0

dkd Θ(kF − |k|)
∫
ddyeip·yφ∗k

(
x +

y

2

)
φ∗k

(
x− y

2

)
. (D2)

By inserting the expression for the eigenfunctions (D1) in Eq. (D2) we see that the integrals over y1, y2, · · · , yd−1
can be performed yielding simply (2π)d−1δ(kt − pt), where pt = (p1, p2, · · · , pd−1). Therefore the integrals over kt
become trivial and we get

Wµ(x,p) =
Θ(k2F − p2

t )

(2π)d
2

π

∫ ∞
0

dkd Θ

(
kF −

√
k2d + p2

t

)∫ 2xd

−2xd
dyd e

ipdyd sin
(
xd +

yd
2

)
sin
(
xd −

yd
2

)
. (D3)

The remaining integrals over kd and xd are then exactly similar to the ones performed in the one-dimensional case in
Eqs. (C4)- (C6) with the substitutions x→ xd, p→ pd and kF →

√
k2F − p2

t . This yields

Wµ(x,p) =
Θ(k2F − p2

t )

(2π)d

(
Si(2xd(

√
k2F − p2

t + pd))

π
+

Si(2xd(
√
k2F − p2

t − pd))
π

− sin (2xd
√
k2F − p2

t ) sin (2 pd xd)

π pd xd

)
.

(D4)
In the particular case d = 3, we recover the result of Ref. [17]. We also see that this result (D4) coincides exactly
with the expression found in Eq. (105) for the Wigner function for N � 1 fermions in a spherical box and near the
hard wall in terms of rescaled variables, i.e. with xd ≡ s̃n/kF , pd ≡ p̃nkF and pt = p̃t kF .

Appendix E: Limiting Wigner function in d-dimensions using a representation of the edge kernel in terms of
Bessel functions

In this Appendix, we provide an alternative derivation of the limiting d-dimensional Wigner function near a hard-
wall starting from the expression for WN (x, p) given in Eqs. (98) and (99) and using a representation of the edge
kernel in terms of Bessel functions obtained in Ref. [36] – see Eqs. (125)–(127). This reads

WN (xw+k−1F s̃, kF p̃) −→
N→∞

1

(2π)d

∫
dd−1ỹt

∫ 2s̃n

−2s̃n
dỹne

i(p̃t·ỹt+p̃nỹn)

[
Jd/2(

√
ỹ2
t + ỹ2n)

(2π
√
ỹ2
t + ỹ2n)d/2

− Jd/2(
√
ỹ2
t + 4s̃2n)

(2π
√
ỹ2
t + 4s̃2n)d/2

]
. (E1)

The d−1-dimensional integral over yt can be explicitly computed since the Fourier transform of a radially symmetric
function. Namely one can use the formula, for any smooth function g(z)

1

(2π)d

∫
dd−1ỹt e

ip̃t·ỹt g(|ỹt|) =
1

(2π)
d+1
2 p̃

d/2−3/2
t

∫ ∞
0

dỹt ỹ
d/2−1/2
t J d−3

2
(p̃tỹt) g(ỹt) , p̃t = |p̃t| . (E2)
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Using this relation (E2) in Eq. (E1) one obtains

WN (xw + k−1F s̃, kF p̃) −→
N→∞

1

(2π)
d+1
2 p̃

d/2−3/2
t

∫ 2s̃n

−2s̃n
dỹne

ip̃nỹn

∫ ∞
0

dỹtỹ
d/2−1/2
t Jd/2−3/2(p̃tỹt)

×
[
Jd/2(

√
ỹ2t + ỹ2n)

(2π
√
ỹ2t + ỹ2n)d/2

− Jd/2(
√
ỹ2t + 4s̃2n)

(2π
√
ỹ2t + 4s̃2n)d/2

]
. (E3)

Using the relation [61] (see relation 12, p. 217)∫ ∞
0

dxxν+1Jν(cx)
Jµ(b
√
x2 + z2)

(x2 + z2)µ/2
= Θ(b− c)c

νz1+ν−µ

bµ
(b2 − c2)(µ−ν−1)/2Jµ−ν−1(z

√
b2 − c2) (E4)

specialized to ν = d/2 − 3/2, c = p̃t, µ = d/2, z = yn, b = 1, and then to ν = d/2 − 3/2, c = p̃t, µ = d/2, z = 2 sn,

b = 1 to evaluate the two integrals in (E3) one gets, using J1/2(z) =
√
π/(2z) sin(z)

WN (xw + k−1F s̃, kF p̃) −→
N→∞

Θ(1− p2
t )

2dπd+1

∫ 2s̃n

−2s̃n
dỹne

ip̃nỹn

[
sin (ỹn

√
1− p2

t )

ỹn
− sin (2s̃n

√
1− p2

t )

2s̃n

]
. (E5)

Finally, performing the integral over ỹn one arrives at the expression given in in Eq. (105) obtained in the text by a
different method.
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