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We study the position distribution P (~R,N) of a run-and-tumble particle (RTP) in arbitrary
dimension d, after N runs. We assume that the constant speed v > 0 of the particle during
each running phase is independently drawn from a probability distribution W (v) and that the
direction of the particle is chosen isotropically after each tumbling. The position distribution is
clearly isotropic, P (~R,N) → P (R,N) where R = |~R|. We show that, under certain conditions
on d and W (v) and for large N , a condensation transition occurs at some critical value of R =
Rc ∼ O(N) located in the large deviation regime of P (R,N). For R < Rc (subcritical fluid phase),
all runs are roughly of the same size in a typical trajectory. In contrast, an RTP trajectory with
R > Rc is typically dominated by a ‘condensate’, i.e., a large single run that subsumes a finite
fraction of the total displacement (supercritical condensed phase). Focusing on the family of speed
distributions W (v) = α(1 − v/v0)α−1/v0, parametrized by α > 0, we show that, for large N ,
P (R,N) ∼ exp [−Nψd,α(R/N)] and we compute exactly the rate function ψd,α(z) for any d and α.
We show that the transition manifests itself as a singularity of this rate function at R = Rc and
that its order depends continuously on d and α. We also compute the distribution of the condensate
size for R > Rc. Finally, we study the model when the total duration T of the RTP, instead of the
total number of runs, is fixed. Our analytical predictions are confirmed by numerical simulations,
performed using a constrained Markov chain Monte Carlo technique, with precision ∼ 10−100.
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I. INTRODUCTION

In recent years there has been a surge of interest in the study of simple stochastic models of self-propelled particles
in the context of active matter, both theoretically and experimentally, for reviews see [1–5]. This class of stochastic
models can describe a wide range of artificial and natural systems, e.g., vibrated granular matter [6], active gels [7, 8],
bacterial motion [1, 9, 10], animal movements [7, 11–13] etc. At variance with its passive counterpart (for instance the
standard Brownian motion, whose movement is driven by the random collisions with the surrounding fluid), active
particles can absorb energy directly from the environment and convert it into persistent self-propelled motion. As a
result, active motion violates time-reversal symmetry and these models belong to the category of out-of-equilibrium
stochastic processes. In order to describe theoretically the persistence of the particle motion, one needs to introduce in
the model a stochastic noise with non-vanishing time correlations. This can be done in several ways. For instance, in
the active Ornstein-Uhlenbeck (AOU) model, the noise is chosen to be a Ornstein-Uhlenbeck process whose temporal
correlation decays exponentially with time [14–17]. Another possibility is to include the noise in the rotational degree
of freedom of the particle, as done for the active Brownian particle (ABP) model [3, 18–25], where the orientation
angle of the particle itself performs a Brownian motion. Finally, yet another variant is the so called run-and-tumble
particle (RTP) model [1, 10, 26, 29], where the active particle is driven by a telegraphic noise with exponential time
correlations. In this paper, we will focus on this latter version, i.e., the RTP model.

Originally known as the persistent random walk [26–31], the RTP model has been employed in recent years to
describe the motion of a class of bacteria, e.g. E. coli [1, 9, 10, 32, 33], which typically move alternating between
phases of straight motion with constant velocity (runs) and almost instantaneous changes of direction (tumblings),
as shown in Fig. 1. This model is known to exhibit complex and interesting features not just in the many-particle
setting with interactions [1, 3, 10, 32–34], but even at the single-particle level [35–55].

In the single-particle case, the RTP model can be described as follows. The particle starts initially from the origin in
a d-dimensional continuous space. It chooses a direction isotropically and a speed v1 > 0, drawn from the probability
density function (PDF) W (v), and starts moving in that direction ballistically with speed v1. After a random time
τ1, which is exponentially distributed with rate γ, the particle tumbles, i.e., it chooses a new random direction, and
starts moving in the new direction with the new speed v2, independently drawn from W (v). Then, after running
during an exponentially distributed time τ2, it tumbles again, and so on (see Fig. 1). One can either observe the
trajectory for a fixed duration T (fixed-T ensemble) or wait until the particle undergoes exactly N complete running
phases (fixed-N ensemble). Even if at short times these two ensembles are quite different, it is reasonable to expect
that they display similar behaviors when both T and N are large. The RTP dynamics is thus parametrized by three
quantities: (i) the tumbling rate γ that characterizes the time scale (the motion persists in a given direction during a
typical time γ−1), (ii) the spatial dimension d in which the RTP lives and (iii) the speed distribution W (v) which is
normalized to unity, i.e.,

∫∞
0
W (v) dv = 1. Note that in the canonical and perhaps the most well studied RTP model,

the speed of the particle is a constant v0 > 0 and does not vary from one run to another, corresponding to the choice
W (v) = δ(v − v0). Nevertheless, RTP models with generic W (v) have also been studied [41, 45, 46, 55].

One of the simplest natural questions that one can ask about a self-propelled active particle is: how does the

position distribution P (~R, T ) evolve with time T? Here T stands either for the real time T or the number of steps N ,
e.g., in the fixed-N RTP model. While for the AOU model, the position distribution is trivially Gaussian at all times

since the driving noise is Gaussian, for the other two models ABP and RTP, the PDF P (~R, T ) is nontrivial. For times
T � T ∗, where T ∗ is the persistence time of the driving noise (e.g., T ∗ = γ−1 in RTP), the noise correlation plays
a stronger role. A typical manifestation of this, for instance, in the ABP model starting from an anistropic initial
condition, is that the position distribution at short times remains strongly anisotropic–a signature of activity of the
process at short times [20, 24]. However, for times T � T ∗, the diffusion takes over and the particle behaves more like
a Brownian motion at late times. As a result, the process becomes more and more isotropic as time progresses beyond

T ∗, i.e., P (~R, T )→ P (R, T ), where R = |~R|. Moreover, due to its convergence to a Brownian motion via the central
limit theorem (CLT), this position distribution P (R, T ) has a Gaussian shape near its peak at late times [1]. Since
the anisotropy in the position distribution is lost at late times, one can ask: is there any other remnant signature
of ‘activity’ in the position distribution P (R, T ) at lates times T � T ∗? It turns out that indeed one can still find
signatures of activity in P (R, T ) at late times, but one needs to investigate the atypical large deviation tails of P (R, T ),
thus going beyond the Gaussian shape near the peak. The non-Gaussian large deviation tails of P (R, T ) at late times
has been computed both in the ABP model [18, 21] and in a class of RTP models [41, 53, 54]. In both cases, the rate
functions characterizing the large deviation behavior were found to carry clear signatures of activity at late times.
Thus, to detect the signature of activity of the particle at late times, one needs to investigate the rare events where
the particle is far away from its starting point. A relevant motivation to study such rare events is that many biological
phenomena, e.g., insemination, occur when a single active particle reaches for the first time a faraway target. Let us
remark in passing that another method to detect the signature of activity of a particle at late times is to confine it
in an external potential– the resulting stationary state position distribution is highly non-Boltzmann and carries the



3

FLUID PHASE

x

y
CONDENSED PHASE

x

y

FIG. 1. Left panel: Typical trajectory of a run-and-tumble particle (RTP) in two dimensions in the fluid phase. The particle
starts at the origin, it chooses a direction uniformly at random and starts moving in that direction with constant speed v1,
drawn from the probability density function W (v). After some random time, the particle tumbles, i.e., it changes its orientation
at random and it chooses a new velocity v2, drawn independently from W (v). Then, it continues to move ballistically in this
new direction, until it tumbles again, and so on. The different runs contribute to the displacement by roughly the same amount.
Right panel: Typical trajectory of an RTP in the condensed phase. One single run (colored in red) dominates the trajectory.

signatures of activity [37, 40, 56–58].

The position distribution of an RTP in the canonical model W (v) = δ(v − v0) was first computed in Ref. [27] in
two dimensions. Later, in Ref. [35], this result was extended to arbitrary dimension d. However, these authors did
not investigate the large-deviation regime, which was first studied in detail in Ref. [53]. Remarkably, it was observed
that in dimensions d > 5 and with speed distribution W (v) = δ(v − v0), the system undergoes a dynamical phase
transition as one increases the total displacement R of the particle. This turns out to be a condensation transition,
in the sense that above a certain distance R from the origin, the total displacement of the particle is dominated
by a single very long run (see the right panel in Fig. 1). Moreover, in [41], a similar condensation transition was

observed for a one-dimensional RTP with a half-Gaussian speed distribution W (v) =
√

2/π e−v
2/2 θ(v) (where θ(v)

is the Heaviside step function), when the particle is driven by a constant force. In both cases, the transition occurs in
P (R, T ) by varying the total displacement R beyond a critical value Rc (typically of O(T ))–thus the total distance R
plays the role of a control parameter. These two examples suggest that condensation could be a general feature of the
RTP model. Unfortunately, in the canonical RTP model with fixed speed v0, this condensation occurs only in d > 5,
which is clearly not accessible physically. The motivation behind our present work is to investigate if it is possible to
observe this interesting condensation transition in P (R, T ) in a physically accessible dimension, e.g., in d = 1, 2 or 3.
One of our main results in this paper is to show that indeed this can be achieved by appropriately choosing the speed
distribution W (v).

Traditionally condensation transition is well known to occur in the momentum/energy space, e.g., the Bose-Einstein
condensation in an ideal Bose gas in d > 2 where a macroscopic number of particles condense in the single particle
ground state below a critical temperature. However, condensation transition has also been observed to occur even
in real space in a variety of situations–for reviews see [59, 60]. These include traffic models [61–63], models of
diffusion, aggregation and fragmentation [64, 65], mass transport models such as Zero Range type processes [67–75],
macroeconomic models [76], network models [77], discrete nonlinear Shrödinger equation [78, 79], financial models
[80], amongst other examples. If the parameters in these models are chosen appropriately, a condensation transition
may occur upon increasing a control parameter such as the density of particles. Beyond a critical density, typically a
single condensate forms in real space that contains a finite fraction of the total number of particles. For example, in
the context of traffic models the analogue of the condensate is a traffic jam, while in the context of random network
models, the condensate is a single node that captures macroscopic number of connections. In the RTP model studied
here, the condensate is a single large run whose duration is a finite fraction of the total run time. Thus the RTP
condensation provides yet another example of this phenomenon of real-space condensation.

The condensation transition that we demonstrate in the RTP model here also has implication in a broader context,
namely in the classical problem in the probability theory concerning the distribution of the sum of a large number
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of independent and identically distributed (i.i.d.) random variables [81]. To establish this connection, consider the
fixed-N ensemble RTP model in d-dimensions defined above with a given tumbling rate γ and a speed distribution

W (v). Since the direction after each tumbling is chosen isotropically, the position distribution P (~R,N) ≡ P (R,N) is
clearly isotropic, i.e., it depends only on the total distance R of the particle after N steps, but not on its direction.
Note that, for simplicity, we use the same notation for P (R,N), in the fixed-N ensemble, and P (R, T ), in the fixed-T
ensemble. It is then convenient to study the probability distribution Z(X,N) of the total displacement X in any one

of the directions (say for instance the x-direction). Since X is the x-component of ~R, it is easy to show that Z(X,N)
and P (R,N) are simply related (see Appendix A). Let fd(z) denote the probability distribution of the x-component
of a random unit vector in d-dimensions. This can be very simply computed (see Eq. (6)). Consequently, given a

random vector of fixed magnitude R = |~R|, its X component has the distribution (1/R) fd(X/R). Finally, if R itself

is distributed isotropically according to P (~R,N) ≡ P (R,N), it follows that

Z(X,N) =

∫
Rd
d~R

1

R
fd

(
X

R

)
P (R,N) , (1)

where d~R = SdR
d−1 dR with Sd = 2πd/2/Γ(d/2) denoting the surface area of a d-dimensional unit sphere. Note that

Z(X,N) is a probability distribution and is normalized to unity,∫ ∞
−∞

dX Z(X,N) = 1 . (2)

The notation Z(X,N) for a probability distribution may seem a bit strange at first sight. The reason for this choice
comes from the analogy to the mass-transport models (see the discussion later), where Z(X,N) also plays the role of
a partition function. Hence, we stick to this somewhat unfamilar notation Z(X,N).

In the limit of large N , we expect that the position distribution will exhibit the large deviation behavior, P (R,N) ∼
exp [−Nψ(R/N)] where ψ(z) is the associated rate function. Then, using Eq. (1), it is easy to show that Z(X,N) ∼
exp [−Nψ(X/N)], i.e., both P (R,N) and Z(X,N) share the same rate function ψ(z) (see Appendix A). To compute
the rate function ψ(z) it is more convenient to consider the large deviation behavior of Z(X,N) and in this paper
we will follow this route. Now, denoting by xi the x-component displacement of the particle during the i-th run, one
sees that

Z(X,N) =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxN

[
N∏
i=1

p(xi)

]
δ

(
X −

N∑
i=1

xi

)
, (3)

where p(x) denotes the PDF of the x-component of a single run-vector and we have used the fact that the run-vectors
are statistically independent. The delta function in Eq. (3) just enforces the total x-displacement after N steps to be
X. Clearly p(x) is symmetric around x = 0. The dependence on the parameters d, γ and W (v) is encoded in p(x)
(see Eq. (5)). Since p(x) is normalized to unity, Z(X,N) in Eq. (3) manifestly satisfies the normalization condition in
Eq. (2). Thus, Z(X,N) in Eq. (3) can be interpreted as the distribution of the sum of N i.i.d. random variables each
drawn from a symmetric p(x). This classical problem is well studied in the probability literature [81]. In particular,

it is well known that, when the second moment of p(x) is finite, Z(X,N) has a Gaussian shape for |X| ∼ O(
√
N)

(typical fluctuation), as a consequence of the CLT. On the other hand, when |X| � N (atypically large fluctuation),
one obtains Z(X,N) ∼ Np(X), corresponding to a randomly chosen variable that dominates the sum [81]. However,
it is not completely understood how the crossover between these ‘typical’ and ‘atypical’ regimes occurs in Z(X,N), as
the ‘control parameter’ X varies. Given a p(x), is there a ‘sharp’ phase transition at some critical value Xc, or is this
just a smooth crossover? While for a few specific examples of p(x) this crossover between the typical and the atypical
regimes have been studied [82], a general criterion on p(x) to determine whether a sharp phase transition occurs is
still missing. Our analysis of the large deviation properties of the RTP model with a general speed distribution W (v)
(and hence that of p(x)) thus sheds light on this general question as well.

In this context, let us remark that such a criterion is well established when the i.i.d. random variables are all
positive, i.e., p(x) has only positive support. This situation arises in a class of mass transport models defined on a
lattice of N sites with some prescribed rates of mass transfer between neighbouring sites [59, 60, 67–69]. Here xi ≥ 0

denotes the mass at site i and the dynamics conserves the total mass X =
∑N
i=1 xi. For a large class of mass transfer

rates, the system reaches at long times a stationary state where the joint distribution of masses {xi} factorise, with
p(x) denoting each factor that depends on the mass transfer rates [83]. Then, Z(X,N) in Eq. (3) just denotes the
partition function in the stationary state. In this case where p(x) has only positive support (x being a mass), it has
been shown that the criterion for condensation depends on the tail of p(x) for large x [59, 60, 67, 68, 70, 80]. As one
varies the sum X, the condensation occurs at some critical value Xc ∼ O(N), if and only if e−c x < p(x) < 1/x2 as
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x → ∞, where c is any positive constant. For example, if p(x) has a fat tail, p(x) ∼ x−γ for large x with γ > 2, a
condensation will occur. Similarly, if p(x) ∼ exp[−a xα] for large x with a > 0 and 0 < α < 1 (stretched-exponential),
again condensation will occur [68]. However, if p(x) ∼ exp[−a xα] for large x with a > 0 and α > 1, there is no
condensation transition but only a smooth crossover as X varies. In our problem, the variable xi’s can be both
positive and negative with p(x) symmetric, and unfortunately we can not simply apply the same criterion that is valid
only for positive random variables. However, by generalising the method used in Ref. [68], we show that it is possible
to find a similar criterion for symmetric random variables as well.

Our main results in this paper are threefold:

(I) We identify a general criterion for condensation, valid for the sum of random variables with symmetric distri-
bution p(x). In the context of the RTP model, we show that, by properly tuning the speed distribution W (v),
one can observe a condensation transition also in a physically accessible dimension d ≤ 3.

(II) We focus on a family of speed distributions W (v) = (α/v0)(1− v/v0)α θ(v0 − v) supported over v ∈ [0, v0] and
parametrized by α, that allows a condensation transition according to the general criterion mentioned above. For
this family of W (v), we compute exactly the position distribution Z(X,N) for large N (see Fig. 2). In the regime
where X ∼ O(N), we show that Z(X,N) exhibits a large-deviation form Z(X,N) ∼ exp[−N ψ(X/N)] and we
compute the associated rate function ψ(z). As the control parameter X exceeds a critical value Xc = zcN , we
show that a condensation transition occurs. The signature of this transition is manifest in the rate function
ψ(z): it develops a singularity at z = zc.

(III) For any α and d, we also compute the marginal distribution p(x|X) of a single-run displacement, conditioned
on the total displacement X (see Fig. 3). This marginal distribution p(x|X) can be taken as a diagnostic of
the condensation transition, as it behaves very differently in the ‘subcritical’ (X < Xc) and the ‘supercritical’
(X > Xc) phases. We show that in the supercritical phase where X > Xc, a distinct bump appears in the tail
of p(x|X), similar to what has been observed in mass transport models [67, 68].

The rest of the paper is organized as follows. In Section II we present the details of the RTP model and provide a
summary of our main results. In Section III, using a grand canonical description of the system, we present a general
criterion for condensation, valid for a large class of RTP models. In Section IV, we study the late-time position
distribution, both in the typical and large-deviation regimes for the fixed-N ensemble. We show that the phase
transition manifests itself as a singularity of the rate function and we compute its order. To clarify the nature of the
transition, in Section V we study the marginal probability of a single-run displacement. In Section VI, we investigate
the position distribution for the fixed-T ensemble. In Section VII, we present the details of the numerical simulations.
Finally, in Section VIII we conclude with a summary and some open questions. Some details of the computations are
presented in the appendices.

II. THE MODEL AND THE SUMMARY OF THE MAIN RESULTS

Since the paper is long, it is useful to provide a description of the model and a summary of the salient features of
the main results, so that the reader is not lost in the details given in later sections. This is precisely the purpose of
this section, where we also direct the reader to specific equations in later sections.

We consider a single RTP, starting from the origin and moving in d dimensions. At each tumbling the speed of
the particle is independently drawn from the distribution W (v). As anticipated in the introduction, there are two
possible set-ups: the fixed-N and the fixed-T ensemble. Note that if the number N of running phases is fixed, then
the total time T can fluctuate. Alternatively, in the fixed-T ensemble one fixes the total time T , letting N fluctuate.
One important difference between the two models is that in the fixed-T ensemble the last running phase is yet to be
completed. Therefore, the displacement of the particle during the last running phases has a different distribution with
respect to the previous displacements [45, 46]. On the other hand, in the fixed-N case, all displacements have the
same distribution. For this reason, the analytic study of the fixed-N ensemble is usually simpler. Since, as we shall
see, the late-time properties of the two ensembles are very similar, we will focus on the fixed-N ensemble for most of
this paper. We will consider the fixed-T ensemble in Section VI, where we show that the behavior of the system is
qualitatively similar for the two models.

Denoting by x1 , . . . , xN the displacements in the x-direction of the RTP during the N running phases, we have

X =

N∑
i=1

xi . (4)
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These increments xi, that can be positive or negative, are i.i.d. random variables, drawn from the symmetric proba-
bility distribution [45, 46] (reproduced, for convenience, in Appendix B in this paper)

p(x) =

∫ ∞
0

dv
1

v
W (v)

∫ ∞
0

d`
1

`
fd

(xi
`

)
γe−γ`/v , (5)

where

fd(z) =
Γ (d/2)√

πΓ ((d− 1)/2)
(1− z2)(d−3)/2θ(1− |z|) , (6)

Γ(y) is the Gamma function. It is easy to check that p(x) is symmetric around x = 0. The behavior of Z(X,N)
depends on the dimension d and the speed distribution W (v) through p(x) in Eq. (5). Since p(x) is symmetric,
Z(X,N) is also symmetric, and hence it is sufficient to focus on the positive side, i.e., for X > 0. This PDF Z(X,N)
can be expressed explicitly as an N -fold integral in terms of p(x)’s, as shown in Eq. (3). In this paper, we show that
under specific conditions on W (v) and d the system undergoes a condensation phase transition at a critical value Xc of
the position X. For X < Xc (subcritical phase), all the different runs x1 , . . . , xN contribute to the total displacement
by roughly the same amount. On the other hand, for X > Xc (supercritical phase), a single run, which is referred
to as the condensate, contributes to a macroscopic fraction of the displacement (see the right panel of Fig. 1). Our
goal is (I) to determine the criterion on p(x) for the condensation transition in Z(X,N) as X varies (II) when this
criterion is satisfied, to determine the specific value Xc at which the system forms a condensate, and, (III) to study,
for X > Xc, the nature of this condensate, e.g., what is the distribution of run lengths carried by the condensate.
The salient features of our results are highlighted below.

(I) Criterion for condensation: As in mass transport models where p(x) only has positive support, we formulate
a criterion for condensation in the case of symmetric p(x). We show that this criterion only depends on the large-|x|
behavior of p(x) (see Section III). By choosing the speed distribution W (v) appropriately, one can find p(x)’s that
allow for condensation. In particular, we focus on the family of speed distributions

W (v) =
α

v0

(
1− v

v0

)α−1

where 0 ≤ v ≤ v0 , (7)

parametrized by α > 0. The constant v0 > 0 represents the maximal speed that the particle can reach. Note that
this family includes, as a special case, the canonical RTP model where the speed is constant from run to run. Indeed,
by taking the limit α→ 0 in Eq. (7), one finds

W (v) = δ(v − v0). (8)

Moreover, many other relevant speed distributions belong to this class. For instance, choosing α = 1, one obtains
the uniform speed distribution. Since one can always rescale space and time, without any loss of generality we set

v0 = γ = 1 (9)

in the rest of the paper. Thus, our system is parametrized by the two scalars d and α. It turns out that several (but
not all) properties of the condensation transition depend only on the single parameter

ν =
(d+ 2α− 1)

2
. (10)

Indeed, applying the criterion for condensation to the speed distribution in Eq. (7), we find that condensation occurs
only for ν > 2.

(II) Position distribution Z(X,N): Thanks to the symmetry Z(X,N) = Z(−X,N), it is sufficient to focus on

the case X > 0. In the late-time limit N � 1, we consider two distinct regimes. In the typical regime X ∼ O(
√
N),

we find the central limit behavior as expected

Z(X,N) ' 1√
4πDN

e−X
2/(4DN) , (11)

with

D =
2

d(α+ 1)(α+ 2)
. (12)
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FIG. 2. Schematic representation of the PDF Z(X,N), for ν = (d + 2α − 1)/2 > 2. For X ∼ O(
√
N) the PDF Z(X,N) is

Gaussian, while for X ∼ O(N) it assumes the large-deviation form Z(X,N) ∼ e−Nψd,α(X/N), where the rate function ψd,α(z)
is given in Eq. (59). A dynamical phase transition occurs at Xc ∼ O(N), where ψd,α(z = X/N) is singular. In a small
region around the critical point Xc, Z(X,N) is described by the function pcond(y,N) (see insets). For 2 < ν < 3, pcond(y,N)

has an anomalous shape, given in Eq. (16), and it varies on a scale O(N1/(ν−1)). For ν > 3, pcond(y,N) is Gaussian with

fluctuations ∼ O(
√
N). As a consequence of the symmetry Z(X,N) = Z(−X,N), an analogous transition occurs also at −Xc.

For |X| < Xc the system is in the fluid phase, while for |X| > Xc the system is in the condensed phase.

At this scale, no sign of activity is present. However, the signatures of the active nature of the particle can be
observed in the tails of Z(X,N), outside the typical Gaussian region. Indeed, in the atypical regime X ∼ O(N), we
show that the PDF of X admits the large-deviation form

Z(X,N) ∼ exp

[
−N ψd,α

(
X

N

)]
. (13)

The rate function ψd,α(z) depends on both parameters d and α, and its exact expression for any d and α > 0 is given
in Eq. (55) for ν < 2, and in Eq. (59) for ν > 2. We will consider the scaled displacement z = X/N as our control
parameter. In particular, for ν < 2, ψd,α(z) is analytic for any z > 0, while for ν > 2 it becomes singular at the critical
point z = zc. The critical value zc also depends on both parameters d and α and is given explicitly in Eq. (60). For
z > zc, the rate function becomes exactly linear. The non-analyticity of the rate function signals the presence of a
dynamical phase transition at the critical position Xc = zcN . This is equivalent to the non-analyticity of the free
energy in the case of equilibrium phase transitions, with the rate function playing the role of free energy. The free
energy in equilibrium systems at the critical point is characterized by the order of its non-analyticity. The transition
is of order n if the n-th derivative of ψd,α(z) is discontinuous, while all the lower-order derivatives are continuous. In
our model, we find that the order of the non-analyticity n at the condensation transition is given by

n =


⌈
ν−1
ν−2

⌉
for 2 < ν < 3,

2 for ν > 3 ,

(14)

where dye denotes the smallest integer larger than or equal to y. As a consequence of the X → −X symmetry of the
process, an analogous transition occurs also at −Xc.

For ν > 2, we next zoom in the region around the critical point z = zc and investigate Z(X,N) on a finer scale
around X = Xc (see Fig. 2). By computing Z(X,N) in the vicinity of Xc = zcN , we find that

Z(X,N) ' CN pcond (Xc −X,N) , (15)
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FIG. 3. Numerical curves of the marginal probability p(x|X) of a single-run displacement, for α = 0 and d = 8. For z < zc
(dotted brown line), the system is in the fluid phase and p(x|X) decays exponentially fast for large x. At the critical point
z = zc (orange dashed line), p(x|X) develops a power-law tail. For z > zc (blue continuous line), the system is in the condensed
phase and p(x|X) still has a power-law tail and a condensate bump appears at x = Xex.

where CN is a positive constant and the function pcond(y,N) depends on N , α, and d. For 2 < ν < 3, we find that

pcond(y,N) ' 1

N1/(ν−1)
Vν

( y

N1/(ν−1)

)
, (16)

where the function Vν(y) is given in Eq. (95) (see also Fig. (10) for a plot of this function). On the other hand, for

ν > 3, we obtain that, for |y| �
√
N log(N),

pcond(y,N) ' 1√
4πad,αN

e−y
2/(4ad,αN) , (17)

where ad,α is a positive constant given in Eq. (64). For ν > 3, the Gaussian shape in Eq. (17) is only valid
for |y| � √N logN . Outside this region, pcond(y,N) has a power-law tail (see Eq. (118)). Adapting the same
terminology as in mass transport models [67, 68], we will call the condensate ‘anomalous’ for 2 < ν < 3 and ‘normal’
for ν > 3. Interestingly, as we will see later, the behavior of Z(X,N) close to the critical point in Eq. (15) also
determines the size and the nature of the condensate that forms when X > Xc. More precisely, we show that the
same function pcond(y,N) that characterizes Z(X,N) near the critical point in Eq. (15) and which is positive and
normalized to one, indeed also describes the size distribution of the condensate, i.e., the probability distribution of
the run length carried by the condensate (hence the subscript in pcond(y)) when the condensate forms. A schematic
representation of the different regimes of Z(X,N) as a function of X is shown in Fig. 2.

(III) Single-run marginal distribution p(x|X): To understand better the nature of the dynamical phase transition
described above, it is useful to study the PDF of the single-run marginal distribution p(x|X), conditioned on the total
displacement X. This is obtained by integrating the joint distribution of {xi}’s over (N − 1) variables, while keeping

fixed the sum X =
∑N
i=1 xi and the value of one of them, say the first one, at x1 = x. We consider only the case

ν > 2, where the transition surely occurs. This conditional distribution p(x|X) can be taken as a clear diagnostic for
the condensation transition, since it behaves very differently in the subcritical (0 < z < zc) and supercritical (z > zc)
phases (see Fig. 3).

Subcritical phase (0 < z < zc): In this case, we show that p(x|X) decreases monotonically with increasing x and
for x� 1

p(x|X) ∼ 1

xν
e−x/ξ , (18)
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FIG. 4. Qualitative behavior of the marginal probability p(x|X) versus x in the condensate phase. When x ∼ O(1), we find
that p(x|X) ∼ p(x), where p(x) is the distribution of a single displacement, given in Eq. (5). For 1 � x � N , we find that
p(x|X) ∼ (x(1− x/Xex))−ν , where Xex = X −Xc and ν = (d+ 2α− 1)/2. At x ' Xex ∼ O(N), a condensate bump appears
in the tail of p(x|X). The shape pcond(y,N) of the bump depends continuously on ν. For 2 < ν < 3, the condensate bump

has an anomalous shape, with fluctuations of order N1/(ν−1) (see Eq. (16)). For ν > 3, the bump has a Gaussian shape with

fluctuations of order
√
N .

where ξ > 0 depends on z = X/N . Thus, below the transition z < zc, the marginal distribution p(x|X) decays
exponentially fast over a scale ξ. For this reason, all the displacements x1 , . . . xN contribute “democratically” to the
total displacement X and thus this subcritical regime behaves like a fluid. Notably, when z → zc from below the
typical length ξ diverges.

Critical phase (z = zc): Exactly at the critical point z = zc, the conditional distribution still decays monotonically
with increasing x, but develops a power-law tail for large x

p(x|X) ∼ 1

xν
, (19)

where we recall ν = (d+ 2α− 1)/2.

Supercritical phase (z > zc): For z > zc, the distribution p(x|X) becomes a non-monotonic function of x (see Fig.
3). When x ∼ O(1), we show that p(x|X) ∼ p(x), i.e, the conditioned distribution is insensitive to the constraint,
and behaves like a constraint-free system. For x� 1, the function decays with increasing x as a power law, as at the
critical point in Eq. (19). However, this power law behavior ceases to hold when x approaches Xex = X − zcN > 0
(analogously to the excess mass Mex in the mass transport models [67, 68]). For 1� x� Xex we get

p(x|X) ' Ad,α
xν

1

(1− x/Xex)ν
, (20)

where Ad,α > 0 is given in Eq. (33). This describes the shoulder region before the bump in Fig. 3 in the supercritical
phase. The approximate expression in Eq. (20) breaks down when x→ Xex. Indeed, at x ∼ Xex, a bump appears in
the tail of p(x|X), where

p(x|X) =
1

N
pcond(x−Xex, N) . (21)

Thus, the function pcond(x − Xex, N) describes the shape of the condensate. The bump is centered at Xex and its
width vanishes relative to its location for large N (see Fig. (4)). The area under this bump is the probability that a
condensate appears in a particular single-run displacement. We find that∫ ∞

−∞
dy

1

N
pcond(y,N) =

1

N
, (22)
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FIG. 5. Left panel. Phase diagram in the (α, z) plane, for d = 3. For α < 1 the system is always in the fluid phase, where
all runs contribute by roughly the same amount to the total displacement of the particle. For α > 1, the system undergoes a
dynamical condensation transition at a critical value zc of the control parameter z (continuous black line). The exact expression
of zc is given in Eq. (60). For z < zc, the system is in the fluid phase, while above the transition the system is in the condensate
phase. In particular, for 1 < α < 2, the system is in the anomalous condensate phase, while for α > 2 the system is in the
normal condensate phase. Right panel. Phase diagram in the (α, z) plane, for d = 7. For z < zc, the system is in the fluid
phase, while for z > zc it is in the normal condensate phase. For d ≥ 7, the system is never in the anomalous condensed phase.

meaning that only one condensate appears in the system. We recall that, for 2 < ν < 3, pcond(y,N) is given in Eq.
(16) and the condensate has anomalous fluctuations of order N1/(ν−1), where 1/2 < 1/(ν − 1) < 1. For this reason,
we denote the phase 2 < ν < 3 as the anomalous condensate phase. On the other hand, for ν > 3, pcond(y,N) is

given in Eq. (17) and the bump has a normal shape around its peak, with fluctuations of order
√
N . Hence, we call

this region the normal condensate phase. Note however that the Gaussian shape is valid only for |y| � √N logN and
that outside this region, the bump has a power-law tail.

Finally, for x � Xex and for any ν > 2, we observe that p(x|X) gets cut-off around X ∼ O(N) (finite-size effect)
and this cut-off behavior can be described by a large deviation form

p(x|X) ∼ exp

[
−Nχ

(
x

N
,
X

N

)]
, (23)

where the rate function χ(y, z) > 0 is given in Eq. (131). Thus, configurations where a single-run displacement is
larger than Xex become exponentially rare for large N .

The qualitative behavior of p(x|X) in the three phases (subcritical, critical and supercritical) is shown in Fig. 3. In
Fig. 4, we focus on the condensed phase X > Xc and we present a schematic representation of the different regimes
of p(x|X) as a function of x.

To sum up, we find that

• for ν < 2, the system is always in the fluid phase;

• for 2 < ν < 3, the system is in the anomalous condensate phase for X > Xc and the order of the transition
depends continuously on ν;

• for ν > 3, the system is in the normal condensate phase for X > Xc and the transition is of second order.

For the RTP model, we thus also find the two different types of condensed phases ‘anomalous’ and ‘normal’, as in the
case of mass transport models [67, 68]. The behavior of the system is determined by three parameters: the two system
parameters (α, d) and the control parameter z = X/N . This would correspond to a three-dimensional phase diagram,
which is of course complicated to display. For this reason, we present two different slices of the phase diagram. In the
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left panel of Fig. 5, we focus on the physical dimension d = 3 and we show the (α, z) phase space. In three dimensions
and for α < 1, condensation can not occur. Conversely, for α > 1, above some critical value zc of the parameter z
(given in Eq. (60)), the system undergoes a condensation transition. In particular, for 1 < α < 2 and z > zc, the
condensate is anomalous. In contrast, for α > 2 and z > zc, the condensate is normal. Increasing the dimension d,
the region of the phase space corresponding to the anomalous condensate phase shrinks, until, at d = 7, it disappears.
Indeed, for d ≥ 7, the system can either be in the fluid (z < zc) or in the normal condensate phase (z > zc). In the
right panel of Fig. 5, we present the (z, α) phase diagram for d = 7 which shows that only two phases ‘fluid’ and
‘normal condensate’ can occur.

III. GRAND CANONICAL CRITERION FOR CONDENSATION

In this section, we provide a general argument that allows us to determine the conditions that are necessary for
condensation. This approach is based on a grand canonical description of the system and will also allow us to
determine the critical value Xc of the total displacement X at which the phase transition occurs. Note however that
the method presented below does not give any information about the nature of the condensed phase, which will be
analyzed in detail in the next sections.

In order to investigate the condensation transition, we will focus on the large-deviation regime where X scales
linearly with the number N of runs, in the limit N →∞. We define the scaled distance z = X/N , which will be the
control parameter of our system. To establish when condensation occurs, we adopt a grand canonical description, as
was done for positive-only i.i.d. random variables in the context of mass models [67, 68]. There will be important
differences however from the mass models. In the grand canonical approach we assume that the variables xi in Eq.
(3) become decoupled from each other. To do this, we remove the hard delta-function constraint in Eq. (3) and

replace it by a factor e−µ
∑N
i=1 xi where µ plays the role of the negative chemical potential or equivalently a Lagrange

multiplier. We fix the value of µ by fixing the average 〈X〉. In other words, we let the total displacement X free
to fluctuate in the grand canonical description, but with its average 〈X〉 kept fixed. Provided this approach works,
the canonical partition function given by the N -fold integral in Eq. (3) is replaced by the grand-canonical partition
function defined as

ZGC(µ,N) =

∫ ∞
−∞

N∏
i=1

p(xi) e
−µxi dxi =

[∫ ∞
−∞

p(x) e−µx dx

]N
, (24)

with p(x) given in Eq. (5). Thus, in the grand canonical ensemble, the N runs are completely independent, each
drawn from the normalized PDF

pµ(x) =
e−µx p(x)∫∞

−∞ dx e−µx p(x)
. (25)

We recall that the PDF p(x) is symmetric around x = 0. The parameter µ can be determined from the following
condition on the average displacement

〈X〉 =

N∑
i=1

〈xi〉 = z N , (26)

where the average is with respect to the distribution pµ(x) in Eq. (25). This gives

z = f(µ) ≡
∫∞
−∞ dxx e−µxp(x)∫∞
−∞ dx e−µxp(x)

. (27)

The main idea behind the condensation criterion that we are going to present is that, when Eq. (27) admits a solution,
the canonical and grand canonical descriptions are equivalent and we will call the system to be in the ‘fluid’ phase.
On the other hand, if for some value of z, Eq. (27) ceases to have a solution for µ, then the two ensembles are not no
longer equivalent, signalling a possible phase transition. To proceed, it is useful to define the limiting value

c = − lim
x→∞

log(p(x))

x
. (28)

We distinguish different cases, depending on c.
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The case c = ∞: First, we consider the case c = ∞, corresponding to a PDF p(x) that decays faster than any
exponential for large |x|. Let us first examine the two integrals, respetively in the numerator and the denominator
of Eq. (27). When p(x) decays faster than any exponential, clearly both integrals in Eq. (27) exist for any µ, i.e.,
for all −∞ < µ < ∞. Then the function f(µ) in Eq. (27) is a monotonically decreasing function of µ in the range
µ ∈ [−∞,∞], going from ∞ (as µ→ −∞) to −∞ (as µ→∞). Then, for any value of z, there is a unique solution of
the equation (27) for µ. This means that the canonical and grand canonical descriptions are equivalent, the system
remains a fluid for all z, and never develops a condensate.

The case 0 < c < ∞: This corresponds to a distribution p(x) that decays exponentially fast as p(x) ∼ e−c|x| for
large |x|. Then, the parameter µ can only take values only in the interval (−c, c) in order that both integrals in Eq.
(27) converge. It is useful to define the auxiliary function

p̃(x) = p(x)ec|x| . (29)

The function f(µ) in Eq. (27) is again a decreasing odd function of µ, but now only in the bounded range µ ∈ [−c, c].
It is then easy to see from Eq. (27) that if p̃(x) decays slower than 1/|x|2 for large |x|, then f(µ) diverges at the two
edges: f(µ) → +∞ as µ → −c and f(µ) → −∞ as µ → c (see Fig. 6). Hence, for a given z, one can always find a
solution to the equation f(µ) = z in Eq. (27). Consequently, there is no transition.

On the other hand, if p̃(x) decays faster than 1/|x|2 then the integrals in Eq. (27) are convergent for all µ ∈ [−c, c].
In particular, at the left edge, the function f(µ) approaches

zc = f(−c) =

∫∞
−∞ dxx ecxp(x)∫∞
−∞ dx ecxp(x)

<∞ . (30)

Thus, for z < f(−c), a solution of Eq. (27) always exists. On the other hand, for z > f(−c), there is no solution to Eq.
(27), signalling a condensation transition. Thus, the phase transition occurs at the critical value zc = f(−c). Using
the symmetry, a similar condensation will also occur for z < −zc = f(c). Note however that this grand canonical
description does not shed light on the precise nature of the condensed phase. Indeed, to understand the behavior of
the system above the transition, a detailed analysis of the canonical PDF in Eq. (3) is required as in the case of mass
transport models [68].

The case c = 0: In this case, p(x) decays slower than an exponential as |x| → ∞. Thus, the integrals in the
denominator and numerator of Eq. (27) exist for µ = 0. For any nonzero µ, the integrals diverge, either as x→ −∞
(if µ > 0), or as x→∞ (if µ < 0). Thus, the grand canonical description fails completely here. However, we believe
that the system still undergoes a condensation transition if p(x) decays, for large |x| faster than 1/|x|3. The reason
behind this conjecture is the following. If p(x) decays faster than 1/|x|3, then its second moment is finite and the

CLT applies. Therefore, for X ∼
√
N , Z(X,N) assumes a Gaussian shape. On the other hand, for X ∼ N , we expect

Z(X,N) ∼ Np(X) , (31)

where the right-hand side corresponds to a configuration where one of the runs absorbs the whole displacement X.
Thus, Z(X,N) is described by two regimes: the typical Gaussian regime for X ∼

√
N and the fat-tailed regime for

X ∼ N . In this case, for X ∼ O(N), the distribution Z(X,N) does not have a large deviation behavior of the type,
Z(X,N) ∼ exp[−N ψ(X/N)], and thus condensation can not happen on a scale X ∼ O(N). However, if the central
CLT region has to match the tail behvaior in Eq. (31), we believe that a condensation should occur at a shorter scale
X ∼ Nγ , where 1/2 < γ < 1. This has already been hinted in Ref. [41] which studied a particular example, though
there p(x) was asymmetric.

In the complementary case when p(x) decays slower than 1/|x|3, the CLT does not hold and, already in the typical
regime, X is dominated by the maximum of x1 , . . . xN [84]. Thus, in this case, condensation spontaneously occurs at
any scale and no dynamical phase transition takes place.

In the rest of this section, we will show that one can obtain several RTP models that satisfy the condensation
criterion. This can be achieved by properly tuning the speed distribution W (v). Below, we provide few examples of
W (v) that lead to condensation.

• W (v) = α(1− v)α−1 with 0 < v < 1, as mentioned in Eq. (7) with v0 = 1. In this case, for arbitrary d, one can
show that for large |x| (see Appendix C)

p(x) ' Ad,αe−|x|
1

|x|ν , (32)
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FIG. 6. The function f(µ) versus µ. If f(µ) diverges when µ→ −c (continuous blue curve), Eq. (27) will admit a solution for
µ and no transition occurs. If f(µ) goes to a finite value f(−c) when µ → −c (dashed red curve), Eq. (27) will always admit
a solution only for z < f(−c) and at z = f(−c) a condensation transition occurs.

where

Ad,α =
Γ (d/2)αΓ (α)√

π
2(d−3)/2 and ν =

(d+ 2α− 1)

2
. (33)

In this case c = 1 from Eq. (28) and, applying the criterion described above, we find that the transition is
possible only for ν > 2, i.e., for d + 2α > 5. Recalling that the limit α → 0 corresponds to the canonical
RTP model with fixed velocity (i.e., W (v) = δ(v − 1)), we recovered that for the fixed-velocity RTP model
condensation is possible only for d > 5. This was first observed in [53]. Plugging the expression for p(x), given
in Eq. (5), into Eq. (30), we obtain the critical value zc explicitly, valid for arbitrary d and α,

zc =
4

d(1 + α)(2 + α)
4F3 [3/2, 3/2, 2, 2; (2 + d)/2, (3 + α)/2, (4 + α)/2; 1]

4F3 [1/2, 1/2, 1, 1; d/2, (1 + α)/2, (2 + α)/2; 1]
, (34)

where 4F3 is the standard hypergeometric function defined more precisely in Eq. (41). In the next sections, we
will focus on this family of speed distributions, parametrized by α.

• W (v) =
√

2
π e
−v2/2 with v > 0. Considering d = 1 and using Eq. (5), one can show that, for |x| � 1,

p(x) ∼ |x|−1/3
e−3|x|2/3/2 . (35)

In this case p(x) decays slower than any exponential, thus c = 0. Moreover, p(x) decays faster than 1/|x|3 and
thus according to our conjecture, a condensation transition should occur. The condensation transition in the
RTP model with this particular half-Gaussian speed distribution was studied in Ref. [41], but in the presence
of an additional constant force.

• W (v) ∼ 1/vβ for large v with β > 1. In this example, for d = 1, it is easy to show from Eq. (5) that p(x) ∼ 1/|x|β
for large |x|. Thus, we find c = 0 and one has condensation only if β > 3, according to our conjecure.

Let us recall that in the case of the sum of positive-only i.i.d. random variables, a similar condensation criterion was
established [68]. In that case, one can still define the limiting value c in Eq. (28). Then, if c = ∞, no condensation
happens. For 0 ≤ c <∞, condensation happens only if p̃(x) = ecxp(x) decays faster than 1/x2.

IV. POSITION DISTRIBUTION

In this section, we want to investigate the PDF Z(X,N) of the total x-component displacement X, where X =∑N
i=1 xi, by analysing fully the N -fold integral in Eq. (3), thus going beyond the grand canonical description discussed
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in the previous section. We will first derive an exact expression for Z(X,N), valid for any X and N . Then, focusing on

large N , we study both the typical regime X ∼ O(
√
N), where Z(X,N) is Gaussian, and the large-deviation regime

X ∼ O(N), where Z(X,N) assumes a large deviation form, Z(X,N) ∼ exp [−Nψd,α(X/N)], with a rate function
ψd,α(z) that we compute exactly. Under specific conditions on d and α, we show that ψd,α(z) becomes singular at a
critical value zc of the scaled displacement z = X/N . This singularity corresponds to a condensation phase transition.

We recall that the PDF Z(X,N) can be written as (see Eq. (3))

Z(X,N) =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxN

N∏
i=1

p(xi) δ

(
X −

N∑
i=1

xi

)
, (36)

where the delta function constraints the final position to be X and p(x) is given in Eq. (5), with W (v) = α(1− v)α−1

for 0 ≤ v ≤ 1 and W (v) = 0 otherwise. To proceed, we recall the integral representation of the delta function

δ(X) =
1

2πi

∫
Γ

dq e−qX , (37)

where the integral is performed over the imaginary-axis Bromwich contour Γ in the complex q plane. Plugging this
integral expression into Eq. (36), we find

Z(X,N) =
1

2πi

∫
Γ

dq eqX [p̂(q)]
N
, (38)

where

p̂(q) =

∫ ∞
−∞

dx e−qxp(x) . (39)

Substituting W (v) = α (1− v)α−1 over v ∈ [0, 1] in Eq. (5), we first evaluate p(x) and then compute p̂(q) using Eq.
(39). Using Mathematica, we get

p̂(q) = 4F3

(
1

2
,

1

2
, 1, 1;

d

2
,

1 + α

2
,

2 + α

2
; q2

)
, (40)

where pFq(α1 , . . . αp;β1 . . . βq; q) denotes the generalized hypergeometric function, defined as

pFq(α1 , . . . αp;β1 . . . βq; z) =

∞∑
n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

zn

n!
, (41)

where (a)n is the rising factorial (or Pochhammer symbol), defined as

(a)n =


1 if n = 0

a(a+ 1)(a+ 2) . . . (a+ n− 1) if n ≥ 1 .

(42)

Thus, we find

Z(X,N) =
1

2πi

∫
Γ

dq exp [qX +NSd,α(q)] , (43)

where

Sd,α(q) = log

[
4F3

(
1

2
,

1

2
, 1, 1;

d

2
,

1 + α

2
,

2 + α

2
; q2

)]
. (44)

Note that this result is exact for any X and N . We are now interested in extracting the behavior of Z(X,N) in the
limit of large N .
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FIG. 7. Analytic structure of the function Sd,α(q), given in Eq. (44). For any d and α, Sd,α(q) has two branch cuts (the grey
wiggly lines in figure) in the real-q axis, for q < −1 and for q > 1. The continuous blue line represents the Bromwich contour
Γ, defined in the text.

A. Typical regime

First, we investigate the typical regime where X ∼
√
N . Substituting X =

√
N y in Eq. (43), where the variable y

is assumed to be of order one, we obtain

Z(X =
√
N y,N) =

1

2πi

∫
Γ

dq exp
[
q
√
N y +N Sd,α(q)

]
. (45)

We now perform the change of variable q → q
√
N and we obtain

Z(X =
√
Ny,N) =

1

2πi
√
N

∫
Γ

dq exp

[
q y +NSd,α

(
q√
N

)]
. (46)

We expand the right-hand side of Eq. (46) for large N , using Eq. (44) and the small-argument expansion of the
generalized hypergeometric function [85], and we find

Z(X =
√
Ny,N) ' 1

2πi
√
N

∫
Γ

dq exp

(
q y +

2q2

d(α+ 1)(α+ 2)

)
. (47)

Finally, performing the Gaussian integral over q we obtain the results announced in Eqs. (11) and (12). Thus, in
this regime, the distribution of the final position of the particle is Gaussian. This is a consequence of the CLT, since
X is the sum of N i.i.d. random variables with finite variance. This is consistent with the fact that, for any N , the
variance of X is simply given by

〈X2〉 = N

∫ ∞
−∞

dx x2 p(x) =
4N

d(α+ 1)(α+ 2)
. (48)

The result in Eq. (11) tells us that, for late times, the RTP has typically a diffusive behavior, similar to the one

of a passive Brownian motion. In other words, at the scale X ∼
√
N the position distribution of the RTP does not

show any signs of activity. In order to observe the signatures of the active nature of the particle, it is necessary to
investigate the large-deviation regime, where X ∼ N . It is possible to show that the result in Eq. (11) is valid on a
larger region than the one predicted by the CLT, for any |X| � N3/4 (see Appendix D).
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FIG. 8. The function gd,α(q) versus q for different values of ν = (d+ 2α−1)/2. For any ν, gd,α(q) is a decreasing odd function
of q. For ν < 2, gd,α(q) diverges when q → −1, while for ν > 2 it goes to the finite value gd,α(−1).

B. Large-deviation regime

To proceed, we define the rescaled variable z = X/N . From Eq. (43), we obtain

Z(X = Nz,N) =
1

2πi

∫
Γ

dq eN [qz+Sd,α(q)] . (49)

where Sd,α(q) is given in Eq. (44). We recall that the integral in Eq. (49) is performed over the imaginary-axis
Bromwich contour Γ in the complex-q plane. For any d and α, the complex function Sd,α(q) has two branch cuts
running in the real-q axis for q < −1 and q > 1 (see Fig. 7).

We first try to compute the integral in Eq. (49) by saddle-point approximation. Assuming a saddle-point exists, it
must satisfy d

dq [qz + Sd,α(q)] = 0. This gives the saddle-point equation

z = gd,α(q) ≡ −S′d,α(q) . (50)

Using the expression of Sd,α(q) in Eq. (44), we find

gd,α(q) = − 4q

d(α+ 1)(α+ 2)

4F3

(
3
2 ,

3
2 , 2, 2; 2+d

2 , 3+α
2 , 4+α

2 ; q2
)

4F3

(
1
2 ,

1
2 , 1, 1; d2 ,

1+α
2 , 2+α

2 ; q2
) . (51)

Note that, identifying µ = q, the saddle point equation (50) is the same condition as the one that fixes the chemical
potential µ in Eq. (27) in the grand canonical argument for condensation. One can check that, since z is real, the
solution q∗(z) of the saddle-point equation in (50) has to be real. Moreover, due to the branch cuts of the function
Sd,α(q) (see Fig. 7), q∗(z) has to belong to the real interval (−1, 1). Therefore, it is instructive to analyze the behavior
of gd,α(q) for q ∈ (−1, 1). First of all, for any d and α, it is easy to show that gd,α(q) is a decreasing odd function
of q along the real interval q ∈ [−1, 1], such that gd,α(q) > 0 for q < 0 and gd,α(q) < 0 for q > 0 (see Fig. 8). To
proceed, we need the following asymptotic expansion for the generalized hypergeometric function, valid for q → 1
from below [86]

4F3 (α1, α2, α3, α4;β1, β2, β3; q) =

∞∑
n=0

an(1− q)n + (1− q)ϕ
∞∑
n=0

bn(1− q)n , (52)

where an and bn are constants that depend on the parameters of the function (for the precise expressions of an and
bn see [86]) and

ϕ =

3∑
j=1

βj −
4∑
j=1

αj . (53)
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FIG. 9. a) Rate function ψd,α(z) versus z, for d = 2 and α = 0. The continuous blue line corresponds to the exact result in
Eq. (56), valid in the limit N →∞. For this choice of the parameters d and α, no transition occurs. b) Rate function ψd,α(z)
versus z, for d = 6 and α = 0. The continuous blue line corresponds to the exact result in Eq. (59). The vertical dashed line
signals the critical point zc at which the phase transition occurs, for z > zc the rate function becomes exactly linear. In both
panels, the colored dashed lines are the results of numerical simulations obtained at finite N , as described in Section VII.

Note that the formula in Eq. (52) is only valid if ϕ is not an integer. In the case of integer ϕ, logarithmic corrections
are present in the asymptotic expansion in Eq. (52) [86]. Using Eq. (52), it is easy to show that, for ν < 2 (where we
recall that ν = (d+ 2α− 1)/2), gd,α(q) diverges when q → −1. Thus, for ν < 2 the saddle-point equation (50) admits
a unique solution for any z and we obtain

Z(X,N) ' 1√
2π|S′′d,α [q∗(X/N)] |N

exp

[
−Nψd,α

(
X

N

)]
, (54)

where

ψd,α(z) = −z q∗(z)− Sd,α(q∗(z)) , (55)

q∗(z) is the unique solution of Eq. (50) and S′′d,α(q) is the second derivative of Sd,α(q) with respect to q. For special

values of d and α, it is possible to find an explicit expression for ψd,α(z). For instance, in the special case d = 2 and
α = 0, we find

ψ2,0(z) =
1

2

[√
1 + 4z2 − 1 + log

(√
1 + 4z2 − 1

2z2

)]
. (56)

The rate function ψ2,0(z) is shown in Fig. 9 and it is in good agreement with numerical simulations performed for
N = 104.

On the other hand, for ν > 2 one has

0 < gd,α(−1) < +∞ . (57)

Thus, for small positive z the saddle-point equation (50) admits a unique solution −1 < q∗(z) < 0 and the position
distribution Z(X,N) is still given by the expression in Eq. (54). However, increasing z, the solution q∗(z) decreases
until, at the critical value zc = gd,α(−1), it encounters the branch cut at q = −1 (see Fig. 7). For z > zc, q

∗(z)
freezes at the value −1. Indeed, increasing z above zc, Eq. (50) has no solution and the integral in Eq. (49) cannot be
computed via the saddle-point approximation. Nevertheless, this integral is dominated by values of q close to q = −1
and therefore one can approximate

Z(X = N z,N) ∼ exp [−N (z − Sd,α(−1))] . (58)

Hence, the rate function can be written for ν > 2, as

ψd,α(z) =


−z q∗(z)− Sd,α(q∗(z)) for z < zc

z − Sd,α(−1) for z > zc

(59)
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where q∗(z) is the unique solution of Eq. (50) and

zc =
4

d(α+ 1)(α+ 2)

4F3

(
3
2 ,

3
2 , 2, 2; 2+d

2 , 3+α
2 , 4+α

2 ; 1
)

4F3

(
1
2 ,

1
2 , 1, 1; d2 ,

1+α
2 , 2+α

2 ; 1
) . (60)

Note that, as expected, the critical value zc is the same as the one predicted by the grand canonical argument in
Section III (see Eq. (34)).

For z > zc, to find the prefactor of the expression in Eq. (58), one has to compute the contour integral in Eq.
(49). We perform this calculation in the case where ν = (d+ 2α− 1)/2 is not an integer for simplicity. However, this
calculation can be extended easily to arbitrary ν. Since we expect the integral to be dominated by values of q close
to −1, it is useful to perform the change of variable q → s = (q + 1)N in Eq. (49), which yields

Z(X = N z, N) =
1

2πi
N

∫
Γ

ds eN [(s/N−1)z+Sd,α(−1+s/N)] . (61)

Using the asymptotic expression of the hypergeometric function close to unit argument in Eq. (52), we expand the
exponent for large N and we find

Z(X = N zN) = BNe
−Nz 1

2πi
N

∫
Γ

ds exp

[
(z − zc) s+ ad,α

s2

N
. . .+ bd,α

sν−1

Nν−2
+ . . .

]
, (62)

where sν−1 is the leading singular term and

BN = eNSd,α(−1) . (63)

The constants ad,α and bd,α can be exactly computed [86]. In particular, we find that ad,α = 0 for ν < 3 and

ad,α =
Γ
(
d
2

)
Γ
(

1+α
2

)
Γ
(

2+α
2

)
84F3

(
1
2 ,

1
2 , 1, 1; d2 ,

1+α
2 , 2+α

2 ; 1
)2
[

2 4F3

(
1
2 ,

1
2 , 1, 1; d2 ,

1+α
2 , 2+α

2 ; 1
)

Γ
(
d
2

)
Γ
(

1+α
2

)
Γ
(

2+α
2

) (
4F3

(
3
2 ,

3
2 , 2, 2; 2+d

2 , 3+α
2 , 4+α

2 ; 1
)

Γ
(

2+d
2

)
Γ
(

3+α
2

)
Γ
(

4+α
2

)
+ 18

4F3

[
5
2 ,

5
2 , 3, 3; 4+d

2 , 5+α
2 , 6+α

2 ; 1
]

Γ
(

4+d
2

)
Γ
(

5+α
2

)
Γ
(

6+α
2

) )
−
(

4F3

(
3
2 ,

3
2 , 2, 2; 2+d

2 , 3+α
2 , 4+α

2 ; 1
)

Γ
(

2+d
2

)
Γ
(

3+α
2

)
Γ
(

4+α
2

) )2
 (64)

for ν > 3, while

bd,α = Γ(1− ν)Ad,α , (65)

for any ν, where Ad,α is given in Eq. (33). For ν > 3, one can check that ad,α is positive. Expanding Eq. (62) for
large N we find

Z(X = Nz,N) = BNe
−Nz 1

2πi
N

∫
Γ

ds ezexs
[
1 + ad,α

s2

N
. . .+ bd,α

sν−1

Nν−2
+ . . .

]
, (66)

where zex = z − zc is assumed to be O(1). It is possible to show that, for any a ≥ 0, (see Appendix A.3 of Ref. [68])

1

2πi

∫
Γ

ds ezexssa−1 =
sin(πa)

π
Γ(a) . (67)

Thus, when a is integer, the integral above vanishes. Therefore, since we are assuming that ν is not an integer, the
leading term in Eq. (66) is, using the expression for bd,α given in Eq. (65),

Z(X = Nz,N) ' BNe−Nz
1

zνex

bd,α
Nν−1

sin(πν)

ν
Γ(ν)Γ(1− ν)Ad,α . (68)

Finally, using the relation Γ(ν)Γ(1− ν) = π/ sin(νπ), we find

Z(X,N) ' BNAd,α
N

(X −Xc)ν
e−X . (69)

When ν is an integer, a similar argument can be applied. Note that the expression in Eq. (69) can be rewritten, using
the large-x expansion of p(x) in Eq. (32), as

Z(X,N) ' CNNp(X −Xc) , (70)

where p(x) is the PDF of a single-run displacement and CN = BNe
−Xc . This expression can be interpreted as follows.

Above the critical value X = Xc, all the extra displacement Xex = X−Xc is absorbed by a single run, the condensate.
The probability weight associated to the condensate is therefore p(X −Xc) and the factor N in Eq. (70) arises since
the condensate can be any one of the N runs. The factor CN in Eq. (49) is the probability weight of the other N − 1
sites, which becomes independent of X above the transition.
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C. Order of the transition

It is also interesting to compute the order of the phase transition described above. We recall that the system
undergoes a transition of order n if the n-th derivative of ψd,α(z) is discontinuous, while all lower-order derivatives
are continuous. Thus, we need to investigate the asymptotic behavior of ψd,α(z) close to the transition. In the limit
z → zc from below, we know that a solution q∗(z) of the saddle point equation always exists. Moreover, since we
know that exactly at the critical point z = zc the saddle point q∗(z) encounters the branch cut at q = −1, we expect
that q∗(z) is close to −1 near the transition. Plugging q = −1 + s into the exponent of the integrand in Eq. (49) and
using Eq. (52) to expand for small s, we obtain

z q + Sd,α(q) ' Sd,α(−1)− z + zexs+ cν s
η , (71)

where cν = bd,α for 2 < ν < 3 and cν = ad,α for ν > 3 (where ad,α and bd,α are given in Eqs. (64) and (65)), and

η =


ν − 1 for 2 < ν < 3,

2 for ν > 3.

(72)

We recall that Sd,α(q) is defined in Eq. (44). Setting to zero the first derivative with respect to s of the expression in
Eq. (71), we obtain

s =

(
zc − z
cν η

)1/(η−1)

. (73)

Thus, the saddle point is located at, for z → zc,

q∗(z) ' −1 +

(
zc − z
cν η

)1/(η−1)

. (74)

Plugging this value into Eq. (59), we find that when z → zc from below

ψd,α(z) ' z − Sd,α(−1) +

(
(cν η)−1/(η−1) − cν

(cν η)η/(η−1)

)
(zc − z)η/(η−1) . (75)

Recalling that for z > zc

ψd,α(z) = z − Sd,α(−1) , (76)

we find that the order n of the transition is dη/(η − 1)e, where dye denotes the smallest integer larger than or equal
to y. Using the expression for η given in Eq. (72), we find

n =


⌈
ν−1
ν−2

⌉
for 2 < ν < 3,

2 for ν > 3.

(77)

In other words, we observe a second-order phase transition for ν > 3, while, for 2 < ν < 3, the order of the transition
depends continuously on ν. For instance, when ν = 5/2 we find n = 3. Notably, the order n diverges when ν → 2, in
agreement with the fact that for ν = 2 all derivatives of ψd,α(z) are continuous.

D. Asymptotics of ψd,α(z)

Next, we are interested in the asymptotic behavior of ψd,α(z) for small and large z. For small enough z, a solution
of the saddle point equation (50) always exists, with q∗(z) small. Expanding Eq. (50) for small q∗(z), we find

q∗(z) ' −d(α+ 1)(α+ 2)

4
z. (78)
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Plugging this solution into Eq. (55) and expanding for small z, we obtain

ψd,α(z) ' d(1 + α)(2 + α)

8
z2 . (79)

Comparing this result with Eq. (11), we notice that the small-argument behavior of the rate function smoothly
connects with the typical Gaussian behavior in Eq. (11). We next consider the large-z behavior of ψd,α(z). It is
useful to distinguish different cases, depending on ν.

The case ν > 2: For ν > 2, we already know that for z > zc the rate function is exactly given by just a linear
function

ψd,α(z) = z − Sd,α(−1) , (80)

where Sd,α(q) is given in Eq. (44).

The case 1 < ν < 2: When ν < 2, for large z, we know that a unique solution q∗(z) of the saddle point Eq. (50)
exists for any z. Moreover, in the limit of large z, we expect q∗(z) to be close to −1. Therefore, we plug q = −1 + s
into the exponent of the integrand in Eq. (49) and we use Eq. (52) to expand for small s. For 1 < ν < 2, we obtain

z (−1 + s) + Sd,α(−1 + s) ' z(−1 + s) + Sd,α(−1) + ãsν−1 , (81)

where ã < 0 is a constant that depends on d and α. Setting to zero the first derivative of this expression with respect
to s, we obtain

z + ã(ν − 1)sν−2 = 0 . (82)

Thus, we find that, for large z, the solution of the saddle point equation can be written as

q∗(z) ' −1 + (ã(1− ν)/z)1/(2−ν) . (83)

Plugging this expression for q∗(z) into Eq. (55) and expanding for large z, we finally obtain

ψd,α(z) = z − Sd,α(−1) +O(z(1−ν)/(2−ν)) . (84)

The case 0 < ν < 1: When 0 < ν < 1 the procedure above yields, to leading order in s,

z (−1 + s) + Sd,α(−1 + s) ' z(−1 + s) + (ν − 1) log (s) . (85)

Setting to zero the first derivative of this expression with respect to s, we find that the saddle point equation becomes,
for z � 1,

z +
ν − 1

s
= 0 . (86)

Thus, we find that, to leading order, q∗(z) ' −1 + (1− ν)/z. Plugging this expression in Eq. (55) and expanding for
large z, we find that, for 0 < ν < 1,

ψd,α(z) = z − (1− ν) log(z) +O(1) . (87)

To summarize, we have shown that, for z � 1,

ψd,α(z) =



z − (1− ν) log(z) +O(1) for 0 < ν < 1

z − Sd,α(−1) +O(z(1−ν)/(2−ν)) for 1 < ν < 2

z − Sd,α(−1) for ν > 2 ,

(88)

where we recall that Sd,α(q) is given in Eq. (44).
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E. Vicinity of the critical point: intermediate matching regime

We now focus on the case ν > 2 where a condensation is guaranteed to occur as X exceeds a critical value Xc.
We want to investigate the behavior of Z(X,N) in a small neighborhood of the critical point X = Xc for large N
(see Fig. 2). In the following, we will assume that ν is not an integer number. The discussion below can be easily
generalized to the case where ν is integer. We recall that Xc = zcN , where the critical value zc, given in Eq. (60), is
of order one. Close to the transition, we write X as

X = Xc + yNλ , (89)

where y is an order-one variable and 0 < λ < 1 can be adjusted depending on ν. Close to the transition, i.e. for
|Xex| = |X −Xc| � N , we know that the contour integral in Eq. (49) is dominated by values of q close to −1. Thus,
performing the change of variable q → s = −1 + q, we find

Z(X,N) =
1

2πi

∫
Γ

ds e(−1+s)X+N Sd,α(−1+s) , (90)

where Sd,α(q) is given in Eq. (44). Using Eq. (52), we expand for small s and we obtain

Z(X,N) ' BN e−X
1

2πi

∫
Γ

ds exp
[
(X −Xc)s+N

(
ad,α s

2 + . . .+ bd,α s
ν−1 + . . .

)]
, (91)

where sν−1 is the first non-analytic term of the expansion and BN is given in Eq. (63). The constants ad,α and bd,α
are given in Eqs. (64) and (65). Using Eq. (89), we obtain

Z(X,N) ' BNe−X
1

2πi

∫
Γ

ds exp
[
ysNλ +N

(
ad,α s

2 + . . .+ bd,α s
ν−1 + . . .

)]
. (92)

After the change of variable s→ s̃ = sNλ, we get

Z(X,N) ' BNe−X
N−λ

2πi

∫
Γ

ds̃ exp
[
ys̃+ ad,α s̃

2N1−2λ + . . .+ bd,α s̃
ν−1N1−(ν−1)λ + . . .

]
. (93)

Let us now consider the two cases 2 < ν < 3 and ν > 3 separately.
For 2 < ν < 3, we set λ = 1/(ν − 1) and, using the definition of y in Eq. (89), we obtain, to leading order,

Z(X,N) ' CN
1

N1/(ν−1)
Vν

(
Xc −X
N1/(ν−1)

)
, (94)

where CN = BNe
−X and

Vν(y) =
1

2πi

∫
Γ

ds exp
[
−y s+ bd,α s

ν−1
]
. (95)

This same function Vν(y) also appeared in the analysis of the partition function in mass transport models [68, 70]
and is shown in Fig. 10. It has the following asymptotic behaviors [68]

Vν(y) '


Ad,α|y|−ν for y → −∞

c1 y
(3−ν)/(2(ν−2))e−c2 y

(ν−1)/(ν−2)

for y →∞ ,

(96)

where Ad,α is given in Eq. (33),

c1 =
1(

2π(ν − 2)(bd,α(ν − 1))1/(ν−2)
)1/2 (97)

and

c2 =
ν − 2

(ν − 1)(bd,α(ν − 1))1/(ν−2)
. (98)
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FIG. 10. The function Vν(y) versus y, for ν = 5/2. For y → ∞, Vν(y) decays exponentially fast as e−c2y
(ν−1)/(ν−2)

. For
y → −∞, it has a power-law tail Vν(y) ∼ |y|−ν .

Performing the change of variable s = re±iπ/2 for the upper and lower part of the imaginary-axis contour Γ, it is
possible to rewrite the expression for Vν(y) in Eq. (95) as

Vν(y) =
1

π

∫ ∞
0

dr ebd,α sin(πν/2)rν−1

cos
[
bd,α cos(πν/2)rν−1 + yr

]
, (99)

which can be easily evaluated numerically. Moreover, it is easy to check that Vν(y) is positive and normalized to one.
Using the asymptotic result for y →∞, one can check that the expression for Z(X,N) in Eq. (94) matches smoothly
to the expression obtained by saddle-point approximation for z < zc (see Eq. (75)). Similarly, using the expansion
for y → −∞, we observe that for Xex = X −Xc � N1/(ν−1)

Z(X,N) ' BNe−X
N Ad,α

(X −Xc)ν
, (100)

in agreement with the result in Eq. (69).
When ν > 3, we set λ = 1/2 in Eq. (93) and we obtain

Z(X,N) ' BNe−X
N−1/2

2πi

∫
Γ

ds̃ exp
[
ys̃+ ad,α s̃

2
]
. (101)

Computing the integral over s̃ and using the definition of y, we get

Z(X,N) ' CN
1√

4πad,αN
exp

[
− (X −Xc)

2

4ad,αN

]
, (102)

where CN = BNe
−Xc . Thus, for ν > 3 the PDF of X has, in the critical region where |X −Xc| ∼

√
N , a Gaussian

shape. Actually, it is possible to check that this Gaussian form remains valid, on the left tail, on a larger region,
depending on ν. For instance, for ν > 4, it is valid up to Xc−X ∼ N3/4. Conversely, on the right tail, the expression
in Eq. (102) remains valid up to X − Xc ∼

√
N log(N). Beyond this scale, i.e., for X − Xc �

√
N log(N), it is

possible to show that

Z(X,N) ' BNe−X
N Ad,α

(X −Xc)ν
, (103)
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in agreement with the expression in Eq. (69), obtained for X −Xc ∼ O(N).
In order to describe the crossover between the Gaussian shape in Eq. (102) and the power-law tail in Eq. (103),

one needs to keep the first singular term in the expansion in Eq. (101). From Eq. (93), we obtain

Z(X,N) ' BNe−X
N−1/2

2πi

∫
Γ

ds̃ exp
[
ys̃+ ad,α s̃

2 + bd,αs̃
ν−1N−(ν−3)/2

]
. (104)

For large N , the integrand can be written as

Z(X,N) ' BNe−X
1√
N

gN

(
X −Xc√

N

)
, (105)

where

gN (y) =
1

2πi

∫
Γ

ds eys+ad,αs
2
(

1 + bd,αs
ν−1N−(ν−3)/2

)
. (106)

This function gN (y) can be rewritten as the sum of a Gaussian part and of power-law part

gN (y) =
1√

4πad,α
e−y

2/(4ad,α) +
bd,α

N (ν−3)/2

1

2πi

∫
Γ

ds eys+ad,αs
2

sν−1 . (107)

When y ∼ O(1), the Gaussian term is always leading and one obtains the result in Eq. (102). On the other hand,

when y ∼ O(
√
N), the power-law part dominates, coherently with the result in Eq. (103). We now want to describe

the crossover between these two regimes. When y � 1 the integral over s can be approximated as

gN (y) ' 1√
4πad,α

e−y
2/(4ad,α) +

Ad,α
N (ν−3)/2

1

yν
, (108)

where we have used the expression for bd,α, given in Eq. (33). We want to find cN and dN , such that w = (y−cN )/dN
is fixed for large N . Plugging

y = cN + dNw (109)

in Eq. (108), we obtain

gN (y = cN + dNw) =
Ad,α

N (ν−3)/2

1

cνN (1 + dNw/cN )ν

[
1 +

N (ν−3)/2cνN (1 + dNw/cN )ν√
4πad,α Ad,α

e−(c2N+2cNdNw+d2Nw
2)/(4ad,α)

]
.

(110)
We now choose cN such that

N (ν−3)/2cνNe
−c2N/(4ad,α) = 1 . (111)

Thus, to leading order

cN '
√

2ad,α(ν − 3) log(N) . (112)

Moreover, we choose dN = 1/cN . Then, to leading order, we obtain

gN (y = cN + dNw) =
Ad,α

N (ν−3)/2

1

(2ad,α(ν − 3) log(N))ν/2

[
1 +

1√
4πad,α Ad,α

e−w/(2ad,α)

]
. (113)

Finally, using Eq. (105), we find that

Z(X,N) ' BN
Ad,α

cνNN
(ν−3)/2

e−X h

[
cN

(
X −Xc√

N
− cN

)]
, (114)

where cN is given in Eq. (112) and

h(w) = 1 +
1√

4πad,α Ad,α
e−w/(2ad,α) . (115)
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Overall, we have shown that the crossover occurs for X −Xc ∼
√
N log(N) and that it is described by the function

h(w).
To summarize, we have shown that, for any ν > 2 and for X ∼ Xc, the PDF Z(X,N) can be always written as

Z(X,N) ' CNpcond(Xc −X,N) , (116)

where the function pcond(y,N) assumes different expressions depending on ν. The reason behind the choice of the
subscript cond will become clear in the next section. Using Eq. (94), we find that for 2 < ν < 3

pcond(y,N) ' 1

N1/(ν−1)
Vν

( y

N1/(ν−1)

)
, (117)

where the function Vν(y) in Eq. (95). On the other hand, for ν > 3, we find

pcond(y,N) '



NAd,α
|y|ν for y � −

√
N log(N) ,

Ad,α
cνNN

(ν−3)/2h
[
cN√
N

(
|y| −

√
NcN

)]
for y ' −

√
N log(N) ,

1√
4πad,αN

e−y
2/(4ad,αN) for y � −

√
N log(N) ,

(118)

where Ad,α and ad,α are given in Eqs. (33) and (64). The function h(w) is given in Eq. (115) and cN ∼
√

log(N) is
given in Eq. (112). In both cases, it is possible to check that the function pcond(y,N) is positive and normalized over
y, for large N . Using Eqs. (117) and (118), we find that for y →∞

pcond(y,N) ∼


exp

[
−c2 y

(ν−1)/(ν−2)

N1/(ν−2)

]
for 2 < ν < 3 ,

exp
[
− y2

4ad,αN

]
for ν > 3 ,

(119)

where c2 is given in Eq. (98). On the other hand, for y → −∞, we obtain

pcond(y,N) ' NAd,α
|y|ν , (120)

for any ν > 2.

V. MARGINAL DISTRIBUTION OF A SINGLE JUMP

In this section we investigate the marginal PDF p(x|X) of a single-run displacement x, conditioned on the final
x-component displacement X. This means that if we pick at random one of the N runs with the total displacement
X fixed, what is the distribution of the size of this run? Note that the displacements x1 , . . . , xN are i.i.d. random
variables, since we are considering the fixed-N ensemble. Thus, x can be identified with any of these variables, say
for simplicity x = x1. Then, the conditional PDF of x is given by

p(x|X) =
p(x)

∫∞
−∞ dx2 . . .

∫∞
−∞ dxN

[∏N
i=2 p(xi)

]
δ (X − x−∑∞i=2 xi)∫∞

−∞ dx1 . . .
∫∞
−∞ dxN

[∏N
i=1 p(xi)

]
δ (X −∑∞i=1 xi)

, (121)

which can be rewritten as

p(x|X) = p(x)
Z(X − x,N − 1)

Z(X,N)
, (122)

where we have used the definition of Z(X,N) in Eq. (3). We are interested in the large-deviation regime whereX = zN
and z is of order one. As explained in the previous section, for ν > 2, the system undergoes a phase transition at a
critical value zc of the parameter z. In this section we show that this transition shows up very clearly in the marginal
distribution p(x|X) which has very different behavior in the subcritical (X < zcN) and the supercritical (X > zcN)
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phases. In the subcritical ‘fluid’ phase, p(x|X) is a monotonically decreasing function of x with an exponential tail.
For X = zcN we have a critical fluid where p(x|X) still decays monotonically with increasing x, but now as a power
law ∼ x−ν for large x. Finally, in the supercritical phase (X > zcN), p(x|X) becomes non-monotonic as a function
of x, developing in particular a bump centered at x = Xex = X − zcN (see Fig. 3). Let us discuss these three cases
separately.

Subcritical phase (X < Xc): Plugging the expression for Z(X,N) given in Eq. (49), into Eq. (122), we obtain

p(x|X) ' p(x)

∫
Γ
dq e−qxeN [qz+Sd,0(q)]∫
Γ
dq eN [qz+Sd,0(q)]

, (123)

where the integrals are performed over the imaginary-axis Bromwich contour Γ (see Fig. 7). In Section IV, we have
shown that the integrals above are dominated by the solution q∗(z) of the saddle point equation (50). In the subcritical
phase z < zc such solution q∗(z) > −1 always exists. Thus, from Eq. (123), we obtain

p(x|X) ' p(x)e−q
∗(z) x . (124)

Using the large-x behavior of p(x), given in Eq. (32), we find that, for x� 1

p(x|X) ' Ad,αx−ν e−x/ξ , (125)

where

ξ =
1

1 + q∗(z)
. (126)

Thus for X < Xc, the PDF p(x|X) decays as a function of x on a typical length ξ > 0. Recalling that q∗(z) → −1
for z → zc, we find that ξ diverges when the system approaches the phase transition. In particular, it is possible to
show that ξ diverges, for z → zc from below, as

ξ ∼


(zc − z)−1/(ν−2) for 2 < ν < 3

(zc − z)−1/2 for ν > 3 .

(127)

Critical phase (X = Xc): Exactly at the transition point, the typical length ξ diverges and therefore the single-jump
distribution develops a power-law tail for large x

p(x|X) ' Ad,αx−ν . (128)

Note that the result in Eq. (128) is only valid for x � O(N). This is because when computing the integral in Eq.
(123) we have assumed that the factor e−qx does not contribute to the saddle point equation, which is only true if
x� O(N). As we will show below, configurations with x ∼ O(N) are exponentially rare when X = Xc.

We note that the behavior of our system in the subcritical phase and at the critical point is somewhat reminiscent
of a standard phase transition such as in the Ising model in d ≥ 2. The subcritical phase “corresponds” to the
paramagnetic phase of the Ising model. The marginal distribution p(x|X) plays an “analogous” role as the spin-spin
correlation function in the Ising model. In the case of the Ising model, the correlation function decays exponentially
with distance with a characteristic correlation length that diverges as one approaches the critical point. Similarly,
here there is a characteristic run length ξ characterizing the exponential decay of p(x|X) with x on the subcritical
side, with ξ diverging as one approaches the critical point.

Supercritical phase (X = Xc): Above the transition, q∗(z) freezes to the value −1 and therefore the typical length
ξ remains infinite. Indeed, for X > Xc, we expect that the condensate develops as a bump in the tail of the PDF
p(x|X). The location of this bump is related to the fraction of X that is contained in the condensate. Moreover,
the area under the bump is the probability that a particular single-run displacement becomes the condensate. In the
presence of a single condensate, this area should therefore be 1/N . Finally, as we will show, the shape of the bump
is related to the order of the phase transition. Since we expect the condensate to contain a finite fraction of X, we
need to investigate configurations where x ∼ O(N). Thus, it is useful to define the scaled variable y = x/N , which is
of order one when x ∼ O(N), and to rewrite p(x|X) as

p(x = yN |X = zN) = p(yN)
Z(N(z − y), N − 1)

Z(Nz,N)
. (129)
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FIG. 11. Rate function χ(y, z) versus y, for different values of z. The curves are obtained from the exact result in Eq. (131),
for d = 6 and α = 0. For z < zc, we observe that χ(y, z) > 0 for any y > 0. Conversely, for z > zc, the rate function χ(y, z)
vanishes for y < zex = z − zc (in this case zex = 1).

Let us first investigate the exponential part of p(x|X).
Plugging the large-deviation form of Z(X,N), given in Eq. (54) and the large-x behavior of p(x), given in Eq. (32),

into Eq. (129), we find

p(x|X) ∼ exp

[
−Nχ

(
x

N
,
X

N

)]
, (130)

where

χ(y, z) = ψd,α(z − y) + y − ψd,α(z) , (131)

and ψd,α(z) is given in Eq. (59). Thus, in the regime where x ∼ O(N), the PDF p(x|X) assumes a large deviation
form with rate function χ(y, z). The rate function χ(y, z) is shown in Fig. 11 as a function of y, for different values
of z.

Using the expression of ψd,α(z) in Eq. (59), it is easy to show that, for y > zex, one has χ(y, z) > 0, where we recall
that zex = z − zc (see Fig. 11). Thus, configurations where x > Xex become exponentially rare for large x. On the
other hand, for y < zex, we find that χ(y, z) = 0. This means that configurations with y < zex are not forbidden and
that a bump can arise in the tail of p(x|X). Note however that where χ(y, z) = 0 the large-deviation description fails
and that we need to carefully consider the full distribution, and not just the exponential part.

Therefore, we focus on the region 0 < y < zex, where we have just shown that the exponential part of the distribution
of p(x|X) vanishes. We use the expression in Eq. (69) to approximate both the numerator and the denominator of
Eq. (129). Using also the asymptotic expression of p(x) for large x, given in Eq. (32), we obtain

p(x|X) ' Ad,α
Nνyν

1

(1− y/zex)ν
, (132)

where Ad,α is given in Eq. (33) and we recall that zex = z − zc. Going back to the original variables x = y/N and
X = z/N , we find that in the regime where both x and X scale linearly with N , with 0 < x < Xex,

p(x|X) ' Ad,α
xν

1

(1− x/Xex)ν
. (133)

Note that this approximate expression breaks down when x→ Xex. As we will see, at x ∼ Xex the condensate bump
appears in the tail of the distribution of p(x|X).
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Let us now focus on the region where x ∼ Xex, where we expect the bump to appear. In this region, the numerator
of Eq. (129) can be approximated using the expression in Eq. (116). On the other hand, the denominator can be
approximated with the expression in Eq. (69). Using also the large-x expansion of p(x), given in Eq. (32), we obtain,
to leading order

p(x|X) ' 1

N
pcond(x−Xex, N) , (134)

where pcond(y,N) is given in Eq. (16) for 2 < ν < 3 and in Eq. (17) for ν > 3. Thus, for z > zc, a condensate bump
appears at x ∼ Xex. For 2 < ν < 3, the condensate bump has an anomalous shape described by the function Vν(y)
in Eq. (95), with fluctuations of order O(N1/(ν−1)). For ν > 3, the condensate has a Gaussian shape in the vicinity

of its peak, with fluctuations of order O(
√
N). In both cases, we observe that the bump width vanishes relative to its

location, since Xex ∼ O(N). Moreover, the area under the bump corresponds to the probability that the condensate
appears in a particular running-phase. Since pcond(y,N) is normalized to one, we find that this area is 1/N , signaling
the presence of a single condensate. The results above are summarized in Fig. 4 and are in agreement with the
numerical simulations, presented in Fig. 3. The asymptotic behaviors of pcond(y,N) are given in Eqs. (119) and
(120).

Finally, it is also instructive to investigate the condensate fraction mc, defined as the fraction of the total displace-
ment that is carried by the condensate. In this section we have shown that, for ν > 2, the condensate is located at
x = Xex, with sublinear fluctuations around this value. Thus, for N →∞, the condensate fraction converges to

mc =
X −Xc

X
, (135)

or, in terms of the scaled variable z,

mc =
z − zc
z

. (136)

This quantity mc is the natural order parameter of the system, with z being the corresponding control parameter.
Indeed, for z < zc no condensate can form and thus mc = 0. On the other hand, above the transition, the condensate
fraction becomes positive.

VI. FIXED-T ENSEMBLE

In this section, we consider a single RTP in the fixed-T ensemble. As explained in Section II, according to this
alternative model, the total duration T of the RTP trajectory is fixed and the number N of running phases is a
random variable. While the fixed-N ensemble can be easily mapped into a discrete-time random walk, the fixed-T
ensemble is a truly continuous-time process and is often taken as the standard model for RTPs. The goal of this
section is to show that the results of this paper can be extended also to the fixed-T ensemble. The technique that we
apply in the following is based on a mapping of the continuous-time trajectory of the RTP to a discrete-time random
walk in Laplace space. This method has been used to compute several observables, e.g. the survival probability, of
a fixed-T RTP [45, 46, 52, 55]. For the sake of simplicity, we will henceforth focus on the model where the speed
v0 of the particle is kept fixed. We recall that this corresponds to taking the limit α → 0. It is easy to extend the
computations of this section to generic α > 0.

By definition, we consider the starting point to be a tumbling event, thus N ≥ 1 indicates also the total number of
tumblings. Let us denote by τi the duration of the i-th running phase, i.e., the running phase after the i-th tumbling.
We also recall that xi denotes the x-component displacement of the particle during the i-th running phase. Since we
are assuming that the tumblings happen with a constant rate γ, for the first N − 1 running phases the PDF of τi is
given by

P (τi) = γe−γτi . (137)

However, since we are fixing the total time T , the last running phase τN is yet to be completed and thus its probability
weight is given by

P (τN ) =

∫ ∞
τN

dt γ e−γt = e−γτN . (138)
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Thus, the joint probability of the running times {τi} = τ1 , . . . , τN and of the number N of tumblings, fixing the total
time T , is given by

P ({τi}, N, T ) =

[
N−1∏
i=1

γe−γτi

]
e−γτN δ

(
N∑
i=1

τi − T
)
, (139)

where the delta function constrains the total time to be T . Note that in the expression in Eq. (139), while {τi} and
N are random variables, the total time T is a fixed parameter of the problem. We will use this convention for the
rest of this section. We now want to write the joint PDF of the x-direction displacements {xi} = x1 , . . . , xN , of the
running times {τi} and of the number N of tumblings, given the total fixed time T . This probability can be written
as

P ({xi}, {τi}, N, T ) = P ({xi}|{τi})P ({τi}, N, T ) , (140)

where P ({xi}|{τi}) denotes the probability density of the displacements {xi}, conditioned on the running times {τi}.
This joint probability factorizes as

P ({xi}|{τi}) =

N∏
i=1

P (xi|τi) . (141)

This PDF P (xi|τi) can then be computed as follows. During the i-th running phase the particle moves with constant

velocity v0. Thus, denoting by ~li the displacement in the d-dimensional space during the i-th running phase, we know

that the norm li = |~li| is simply given by li = v0τi. We also know that the direction of ~li is uniformly distributed.

One can show (see Appendix B) that the distribution of the x-component x of a d-dimensional vector ~̀ with random
direction and norm ` is given by

p(x|l) =
1

l
fd

(x
l

)
, (142)

where fd(z) is given in Eq. (6). Plugging this result into Eq. (141), we obtain

P ({xi}|{τi}) =

N∏
i=1

1

v0τi
fd

(
xi
v0τi

)
. (143)

Plugging the expressions for P ({τi}, N, T ) and P ({xi}|{τi}), given in Eqs. (139) and (143) respectively, into Eq.
(140), we find that

P ({xi}, {τi}, N, T ) =
1

γ

[
N∏
i=1

γe−γτi
1

v0τi
fd

(
xi
v0τi

)]
δ

(
N∑
i=1

τi − T
)
. (144)

Integrating over the variables {τi} we finally obtain the joint PDF of the displacements {xi} and of the number N of
tumblings, given the total time T ,

P ({xi}, N, T ) =
1

γ

∫ ∞
0

dτ1 . . .

∫ ∞
0

dτN

[
N∏
i=1

γe−γτi
1

v0τi
fd

(
xi
v0τi

)]
δ

(
N∑
i=1

τi − T
)
. (145)

The PDF Z(X,T ) of the final position X at fixed time T can then be written as

Z(X,T ) =

∞∑
N=1

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxN P ({xi}, N, T )δ

(
N∑
i=1

xi −X
)
, (146)

where the delta function constraints the final position to be X. Note that in Eq. (146) we integrate out the
displacement variables {xi} and we sum over the total number N of tumblings in order to obtain the marginal PDF
of X. Finally, plugging the expression for P ({xi}, N, T ), given in Eq. (145), into Eq. (146), we obtain

Z(X,T ) =
1

γ

∞∑
N=1

N∏
i=1

∫ ∞
−∞

dxi

∫ ∞
0

dτi γe
−γτi 1

v0τi
fd

(
xi
v0τi

)
δ

(
N∑
i=1

τi − T
)
δ

(
N∑
i=1

xi −X
)
. (147)
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It is useful to rewrite the delta functions in Eq. (147) using

δ(X) =
1

2πi

∫
Γ

dq e−qX , (148)

and

δ(T ) =
1

2πi

∫
Γ′
ds e−sT , (149)

where Γ and Γ′ are imaginary-axis Bromwich contours in the complex q and s plane, respectively. This yields

Z(X,T ) =
1

γ

∞∑
N=1

N∏
i=1

∫ ∞
−∞

dxi

∫ ∞
0

dτi γe
−γτi 1

v0τi
fd

(
xi
v0τi

)
1

2πi

∫
Γ

dq e−q
∑N
i=1 xi+qX

1

2πi

∫
Γ′
ds e−s

∑N
i=1 τi+sT .

(150)
The variables {xi} and {τi} are now fully decoupled and the expression above can be rewritten as

Z(X,T ) =
1

γ

1

2πi

∫
Γ

dq eqX
1

2πi

∫
Γ′
ds esT

∞∑
N=1

[p̂(q, s)]
N

=
1

γ

1

2πi

∫
Γ

dq eqX
1

2πi

∫
Γ′
ds esT

p̂(q, s)

1− p̂(q, s) , (151)

where

p̂(q, s) =

∫ ∞
−∞

dx e−qx
∫ ∞

0

dτ e−sτγe−γτ
1

v0τ
fd

(
x

v0τ

)
. (152)

Plugging the expression of fd(z), given in Eq. (6), into Eq. (152), we obtain, after few steps of algebra,

p̂(q, s) =
γ

γ + s
2F1

(
1

2
, 1,

d

2
,

(
v0 q

γ + s

)2
)
, (153)

where 2F1 (a, b, c, z) is the ordinary hypergeometric function. This Fourier-Laplace transform of the effective jump
distribution was also computed in Ref. [35], but explicit expressions were given only for d = 1, 2, and 3. It is easy to
check (using explicit expressions for the hypergeometric function) that our exact expression in Eq. (153), valid for all
d, coincides with those of Ref. [35] for d = 1, 2, and 3. Plugging this result for p̂(q, s) into Eq. (151), we obtain

Z(X,T ) =
1

2πi

∫
Γ

dq eqX
∫

Γ′
ds esT

2F1

(
1
2 , 1,

d
2 ,
(
v0 q
γ+s

)2
)

γ + s− γ 2F1

(
1
2 , 1,

d
2 ,
(
v0 q
γ+s

)2
) . (154)

It is useful to perform the change of variable q → q̃ = −v0q/(γ + s), which yields

Z(X,T ) =
1

v0

1

2πi

∫
Γ′
dq̃ e−γXq̃/v0 2F1

(
1

2
, 1,

d

2
, q̃2

)
1

2πi

∫
Γ

ds es(T−Xq̃/v0) (γ + s)

γ + s− γ 2F1

(
1
2 , 1,

d
2 , q̃

2
) . (155)

We remark that up to now no approximation has been made and that the expression for Z(X,T ) in Eq. (155) is exact
for any X and T . For simplicity, we now set γ = v0 = 1, and we obtain

Z(X,T ) =
1

2πi

∫
Γ′
dq̃ e−Xq̃ 2F1

(
1

2
, 1,

d

2
, q̃2

)
1

2πi

∫
Γ

ds es(T−Xq̃)
(1 + s)

1 + s− 2F1

(
1
2 , 1,

d
2 , q̃

2
) . (156)

A. Typical regime

We now focus on the late time limit T → ∞. To investigate this limit, we expand for small s on the right-hand
side of Eq. (156) and we obtain

Z(X,T ) ' 1

2πi

∫
Γ′
dq e−Xq 2F1

(
1

2
, 1,

d

2
, q2

)
1

2πi

∫
Γ

ds es(T−Xq)
1

s−
[
2F1

(
1
2 , 1,

d
2 , q

2
)
− 1
] . (157)
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FIG. 12. a) First derivative of the rate function φd(z) versus z, for d = 2. The continuous blue line corresponds to the exact
result in Eq. (172), valid in the limit N →∞. In this case, no transition occurs. b) First derivative of the rate function φd(z)
versus z, for d = 6. The continuous blue line corresponds to the exact result in Eq. (174). The vertical dashed line signals the
critical point zc at which the phase transition occurs. For z > zc, the rate function φd(z) becomes exactly linear in z. In both
panels, the symbols are the results of numerical simulations obtained at finite N , as described in Section VII.

Now the integral over s can be easily computed and one obtains

Z(X,T ) ' 1

2πi

∫
Γ′
dq 2F1

(
1

2
, 1,

d

2
, q2

)
exp

[
−Xq 2F1

(
1

2
, 1,

d

2
, q2

)
− T

(
1− 2F1

(
1

2
, 1,

d

2
, q2

))]
. (158)

In the typical regime the variable X scales for large T as
√
T . It is useful to define the scaled variable y = X/

√
T

and to perform the change of variable q → q/
√
T , yielding

Z(X = y
√
T , T ) ' 1

2πi

1√
T

∫
Γ′
dq 2F1

(
1

2
, 1,

d

2
,
q2

T

)
exp

[
−yq 2F1

(
1

2
, 1,

d

2
,
q2

T

)
− T

(
1− 2F1

(
1

2
, 1,

d

2
,
q2

T

))]
.

(159)
Expanding to leading order for large T , we find

Z(X = y
√
T , T ) ' 1

2πi

1√
T

∫
Γ′
dq e−qy+q2/d .

Performing the integral over q, we finally find that in the typical regime where X ∼
√
T and T � 1,

Z(X,T ) ' 1√
2πDT

e−X
2/(4DT ) (160)

where

D =
1

d
. (161)

Thus, in the large-T limit, the typical shape of the PDF Z(X,T ) of X is Gaussian. The typical regime is therefore
indistinguishable from a passive Brownian motion with diffusion constant D and no sign of the activity of the RTP
is present at this scale. Note that this effective diffusion coefficient D is equal to the one that we have computed for
the fixed-N ensemble (see Eq. (12)). To observe any signs of the active nature of the process one needs to study the
shape of the position distribution Z(X,T ) in the large-deviation regime where X scales linearly with T .

B. Large-deviation regime

We now focus on the large-deviation regime, where X ∼ T . Some of the results of this section have already been
derived in [53], where the authors compute the rate function of the position of a discrete-time persistent random
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walk and then take the continuous-time limit to study the RTP. Here, we first present a different and more general
technique to compute the rate function for an RTP in d dimensions. Note that our technique can be easily generalized
to more complicated RTP models, e.g., with random velocities. Then, we interpret these results in light of the new
findings, presented in the previous sections, and we characterize the nature of the phase transition.

It is useful to introduce the scaled variable z = X/T . Note that, since |X| cannot exceed the value T , corresponding
to a straight x-direction run with no tumbling, we have |z| ≤ 1. From Eq. (158), we obtain

Z(X = zT, T ) ' 1

2πi

∫
Γ

dq 2F1

(
1

2
, 1,

d

2
, q2

)
exp [−TSd(q, z)] , (162)

where

Sd(q, z) = 1− (1 + qz) 2F1

(
1

2
, 1,

d

2
, q2

)
. (163)

First, we try to compute the integral in Eq. (162) by saddle point approximation. Note that the function

2F1

(
1
2 , 1,

d
2 , q

2
)

has two branch cuts in the complex-q plane, for real q and |q| > 1. Thus, we need to solve the
following saddle point equation

z = gd(q) (164)

for |q| < 1, where

gd(q) = − (2q/d) 2F1

(
3/2, 2, 1 + d/2, q2

)
(2q2/d) 2F1 (3/2, 2, 1 + d/2, q2) + 2F1 (1/2, 1, d/2, q2)

. (165)

For any d, gd(q) is a decreasing odd function of q. We also notice that its maximum value is reached at q = −1. To
compute this value gd(−1), we use the following asymptotic expansion for the ordinary hypergeometric function [85]

2F1(α, β, γ, q) '



Γ(γ)Γ(γ−α−β)
Γ(γ−α)Γ(γ−β) for γ > α+ β,

Γ(α+β)
Γ(α)Γ(β) log

(
1

1−q

)
for γ = α+ β,

Γ(γ)Γ(α+β−γ)
Γ(α)Γ(β) (1− q)γ−α−β for γ < α+ β ,

(166)

and we obtain

gd(−1) =


1 for d ≤ 5,

2/(d− 3) < 1 for d > 5,

(167)

Thus, recalling that |z| ≤ 1 and focusing on the case z > 0, for d ≤ 5 the condition in Eq. (164) is always satisfied
for some value q∗(z) > −1. Thus, for d < 5 we find that

Z(X,T ) ∼ exp

[
−Tφd

(
z =

X

T

)]
, (168)

where

φd(z) = Sd(q
∗(z), z) , (169)

Sd(q, z) is given in Eq. (163) and q∗(z) is the unique solution of Eq. (164). On the other hand, for d > 5, the saddle
point equation (164) admits a solution only up to some critical value z = zc = 2/(d − 3), where the condensation
transition occurs. For z > zc, Eq. (164) has no real solution and the maximum of Sd(q, z) is reached at q = −1,
independently of z and φd(z) = Sd(−1, z). Thus, for d > 5 we find that the large-deviation form in Eq. (168) is still
valid, with

φd(z) =


Sd(q

∗(z), z) for z < zc,

− 1
d−3 + d−2

d−3z for z > zc ,

(170)
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where Sd(q, z) is given in Eq. (163) and q∗(z) is the unique solution of Eq. (164). Notably, for d > 5, the rate function
φd(z) is non-analytic at z = zc. This indicates the presence of the condensation phase-transition. Comparing this
result with the one obtained for the fixed-N ensemble, we find that the criterion for condensation is the same for the
two models. Indeed, recalling that we are considering α = 0, here we observe condensation for ν = (d − 1)/2 > 2,
exactly as for the fixed-N case.

In the special cases d = 1, 2, 4, 6, the expression of φd(z) becomes simple and is given by

φ1(z) =
1−
√

1− z2

2
(171)

φ2(z) = 1−
√

1− z2 (172)

φ4(z) = z2 , (173)

φ6(z) =


3
2z

2 − 9
16z

4 for |z| < zc,

4
3z − 1

3 for |z| > zc .

(174)

These results for φd(z) match with the ones derived in Ref. [53]. The result in Eq. (172), valid for d = 2, had already
been obtained in [51] solving the Fokker-Plank equation associated to the system. The rate function of the position
distribution of a fixed-T RTP has also been derived in dimension d = 1 in the presence of a constant drift [87].

Note that here we have provided explicit results for the rate function for a specific velocity distribution, namely,
when the direction is chosen isotropically and the speed v = v0 is a constant. In fact, this rate function, when it
exists, can be derived for generic velocity distribution P (~v), as shown in Appendix E.

C. Order of the transition

We now investigate, for d > 5, the order of the phase transition. Just below the transition, i.e. in the limit z → zc,
we expect the solution q∗(z) of the saddle point equation (164) to be close to −1. Thus, we expand Sd(q, z) in Eq.
(163) with q = −1 + s for small s. In the case 5 < d < 7, using the asymptotic behavior of the hypergeometric
function close to unit value [86], we find

Sd(q = −1 + s, z) ' 1 +
d− 2

d− 3
(1− z) +

d− 2

d− 5

(
2

d− 3
− z
)
s− 1√

π
2(d−3)/2Γ

(
d

2

)
Γ

(
−d− 3

2

)
(1− z)s(d−3)/2 . (175)

Minimizing this expression with respect to s and then expanding for z → zc = 2/(d− 3), we obtain

φd(z) ' −
1

d− 3
+
d− 2

d− 3
z + cd (zc − z)(d−3)/(d−5) , (176)

where cd is a d-dependent constant. Comparing this result with the expression for φd(z) in the case z > zc in Eq.
(170), we conclude that, in this case, the phase transition is of order

n =

⌈
d− 3

d− 5

⌉
. (177)

On the other hand, in the case d > 7, the function Sd(q, z) can be expanded as

Sd(q = −1 + s, z) ' 1 +
d− 2

d− 3
(1− z) +

d− 2

d− 5

(
2

d− 3
− z
)
s+

(d− 2) [3z(d− 3)− d− 5]

(d− 7)(d− 5)(d− 3)
s2 . (178)

Minimizing this expression with respect to s and then expanding for z → zc, we obtain

φd(z) ' −
1

d− 3
+
d− 2

d− 3
z +

(d− 7)(d− 3)(d− 2)

4(d− 5)(d− 1)
(z − zc)2 . (179)

Thus, in this case the order of the transition is n = 2. Comparing these results with those of Section IV, we notice
that the order of the phase transition at given d is the same for the fixed-N and fixed-T ensembles. In Section V, we
have shown that the order of the phase transition in the fixed-T ensemble is related to the nature of the condensate
itself. In particular, for 5 < d < 7, we expect the condensate to have an anomalous shape, with anomalous fluctuations
of order T 2/(d−3). On the other hand, for d > 7 the transition becomes of order two and, in analogy with what we
observe for the fixed-N ensemble, we expect the condensate to have a Gaussian shape, with fluctuations of order

√
T .
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D. Asymptotics of φd(z)

Here, we investigate the asymptotic behavior of φd(z). Let us first consider, for generic d, the limit z → 0. In a
small region around z = 0 the rate function φd(z) is always given by

φd(z) = Sd(q
∗(z), z) , (180)

where Sd(q, z) is given in Eq. (163) and q∗(z) is the unique solution of Eq. (164). It is easy to check that for small
z, q∗(z) is also small. Thus, expanding the right-hand side of Eq. (164) for small q, we obtain

z ' −2

d
q . (181)

Therefore, we find that, at leading order, q∗(z) = −(d/2)z. Plugging this value into the expression of S(q, z), given
in Eq. (163), and expanding for small z, we find that

φd(z) '
d

4
z2 . (182)

Plugging this expansion into the expression for Z(X,T ) in Eq. (168), we find that, for small z = X/T ,

Z(X,T ) ∼ exp

[
− d

4T
X2

]
. (183)

Thus, the small-z behavior of the rate function φd(z) matches smoothly to the typical Gaussian behavior (see Eq.
(160)).

Next, we consider the limit z → 1. For d > 5, we already know from Eq. (170) that, in the limit z → 1, one has

φd(z) = 1 +
d− 2

d− 3
(z − 1) . (184)

On the other hand, for d < 5, the rate function φd(z) is given in Eq. (169). Thus, we have to solve Eq. (164) for
z → 1. From Eq. (167) we know that gd(q = −1) = 1, for d < 5. Thus, we expect the solution q∗(z) of Eq. (164) to
be of the type q∗(z) = −1 + s with s small. It is useful to consider the cases 1 < d < 3 and 3 < d < 5 separately.

In the case 1 < d < 3, we plug q∗(z) = −1 + s in the condition in Eq. (164). Expanding for small s (using Eq.
(166)), we obtain

z ' 1− d− 1

3− ds , (185)

which yields

q∗(z) ' −1 +
3− d
d− 1

(1− z) . (186)

Plugging this expression for q∗(z) in Eq. (169) and expanding for z → 1 from below, we obtain

φd(z) ' 1− 1√
π

Γ

(
d

2

)
Γ

(
3− d

2

)
2

d− 1

(
2

3− d
d− 1

)(d−3)/2

(1− z)(d−1)/2 . (187)

We now consider the case 3 < d < 5. Plugging q∗(z) = −1 + s into Eq. (164) and expanding for small s, we find

z ' 1−√π d(d− 2)

4(d− 3)

1

Γ
(
1 + d

2

)
Γ
(

5−d
2

)2(5−d)/2s(5−d)/2 , (188)

which implies

1 + q∗(z) ∼ (1− z)2/(5−d) . (189)

Plugging this value in Eq. (169) and expanding for z → 1, we obtain

φd(z) ' 1− d− 2

d− 3
(1− z) . (190)
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To summarize, we have shown that, in the limit z → 1,

φd(z) =



1− c̃d (1− z)(d−1)/2 + o((1− z)(d−1)/2) for 1 < d < 3 ,

1− d−2
d−3 (1− z) + o((1− z)) for 3 < d < 5 ,

1− d−2
d−3 (1− z) for d > 5 ,

(191)

where c̃d is a d-dependent constant. Thus, for d < 3, φd(z) approaches the limit value 1, for z → 1, with an exponent
(d− 1)/2 which depends continuously on d. For 3 < d < 5, the rate function φd(z) becomes locally linear for z → 1
and for d > 5 one has a full region zc < z < 1 where φd(z) is exactly linear.

VII. NUMERICAL SIMULATIONS

In this section we describe the numerical techniques that we have used to verify our theoretical results for the rate
function ψd,α(z), which is defined as

ψd,α(z) = − lim
N→∞

log [Z(X = zN,N)]

N
, (192)

where Z(X,N) is the distribution of the total x-component displacement X after N runs. Let us first recall that,

in order to probe the typical Gaussian regime X ∼
√
N , one can use direct sampling. Indeed, a single x-direction

displacement x can be written as

x = v τ u , (193)

where v > 0 is the speed of the RTP, with distribution W (v), τ > 0 is the running time, exponentially distributed with
fixed rate γ = 1 and −1 < u < 1 is the x-component of the d-dimensional unit vector that represents the direction of
the RTP. Since this direction is uniformly distributed in space, one can show that u is distributed according to fd(u),
given in Eq. (6) [45, 46]. Thus, for each of the N running phases, one can generate, by standard sampling techniques,
three random number vi, τi and ui and then one can obtain the x-component displacement xi by multiplying these
variables. Finally, one can obtain X using the definition

X =

N∑
i=1

xi . (194)

This simple and direct procedure is useful to probe the typical regime X ∼
√
N . However, it is unfeasible to adopt

such a strategy to compute numerically the large-deviation tails of Z(X,N). For instance, extracting 106 samples,
one is only able to access events with probabilities of the order 10−6 or higher. How can one simulate events that
happen with very small probability, say of order 10−100?

In order to compute numerically the large-deviation tails of the PDF Z(X,N) we adopt a technique based on
a constrained Markov Chain Monte Carlo (MCMC) algorithm, similar to the one proposed in [41, 88, 89]. The
configuration C of our system is specified by the set of numbers C = {(v1, τ1, u1) , . . . , (vN , τN , uN )} and we are
interested in the rate function of

X(C) =

N∑
i=1

viτiui (195)

in the large deviation regime where X(C) ∼ O(N). With this goal in mind, we implement a MCMC dynamics in
the space of RTP configurations. Let us remark that the MCMC dynamics is defined in configuration space and has
nothing to do with the real RTP dynamics. Since we are interested in configurations that correspond to a very large
X(C), we impose the constraint X(C) > X∗, where X∗ is some fixed O(N) parameter. We choose an initial condition
C0 that satisfies the constraint and then we evolve the system using the Metropolis rule. In other words, assuming
that at a given step the current configuration is C = {(v1, τ1, u1) , . . . , (vN , τN , uN )}, we choose one of the running
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FIG. 13. a) First derivative of the rate function ψd,α(z) versus z, for d = 2 and α = 0. The continuous blue line corresponds
to the exact result in Eq. (56), valid in the limit N →∞. For this choice of the parameters d and α, no transition occurs. b)
First derivative of the rate function ψd,α(z) versus z, for d = 6 and α = 0. The continuous blue line corresponds to the exact
result in Eq. (59). The vertical dashed line signals the critical point zc at which the phase transition occurs. In both panels,
the symbols are the results of numerical simulations obtained at finite N , as described in Section VII.

phases i at random and we propose the move (vi, τi, ui)→ (vi
new, τi

new, unew
i ), where

vi
new = vi + δv , (196)

τi
new = τi + δτ , (197)

ui
new = ui + δu ,

where δv, δτ , and δu are drawn from a uniform distribution. The new configuration is then simply

Cnew = {(v1, τ1, u1) , . . . , (vi−1, τi−1, ui−1) , (vi
new, τi

new, unew
i ) , , (vi+1, τi+1, ui+1) , . . . , (vN , τN , uN )} (198)

If Cnew does not satisfy the constraint X(Cnew) > X∗, then the move is immediately rejected. If instead X(Cnew) > X∗,
the move is accepted with probability

pacc = min

[
1,
e−τ

new
i W (vnew

i )fd(u
new
i )

e−τi W (vi)fd(ui)

]
, (199)

and rejected otherwise. This particular choice of pacc, which correspond to the Metropolis-Hastings algorithm, guaran-
tees that the RTP configurations are sampled with the right statistical weight. If the move is accepted we update the
current position C → Cnew. Initially, we let the system evolve for 107 sweeps (by sweep we denote N move proposals),
in order to forget the initial condition. We measure X(C) every 102 sweeps, to avoid sample correlations.

With this procedure, we can build an histogram which approximates the PDF P (X,N |X > X∗) of X, conditioned
on X > X∗. This quantity can be written as, for X > X∗,

P (X,N |X > X∗) =
P (X,N)

P (X > X∗)
. (200)

Taking the natural logarithm of both sides and using the notation Z(X,N) = P (X,N), we find

log [P (X,N |X > X∗)] = log [Z(X,N)]− log [P (X > X∗)] . (201)

Note that the last term is independent of X. Using the definition of ψd,α(z), given in Eq. (192), we find, for large N ,

log [P (X,N |X > X∗)] = −Nψd,α
(
X

N

)
− log [P (X > X∗)] , (202)

Finally, taking a derivative with respect to X on both sides, we get

ψ′d,α

(
X

N

)
= − d

dX
log [P (X,N |X > X∗)] , (203)
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FIG. 14. Numerical curve of the PDF Z(X,N) as a function of X, for d = 2, α = 0 and N = 1000, obtained with the
constrained Markov Chain Monte Carlo algorithm described in the text.

where ψ′d,α(z) = d
dzψd,α(z). Thus, we are able to compute numerically the first derivative of the rate function. Then,

one can obtain ψd,α(z) via numerical integration. Note however that, with the method described above, one can only
probe a small region (X∗, X∗ + ∆), where ∆ > 0 is a small number compared to X∗. Therefore, one has to use
several values of X∗ in order to sample the large-deviation regime. In our case, we used 20 different values of X∗.
Our numerical estimate of d

dzψd,α(z) is shown in Fig. 13 for α = 0, d = 2, 6 and for different values of N . In the case

N = 104, the numerical curves are in excellent agreement with the theory, both in the fluid and in the condensed
phases. Integrating d

dzψd,α(z) numerically, we also compute ψd,α(z), which is shown in Fig. 9 and is in excellent
agreement with the theory. Similarly, one can also compute the PDF Z(X,N), which is shown, for d = 2 and α = 0,
in Fig. 14 with precision smaller than 10−100.

In the case of the fixed-T ensemble, a similar algorithm can be applied. The only complication is that the number
of running phases is not fixed anymore. Therefore, it might happen that, proposing a move, the total simulation time
becomes shorter than T . In such a case, we simply add a new running phase at the end of the trajectory. In this way,
one obtains the first derivative of φd(z), which is shown in Fig. 12 for d = 2, 6 and for different values of N . Note that
for the fixed-T ensemble one has z < 1, since the maximal distance that one can travel in a time T is v0T . For this
reason, sampling the region close to z = 1 becomes increasingly complicated. Nevertheless, in Fig. 12, we observe a
good agreement between the numerics and the theoretical curve.

With the technique described above, one can also sample the marginal probability distribution p(x|X) of a single-
run displacement. This can be achieved by using the MCMC algorithm described above, keeping X∗ fixed. During
the Monte Carlo dynamics, one has access to the full configuration C of the RTP. Thus, one can sample the single-run
displacement x, for instance choosing x = x1. To be precise, since X has to satisfy the constraint X > X∗ (and not
X = X∗), in this way one would compute the marginal probability p(x|X > X∗), conditioned on the event X > X∗.
However, since in practice the system is always in a small region (X∗, X∗ + ∆), one has that p(x|X > X∗) is a good
approximation of p(x|X∗) (see Fig. 3).

Finally, let us mention that a similar method, based on an exponentially biased MCMC algorithm, has been proven
useful to simulate large deviations of the RTP model [48, 54]. However, to the best of our knowledge, such techniques
cannot be used to simulate the RTP model in the condensed phase.

VIII. CONCLUSIONS

In this paper, we have investigated the late-time position of a single RTP in d dimensions, with velocity distribution
W (v) and tumbling rate γ. First, we have focused on the fixed-N ensemble, i.e., we have considered the number N
of running phases to be fixed. We have shown that due to the isotropy of the process, it is sufficient to study the
distribution Z(X,N) of the displacement of the particle in the x-component after N running phases. We have observed

that, even if in the typical regime where X ∼
√
N the PDF Z(X,N) has a Gaussian shape, its large-deviation tails
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still carry the signatures of the active nature of the process. Moreover, we have shown that for several choices of d
and W (v), the system undergoes a dynamical condensation transition in the large-deviation regime. This transition
is signaled by a singularity of the rate function of Z(X,N). Below the transition, all running phases contribute to
the total displacement X by roughly the same amount. On the other hand, above some critical value X = Xc,
a condensate emerges in the form of a single run which dominates the RTP trajectory. Using a grand-canonical
argument, we have identified a precise criterion for condensation.

In the special case W (v) = α(1− v)α−1, we have exactly computed the rate function ψd,α(z), where z = X/N . We
have shown that condensation happens only if ν = (d+ 2α− 1)/2 > 2. In particular, for ν > 3, we have observed that
ψd,α(z) has a second-order singularity at some critical value zc, which we have computed exactly, while for 2 < ν < 3
the order of the transition depends continuously on ν. Moreover, we have investigated the precise nature of the
condensate, studying the marginal probability of a single-run displacement. For ν > 3, we have observed that the
condensate size has Gaussian fluctuations of order

√
N . On the other hand, for 2 < ν < 3, we have shown that the

condensate has an anomalous shape, with large fluctuations of order N1/(ν−1). We have also extended our results to
the fixed-T ensemble, where the total duration T of the trajectory is fixed. In the case of fixed velocity (α = 0), we
have computed the rate function of the total displacement X of the particle for arbitrary d. We have observed that
an analogous condensation transition occurs also for this model above some critical value Xc of X. Moreover, we have
employed a constrained Markov chain Monte Carlo technique to verify our large-deviation result, probing events with
probability smaller than 10−100. Our numerical simulations are in excellent agreement with our theoretical results.

In this paper, we have shown that condensation transitions are a general feature of the RTP model. In future
works, it would be interesting to investigate other RTP models that satisfy the condensation criterion. We have
shown that a second-order transition is linked to a normal condensate, while a higher-order transition corresponds
to an anomalous condensate. Therefore, it would be relevant to investigate what happens in models that display a
first-order condensation transition, see e.g. [41].

Another interesting open problem is related to the criterion for condensation. The argument we have presented is
based on a grand canonical description of the system, which fails if the single-run distribution p(x) decays slower than
any exponential. In this case, we have conjectured that a condensation transition will occur if p(x) decays faster than
1/|x|3 for large |x|. It would be interesting to prove this conjecture.
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Appendix A: Relation between P (~R,N) and Z(X,N)

In this appendix, we derive the relation in Eq. (1) between the PDF P (~R,N) of the position ~R of the RTP after

N steps and the distribution Z(X,N) of the x-component X of ~R. Moreover, we show that Z(X,N) and P (~R,N)

share the same rate function ψ(z) in the large-deviation regime where X and R = |~R| scale linearly with N . As a

consequence of the isotropy of the process, the PDF P (~R,N) depends only on the magnitude R of ~R and not on its

orientation. In other words, the orientation of ~R is distributed uniformly at random. Given a vector ~R with fixed

norm R and random orientation, it is possible to show that the PDF of the x-component X of ~R is (see Appendix A
of [46])

P (X|R) =
1

R
fd

(
X

R

)
, (A1)

where the function fd(z) can be computed for any d and is given in Eq. (6). Thus, the PDF of X can be written as

Z(X,N) =

∫
Rd
d~R

1

R
fd

(
X

R

)
P (R,N) , (A2)

where we integrate over all possible values of ~R, weighted by the PDF P (~R,N) = P (R,N). This is precisely the
relation given in Eq. (1).

We now want to show that in the large-deviation regime where |X| ∼ O(N) and R ∼ O(N), Z(X,N) and P (~R,N)
share the same rate function ψ(z). We can perform the integral in Eq. (A2) in the radial coordinate and we obtain

Z(X,N) =
2πd/2

Γ(d/2)

∫ ∞
0

dR Rd−2fd

(
X

R

)
P (R,N) . (A3)
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Using the expression of fd(z), given in Eq. (6), we obtain

Z(X,N) =
2π(d−1)/2

Γ((d− 1)/2)

∫ ∞
|X|

dR Rd−2

(
1− X2

R2

)(d−3)/2

P (R,N) , (A4)

and making the change of variable R→ u = R/X, we obtain

Z(X,N) =
2π(d−1)/2

Γ((d− 1)/2)
|X|d−1

∫ ∞
1

du ud−2
(
1− u−2

)(d−3)/2
P (R = u|X|, N) . (A5)

Let us now focus on the regime where X ∼ O(N). Plugging the scaled variable z = X/N in Eq. (A5), we find

Z(X = zN,N) =
2π(d−1)/2

Γ((d− 1)/2)
|zN |d−1

∫ ∞
1

du ud−2
(
1− u−2

)(d−3)/2
P (R = u|z|N,N) . (A6)

In the large deviation regime where R ∼ O(N), we expect P (R,N) ∼ exp [−Nψ(R/N)], where ψ(z) is the rate
function associated to P (R,N). Plugging this expression in Eq. (A6), we find

Z(X = zN,N) ∼
∫ ∞

1

du ud−2
(
1− u−2

)(d−3)/2
e−Nψ(u|z|) . (A7)

In the limit of large N , this integral is dominated by values close to the lower limit u = 1. Thus, we obtain

Z(X = zN,N) ∼ e−Nψ(|z|) , (A8)

which can be written as

Z(X,N) ∼ e−Nψ(|X|/N) . (A9)

Therefore, Z(X,N) and P (~R,N) have the same rate function ψ(z).

Appendix B: Distribution of the x-direction displacements

In this appendix, we want to compute the distribution of the x-direction displacements x1 , . . . , xN of the RTP

associated to the N running phases. For 1 ≤ i ≤ N , xi is the x-component of the d-dimensional vector ~̀i. These

vectors ~̀i are i.i.d. random variables, their direction is drawn uniformly at random and their magnitude is given by
`i = vi τi, where vi > 0 is drawn from the speed distribution W (v) and τi is an exponential random variable with rate
γ. Thus, the distribution of the magnitude ` of one of these displacement vectors is

P (`) =

∫ ∞
0

dτ

∫ ∞
0

dv W (v) γe−γτδ (`− vτ) . (B1)

Performing the integral over τ , we get

P (`) =

∫ ∞
0

dv
1

v
W (v) γe−γ(`/v) . (B2)

One can then show that the distribution of the x-component of a d-dimensional vector ~l with fixed norm and uniformly
distributed direction is given by

p(x|l) =
1

l
fd

(x
l

)
, (B3)

where

fd(z) =
Γ (d/2)√

πΓ ((d− 1)/2)
(1− z2)(d−3)/2θ(1− |z|) , (B4)

Γ(y) is the Gamma function and θ(y) is the Heaviside theta function. For a derivation of this result in Eq. (B4) see
Appendix A of [46]. Thus, the distribution p(x) of the displacement x of the particle during a single running phase
is given by, using Eqs. (B2) and (B3),

p(x) =

∫ ∞
0

dv
1

v
W (v)

∫ ∞
0

d`
1

`
fd

(x
`

)
γe−γ(`/v) . (B5)

Note that, since fd(z) is symmetric around z = 0, the PDF p(x) is also symmetric around x = 0.
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Appendix C: Large-|x| behavior of p(x)

The result in Eq. (B5) is valid for any distribution W (v). We now consider the special case where

W (v) =
α

v0

(
1− v

v0

)α−1

θ(v) θ(v0 − v) . (C1)

In particular, we are interested in computing the large-x behavior of p(x). Using the expression for W (v) given in
Eq. (C1), we find

p(x) =
Γ (d/2)√

πΓ ((d− 1)/2)

α

v0
γ

∫ ∞
x

d`
1

`

(
1− x2

`2

)(d−3)/2 ∫ v0

0

dv
1

v

(
1− v

v0

)α−1

e−γ`/v . (C2)

Performing the changes of variable `→ u = x/` and v → w = v/v0, we find

p(x) =
Γ (d/2)√

πΓ ((d− 1)/2)

α

v0
γ

∫ 1

0

du
1

u

(
1− u2

)(d−3)/2
∫ 1

0

dw
1

w
(1− w)

α−1
e−γx/(v0wu) . (C3)

It is useful to perform the changes of variable u→ t = 1− u2 and w → s = 1− w, and we obtain

p(x) =
1

2

Γ (d/2)√
πΓ ((d− 1)/2)

α

v0
γ

∫ 1

0

dt
1

1− t t
(d−3)/2

∫ 1

0

ds
1

1− ss
α−1 exp

(
− γ

v0

x

(1− s)
√

1− t

)
. (C4)

For x� 1, the integral is dominated by small values of s and t, thus, expanding for small s and t, we find

p(x) ' 1

2

Γ (d/2)√
πΓ ((d− 1)/2)

α

v0
γe−γx/v0

∫ 1

0

dt e−γxt/(2v0)t(d−3)/2

∫ 1

0

ds e−γxs/v0sα−1 . (C5)

Computing the integrals, we find

p(x) ' Γ (d/2)√
πΓ ((d− 1)/2)

α

v0
γe−γx/v02(d−3)/2

(
v0

γx

)(d+2α−1)/2

Γ

(
d− 1

2

)
Γ (α) . (C6)

Finally, using the symmetry of p(x), we find that for |x| � 1,

p(x) ' Ad,α
γ

v0
e−γ|x|/v0

(
v0

γ|x|

)(d+2α−1)/2

, (C7)

where

Ad,α =
Γ (d/2)αΓ (α)√

π
2(d−3)/2 . (C8)

Appendix D: Range of validity of the Central Limit Theorem

Consider N i.i.d. random variables {x1, x2, · · · , xN} each drawn from a normalised distribution p(x). The distri-
bution of their sum X can be expressed as

Z(X,N) =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxN

[
N∏
i=1

p(xi)

]
δ

(
X −

N∑
i=1

xi

)
. (D1)

Taking a Fourier transform factorises the N -fold integrals∫ ∞
−∞

Z(X,N) ei k X dX = [p̂(k)]
N
, (D2)

where

p̂(k) =

∫ ∞
−∞

p(x) ei k x dx (D3)
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is the Fourier transform of p(x). Finally, inverting the Fourier transform in Eq. (D2) one gets the integral represen-
tation

Z(X,N) =

∫ ∞
−∞

dk

2π
e−i k X [p̂(k)]

N
. (D4)

Note that this expression is valid for all X and all N and arbitrary p(x). Motivated by the RTP problem, we focus
on p(x)’s that are symmetric with a finite second moment σ2. In this case, the central limit theorem (CLT) is valid

for large N which predicts that in the region up to |X|
√
N , the distribution Z(X,N) converges to a Gaussian shape

for large N

Z(X,N) ' 1√
2π σ2N

e−X
2/(2σ2N) . (D5)

One may ask whether this Gaussian shape remains valid over a larger range, outside the region X ∼
√
N of the

validity of the CLT.
To answer this question, we start from the integral representation of Z(X,N) in Eq. (D4) which can be rewritten

as

Z(X,N) =

∫ ∞
−∞

dk

2π
e−i k X+N log(p̂(k)) . (D6)

In order to probe the Gaussian regime where X ∼
√
N , we first set y = X/

√
N . Performing the change of variable

k → k/
√
N in Eq. (D4) gives

Z(X,N) =
1√
N

∫ ∞
−∞

dk

2π
e−i k y+N log(p̂(k/

√
N)) . (D7)

Thus large N limit probes the small k behavior of p̂(k) defined in Eq. (D3). We next assume that p̂(k) has the small
k expansion

p̂(k) ' 1− σ2 k2

2
+ c |k|β + · · · (D8)

where 2 < β ≤ 4. Since we assumed p(x) to be normalised to unity, the first term is unity. Moreover, since p(x) is
symmetric, there is no linear term in p̂(k) in the small k expansion. The second term is automatic since the variance
σ2 is finite and the third correction term must appear with exponent β > 2. We also assume that β ≤ 4. The prefactor
c of |k|β is just an unimportant nonzero constant.

Substituting the small k expansion (D8) in (D7) in the large N limit we get, keeping only leading order terms up
to O(|k|β) (note that 2 < β ≤ 4),

Z(X,N) ' 1√
N

∫ ∞
−∞

dk

2π
e−i k y−σ

2k2/2+cN1−β/2 |k|β , (D9)

If β < 4, then the prefactor of the third term inside the exponent is c. However, if β = 4, then this prefactor will be
slightly modified from c since the expansion of the logarithm will give rise to a term of O(k4) also. But in any case,
we just need that c is some nonzero constant in Eq. (D9). It is possible to check that in the case of the RTP model
considered in Section IV, one has β = 4. Since β > 2, the term cN1−β/2 |k|β is small for large N , and we can expand
the exponential as

Z(X,N) ' 1

2π

1√
N

∫ ∞
−∞

dk e−i k y−σ
2k2/2

(
1 + cN1−β/2 |k|β

)
. (D10)

Performing the first integral gives the leading Gaussian term and rearranging the second term slightly gives

Z(X,N) ' 1√
2πNσ2

e−y
2/(2σ2)

[
1 +
√

2πσ2cN1−β/2
∫ ∞
−∞

dk e−(σ2/2)(k−iy/σ2)2 |k|β
]
. (D11)

Performing the change of variable k → k + iy/σ2, we obtain

Z(X,N) ' 1√
2πNσ2

e−y
2/(2σ2)

[
1 +
√

2πσ2cN1−β/2
∫ ∞
−∞

dk e−(σ2/2)k2 |k + iy/σ2|β
]
. (D12)
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When y is of order one, i.e. when X ∼ O(
√
N), the correction term vanishes as N1−β/2 and we obtain the leading

Gaussian term, as predicted by the CLT. On the other hand, for y � 1, the second integral over k can be approximated
to leading order for large y as

Z(X,N) ' 1√
2πNσ2

e−y
2/(2σ2)

[
1 + c̃N1−β/2yβ

]
, (D13)

where c̃ is just a constant. The correction term can be neglected when N1−β/2yβ � 1 and therefore the CLT is valid
for any y such that y � N (β−2)/(2β). Recalling that y = X/

√
N , we obtain that the CLT is valid up to a wider range

than
√
N , namely, up to

|X| � N (β−1)/β . (D14)

For instance, for the RTP model considered in Section IV, we have β = 4 and thus the CLT is valid for |X| � N3/4.

Appendix E: Large deviation for the position distribution in the x direction

In this Appendix we give a formula for the large deviation of the x coordinate in the fixed T ensemble of the RTP,
valid for a model with an arbitrary distribution of velocity, using an equivalent but slightly different method as in
the text. Let us recall that the displacements xi along the x axis, and the durations τi associated to the i-th running
phase are i.i.d. variables, except for the last run which is incomplete and hence has a different distribution. Their
distribution is P (x, τ) = p(x|τ)γe−γτ , with p(x|τ) =

∫
dd~vP (~v)δ(x − v1τ) = 〈δ(x − v1τ)〉, where v1 = ~v · ex denotes

the first component of the velocity, and here and below 〈· · · 〉 denotes an average with respect to the distribution of
the velocity ~v (here assumed to be quite general). Thus one can write

p̂(q, s) =

∫ +∞

−∞
dx

∫ +∞

0

dτ e−qx−sτ 〈δ(x− v1τ)〉γe−γτ =

〈
γ

γ + s+ qv1

〉
. (E1)

For an isotropic distribution with |~v| = v0 in dimension d, the explicit form is given in (153) in the text.
Let us start from Eq. (151) and set γ = 1 for simplicity. Eq. (151) can be written as∫ +∞

0

dT

∫ +∞

−∞
dXe−sT−qXZ(X,T ) =

p̂(q, s)

1− p̂(q, s) . (E2)

Let us first assume that Z(X,T ) admits a large deviation form Z(X,T ) ∼ e−Tφd(z=X/T ). Inserting this form on the
left-hand side of Eq. (E2), we get∫ +∞

0

dT T

∫ +∞

−∞
dz e−sT−qTz−Tφd(z) ∼

∫ +∞

0

dT Te−sT−T minz∈R(qz+φd(z)) , (E3)

where we used a saddle point estimate in the integral over z = X/T . This integral becomes divergent when s decreases
and reaches

s = s(q) := −min
z

[qz + φd(z)] . (E4)

Now looking at the right-hand side of Eq. (E2) we see that we expect a singularity when p̂(q, s) = 1. We will surmise
that these singularities are the same

p̂(q, s) = 1 ⇔ s = s(q) . (E5)

More explicitly the function s(q) is the root s = s(q) of the equation〈
1

1 + s+ qv1

〉
= 1 ⇔

〈
s+ qv1

1 + s+ qv1

〉
= 0 . (E6)

Once s(q) is known, the inversion of (E4) determines the large deviation function

φd(z) = max
q

(−qz − s(q)) . (E7)
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These formulae allow to easily determine the small z behavior of the large deviation function as a function of the
moments of the random variable v1, assuming that they exist. Expanding (E6) in powers of q to second order one
obtains φd(z) to quadratic order

s(q) = −〈v1〉q + 〈(v1 − 〈v1〉)2〉q2 +O(q3) ⇒ φd(z) = max
q

(−qz − s(q)) =
(z + 〈v1〉)2

4〈v2
1〉

+O(z3) (E8)

where we have not assumed any symmetry of the distribution of ~v. When the distribution of v1 is symmetric in

v1 → −v1, it is convenient to symmetrize (E6) and rewrite it as 〈 s(1+s)−q2v21
(1+s)2−q2v21

〉 = 0. One obtains using Mathematica

s(q) = c2q
2 + (c4 − 2c22)q4 + (c6 − 6c2c4 + 7c32)q6 +O(q8) and

φd(z) =
z2

4c2
−
(
c4 − 2c22

)
z4

16c42
+

(
9c42 − 10c4c

2
2 − c6c2 + 4c24

)
z6

64c72
+O

(
z8
)

, cn := 〈vn1 〉 . (E9)

Note that for an isotropic distribution of ~v, with 〈~v2〉 = 1, c2 = 1/d and φd(z) = d
4z

2 +O(z4), as in Eq. (182).
The saddle point equation (E6) can be conveniently rewritten by performing the change of variable w = q/(1 + s)

and introducing the function

F (w) :=

〈
1

1 + v1w

〉
. (E10)

Simple manipulations then lead to φd(z) = maxq(−qz − s(q)) = maxw(1 − (1 + zw)F (w)). The function φd(z) can
then be obtained in a parametric form (by eliminating w)

z = − F ′(w)

F (w) + wF ′(w)
, φd(z) = 1− (1 + zw)F (w) = 1− F (w)2

F (w) + wF ′(w)
(E11)

where one can alternatively use the simpler formula φ′d(z) = −wF (w).

For an isotropic distribution of velocities with |~v| = 1 in dimension d, one has F (w) = 2F1

(
1
2 , 1; d2 ;w2

)
and one

recovers the formula (163), (164) and (165) given in the text (where the variable w is q there). They are valid as long
as |w| < 1, beyond which the saddle point value freezes at w = ±1, as discussed in the text.

We have assumed so far that the function F (w), defined in Eq. (E10), exists. Of course there are some distributions
P (~v) for which the average in Eq. (E10) may not exist. In fact, for any distribution P (~v) which is nonzero at
v1 = −1/w, the average in Eq. (E10) is divergent. An example of this is simply the Gaussian distribution P (~v) =

e−~v
2/2/(2π)d/2. Recall that in the main text we have chosen the direction isotropically and taken the speed distribution

W (v) = α(1− v)α−1, which has a finite support v ∈ (0, 1). In this example the average in Eq. (E10) is well defined.
In cases where F (w) in Eq. (E10) does not exist, it indicates that the distribution does not admit a large-deviation
form on a scale X ∼ O(T ), as assumed. In this case, a condensation may still occur, but at a smaller scale X ∼ T γ

with 1/2 < γ < 1.
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[11] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).
[12] S. Hubbard, P. Babak, S. T. Sigurdsson, and K. G. Magnússon, Ecological Modelling, 174, 359 (2004).
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