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Anomalous exponent in the kinetics of grain growth with anisotropic interfacial energy
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Centre National de la Recherche Scientifique No. 801, UWét&ormation et de Recherche de Physique, Univedsit&ille 1,
59655 Villeneuve d’Ascq @ex, France
(Received 2 May 1996; revised manuscript received 24 Septembej 1996

The effect of grain-boundary orientational anisotropy on growth kinetics is examined within the context of
stochastic theories of grain growth. Grain growth is characterized by power laws of thetyfiewherel is
some linear dimension measuring grain size aglthe time. In the case of normal grain growth the growth
exponent is 0.5. It is shown that grain-boundary anisotropy leads to a slower growth kinetics with an anoma-
lous exponent of 0.25 in agreement wifhstate Potts models of grain grow{{$0163-182@07)01202-2

[. INTRODUCTION The growth exponent in the anisotropic model is found to
take the reduced value of 0.25, in good agreement with com-
Stochastic theories of grain growth are emerging as usefiuter simulations ofQ-state Potts models of growf. in
approaches in treating the phenomenon of grain growth as %geping with standard nomenclature from diffusi6rthis
geometrically complex dynamic proces€.in some of these slower growth process is called anomalous grain growth in

models3~® the grain growth process possesses a determinigontrast to normal grain growth. Anomalous grain growth

tic drift component and a stochastic component. Graindescrlbed in the present paper, like normal grain growth,

th is then described b Fokker-Planck continuit involves a collective evolution of all the grains in the micro-
growth 1S then described by a FOKKer-Flanck CONtNUY gy ,qyre 1t is not to be confused with abnormal grain growth
equation dealing with the grain-size distribution and its evo

S . - , “(although unfortunately sometimes qualified of anomalous
lution in time. In this type of equation, the drift component here 3 single large grain in a microstructure of compara-
arises from curvature effects which causes small grains tQvely small grains grows by consuming its neighbHrd?

shrink and large grains to groWThe physical meaning of Finally, the conclusions drawn from this work as well as

the diffusionlike random term, however, is not completely ftyre improvements of the model are reported in Sec. IV.
established. The stochastic nature of the process may be in-

terpreted on the basis of local statistical variations of envi- Il. ONE-DIMENSIONAL STOCHASTIC MODEL
ronment in the polycrystal since individual grains may OF ISOTROPIC GRAIN GROWTH

evolve differently from the purely deterministic behavior de- ) ) ] )
pending on the characteristics of the surrounding griifis. W€ make the assumption that two-dimensional grain

An alternative interpretation of the random term is put for-9rowth can be modeled via a one-dimensional stochastic
ward in stochastic theories in which the drift term is omitted, eauation of the form:

that is, theories where grain growth is described as a random IP(x,t) 2

walk in grain-size time space? There, the stochastic term = —[AP(x,1)], (D)
results from the random motion of grain boundaries and pro- at X
vides the only mechanism for grain growth. where P(x,t) is a distribution of grains with some linear

Stochastic theories predictions nonetheless are consistedimensionx at timet. A is a rate factor independent &.
with experimental observations of normal grain growth. InEquation (1) is subjected to the boundary condition that
particular, these theories predict power growth laws where grains are destroyed at=0, that isP(x=0,t)=0. In this
single length scalk (a linear measure of the growing grains model, although the evolution of the grain size is stochastic,
evolves with time ad(t) ~t* with «=0.5. Stochastic theo- the microstructure exhibits at a statistical level a more regu-
ries of grain growth can also predict growth exponentslar and well defined behavior corresponding to a diffusion-
smaller than 0.5 providedd-hoc modifications such as time like evolution. In a large population of grains, the number of
(or grain-size dependent diffusion coefficients are grains with linear dimension between-dx/2 andx+ dx/2
introduced-%6 at timet, is given byP(x,t)dx. Any change in this popula-

In this paper we consider the effect of grain-boundarytion due to the random evolution of grain size arises from
anisotropy on the kinetics of grain growth. For this we treatfluxes from neighboring regions of the distribution. The con-
the case of two-dimensional growth within the context oftinuity equation(1) assumes that these fluxes depend on the
stochastic theories of grain growth. population from which they arise.

In Sec. Il, we introduce and solve a discrete one- Louat! Chen? and Pand® claim that studying grain
dimensional stochastic equation with absorbing boundargrowth in two or three dimensions with a one-dimensional
conditions as grain size decreases to zero. This equation regiffusionlike equation is equivalent to monitoring grain size
resents normal grain growth with isotropic interfacial energy by a linear intercept method. Under this hypotheBig,t),

The extension of the stochastic model to modeling grairmeasures the number of grains with linear dimengjas
growth in anisotropic polycrystals is presented in Sec. lll.opposed to grain sizex intercepted by a straight line on a

0163-1829/97/54)/2057)/$10.00 55 205 © 1997 The American Physical Society
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micrograph. It should be noted that the intercept length dis- ﬁp. D=—1, (6)
tribution, P(x,t) may not have necessarily the same func- -

tional form as of the grain-size distribution in two or three wherel is the unit matrix.

dimensions. To stress this difference, Thorvaldsemsiders The preceding equation shows that witté @nitial condi-

a thought experiment with a material where growth is drivention, the Laplace transform of the distributigh is the
solely by size difference. The grain-size distribution of aGreen’s functionD associated with the operatbt, . Using
three-dimensional microstructure where all the grains havéhe isomorphism between E() and the equation of motion
identical sizes is given by afunction indicating no growth.  of an infinite harmonic chaifr, one obtains solutions to Eq.
In contrast, the intercept method will give a distribution of (6) in the form
intercept lengths showing a range of “grain siz&sthich

indicates growth. One may argue, however, that repeating D -
the intercept measurement at different times during some an- nm
nealing period will show no evolution in the intercept length
distribution, proving that there is no growth.

Since experimental grain-size measurements are com- _ Iy
monly based on the intercept procedtité?we will focus on T=EmVel (7b)
the calculation of the mean linear intercept length to provideyith
information on the growth kinetics. In the case of isotropic
grain growth where the microstructure is homogeneous, the 1)
time evolution of the intercept length distribution will pro- =1+ 50 (70
vide unambiguous information on the growth kinetics, and in
particular, on how grain linear dimensiofreeasured by the Solution(7) does not satisfy the absorbing boundary condi-
intercept lengthmay scale with time during the growth pro- tion, D,,_q»=0. Such a solution is given by
cess.

Equation(1) may not represent thoroughly the phenom- D —_ i
enon of grain growth as it does not include a drift term, but nmeowl o 2—-1 ?-1
it will serve as a prototypical equation for investigating the o )
effect of spatial variations in grain-boundary properties onwhere 7 has the same definition as in EZb) and n,m
the kinetics laws due to the random term in stochastic theo=0:1,2... .

1 7_\n—m|-¢—l

W1 (79

where the quantity- is defined as

7_|nfm\+1 Armtl

®

ries of grain growth. To recover the Green’s function as a function of titnee
Under the assumption that is independent ok andt, ~ Perform aninverse Laplace transform on Eg). After trans-
and upon discretization of space, Efj) becomes formation, one obtains the solution of E@) satisfying the
boundary conditionDy,(t)=0, and the initial condition
dP,(t) Pn(t=0)= 6, n in the form
G = WP (D =2P()+Pra(D], ()

Dom(t) =€ 2" {10 m(2WO =l (nsm) (W], (9)

wheren (n=0,=1*2,..) denotes sites on a lattic,(t) is wherel , is the modified Bessel function of order

the number of grains with linear dimension equaina at For convenience, we modify the initial condition to be

timet (a being the mesh size in spack/=A/a“, stands for P.(t=0)=No3, where N, is the total number of grains

the nearest-neighbor transfer rate taken to be the same o : . ;
each lattice site. intercepted by some straight line. The length of that straight

Laplace transformindLT) Eq. (2), reduces the differen- line is therefqreLO:Noa. This initial con(_jmon may corre-
tial equation to the simpler form: spond to a microstructure where a_II_the mtt_erceptllengt_hs are
' the same. Although somewhat artificial, this choice will af-
~ = ~ _ fect the short-time evolution of the distribution of linear di-
WPn-1 = (2WH @)Pn +WPh 1= = Pn(t=0) ©) mensions but will not have any influence on the asymptotic
with long-time limit. The distributionP,(t), is obtained as

=~ * No2n —2Wt
Pn(w):LT(Pn(t)):L P,(t)e “dt. (4) Pa(1)=NoDn () =Z5pre T 1a(2WY (10

for n=1,2,... andPy(t)=0.
To verify that the distribution given by Eq10) conserves
ﬁp_ P=—P(t=0), (5) length, one calculates

A more compact form of Eq(3) is given by

Ng2a
2Wt

whereH,, is a tridiagonal infinite square matrix afitdis an
infinite vector.

The solution to Eq(5) must be consistent with the initial
condition of an arbitrary distribution. We consider the initial Using the recursive properties of Bessel functions, one
conditionP,(t=0)= 8, ,, wheredis the Kronecker symbol. shows that Eq(11) givesL=Nja. This is the initial length
With this condition, Eq.(5) can be written in condensed of the straight line used to measure the intercept length dis-
form as tribution. Summing the distributiorR,,(t), over all then’s

L= naP,(t)= e 2V n2| (2w, (12)
n=0 n=1
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N(t)=Noe™ 2" [1o(2W1t)+1,(2W1)]. (12) ‘ ‘
In order to extract a scaling law for linear dimension as a
function of time, we first consider the asymptotic behavior of
Eqg. (12) whent—. For large values of the argument,the
modified Bessel function,(x) behaves asymptotically as
e*/y2mx, leading to the long-time limit foN(t): ‘
N(t)~N \/I—rlfz (13
OV 7w '
Since in the case of an isotropic system, the mean intercept

length, =Ly /N(t) represents some linear dimension char-
acteristic of grain size, we conclude that grain size should
scale asl=t%5 This is the well-known result of parabolic

grain growth in isotropic media.

gives the total number of grains intercepted by a straight line
of lengthLy,N(t). It is straightforward to show that

IIl. ANISOTROPIC GRAIN GROWTH FIG. 1. Schematic representation of a cluster of grains separated

. . . o by low-angle grain boundarieghin lines surrounded by grains

When anisotropy of grain boundaries becomes significant ming high-angle grain boundariéthick lines. For the sake of
the physical representation of a polycrystal should deal no§jmpiicity we have drawn all the grains as idealized six-sided grains
only with grain configuration but also with grain orienta- of the same size. The grains B and C possess at least one high-angle
tions. In stochastic theories of isotropic grain growth, vari-grain boundary and belong, therefore to the cias®. The grain
ability in spatial configuration of grain boundaries may belabeledA is embedded within the cluster; it belongs to a clagD.
accounted for by the random term. The task at hand is t@The value ofy is determined by the distance #f to the closest
incorporate the effect of a spatial distribution of grain orien-highly misoriented grain.
tation in the statistical model of grain growth. There are

theoretical and experimental indications that anisotropic miteptible to grow or to shrink. A grain belonging to a class
crostructures contain clusteer extended regionscom- (x,y#0), cannot change in size as it is embedded within
posed of grains separated by grain boundaries belonging yme cluster of grains separated by low-angle grain bound-
the same category.e., low-angle or special grain boundaries gries. To grow or shrink, it has to enter the clazsy&0).

for instance.**~**In this paper, we will limit our discussion For this it may start atx,y) with y decreasing over time

to a binary classification of grain boundaries: low-anglepecause of some highly misoriented grain in the microstruc-
grain boundaries with low energies and high-angle grainyre growing and absorbing its neighbors. As the boundary
boundaries with high energies. Other classifications such gsf the growing grain approaches, the grain of interest be-
low-angle, special and high-angle general grain boundariegomes susceptible of evolution toward the clgss0. For
may be used as well. During the grain growth process, lowyrains to change classes, there exist possible physical mecha-
energy grain boundaries separating grains of small misoriernisms involving topological changé$.These topological
tation will evolve at rates which are small compared to tha‘changes may include vanishing of a neighboring grain or
of high-angle grain boundaries. Clusters of grains separategoundary switching which may lead to a modification of the
by low-angle grain boundaries will survive until some neigh-syrrounding such that the grain of interest now shares a high-
boring grain with a different crystallographic orientation angle grain boundary with some other grain.

grows to that siz€.The survival of clusters of small grains — within the context of a stochastic model of grain growth,
will lead to broader grain-size distributions and a slowerye \write

grain growth kinetic$.
To account for the spatial variability in grain orientation, 5
we introduce an additional degree of freedom or state vari- IP(xy=01) =A(9 P(x,y=01) (14)
abley, in the form of the distance between some grain of ot ax® '
interest and the nearest grain with high-angle misorientation

with respect to the former. This additional degree of freedomrhis equation is equivalent to E€L) but its action is limited
supplements the grain linear dimensiontercept lengthX  to grains in the classx(y=0). Since evolution in the degree
used in the isotropic case. We can now divide the grains intgy freedomy results from grain growth of some other highly
classes,X,y), of grains with linear dimensior and with the  mjsoriented grain, we argue that this evolution is controlled
nearest highly misoriented grain at a distaycesee Fig. 1 by normal grain growth, that is, it is stochastic with the same

Let P(x,y,t) be the number of grains in class,¢) attimet.  rate factorA. We propose the equation
With this, P(x,y=0;) represents the number of grains at

time t with intercept lengthx sharing a high-angle grain )
boundary with some neighboring grain. Only those grains IP(x,y,t) :Aa P(x.y,1) (15
delimited by at least one high-angle grain boundary are sus- ot ay? '
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Equations(14) and (15) constitute the basis for a stochastic
model of anisotropic grain growth. Upon discretization, these
equations become

dPy(t)
S = WIP,1(D) = 2Py(0)+ Py a(D)]
+WH[Py 1() = Pp(t)] (16) 5
and 4
3
dPn,n’(t)_
T_W[Pn,n'—l(t)_zpn,n’(t)+Pn,n'+1(t)]a 2
if n'=2 17) n'=1
dPy (1) =0 1 2 3 4 5 & 7 8

T:W*[Pn(t)_Pn,n’(t)] ] ) ) )
FIG. 2. Discrete phase space for anisotropic grain growth. The
: ’_ horizontal semi-infinite line is called the backb 0,1,2...:).
~ WP (0= Pnpr 2D, F n"=1. The vertical semi-infinite lines are thgmiide : brar)u:hes
Here, P(t) and P, ,/(t) stand for the discretized forms of (n"=1,2,3,..%). This space contains an absorbing boundary condi-
P(x,y=0;) and P(x,y,t), respectively. The discrete vari- tion atn=0.
ablesn andn’ substitute for the continuous variablesand
y. The discretization is done with the same mesh aias in This set of equations models a random walk on a two-
Sec. Il, this for the two variables andy, as they both have gimensjonal phase space constructed by attaching to every
unit of length. We have inserted into Eq4.6) and (17),  sjte in a one-dimensional discrete space of grain’s intercept
fluxes with a transfer rat&/* to ensure the continuity con- length(called thereon the backbore discrete side branch of
dition: distances between highly misoriented grains. It is important
to note that the side branches are not linked to each other
because grains in a clas®,0’) cannot grow to a class
(n+1,n"). Growth is only allowed along the backbone.
In Fig. 2, we illustrate the discrete phase space used as

basis for modeling grain growth with anisotropy. Positions

These fluxes may be related to the mechanisms which alloy,nq the hackbone are labeled with unprimed indices. These
passage from one grain class to another as, for instance, tﬂhprimed indices will also be used to label every side

pologlca_l changes. In general, the transfer rate for thes ranch. Positions along the side branch are referenced with a
mechanisms does not bear any resemblance to the transier.

rate for grain growth. However, since the main objective of[[j.”mte df'mgfr)]( vg-r ytlng lietwsientl an;jplt IS ?OV\./ Otl:: objec-
this section is to extract an asymptotic kinetics law for an- Ivé to ind the distributionss '?( ) an . ”:”’( ), in the com-
plex networked space of Fig. 2. Similarly to Sec. Il, we

isotropic grain growth, the relative magnitude \&f com- . .
pared tow is unimportant, as it is spatially limited to regions J@place transform Eq€19) and (20) and seek solutions in
in phase space whege—0. We therefore simplify the set of the form of the Green'’s functiod in the networked phase

Egs. (16) and (17) by choosingW* =W. Under this condi- SPace of Fig. 2. For this we employ the methods of the in-
tion the discretized stochastic equations reduce to terface response theofy??which allows the construction of

the Green'’s function of a composite system in terms of the
Green’s functions of its constitutive elements. The math-
dP,(t) ematical procedure we follow thereon begins with the con-
=W[P,_1(t)=2P,(t) + P, 1(1)] struction of the Green’s function of an infinite linear lattice.
dt This lattice is divided in periodic unit cells of lengthand
+W[P, (1) =P, (1)] (199  the Green's function is expressed in Fourier space. A semi-
' infinite linear lattice(side branchis then grafted onto a unit
and cell to obtain the Fourier transform of the distribution of an
infinite backbone lattice with side branches coupled at every
site along the backbone. An absorbing boundary condition at
dP, (1) site 0 along the backbone is then imposed on the inverse
—dt - WMIPnn-1()=2Pn pr (1) + Prpria(D)] Fourier transform of that latter function. This mathematical
procedure leads to the real-space Green’s functions satisfy-
+ 8nr AW[PL(1)—Pp o —1(1)]. (200 ing the absorbing boundary conditionrat 0:

lim P(x,y,t)=P(x,y=0,). (18
y—0
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1 7_/\n—m|+1 F/nEmE1 _ 1
dn,m:_W/ 2—1 21 )" (219 L_’Noaz- (27)
The inverse Laplace transform of EQ7) is independent of
N in=m+1  _rnemel time, showing that the total length of the intercepting straight
do = T_( T _T ) (21b line used to measure the intercept length distribution is con-
n,m,n Wl 72-1  72-1)" versed by Eqgs(21a and (21b).

L ) We now determine the total number of grain$(w)
wherer has the same definition as before afds given by \yithin the straight line length. It is calculated by summing
7' =§'—§'°~1 with £’ =¢—(r—1)/2. Itis worthy pointing  Eqgs. (218 and (21b over the backbone and the side
out again that the indices and m stand for sites on the pranches. We write
infinite backbone and that the primed indek relates to a

site in the side branch attached to the backbone ansite © %
Let us now impose the initial condition of @distribution N=Ng! > > P, +> P,
atm=1 with N, intercepted grains. Under this initial condi- n=1n'= ©on=1
tion, the Laplace transform of the distributionB,, and - -
! N !

Pn.n, are expressed as :WonEl r’“( E . +1J. 29)

~ = n'=1

Pn:dn,la

(220  Calculating the sums explicitly, one finds
P r=d ’.

n,n n,1,n _ No 1 -
We can now calculate the Laplace transform of the total N= Wil-r1-7" (29)
linear dimensior_ (w) from _

The asymptotic behavior dfi(w) whenw—0 is
L=Noi >, > naP, , + > naP,|. (23 N— NgW~ 4, —34 (30)
n=0 n'=1 n=0 0

In contrast to Sec. Il, the summations are taken over th(\éVh'Ch inverse Laplace transform gives
entire networked space. After insertion of Eqg21g and
21b), Eqg. (23) becomes
(210, Eq. (23 N(t)— Ng(Wt)~ ¥+ when t—oe. (31

N[ - - This result can be compared directly against the isotropic
=_No n n’ n case indicating a slower growth when anisotropy in grain-
L W|nEo nar E T +nZo nar ] (24) boundary energy due to grain misorientation is accounted

for. A question regarding the estimation of the growth law in
Sincerand7’ are smaller than one, the different sums in Eq.terms of grain size arises. We have seen that the microstruc-

(23) converge and the total length of all grains interceptedure becomes less homogeneous as one introduces grain-
simplifies to boundary anisotropy. The microstructure may be considered

to consist of extended regions of small grajokisters sepa-

rated by low-angle grain boundaries and of larger grains
Noa 7' 1 bounded by high-angle grain boundaries. It has been sfiown,
WA 21=7 (25 however, that the grain-size distribution for anisotropic

growth is time invariant if the grain size is scaled by the

With the help of general Abelian and Tauberian theorins, Méan grain size. This observation suggests that the mean
the asymptotic behavior di(t) for time, o can be de- Jain Size, even for the less homogeneous anisotropic micro-

termined from the asymptotic behavior bfe) for w—0 structure, is a valid scaling parameter. In consequence, one

For small frequencies; and 7 can be approximated by may e"_‘p'oy the intercept methpd qnd the mean grain Im_ear
dimension as a measure of grain size to provide information

on the growth kinetics. In addition, in order for the mean
intercept length] =L/N(t), to give statistically significant
—1— \F (269  results on the grain size, one needs to employ an intercept
W which length is larger than the correlation length of the mi-
crostructure. At this larger scale, the intercept procedure
gives a satisfactory statistical measure of the mean grain lin-
)\ ear dimension.
) ' (26D Provided that is sufficiently large, we find in the case of
anisotropic grain growth that grain size as measured by the
leading to linear dimensiorl scales asymptotically as

n=1

L=
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| oct/4, (32 The growth exponent of 0.25 calculated in the present
paper is obtained with semi-infinite side branches. These
semi-infinite side branches model a system for which the
minimum distance between highly misoriented grains does
not have an upper bound. However, one may consider the
pase of microstructures constituted of clusters of grains with
small misorientation possessing a bounded size. For a cluster
with a bounded size, the distance between grains with high
misorientation is limited to some length on the order of the
mean cluster size. A stochastic model of grain growth in an
anisotropic polycrystal may then be constructed with a phase
space composed of finite-length side branches grafted onto a
ackbone. One may treat two limiting cases with finite
length side branches. Following the procedure established in
Sec. lll, we have calculated the growth exponent for a sys-
tem where the side branches possess the same constant finite
length. In that case the two-dimensional discrete lattice pos-
sesses periodicity along the backbone and we find that grain
growth is normal with a growth exponent of 0.5. The length
of the side branches causing delays in the growth should not
be constant but should more realistically increase along the
backbone as the cluster size is expected to scale with the
ean grain siz&. We have not been able yet to solve the

Equation(32) is the main result of this paper. It states that
grain growth kinetics is slowed down by anisotropy with an
anomalous growth exponent equal to 1/4.

The same anomalously low value of the growth exponen
has also been found in the dynamics of grain grévethd
ordering processin Q-state Potts models. These computer
simulations are two-dimensional Monte-Carlo simulations
with anisotropic grain-boundary energies. In the work of
Grest, Srolovitz, and Andersdnthe growth exponent is
shown to decrease with increasing degree of anisotropy to
limiting value of 0.25. The growth exponent of 0.25 is ob-
served for several forms of the interfacial energy/
misorientation angle function indicating some universality.

It is worthy noting that the grain-size distribution function
from the computer simulation of normal grain growth with a
Q-state Potts mod#& seems to be quite well represented by
a distribution proposed by LoudMore remarkably, the dis-
tribution of grain radii data determined from a cross-
sectional area of three-dimensior@tstate Potts model of
normal grain growtf? is best described by a generalization

of Louat’s distribution function. These observations SqueS%tochastic growth equation in that two-dimensional nonperi-

a close resemblance in the underlying principles of stochastiOdiC phase space. However, the fact that the mean length of
and Q-state Potts models of growth. The agreement in th‘%he side branches in that latter lattice is infiiamd not finite

value of the growth exponent of our stochastic model of ) ) .
anisotropic growth and the Monte Carlo calculations of &> for the formersuggests that grain growth in that case will

: : : also be anomalous.
fCL;]rr;sé,r Srolovitz, and Andersbsupports this assertion even The question of what happens to the anisotropic growth

exponent when the grain growth process possesses a deter-

ministic curvature-driven drift component and a stochastic
IV. CONCLUSIONS component remains partially unanswered. Experiments show
hat curvature effects are important for small grains and that
arger grains grow in a more random fashfSrn the case of
'g.otropic growth, consideration of both components give the
growth exponent of 0.5.In anisotropic microstructures, at
fixed curvature, the deterministic driving force for growth

We have presented the derivation of asymptotic kinetic
laws within the context of stochastic theories of grain

to the investigation of the effect of grain-boundary anisot-

ropy on grain growth modeled with a prototype one- . ?
dimensional continuity growth equation for the distribution Shuld vary from grain boundary to grain boundary as the

of grain linear dimensions measured with the intercepfnterfaCial energy depends on grain misorientation. At fixed

method. This equation consists of a random term only A|_misorientation, the driving force is inversely proportional to

though this equation does not include grain-boundary curvat-he grain-boundary curvature. It is worth noting that our net-

ture effects, it may serve as a means to quantify the differWOrkEd model_ of aniso'gropic growth ir_w_luc_jes an implicit r_ef-
ence in kinetics between isotropic and anisotropic grai rence fo anisotropy m_the deterr_n_lnls_tlc curvat_ure-dnven
growth. Grain growth with isotropic grain-boundary energies orce n the form of the binary classification of grain bound-

is studied through the time evolution of the distribution of aries in terms C.)f Iow-ener_gysmall—angle and .h|gh—energy
grain linear dimensions(intercept length in a one- (high-angle grain boun'danes. The construction of a phase
dimensional homogeneous space. We argue that graﬁPace composed of side branches attached to a backbone

growth with anisotropic grain-boundary energies should takéeﬂ_eCtS only implic_itl_y a spatial and a grain _si_ze variability in
place on a two-dimensional networked space composed am-bpgn(_jary_drlvmg force. A more e*"’"c“ account of ?
one-dimensional side branches attached along a on leterministic drift term, perhaps by solvmg.for_the Gre(_ens
dimensional backbone. The side branches correspond to Ynction of the Fokker-Planck growth equation in a continu-

new degree of freedom characterizing the distance betwe S tw?—_dlmensmnal net\;vork%d_space ‘tN'th slldetbrza}tp(‘ihestor
highly misoriented grains and controlling the evolution of y applying some curvature driven external potential onto

grains. Al the derived solutions for the grain distributions 2" d‘;'/'screte networked space, will be the subject of a future

obey an absorbing boundary condition at zero size and cor®
serve overall length. In the case of anisotropy we have found
that grain size, as measured by the intercept length, increases

as time at the power 0.25. This anomalous grain growth ki- P.A.D. would like to acknowledge financial support from
netics of our stochastic model is in excellent agreement withhe Laboratoire de Dynamique et Structure des Maibex
Monte Carlo simulation oQ-state Potts models of growth  Moléculaires, UFR de Physique, Universite Lille 1, where
suggesting close similarities between these two models. most of this work was done.
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