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We calculate the spin-wave spectra of two-dimensional composite materials consisting of periodic square
arrays of parallel cylinders made of a ferromagnetic material embedded in a ferromagnetic background. Each
material is described by its spontaneous magnetizatigpand exchange consta#t. An external static
magnetic field is applied along the direction of the cylinders and both ferromagnetic materials are assumed to
be magnetized parallel to this magnetic field. We consider the spin-waves propagation in the plane perpen-
dicular to the cylinders. We reveal the existence of gaps in the magnon band structure of composite systems
such as the periodic array of Fe cylinders in an EuO matrix. We investigate the existence of these gaps in
relation to the physical parameters of the materials involved. We also study the influence of the lattice
parametefi.e., the square array periodicitgnd the effect of the filling fraction of the cylinders on the magnon
band structure[S0163-18206)09626-9

I. INTRODUCTION dimensional inhomogeneous magnetic media. Thus, in this
paper, following our previous works on elasficand

In recent years, a large number of papers have addressetectroni¢® band structures, we present magnon band struc-
the problem of magnon band structure of one-dimensionalure calculations for two-dimensional periodic bimaterial
magnetic composites such as superlattices. Most of these peemposites such as square arrays of infinite cylinders embed-
pers focus on the existence of band gaps in the spin waveged in a host material.
spectra of magnetic superlattices Albuquergual?® calcu- This paper is organized as follows. In Sec. Il, we report
lated the dispersion equation for spin waves propagating in briefly the method of calculation of the magnon band struc-
general direction of an infinite superlattice made of two al-ture of two-dimensional periodic media. Spin wave spectra
ternating ferromagnetic layers. They showed that in a certaifor different composite systems are presented in Sec. Il
frequency domain the superlattice dispersion curves exhibfinally, some conclusions regarding the propagation of spin
broad pass bands and narrow stop bands. Dobrzyisdi?  waves in inhomogeneous media are drawn in Sec. IV.
investigated the existence of surface-localized magnons in
the spin waves spectra of semi-infinite ferromagnetic super-
lattices. Barnaf’sanalyzed theoretically the spin waves spec- Il. METHOD OF CALCULATION

tra of infinite, semi-infinite, and finite ferromagnetic super- ) .
lattices in the exchange dominated region. Several adthors N this paper, we consider a model system composed of an

have carried out the study of magnetic properties of super@rray of infinite cylinders of circular cross section made of a
lattices constructed by alternating films of ferromagnetic anderromagnetic materigh embedded in an infinite ferromag-
antiferromagnetic layers. netic matrixB. The cylinders are assumed to be parallel to

Moreover, during the past decades, the problem of propa_t.hexg, axis of the Cartesian c_oordlnate system. Consequently,
gation of classical waves in two- and three-dimensional inintersections of their axis with the transverse ;) plane
homogeneous materials has received a great deal of attefrm a two-dimensional periodic structuigquare lattice; see
tion. Of particular interest is the existence of band gaps irf 19 1)- _ _ N _
the optical®’ acoustic~'? or electroni¢® band structures of ~ The square lattice constant asand the filling fractions
periodic as well as random composite media. aref and (—f) for the materialsA andB, respectively. In

On the other hand, recent improveméftSin the manu-  the theoretical model taking the dipolar interactions and the
facturing of materials permit the fabrication of long Co or Cu€xchange coupling into accoufftboth ferromagnetic mate-
wires of small diameteffrom 50 to 300 A. This technology r!aIsA andB are described by their spontaneous magnetiza-
opens the possibility of preparing two-dimensional magnetidion Ms, andMs_ and exchange constams andAg . Thus
composites made of ferromagnetic materials like arrays ofhe spontaneous magnetization and the exchange constant in
long wires in a background. the composite system are space dependent with respect to the

The above described developments have inspired us tposition vectorX=(xy,X,) in the transverse plane and can
undertake theoretical investigations on this type of two-be written as

0163-1829/96/5)/10437)/$10.00 54 1043 © 1996 The American Physical Society
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composite$-*In our model the boundary conditions imply
the continuity at the internal interfaces oA/Mg) (d/dn)M
whered/dn is an interface normal derivative. Such boundary
conditions include the macroscopic variationsfofind M g
[Egs. (1)]. They do not take into account the microscopic
modifications of the exchange const#nat these interfaces
(so-called interface exchange couplint is justified to ne-
glect the interface coupling since such microscopic varia-
tions of the exchange have negligible effects on the bulk
magnons we are going to study in this paper.

In order to resolve Eq2), we write

M(r,t)=Mges+m(r,t), (4)

wherem(r,t) is the dynamic component of the magnetiza-
tion. We also suppose that

m(r,t)=m(r)e ", (5)
wherew is the wave circular frequency and
h(r,t)=h(r)e 't (6)

with h(r)=—-VW¥(r), whereW(r) is a magnetostatic potential.
This potential obeys the following equation:

FIG. 1. A transverse cross section of the binary composite sys- amy(r)  amu(r)  ama(r)

tem: a square array of infinite cylinde¢d) periodically distrib- VZ\If(r)—)\ + + =0 (7a
uted in an infinite matriXB). The lattice parameter i. 281 20 X3
_ [A=4m in Gaussian units and=1 in Sl (Sysiene Interna-
Ms=Ms,din+ Mg, (1= in) (1a tional) units used throughout this pagesince
and
V(h(r)+xm(r))=0. (7b)
A=ApSintAg(1-6pn), (1b)

We use the usual linear-magnon approximation of neglect-

where &, equals 1 inside the inclusions and zero outside. Aing, in Eq.(2), the small terms of second orderrim(r) and

static magnetic fieldH, is applied along the, axis and both  h(r).®® This approximation is equivalent to setting

ferromagnetic materials are assumed to be magnetized parair)-e;=0.1°

lel to Hy. On substituting Eqgs(7a), (6), (5), (4), and(3) into Eq.
The equation of motion in the composite material is (2), we obtain

J . Mg d¥(r)
5t M(TO= YoM (1,0 X Heg(r ), @ M)+ (V- QUM —my(r) — 1 = =0,
0 0%z
wherey is the gyromagnetic rati¢y<0), assumed to be the
same in materialé andB andH(r,t) is the effective field —(V-QV)my(r) +my(r)+iQmy(r)+ M_S Jv(r) _
acting on the magnetizatioM(r,t), r being the three- Ho dx; '
dimensional position vector. Equatiof®) is the Landau- 8
Lifshitz equation without a damping tertfl’ where
Neglecting an anisotropy fieltx(r,t) can be written for
an inhomogeneous material ®
Q= ————=Bo
H t)=Hges+h(r,t)+ (V A V)M t oo
eff(r! ) Oe3 (r! ) /-LOMS MS (rv )1 and
()
where V=e,(dldx,)+ex(dldx,) +ex(dldxs) (e;,e,,e; are unit 0= 2A
vectors along the;,X,,Xz axis, respectively h(r,t) is the " MguoHo

dynamic dipolar field, and the last term describes the ex- o o

change field. The difference of this equation from the correConsidering the double periodicity in the,(x,) plane, we
sponding one for homogeneous mééis in the A-Mg*  ¢an expand) andMs in Fourier series:

scalar put in between the twW, in order to satisfy automati-

cally the boundary conditions at the internal interfaces, as Q(X)=Q(X1,Xz)=2 Q(G)el® X, (9a)
done before for photonic, elastic, and electronic G
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On the other hand, from the property of translational invari-
ance in thexs direction, it follows thatm(r), my(r), and
W(r) must be of the form

MS(X>=Ms<x1,x2>=§ Mg(G)e'® X, (9b)

where G are the reciprocal lattice vectors in th&;(x,)

plane of componentsd; ,G,) andX is the two-dimensional my(r)=m;(X)e'kas, (149

position vector of componentx{,X,). The Fourier coeffi- Ko

cients in Eq.(9a) take the form my(r) = my(X) e, (14b
W(r)=W(X)eK¥s, (149

:éffdzx Q(X)e e,

where the integration is performed over the unit cell surface’®
S=a’. o
For G=0, Eq.(10) gives the averag®,Q:

(10

whereK; is thex; component of the three-dimensional wave
CtOrK(Kl,Kz,K3).

For spin-waves propagation in th&,(x,) plane(which
meansK;=0), one can consider the two-dimensional wave
vectorK (K,K,) and use the Bloch theorem to write

Q(G=0)=Q=Qaf +Qg(1~f ). (119 | |
For G#0, Eq.(10) may be written as ml(x):elK.XEG‘« my, (G)e'®, (153
Q(G#0)=(Qa—Qp)F(G)=AQF(G), (11b o .
whereF(G) is the structure factor: ma(X) =™ % Mg, (G)e'™7, (15b
i J1(GR)
F(G J' J' d2X G-X= =2f GR ' (12) q,(x):eiK»X% \I,K(G)eiG»X (150)

wheref = (R?/a?) is the filling fraction,J; the Bessel func-

tion of the first kind, andR the radius of the cylinders. In Eq.

(12), the integration is performed only on material
In an entirely similar way, Eq(10) gives

One can naotice that foK;=0, ¥(r) does not depend any-
more onXxs. Therefore,hy(r)=—(¥(r)/dx3)=0. One ob-
serves that for spin-waves propagation in tle,k,) plane
and in the linear-magnon approximation, the vectons)
andh(r) are perpendicular to the; axis.

Ms(G=0)=Ms=Ms,f+Ms,(1-1 ), (133 After some algebra and considering the dimensionless
vectorsk=(a/2m)K and g=(a/2m)G, the equations of mo-
Ms(G#0)=(Ms,~ Mg )F(C)=AMSF(G). (13D o can be rewritten asg |
|
Ms (ky+01)(Kp+0y) 2m )\Ms(k2+92) ] [ 2w )
ioBmy (g)= +11+ k+ 201 m + Fl—(g—¢
0BMy (9=~ gz M9 9°Q+ 1 kg g | Mad9 g#Eg, - (9-9)
MMs (ki +9'1)(ka+9')) , NAMs (kp+03)? ,
X( H, k+g)? my, (9') + AQ(k‘*'QJ J(k+Q)+ —— Ho (ktg)? my, (") | (.
(163
2m\? — Mg (k;+0;)? AMs (ky+95) (kp+02) 2 )
. __ =" 2 _ _ = A
0By, (9=~ 1+| | |k+gQ+ = oo (M (9~ 1= — 1 g M, (0) Eg, Fl— (g-9)
2 "2 ' ’
™ , MMs (k1 +97) ;. MMg (k1 +91)(ka+9p) , )
X AQ(k+g")(k+g)+ Ho (kig)? my, (9') + Ho k+g)? my, (9] (160

In going from Eq.(8) to Egs.(16), ¥ (r) has been eliminated equations must vanish, which conditions yield the magnon
using Egs(7a and(15) with m;=0 andh;=0 band structurey, (k). Despite the fact that the equatiofi®)

One notes that there appear in those_equations two typésvolve complex imaginary terms, their solutiong(k) are
of terms: exchange terms depending @nand AQ and real. One can also notice that in E¢$6) there is an explicit
dipolar interactions terms depending oNJ/H, and dependence of the frequeneywith the lattice parametea.
AMJ/H,. Equationg16) correspond to an infinite set of lin- In the case of photonicand phononlc band structufe®?
ear equations where the unknowns are the Fourier compauch a dependence is implicit in the sense that the band
nents of the magnetization. In practice, obviously, only astructures are given in terms of a reduced frequency depend-
finite number ofg vectors are taken into account for the ing on the lattice parametéf)=wa/2wc wherec is a veloc-
numerical calculation. The determinant of this system ofity) versus the reduced wave vector. Regarding E§),
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TABLE I. Values of the exchange constafitand spontaneous
magnetizatiorM g for Fe (Refs. 16 and 1) EuO (Refs. 17, 20, and
21), Co (Ref. 16, and PermalloyRef. 16.

45

40

A Mg
(10 Mym (1AM s

Fe 2.1 1.752
EuO 0.1 1.910
Co 2.8 1.390
Permalloy 0.7 0.810

30

25

one can observe that, due to the existence of the dipolar 2

interaction terms, it is not enough to define a reduced fre-
guency to take fully into account the effect of the lattice
parameterl on the magnon band structure.
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I1Il. MAGNON BAND STRUCTURES

In this section, we present magnon band structures calcu- 5
lated for square arrays of Fe cylinders in a EuO background
as well as square array of Co cylinders in a Permalloy ma- o
trix. The inverse situations, i.e., EuO cylinders in an Fe ma-
trix, and Permalloy fibers in a Co matrix have also been
investigated. Fe, EuO, Permalloy, and Co are ferromagnetic
materials. Their physical parametévks and A are listed in
Table I.

=

X

r
REDUCED WAVE VECTOR

=

FIG. 3. Magnon band structure for EuO cylinders in an Fe ma-
trix for a filling fraction f=0.5,a=100 A, anduoH,=0.1 T. There

are three gaps. The width of the first two gaps is lower compared to

In the case of the two-dimensional periodic system, Fe; . ) . _
. . oo ig. 2. The width of the third gap is of the same order of magnitude
(cylinders/EuO (background, the influence of the Fe filling ingboth cases. gap 9

fraction and the effect of the lattice parameter on the band
structure are also studied. In the course of the numerical
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FIG. 2. Magnon band structure for Fe cylinders in a EuO matrix ~ FIG. 4. Magnon band structure for Co cylinders in a Permalloy
for a filling fraction f=0.5,a=100 A, andugH,=0.1 T. The band  matrix for a filling fraction f=0.5, a=100 A, anduH,=0.1 T.
structure is plotted in the three high-symmetry directidixév of There is no gap in this case either in the opposite situdiien
the Brillouin zone(see inset One can notice four gaps. Permalloy cylinders in a Co matpix
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FIG. 5. The width of the first three band gaps in the magnon band structure of the square array of Fe cylinders in a EuO anafrdOfor
A and ugH,=0.1 T as a function of the filling fractiof. The vertical dashed line corresponds to the close-packing valtigfef 7/4) for
which one cylinder contacts another one. Filled circles: first(apveen the first and the second barkilled squares: second gépetween
the second and the third bandFilled triangles: third gagbetween the fourth and the fifth band

calculations, the dimensionless reciprocal lattice vectprs situation, i.e., the square array of EuO cylinders in a Fe ma-
are given ag=n,e,+n,e,, wheren, andn, are two integers trix. In this case, the magnitudes of the first two géglsse
limited to the interval —N=nj,n,<+N. All the results to 2 GH2 are smaller than those obtained in the previous
sketched below are obtained with=6. However, some of case. However, the width of the third gdpppearing be-
the dispersion curves were also calculated With10 and  tween the fourth and the fifth banis of the same order of
confirmed the good accuracy of the results fo#=6. The magnitude as in the former case.
difference in the eigenvalues calculated wik=10 and 6 is In Fig. 4, the magnon band structure for a square array of
small. We chooseN=6 which is a good compromise be- cq cylinders in a Permalloy matrix is drawn f6=0.5. The
tween accuracy and computing time. other parameters used are the same as in Figs. 2 and 3. There
Figure 2 shows the first nine magnon bands for the squarg |, gap in this case, neither in the inverse situatier-
array of Fe cylinders in a EuO matrix, the filling fractidn malloy cylinders in a C’o matrix One can notice that for the

being equal to 0.5. We have plotted the magnon band stru . . ; .
ture in the three principal directions of the first two- wo binary composite systems Keylinders/EuO (matrix

dimensional Brillouin zond’XM (see the inset in Fig.)2 and Co(fibers)/PermaIon(backgrounai the inclusions and
The plots are given in terms of the reduced frequenC)}.he matrix haye more or less the same spontaneous magne-
Q=Bw=w/|y|uoHo, versus the reduced Bloch wave vec- tization but dlfferent exchange copsta}(mee Table)l.
tor k. The reduced frequencQ is defined here as being We also co_n5|dered a hypothet'lc binary composite system
independent of the lattice paramegerThe lattice parameter Where the cylinders and the matrix have the same exchange
a is equal to 100 A(the radiusR of the cylinders is then constant but dlfferer_1t spontaneous magnetizations. In thgt
equal to 40 A and uH,=0.1 T. case, gaps appear in the band structure only for the ratio
In the range of frequency of Fig. 2, four band gaps appear',\/' s,M SB’l greater than 10 or lower than 0.1, i.e., for a big
respectively, between the first and the second band, betweelifference in spontaneous magnetizations. Most of the usual
the second and the third band, between the fourth and thierromagnetic materialé (Fe, Co, Ni, Gd, EuO, Permallpy
fifth band, and between the fifth and the sixth band. Théhave spontaneous magnetizations of the same order of mag-
widths of the first two gaps are of the order of 2 and 4nitude (from 0.5x1C° to 2x10° Am™?).
reduced units, respectively, which correspond to frequencies From these results, one can think that the existence of
of the order of 5.5 and 11 GHz. large gaps in the magnon band structure of square arrays of
Figure 3 shows the magnon band structure in the inverséerromagnetic cylinders embedded in a ferromagnetic back-
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FIG. 6. The same as in Fig. 2 far=250 A. FIG. 7. The same as in Fig. 2 far=500 A.

ground is associated with a very strong exchange contrastespectively. Comparing Figs. 2, 6, and 7, one observes that
The choice of an inclusion component of greater exchangéhe bottom of the first bandl” point) still appears at, ap-
constant than the matrix is more favorable for the opening oproximately, the same reduced frequeri€y~4.9). On the
gaps in the magnon band structure. In Co and Permalloy, thether hand, the first gap widifas well as its location on the
exchange constants are of the same order of magnitudeequency scaledecreases with increasing lattice parameter.
whereas the Fe exchange constant is twenty-one timeégloreover, on Figs. 6 and 7, the gaps of upper frequency
greater than the one of EuO. One can also notice that thédomains(see Fig. 2 are very narrow and some have disap-
necessity of a strong contrast between the physical paranpeared.
eters of the inclusions and the matrix has already been ob- The opening of gaps in the magnon band structure of
served in our previous work on elastic walesand periodic square arrays of ferromagnetic cylinders embedded
electrons® in a ferromagnetic matrix appears to be favored for arrays of
We also studied the influence of the inclusion filling frac- jow lattice parametefa~100 A). One can notice that for
tion on the magnon band structure of two-dimensional perif =0.5 anda=100 A, the radius of the cylinders R=40 A.
odic ferromagnetic systems. In Fig. 5, the widths of the firstThjs value corresponds approximately to the lower limit of
three gaps in the magnon band structure of the square arrgiye radius of the Co and Cu cylinders manufactured
of Fe cylinders in an EuO background are given as a functiorxperimentally:**°
of the inclusion filling fractionf for a=100 A. We note the
opening of gaps over a large range of the filling fraction,

namely, 0.15:f<0.75. The maximum gap width is obtained IV. CONCLUSIONS
for f=0.65. However, only two gaps appear for this value of '
f. The purpose of this paper was to investigate theoretically

We also investigated the effect of the lattice parameter oithe existence of band gaps in the magnon band structures of
the magnon band structures. First of all, one can notice, lookiwo-dimensional composite systems composed of periodic
ing at the equations of motiofEgs. (16)], that the reduced arrays of infinite ferromagnetic cylinders embedded in a fer-
frequency() depends on exchange terms and dipolar interromagnetic matrix. For the periodic systems, (Eglinders/
actions terms, exchange terms being multiplied by the factoEuO (matrix) and EuO(cylinders/Fe (matrix), we obtained
(2m/a)?. As a result, for very lova, the magnon frequencies absolute band gaps for which the spin wave propagation in
are not affected by the dipolar interactions. In contrast, fordirections perpendicular to the cylinders axis is forbidden.
very largea, the first few magnon bands presented in ourWe have found that the gaps widths are in the range of 2—11
illustrations are strongly affected by the dipolar interactions.GHz, which is well above the experimentally available fre-
In Figs. 6 and 7, the magnon band structures for the squarguency resolution!*® The influence of the inclusion filling
array of Fe cylinders in a EuO matrix are plotted for two fraction and the effect of the lattice parameter on the band
different values of the lattice parametar=250 and 500 A, structure were also studied. The existence of a strong con-



54

MAGNON BAND STRUCTURE

trast between the exchange constants of the inclusions and
the matrix appears to be a necessary condition to obtain gaps
in the magnon band structure of ferromagnetic composite,
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