Condensation transition in the late-time position of a run-and-tumble particle - Archive ouverte HAL
Article Dans Une Revue Physical Review E Année : 2021

Condensation transition in the late-time position of a run-and-tumble particle

Résumé

We study the position distribution $P(\vec{R},N)$ of a run-and-tumble particle (RTP) in arbitrary dimension $d$, after $N$ runs. We assume that the constant speed $v>0$ of the particle during each running phase is independently drawn from a probability distribution $W(v)$ and that the direction of the particle is chosen isotropically after each tumbling. The position distribution is clearly isotropic, $P(\vec{R},N)\to P(R,N)$ where $R=|\vec{R}|$. We show that, under certain conditions on $d$ and $W(v)$ and for large $N$, a condensation transition occurs at some critical value of $R=R_c\sim O(N)$ located in the large deviation regime of $P(R,N)$. For $RR_c$ is typically dominated by a `condensate', i.e., a large single run that subsumes a finite fraction of the total displacement (supercritical condensed phase). Focusing on the family of speed distributions $W(v)=\alpha(1-v/v_0)^{\alpha-1}/v_0$, parametrized by $\alpha>0$, we show that, for large $N$, $P(R,N)\sim \exp\left[-N\psi_{d,\alpha}(R/N)\right]$ and we compute exactly the rate function $\psi_{d,\alpha}(z)$ for any $d$ and $\alpha$. We show that the transition manifests itself as a singularity of this rate function at $R=R_c$ and that its order depends continuously on $d$ and $\alpha$. We also compute the distribution of the condensate size for $R>R_c$. Finally, we study the model when the total duration $T$ of the RTP, instead of the total number of runs, is fixed. Our analytical predictions are confirmed by numerical simulations, performed using a constrained Markov chain Monte Carlo technique, with precision $\sim 10^{-100}$.
Fichier principal
Vignette du fichier
2103.04637 (1.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03301446 , version 1 (16-12-2023)

Identifiants

Citer

Francesco Mori, Pierre Le Doussal, Satya N. Majumdar, Grégory Schehr. Condensation transition in the late-time position of a run-and-tumble particle. Physical Review E , 2021, 103 (6), pp.062134. ⟨10.1103/PhysRevE.103.062134⟩. ⟨hal-03301446⟩
46 Consultations
20 Téléchargements

Altmetric

Partager

More