Wigner function for noninteracting fermions in hard wall potentials - Archive ouverte HAL
Article Dans Une Revue Physical Review A Année : 2021

Wigner function for noninteracting fermions in hard wall potentials

Résumé

The Wigner function W-N(x, p) is a useful quantity to characterize the quantum fluctuations of an N-body system in its phase space. Here we study W-N(x, p) for N noninteracting spinless fermions in a d-dimensional spherical hard box of radius R at temperature T = 0. In the large-N limit, the local-density approximation predicts that W-N(x, p) approximate to 1/(2 pi(h) over bar)(d) inside a finite region of the (x, p) plane, namely, for vertical bar x vertical bar < R and vertical bar p vertical bar < k(F), where kF is the Fermi momentum, while W-N (x, p) vanishes outside this region, or droplet, on a scale determined by quantum fluctuations. In this paper we investigate systematically, in this quantum region, the structure of the Wigner function along the edge of this droplet, called the Fermi surf. In one dimension, we find that there are three distinct edge regions along the Fermi surf and we compute exactly the associated nontrivial scaling functions in each regime. We also study the momentum distribution (rho) over cap (N) (p) and find a striking algebraic tail for very large momenta (alpha) over cap (N)(p) alpha 1/p(4), well beyond k(F), reminiscent of a similar tail found in interacting quantum systems (discussed in the context of Tan's relation). We then generalize these results to higher d and find, remarkably, that the scaling function close to the edge of the box is universal, i.e., independent of the dimension d.
Fichier principal
Vignette du fichier
2104.05068 (1.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03301503 , version 1 (16-12-2023)

Identifiants

Citer

Benjamin de Bruyne, David S. Dean, Pierre Le Doussal, Satya N. Majumdar, Gregory Schehr. Wigner function for noninteracting fermions in hard wall potentials. Physical Review A, 2021, 104 (1), pp.013314. ⟨10.1103/PhysRevA.104.013314⟩. ⟨hal-03301503⟩
33 Consultations
35 Téléchargements

Altmetric

Partager

More