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Anomalous exponent in the kinetics of grain growth with anisotropic interfacial energy
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The effect of grain-boundary orientational anisotropy on growth kinetics is examined within the context of
stochastic theories of grain growth. Grain growth is characterized by power laws of the type,l}ta, wherel is
some linear dimension measuring grain size andt is the time. In the case of normal grain growth the growth
exponent is 0.5. It is shown that grain-boundary anisotropy leads to a slower growth kinetics with an anoma-
lous exponent of 0.25 in agreement withQ-state Potts models of grain growth.@S0163-1829~97!01202-2#
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I. INTRODUCTION

Stochastic theories of grain growth are emerging as us
approaches in treating the phenomenon of grain growth
geometrically complex dynamic process.1–6 In some of these
models,3–6 the grain growth process possesses a determ
tic drift component and a stochastic component. Gr
growth is then described by a Fokker-Planck continu
equation dealing with the grain-size distribution and its e
lution in time. In this type of equation, the drift compone
arises from curvature effects which causes small grain
shrink and large grains to grow.7 The physical meaning o
the diffusionlike random term, however, is not complete
established. The stochastic nature of the process may b
terpreted on the basis of local statistical variations of en
ronment in the polycrystal since individual grains m
evolve differently from the purely deterministic behavior d
pending on the characteristics of the surrounding grains4–6

An alternative interpretation of the random term is put fo
ward in stochastic theories in which the drift term is omitte
that is, theories where grain growth is described as a ran
walk in grain-size time space.1,2 There, the stochastic term
results from the random motion of grain boundaries and p
vides the only mechanism for grain growth.

Stochastic theories predictions nonetheless are consi
with experimental observations of normal grain growth.
particular, these theories predict power growth laws whe
single length scalel ~a linear measure of the growing grain!
evolves with time asl (t);ta with a50.5. Stochastic theo
ries of grain growth can also predict growth expone
smaller than 0.5 providedad-hocmodifications such as time
~or grain-size! dependent diffusion coefficients ar
introduced.1,2,6

In this paper we consider the effect of grain-bounda
anisotropy on the kinetics of grain growth. For this we tre
the case of two-dimensional growth within the context
stochastic theories of grain growth.

In Sec. II, we introduce and solve a discrete on
dimensional stochastic equation with absorbing bound
conditions as grain size decreases to zero. This equation
resents normal grain growth with isotropic interfacial ener

The extension of the stochastic model to modeling gr
growth in anisotropic polycrystals is presented in Sec.
550163-1829/97/55~1!/205~7!/$10.00
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The growth exponent in the anisotropic model is found
take the reduced value of 0.25, in good agreement with c
puter simulations ofQ-state Potts models of growth.8,9 In
keeping with standard nomenclature from diffusion,10 this
slower growth process is called anomalous grain growth
contrast to normal grain growth. Anomalous grain grow
described in the present paper, like normal grain grow
involves a collective evolution of all the grains in the micr
structure. It is not to be confused with abnormal grain grow
~although unfortunately sometimes qualified of anomalo!
where a single large grain in a microstructure of compa
tively small grains grows by consuming its neighbors.11,12

Finally, the conclusions drawn from this work as well
future improvements of the model are reported in Sec. IV

II. ONE-DIMENSIONAL STOCHASTIC MODEL
OF ISOTROPIC GRAIN GROWTH

We make the assumption that two-dimensional gr
growth can be modeled via a one-dimensional stocha
equation of the form:

]P~x,t !

]t
5

]2

]x2
@AP~x,t !#, ~1!

where P(x,t) is a distribution of grains with some linea
dimensionx at time t. A is a rate factor independent ofP.
Equation ~1! is subjected to the boundary condition th
grains are destroyed atx50, that isP(x50,t)50. In this
model, although the evolution of the grain size is stochas
the microstructure exhibits at a statistical level a more re
lar and well defined behavior corresponding to a diffusio
like evolution. In a large population of grains, the number
grains with linear dimension betweenx2dx/2 andx1dx/2
at time t, is given byP(x,t)dx. Any change in this popula-
tion due to the random evolution of grain size arises fro
fluxes from neighboring regions of the distribution. The co
tinuity equation~1! assumes that these fluxes depend on
population from which they arise.

Louat,1 Chen,2 and Pande6 claim that studying grain
growth in two or three dimensions with a one-dimension
diffusionlike equation is equivalent to monitoring grain si
by a linear intercept method. Under this hypothesis,P(x,t),
measures the number of grains with linear dimension~as
opposed to grain size! x intercepted by a straight line on
205 © 1997 The American Physical Society
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micrograph. It should be noted that the intercept length d
tribution, P(x,t) may not have necessarily the same fun
tional form as of the grain-size distribution in two or thre
dimensions. To stress this difference, Thorvaldsen3 considers
a thought experiment with a material where growth is driv
solely by size difference. The grain-size distribution of
three-dimensional microstructure where all the grains h
identical sizes is given by ad function indicating no growth.
In contrast, the intercept method will give a distribution
intercept lengths showing a range of ‘‘grain sizes’’3 which
indicates growth. One may argue, however, that repea
the intercept measurement at different times during some
nealing period will show no evolution in the intercept leng
distribution, proving that there is no growth.

Since experimental grain-size measurements are c
monly based on the intercept procedure,13,14we will focus on
the calculation of the mean linear intercept length to prov
information on the growth kinetics. In the case of isotrop
grain growth where the microstructure is homogeneous,
time evolution of the intercept length distribution will pro
vide unambiguous information on the growth kinetics, and
particular, on how grain linear dimensions~measured by the
intercept length! may scale with time during the growth pro
cess.

Equation~1! may not represent thoroughly the pheno
enon of grain growth as it does not include a drift term, b
it will serve as a prototypical equation for investigating t
effect of spatial variations in grain-boundary properties
the kinetics laws due to the random term in stochastic th
ries of grain growth.

Under the assumption thatA is independent ofx and t,
and upon discretization of space, Eq.~1! becomes

dPn~ t !

dt
5W@Pn21~ t !22Pn~ t !1Pn11~ t !#, ~2!

wheren ~n50,61,62,...! denotes sites on a lattice,Pn(t) is
the number of grains with linear dimension equal tona at
time t ~a being the mesh size in space!.W5A/a2, stands for
the nearest-neighbor transfer rate taken to be the sam
each lattice site.

Laplace transforming~LT! Eq. ~2!, reduces the differen
tial equation to the simpler form:

WP̃n212~2W1v!P̃n1WP̃n1152Pn~ t50! ~3!

with

P̃n~v!5LT„Pn~ t !…5E
0

`

Pn~ t !e
2vtdt. ~4!

A more compact form of Eq.~3! is given by

HJ p•P̃52P~ t50!, ~5!

whereHJ p is a tridiagonal infinite square matrix andP is an
infinite vector.

The solution to Eq.~5! must be consistent with the initia
condition of an arbitrary distribution. We consider the initi
conditionPn(t50)5dn,m whered is the Kronecker symbol
With this condition, Eq.~5! can be written in condense
form as
-
-

n

e

g
n-

-

e

e

n

-
t

n
o-

on

HJ p•DJ52IJ, ~6!

whereIJ is the unit matrix.
The preceding equation shows that with ad initial condi-

tion, the Laplace transform of the distributionP is the
Green’s functionDJ associated with the operatorHJ p . Using
the isomorphism between Eq.~3! and the equation of motion
of an infinite harmonic chain,15 one obtains solutions to Eq
~6! in the form

Dn,m52
1

W

t un2mu11

t221
, ~7a!

where the quantityt is defined as

t5j2Aj221 ~7b!

with

j511
v

2W
. ~7c!

Solution ~7! does not satisfy the absorbing boundary con
tion, Dn50,m50. Such a solution is given by

Dn,m52
1

W S t un2mu11

t221
2

tn1m11

t221 D , ~8!

where t has the same definition as in Eq.~7b! and n,m
50,1,2,... .

To recover the Green’s function as a function of timet we
perform an inverse Laplace transform on Eq.~8!. After trans-
formation, one obtains the solution of Eq.~6! satisfying the
boundary conditionD0,m(t)50, and the initial condition
Pn(t50)5dn,m in the form

Dn,m~ t !5e22Wt@ I un2mu~2Wt!2I ~n1m!~2Wt!#, ~9!

whereI y is the modified Bessel function of ordery.
For convenience, we modify the initial condition to b

Pn(t50)5N0dn,1 whereN0 is the total number of grains
intercepted by some straight line. The length of that strai
line is thereforeL05N0a. This initial condition may corre-
spond to a microstructure where all the intercept lengths
the same. Although somewhat artificial, this choice will a
fect the short-time evolution of the distribution of linear d
mensions but will not have any influence on the asympto
long-time limit. The distribution,Pn(t), is obtained as

Pn~ t !5N0Dn,1~ t !5
N02n

2Wt
e22WtI n~2Wt! ~10!

for n51,2,... andP0(t)50.
To verify that the distribution given by Eq.~10! conserves

length, one calculates

L̄5 (
n50

`

naPn~ t !5
N02a

2Wt
e22Wt(

n51

`

n2I n~2Wt!. ~11!

Using the recursive properties of Bessel functions, o
shows that Eq.~11! gives L̄5N0a. This is the initial length
of the straight line used to measure the intercept length
tribution. Summing the distribution,Pn(t), over all then’s
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55 207ANOMALOUS EXPONENT IN THE KINETICS OF GRAIN . . .
gives the total number of grains intercepted by a straight
of lengthL0 ,N(t). It is straightforward to show that

N~ t !5N0e
22Wt@ I 0~2Wt!1I 1~2Wt!#. ~12!

In order to extract a scaling law for linear dimension as
function of time, we first consider the asymptotic behavior
Eq. ~12! whent→`. For large values of the argument,x, the
modified Bessel functionI n(x) behaves asymptotically a
ex/A2px, leading to the long-time limit forN(t):

N~ t !'N0A l

pW
t21/2. ~13!

Since in the case of an isotropic system, the mean inter
length, l5L0 /N(t) represents some linear dimension ch
acteristic of grain size, we conclude that grain size sho
scale asl}t0.5.This is the well-known result of paraboli
grain growth in isotropic media.

III. ANISOTROPIC GRAIN GROWTH

When anisotropy of grain boundaries becomes signific
the physical representation of a polycrystal should deal
only with grain configuration but also with grain orient
tions. In stochastic theories of isotropic grain growth, va
ability in spatial configuration of grain boundaries may
accounted for by the random term. The task at hand is
incorporate the effect of a spatial distribution of grain orie
tation in the statistical model of grain growth. There a
theoretical and experimental indications that anisotropic
crostructures contain clusters~or extended regions! com-
posed of grains separated by grain boundaries belongin
the same category~i.e., low-angle or special grain boundarie
for instance!.16–19 In this paper, we will limit our discussion
to a binary classification of grain boundaries: low-ang
grain boundaries with low energies and high-angle gr
boundaries with high energies. Other classifications suc
low-angle, special and high-angle general grain bounda
may be used as well. During the grain growth process, lo
energy grain boundaries separating grains of small misor
tation will evolve at rates which are small compared to t
of high-angle grain boundaries. Clusters of grains separ
by low-angle grain boundaries will survive until some neig
boring grain with a different crystallographic orientatio
grows to that size.8 The survival of clusters of small grain
will lead to broader grain-size distributions and a slow
grain growth kinetics.8

To account for the spatial variability in grain orientatio
we introduce an additional degree of freedom or state v
able y, in the form of the distance between some grain
interest and the nearest grain with high-angle misorienta
with respect to the former. This additional degree of freed
supplements the grain linear dimension~intercept length! x
used in the isotropic case. We can now divide the grains
classes, (x,y), of grains with linear dimensionx and with the
nearest highly misoriented grain at a distancey ~see Fig. 1!.
Let P(x,y,t) be the number of grains in class (x,y) at timet.
With this, P(x,y50,t) represents the number of grains
time t with intercept lengthx sharing a high-angle grain
boundary with some neighboring grain. Only those gra
delimited by at least one high-angle grain boundary are s
e
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ceptible to grow or to shrink. A grain belonging to a cla
(x,yÞ0), cannot change in size as it is embedded wit
some cluster of grains separated by low-angle grain bou
aries. To grow or shrink, it has to enter the class (x,y50).
For this it may start at (x,y) with y decreasing over time
because of some highly misoriented grain in the microstr
ture growing and absorbing its neighbors. As the bound
of the growing grain approaches, the grain of interest
comes susceptible of evolution toward the classy50. For
grains to change classes, there exist possible physical me
nisms involving topological changes.20 These topological
changes may include vanishing of a neighboring grain
boundary switching which may lead to a modification of t
surrounding such that the grain of interest now shares a h
angle grain boundary with some other grain.

Within the context of a stochastic model of grain growt
we write

]P~x,y50,t !

]t
5A

]2P~x,y50,t !

]x2
. ~14!

This equation is equivalent to Eq.~1! but its action is limited
to grains in the class (x,y50). Since evolution in the degre
of freedomy results from grain growth of some other high
misoriented grain, we argue that this evolution is control
by normal grain growth, that is, it is stochastic with the sa
rate factorA. We propose the equation

]P~x,y,t !

]t
5A

]2P~x,y,t !

]y2
. ~15!

FIG. 1. Schematic representation of a cluster of grains separ
by low-angle grain boundaries~thin lines! surrounded by grains
forming high-angle grain boundaries~thick lines!. For the sake of
simplicity we have drawn all the grains as idealized six-sided gra
of the same size. The grains B and C possess at least one high-
grain boundary and belong, therefore to the classy50. The grain
labeledA is embedded within the cluster; it belongs to a classyÞ0.
The value ofy is determined by the distance ofA to the closest
highly misoriented grain.
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208 55P. A. DEYMIER, J. O. VASSEUR, AND L. DOBRZYNSKI
Equations~14! and ~15! constitute the basis for a stochas
model of anisotropic grain growth. Upon discretization, the
equations become

dPn~ t !

dt
5W@Pn21~ t !22Pn~ t !1Pn11~ t !#

1W* @Pn,1~ t !2Pn~ t !# ~16!

and

dPn,n8~ t !

dt
5W@Pn,n821~ t !22Pn,n8~ t !1Pn,n811~ t !#,

if n8>2 ~17!

dPn,n8~ t !

dt
5W* @Pn~ t !2Pn,n8~ t !#

2W@Pn,n8~ t !2Pn,n811~ t !#, if n851.

Here,Pn(t) andPn,n8(t) stand for the discretized forms o
P(x,y50,t) and P(x,y,t), respectively. The discrete var
ablesn andn8 substitute for the continuous variablesx and
y. The discretization is done with the same mesh sizea as in
Sec. II, this for the two variablesx andy, as they both have
unit of length. We have inserted into Eqs.~16! and ~17!,
fluxes with a transfer rateW* to ensure the continuity con
dition:

lim
y→0

P~x,y,t !5P~x,y50,t !. ~18!

These fluxes may be related to the mechanisms which a
passage from one grain class to another as, for instance
pological changes. In general, the transfer rate for th
mechanisms does not bear any resemblance to the tra
rate for grain growth. However, since the main objective
this section is to extract an asymptotic kinetics law for a
isotropic grain growth, the relative magnitude ofW* com-
pared toW is unimportant, as it is spatially limited to region
in phase space wherey→0. We therefore simplify the set o
Eqs. ~16! and ~17! by choosingW*5W. Under this condi-
tion the discretized stochastic equations reduce to

dPn~ t !

dt
5W@Pn21~ t !22Pn~ t !1Pn11~ t !#

1W@Pn,1~ t !2Pn~ t !# ~19!

and

dPn,n8~ t !

dt
5W@Pn,n821~ t !22Pn,n8~ t !1Pn,n811~ t !#

1dn8,1W@Pn~ t !2Pn,n821~ t !#. ~20!
e

w
to-
e
fer
f
-

This set of equations models a random walk on a tw
dimensional phase space constructed by attaching to e
site in a one-dimensional discrete space of grain’s interc
length~called thereon the backbone! a discrete side branch o
distances between highly misoriented grains. It is import
to note that the side branches are not linked to each o
because grains in a class (n,n8) cannot grow to a class
(n11,n8). Growth is only allowed along the backbone.

In Fig. 2, we illustrate the discrete phase space used
basis for modeling grain growth with anisotropy. Positio
along the backbone are labeled with unprimed indices. Th
unprimed indices will also be used to label every si
branch. Positions along the side branch are referenced w
primed index varying between 1 and̀. It is now our objec-
tive to find the distributions,Pn(t) andPn,n8(t), in the com-
plex networked space of Fig. 2. Similarly to Sec. II, w
Laplace transform Eqs.~19! and ~20! and seek solutions in
the form of the Green’s functiondJ in the networked phase
space of Fig. 2. For this we employ the methods of the
terface response theory,21,22which allows the construction o
the Green’s function of a composite system in terms of
Green’s functions of its constitutive elements. The ma
ematical procedure we follow thereon begins with the co
struction of the Green’s function of an infinite linear lattic
This lattice is divided in periodic unit cells of lengtha and
the Green’s function is expressed in Fourier space. A se
infinite linear lattice~side branch! is then grafted onto a uni
cell to obtain the Fourier transform of the distribution of a
infinite backbone lattice with side branches coupled at ev
site along the backbone. An absorbing boundary conditio
site 0 along the backbone is then imposed on the inve
Fourier transform of that latter function. This mathematic
procedure leads to the real-space Green’s functions sat
ing the absorbing boundary condition atn50:

FIG. 2. Discrete phase space for anisotropic grain growth. T
horizontal semi-infinite line is called the backbone~n50,1,2,...`!.
The vertical semi-infinite lines are the side branch
~n851,2,3,...̀ !. This space contains an absorbing boundary con
tion atn50.
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dn,m52
1

W S t8un2mu11

t8221
2

t8n1m11

t8221 D , ~21a!

dn,m,n852
tn8

W S t8un2mu11

t8221
2

t8n1m11

t8221 D , ~21b!

wheret has the same definition as before andt8 is given by
t85j82Aj8221 with j85j2~t21!/2. It is worthy pointing
out again that the indicesn andm stand for sites on the
infinite backbone and that the primed indexn8 relates to a
site in the side branch attached to the backbone at siten.

Let us now impose the initial condition of ad distribution
atm51 with N0 intercepted grains. Under this initial cond
tion, the Laplace transform of the distributions,Pn and
Pn,n8 , are expressed as

P̃n5dn,1 ,
~22!

P̃n,n85dn,1,n8 .

We can now calculate the Laplace transform of the to
linear dimensionL! (v) from

L! 5N0H (
n50

`

(
n851

`

naP̃n,n81 (
n50

`

naP̃nJ . ~23!

In contrast to Sec. II, the summations are taken over
entire networked space. After insertion of Eqs.~21a! and
~21b!, Eq. ~23! becomes

L! 5
N0

W H (
n50

`

nat8n (
n851

`

tn81 (
n50

`

nat8nJ . ~24!

Sincet andt8 are smaller than one, the different sums in E
~23! converge and the total length of all grains intercep
simplifies to

L! 5
N0a

W

t8

~12t8!2
1

12t
. ~25!

With the help of general Abelian and Tauberian theorem23

the asymptotic behavior ofL̄(t) for time, t→` can be de-
termined from the asymptotic behavior ofL! ~v! for v→0.

For small frequencies,t andt8 can be approximated by

t→12Av

W
, ~26a!

t8→12S v

WD 1/4, ~26b!

leading to
l

e

.
d

L!→N0a
1

v
. ~27!

The inverse Laplace transform of Eq.~27! is independent of
time, showing that the total length of the intercepting straig
line used to measure the intercept length distribution is c
versed by Eqs.~21a! and ~21b!.

We now determine the total number of grains,Ñ(v)
within the straight line length. It is calculated by summin
Eqs. ~21a! and ~21b! over the backbone and the sid
branches. We write

Ñ5N0H (
n51

`

(
n851

`

P̃n,n81 (
n51

`

P̃nJ
5
N0

W(
n51

`

t8nH (
n851

`

tn811J . ~28!

Calculating the sums explicitly, one finds

Ñ5
N0

W

1

12t

t8

12t8
. ~29!

The asymptotic behavior ofÑ(v) whenv→0 is

Ñ→N0W
21/4v23/4, ~30!

which inverse Laplace transform gives

N~ t !→N0~Wt!21/4 when t→`. ~31!

This result can be compared directly against the isotro
case indicating a slower growth when anisotropy in gra
boundary energy due to grain misorientation is accoun
for. A question regarding the estimation of the growth law
terms of grain size arises. We have seen that the microst
ture becomes less homogeneous as one introduces g
boundary anisotropy. The microstructure may be conside
to consist of extended regions of small grains~clusters! sepa-
rated by low-angle grain boundaries and of larger gra
bounded by high-angle grain boundaries. It has been sho8

however, that the grain-size distribution for anisotrop
growth is time invariant if the grain size is scaled by t
mean grain size. This observation suggests that the m
grain size, even for the less homogeneous anisotropic mi
structure, is a valid scaling parameter. In consequence,
may employ the intercept method and the mean grain lin
dimension as a measure of grain size to provide informa
on the growth kinetics. In addition, in order for the me
intercept length,l5L/N(t), to give statistically significant
results on the grain size, one needs to employ an inter
which length is larger than the correlation length of the m
crostructure. At this larger scale, the intercept proced
gives a satisfactory statistical measure of the mean grain
ear dimension.

Provided thatL is sufficiently large, we find in the case o
anisotropic grain growth that grain size as measured by
linear dimensionl scales asymptotically as
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l}t1/4. ~32!

Equation~32! is the main result of this paper. It states th
grain growth kinetics is slowed down by anisotropy with
anomalous growth exponent equal to 1/4.

The same anomalously low value of the growth expon
has also been found in the dynamics of grain growth8 and
ordering process9 in Q-state Potts models. These compu
simulations are two-dimensional Monte-Carlo simulatio
with anisotropic grain-boundary energies. In the work
Grest, Srolovitz, and Anderson,8 the growth exponent is
shown to decrease with increasing degree of anisotropy
limiting value of 0.25. The growth exponent of 0.25 is o
served for several forms of the interfacial energ
misorientation angle function indicating some universality

It is worthy noting that the grain-size distribution functio
from the computer simulation of normal grain growth with
Q-state Potts model24 seems to be quite well represented
a distribution proposed by Louat.1 More remarkably, the dis-
tribution of grain radii data determined from a cros
sectional area of three-dimensionalQ-state Potts model o
normal grain growth25 is best described by a generalizatio
of Louat’s distribution function. These observations sugg
a close resemblance in the underlying principles of stocha
andQ-state Potts models of growth. The agreement in
value of the growth exponent of our stochastic model
anisotropic growth and the Monte Carlo calculations
Grest, Srolovitz, and Anderson8 supports this assertion eve
further.

IV. CONCLUSIONS

We have presented the derivation of asymptotic kine
laws within the context of stochastic theories of gra
growth. For mathematical reasons we have limited ourse
to the investigation of the effect of grain-boundary anis
ropy on grain growth modeled with a prototype on
dimensional continuity growth equation for the distributio
of grain linear dimensions measured with the interc
method. This equation consists of a random term only.
though this equation does not include grain-boundary cu
ture effects, it may serve as a means to quantify the dif
ence in kinetics between isotropic and anisotropic gr
growth. Grain growth with isotropic grain-boundary energ
is studied through the time evolution of the distribution
grain linear dimensions~intercept length! in a one-
dimensional homogeneous space. We argue that g
growth with anisotropic grain-boundary energies should t
place on a two-dimensional networked space compose
one-dimensional side branches attached along a
dimensional backbone. The side branches correspond
new degree of freedom characterizing the distance betw
highly misoriented grains and controlling the evolution
grains. All the derived solutions for the grain distributio
obey an absorbing boundary condition at zero size and c
serve overall length. In the case of anisotropy we have fo
that grain size, as measured by the intercept length, incre
as time at the power 0.25. This anomalous grain growth
netics of our stochastic model is in excellent agreement w
Monte Carlo simulation ofQ-state Potts models of growth8,9

suggesting close similarities between these two models.
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The growth exponent of 0.25 calculated in the pres
paper is obtained with semi-infinite side branches. Th
semi-infinite side branches model a system for which
minimum distance between highly misoriented grains d
not have an upper bound. However, one may consider
case of microstructures constituted of clusters of grains w
small misorientation possessing a bounded size. For a clu
with a bounded size, the distance between grains with h
misorientation is limited to some length on the order of t
mean cluster size. A stochastic model of grain growth in
anisotropic polycrystal may then be constructed with a ph
space composed of finite-length side branches grafted on
backbone. One may treat two limiting cases with fin
length side branches. Following the procedure establishe
Sec. III, we have calculated the growth exponent for a s
tem where the side branches possess the same constant
length. In that case the two-dimensional discrete lattice p
sesses periodicity along the backbone and we find that g
growth is normal with a growth exponent of 0.5. The leng
of the side branches causing delays in the growth should
be constant but should more realistically increase along
backbone as the cluster size is expected to scale with
mean grain size.8 We have not been able yet to solve th
stochastic growth equation in that two-dimensional nonp
odic phase space. However, the fact that the mean lengt
the side branches in that latter lattice is infinite~and not finite
as for the former! suggests that grain growth in that case w
also be anomalous.

The question of what happens to the anisotropic grow
exponent when the grain growth process possesses a d
ministic curvature-driven drift component and a stochas
component remains partially unanswered. Experiments s
that curvature effects are important for small grains and t
larger grains grow in a more random fashion.26 In the case of
isotropic growth, consideration of both components give
growth exponent of 0.5.6 In anisotropic microstructures, a
fixed curvature, the deterministic driving force for grow
should vary from grain boundary to grain boundary as
interfacial energy depends on grain misorientation. At fix
misorientation, the driving force is inversely proportional
the grain-boundary curvature. It is worth noting that our n
worked model of anisotropic growth includes an implicit re
erence to anisotropy in the deterministic curvature-driv
force in the form of the binary classification of grain boun
aries in terms of low-energy~small-angle! and high-energy
~high-angle! grain boundaries. The construction of a pha
space composed of side branches attached to a back
reflects only implicitly a spatial and a grain size variability
grain-boundary driving force. A more explicit account of
deterministic drift term, perhaps by solving for the Green
function of the Fokker-Planck growth equation in a contin
ous two-dimensional networked space with side branche
by applying some curvature driven external potential o
our discrete networked space, will be the subject of a fut
study.
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