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Abstract

In this study, we analyze the behavior of monotone traveling waves of a one-dimensional
porous medium equation modeling mechanical properties of living tissues. We are interested
in the asymptotics where the pressure, which governs the diffusion process and limits the
creation of new cells, becomes very stiff, and the porous medium equation degenerates towards
a free boundary problem of Hele-Shaw type. This is the so-called incompressible limit. The
solutions of the limit Hele-Shaw problem then couple “free dynamics” with zero pressure,
and “incompressible dynamics” with positive pressure and constant density. In the first part
of the work, we provide a refined description of the traveling waves for the porous medium
equation in the vicinity of the transition between the free domain and the incompressible
domain. The second part of the study is devoted to the analysis of the stability of the
traveling waves. We prove that the linearized system enjoys a spectral gap property in suitable
weighted L2 spaces, and we give quantitative estimates on the rate of decay of solutions.
The nonlinear terms are treated perturbatively, using an L∞ control stemming from the
maximum principle. As a consequence, we prove that traveling waves are stable under small
perturbations. This constitutes the first nonlinear asymptotic stability result concerning
smooth fronts of degenerate diffusion equations with a Fisher-KPP reaction term.

Keywords: porous medium equation, traveling waves, incompressible limit, mesa limit, stability,
Hele-Shaw equations.
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1 Introduction
This paper is devoted to the asymptotic analysis and the stability of traveling waves (TWs) for the
porous medium equation (PME). More precisely, let us consider the following nonlinear parabolic
equation

∂tn− ∂x
(
n∂xp(n)

)
= nΦ(p(n))), (1)

endowed with the boundary conditions

lim
x→±∞

n(t, x) = n±,
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where n± are constant stationary states of the equation. This equation has been introduced in the
literature to model tissue growth and, particularly, in the propagation of tumors (see, for instance,
[5,15,22]). The left-hand side corresponds to the PME: the density of cells, n, is transported by a
velocity given by the Darcy law v = −∂xp where p = p(n) denotes the mechanical pressure. The
right-hand side models the cell proliferation in the medium, proliferation which is limited by the
pressure. Hence, the function Φ is usually taken as a decreasing function of the pressure and is
such that Φ(pM ) = 0 for some pM > 0 called the homeostatic pressure. In this study, we shall
assume for simplicity that

p(n) = pγ(n) = nγ with γ > 1, Φ(p) = 1− p. (2)

In other words, the function Φ becomes negative above the threshold pressure pM = pγ(nM ) = 1,
which means that cells are destroyed above the maximal packing density nM = 1. We will also
pick n− = nM = 1, and n+ = 0.

This study aims to analyze the behavior of traveling wave solutions of (1) when the parameter
γ appearing in the equation of state (2) tends to +∞. For Φ(p) = 0, i.e. without the reaction term
in the equation, this limit γ → +∞ is referred as the mesa limit and has been studied for instance
by Caffarelli and Friedman [2]. In this paper, the authors consider an initial datum larger than
1 on a nontrivial set and show that this upper part exceeding 1 collapses at t = 0+ to {n = 1}.
This phenomenon is due to the blow up of the diffusivity np′γ(n) = γnγ → +∞ when n > 1. The
singular limit γ → +∞ for solutions of the PME is then called the “mesa” limit in reference to the
shape of the target density n∞ ∈ [0, 1] which is similar to flat-topped mountains. In the presence
of a growth source term Φ, the limit γ → +∞ has been first tackled by Perthame et al. in [23]. As
in the previous case, the blow-up of the pressure as γ → +∞ when n > 1 forces the limit density
to lie in [0, 1]. The sequence (nγ)γ>1 of weak solutions to (1) is then shown to converge (for a
suitable topology) towards a weak solution of the following Hele-Shaw system

∂tn− ∂x(n∂xp) = nΦ(p), (3a)
0 ≤ n ≤ 1, (1− n)p = 0, p ≥ 0, (3b)
p
(
∂2xp+ Φ(p)

)
= 0. (3c)

The transition between equation (1) and system (3) is usually called the incompressible limit in
reference to the fact that, when the solution n of (3) reaches 1, it is blocked to this maximal value
(the combination of the mass equation (3a) with the complementary relation (3c) yields formally
∂tn = 0 in {n = 1}) and the medium cannot be further compressed. Beyond the physical and
biological relevancy of system (1) seen as an approximation of (3), Mellet et al. [19] have shown
that the incompressible limit can provide crucial qualitative information on the solutions of the
Hele-Shaw system (3), like the regularity of the free boundary ∂{n = 1}. In [4], David et al.
estimate the rate of convergence in a negative Sobolev norm in terms of γ when Φ = Φ(t, x) is
given.
To finish with the incompressible limit, let us mention that this type of singular limit has been
studied in other frameworks: for other singular equations of state [12], in the case of coupling with
the dynamics of nutrients [5], in the case of more than one type of cancerous cell as seen in [1,7,8],
when the Darcy law is replaced by the Brinkman equation [22] or the Navier-Stokes equations [26].

To the best of our knowledge, the issue of TWs solutions to (3) remains rare in the literature
(see [21] when nutrients are considered), even when the topic was intensively studied for nonlinear
reaction-diffusion equations like (1). Indeed, TWs as a class of special solutions have been shown
to provide valuable information on general solutions of these reaction-diffusion equations (see the
books [11] and [28]). Most of the results concern the long-term behavior (convergence to TWs,
asymptotic rate of propagation of disturbances) or the behavior close to interfaces of general
solutions.
Regarding the issue of interfaces, Gilding and Kersner study in [10] the existence of sharp (or
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finite) TWs whose support is bounded on one side in case of nonlinear degenerate diffusion, and
deduce a result about the existence of an interface ∂{n = 0} for general solutions. In [9], TWs
are used to study the regularity of the general solutions near the free boundary ∂{n = 0}, as well
as for the derivation of the interface motion. The essential tools of the analysis are then: the
continuity of the flux across the interface and a comparison principle bracketing a general solution
between two TWs.
Concerning the long-time behavior of solutions to reaction-diffusion scalar equations like (1), let
us mention two types of results related to the nature of the wave-front. We shall indeed distinguish
the case of sharp fronts, that is TWs with support bounded from above (or below) propagating
at the critical speed c∗, from the case of smooth fronts traveling at speed c > c∗ which do not
vanish on R. The first result of stability of sharp fronts seems to be given by Hosono in [13] in
the case of a Nagumo reaction term (it would correspond to a bistable situation where Φ vanishes
at α ∈ (0, 1) and 1). He proves that, if the initial data has a support in a neighborhood of
the support of the sharp front and is close to the profile in L∞, then the difference between the
perturbation and the sharp front remains small for all times. Later on, Kamin and Rosenau prove
in [14] that solutions associated to initial data decaying sufficiently fast at infinity converge (in
a specific sense) towards a sharp TW. The techniques they employ are inspired by L1-stability
theory of shock waves for viscous conservation laws (see for instance [24]): use of comparison
principle (already mentioned above), derivation of L1 conservation, and contraction principles
with an exponential weight. It is worth pointing out that this latter result cannot be extended to
smooth fronts. Indeed the weight used in [14] is specific to the critical speed c∗ at which the sharp
fronts travel (see Theorem 2.3 below) and is not suited for the smooth fronts propagating at speed
c > c∗. Actually, as explained by Sherratt in [25], much less was known until very recently on the
smooth fronts. To our knowledge, the only stability result dealing with smooth fronts is a spectral
stability result obtained recently by Leyva and Plaza in [17] (see also [16] for the case of a Nagumo
reaction term). In their work, the difficulties associated with the degeneracy of the diffusion term
are overcome with the derivation of a kind relative entropy estimate with a well-suited exponential
weight.

In this paper, the study of smooth TWs of (1) as γ → +∞ can be seen as a first step in the
analysis of the free boundary ∂{n = 1} for the limit Hele-Shaw system (3). Our contributions
are twofold: we first give a qualitative and quantitative description (in terms of γ) of smooth
TWs of (1) and show the convergence towards TWs of (3) that are discontinuous at the interface
∂{n = 1}; we also study the nonlinear asymptotic stability of the smooth TWs for small (quantified
in terms of γ) general perturbations of these wave-fronts.
As in [9], our analysis relies strongly on the control of the flux around the interface (passage to
the limit as γ → +∞, determination of the transmission conditions across the interface on the
limit system); and the comparison principle (quantitative behavior of TWs as γ → +∞, control
of general solutions lying between two TWs). Compared to the stability analysis of Leyva and
Plaza [17], we have to deal with additional nonlinear contributions that we treat in a perturbative
manner and control thanks to a Poincaré-type inequality. This latter also allows us to get a decay
rate of the perturbation as t→ +∞.

Statement of main results
In this paper, we focus on TW solutions of (1)-(2), i.e. solutions nγ such that nγ(t, x) = Nγ(x−ct)
where Nγ is the wave profile, ξ = x− ct is the wave coordinate and c is the speed of propagation
of the wave. The profile Nγ is then solution to the differential equation:

−cN ′γ − γ(Nγ
γN
′
γ)′ = Nγ(1−Nγ

γ ). (4)

The above equation admits two equilibrium states: N ≡ 0 (unstable) and N ≡ 1 (stable), and,
therefore, we seek wavefronts Nγ connecting these two states:

lim
ξ→−∞

Nγ(ξ) = 1, lim
ξ→+∞

Nγ(ξ) = 0. (5)

3



The existence and uniqueness (up to a shift) of a monotone (decreasing) solution to (4)-(5), as
well as the asymptotic behavior of Nγ close to ±∞, were previously investigated by Gilding and
Kersner [10] for c larger than a threshold velocity c∗γ =

√
γ/(γ + 1) > 0 (see below Theorem 2.3

for a precise statement). In the present study, we intend to analyze further the behavior of Nγ
and Pγ(ξ) = (Nγ(ξ))γ , the associated pressure profile, with respect to the parameter γ. Our first
main result concerns the qualitative and quantitative behaviors as γ → +∞.

Theorem 1.1. Let γ > 1 sufficiently large, c > 1 be fixed, independent of γ, and let Nγ be the
solution of (4)-(5) such that Pγ(0) = 1

γ . Then the following properties hold true.

• There exist ξ−γ , ξ+γ with ξ−γ = O
(

1√
γ

)
< 0 < ξ+γ = O

(
1
γ

)
, such that:

– in the congested zone ξ < ξ−γ , the density Nγ converges uniformly to 1: there exists a
constant C > 0 depending only on c such that(

C
√
γ

) 1
γ

≤ Nγ(ξ) ≤ 1 ∀ ξ ≤ ξ−γ , (6)

and there exist constants C ′ ≥ C > 0 independent of γ such that

1−
(

1− C ′
√
γ

)
e(1−Cγ

−1/2)ξ ≤ Pγ(ξ) ≤ 1−
(

1− C
√
γ

)
eξ ∀ ξ ≤ ξ−γ ; (7)

– in the intermediate region ξ ∈ [ξ−γ , ξ
+
γ ], N ′γ takes exponentially large values with respect

to γ:

‖N ′γ‖L∞(ξ−γ ,ξ
+
γ ) = O

((
1− 2

c

)−γ)
, (8)

while the pressure Pγ converges uniformly to 0 as γ → +∞: there exists δ ∈ (0, 1−c−1),
independent of γ such that(

1− 1

c
− δ
)γ
≤ Pγ(ξ) ≤ C

√
γ

∀ ξ ∈ [ξ−γ , ξ
+
γ ]; (9)

– in the free zone ξ > ξ+γ , the pressure Pγ takes exponentially small values (w.r.t. γ):
Pγ(ξ) ≤

(
1− 1

2c

)γ and Nγ decreases exponentially to 0 as ξ → +∞: there exists δ > 0
independent of γ, such that for γ large enough(

1− 1

c
− δ
)

exp

(
−
(

1

c
+ δ

)
ξ

)
≤ Nγ(ξ) ≤

(
1− 1

c
+ δ

)
exp

(
− 1

2c
ξ

)
∀ ξ > ξ+γ ;

(10)

• As γ → +∞, there exists (NHS , PHS) ∈ L∞(R)×W 1,∞(R) such that Nγ → NHS in Lploc(R)

and Pγ → PHS in W 1,p
loc (R) for any p ∈ [1,∞[, and (NHS , PHS) is a wave-front profile of the

Hele-Shaw equations (3) such that PHS(ξ) = (1− eξ)1ξ≤0, limξ→0+ NHS = 1− 1
c .

Remark 1.2. Concerning the convergence of (Nγ , Pγ) towards (NHS , PHS), a key ingredient of our
proof is the uniform control of the flux Jγ = cNγ+NγP

′
γ which is such J ′γ = −Nγ(1−Pγ) ∈ [−1, 0].

The control of Jγ implies in particular the control of P ′γ and thus yields the uniform convergence
of (Pγ)γ . It is important to note that this uniform convergence of (Pγ) is uncorrelated to the
convergence of (Nγ)γ . Indeed, we have P ′γ = γNγ−1

γ N ′γ but the pre-factor γNγ−1
γ which tends to

0 on a half-space, prevents us to get a uniform bound on N ′γ . Actually this derivative blows up as
it can be observed on (8). The uniform convergence of the flux Jγ is also crucial to determine the
value of NHS on the right side of the interface ξ = 0. Since JHS(0) = c + lim

ξ→0−
P ′HS(ξ) = c − 1,

we deduce that limξ→0+ NHS(ξ) = c−1JHS(0) = 1− 1
c .
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Remark 1.3 (Passing to the limit in the pressure equation). One can also wonder whether it is
possible to pass to the limit in the sense of distributions in products of the type P ′′γNγ , or more
generally P ′′γ f(Nγ), where f is a continuous function. Since the weak limit of P ′′γ involves a Dirac
mass at the point where the limit of Nγ is discontinuous, the limit is not obvious, and is not an
immediate consequence of the above theorem. However, looking at the equation on the pressure
and using the control on the flux, it can be proved that (see Corollary 2.7)

NγP
′′
γ ⇀ −1ξ<0e

ξ − (c− 1) ln

(
1− 1

c

)
δ(ξ) in D′(R),

where δ is the Dirac mass at ξ = 0, and more generally

P ′′γ f(Nγ) ⇀ −1ξ<0f(1)eξ − (c− 1)F

(
1− 1

c

)
δ(ξ),

for any function f ∈ C(R), where F (z) = −
∫ 1

z
f(t)/t2 dt for z > 0.

This highlights the intricate relationship between Nγ and Pγ in the transition zone.
Remark 1.4. A legitimate question is the possible extension of the previous result to more general
pressure laws (as for instance the singular potentials considered in [12] or [3]) and reaction terms
Φ. Our analysis actually starts with the results obtained by Gilding and Kersner [10]. In particular
in [10], the determination of the critical speed c∗ = c∗γ is specific to the pressure law pγ(n) = nγ .
To our knowledge, the explicit characterization of c∗ has not been tackled in the literature. More
precisely we would need an upper bound on c∗ independent of the parameter characterizing the
incompressible limit. The extension of [10] to the case of more general pressures and reaction terms
is therefore out of the scope of the present paper but there is a reasonable hope for a generalization
of the previous theorem once the existence of a profile Nγ for a fixed speed c > c∗ (independent
of parameter γ) is ensured.

We believe that several steps of our strategy could be extended to other pressure laws (analysis
of the phase portrait of the traveling wave and consequences, design of appropriate weights for
the coercivity of the linearized operator, etc.) However, in several instances some quantitative
arguments rely heavily on fine properties of Nγ (e.g. the description of the transition zone). It is
unavoidable that such properties will depend on the exact nature of the pressure law, and that a
case-by-case analysis needs to be performed.

Our second result is dedicated to the analysis of stability of the wavefront Nγ in weighted
Sobolev spaces. To that end, we introduce the weight

W (ξ) := Nγ(ξ)γ exp

(∫ ξ

ξ−γ

c

γNγ
γ

)
.

Note that W has a double exponential growth as ξ → +∞, and a (slow) exponential decay as
ξ → −∞. Therefore, W will provide a very good control in the free zone x− ct > 0.

Before stating our stability result, let us recall some previous works regarding the Cauchy
problem for equation (1). Since (1) is a nonlinear degenerate parabolic equation, its well-posedness
is far from obvious. In particular, the solutions need to be understood in a weak sense. The
existence and uniqueness of a bounded generalized solution of the porous medium equation (PME)
was proved by Oleinik et al. in [20]. We refer the interested reader to the book by Vázquez [27] for
a detailed study of the PME; in particular, Chapter 12 of [27] is dedicated to the analysis of the
Cauchy problem of the PME for initial data satisfying appropriate growth assumptions at infinity.
It can be checked as a Corollary of Theorems 12.8, 12.9 and 12.10 that for initial data in L∞, the
Cauchy problem is globally well-posed. We also refer to the work of de Pablo and Vázquez [6],
which extends these results to the case of equation (1). In the rest of this paper, we will consider
initial data n0γ which belong to L∞. The associated solution nγ is the unique global generalized
solution of (1).

Our result is the following:
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Theorem 1.5. There exist constants η1, η2 ∈]0, 1[, depending only on c > 1, such that the following
result holds.

Let γ > 1 be fixed, sufficiently large. We make the following assumptions on the initial data
n0γ :

(H1) n0γ lies between two shifts of Nγ , i.e. there exists h > 0 such that n0γ(x) ∈ [Nγ(x+h), Nγ(x−
h)] for all x ∈ R;

(H2) The difference n0γ −Nγ is sufficiently decaying, namely∫
R

(
n0γ(x)−Nγ(x)

)2
W (x)dx <∞.

Let nγ be the solution of (1) associated with n0γ . Then, if |h| ≤ η
γ
2 , the following inequality holds:∫

R
(nγ(t, x)−Nγ(x− ct))2W (x− ct) dx ≤ e−η

γ
1 t

∫
R

(
n0γ(x)−Nγ(x)

)2
W (x)dx, ∀t ≥ 0.

Moreover, setting uγ(t, x) := (nγ(t, x)−Nγ(x− ct))/N ′γ(x− ct), we have the additional dissi-
pation of energy:

γ

∫ ∞
0

∫
R

(∂xuγ(t, x))2(Nγ
γ (N ′γ)2W )(x− ct) dx dt ≤

∫
R

(
n0γ(x)−Nγ(x)

)2
W (x)dx.

Let us give a short sketch of proof of the above result. An important feature of equation (1) lies
in the fact that its linearization around Nγ(x−ct) is spectrally stable in suitable weighted Sobolev
spaces. This property has been identified recently by Leyva and Plaza [17], using Sobolev spaces
with an exponential weight. Here, we work with different weights, which we believe follow more
closely the structure of the equation, see Lemma 3.3 and subsection 4.2, and which give a better
control in the transition zone. One crucial point of our analysis lies in the derivation of a new
weighted Poincaré inequality associated with this weight, see Proposition 3.5. This allows us to
prove a spectral gap property, leading to the exponential decay announced in the above theorem.
Once the dissipation properties of the linearized equation have been identified and quantified, we
perform the nonlinear estimates by treating the quadratic terms as perturbations. In this regard,
assumption (H1) allows us to have a uniform L∞ control on nγ(t, x)−Nγ(x− ct), thanks to the
parabolic nature of the equation.

Note that the rate of decay ηγ1 of the energy is exponentially small. This is linked to the
exponential blow-up of N ′γ in the transition zone, see Theorem 1.1. This blow-up also imposes a
strong limitation on the admissible size of the perturbation in L∞, and thereby on the size of h.
It is not clear whether this assumption could be substantially lowered, taking, for instance, initial
perturbations that would be algebraically - but not exponentially - small. Indeed, it is possible
that the strong variations of Nγ in the transition zone destabilize the flow.

Our study is organized as follows. In Section 2, we describe traveling fronts for both systems (1)
and (3) and give a refined behavior of the profile Nγ in the transition zone between the congested
region and the free region. Next, we prove in Section 3 the asymptotic stability of the profile Nγ
(γ being fixed) for some L2-weighted norm. Finally, we have postponed in Section 4 the proofs of
some technical lemmas used in Section 3, and a list of important abscissas for the description of
the profile Nγ .

2 Traveling waves for the Hele-Shaw system and the porous
media equation

This section is devoted to studying the existence and properties of traveling fronts of both systems:
Hele-Shaw and the mechanical model of tumor growth with “stiff pressure law” depending on the
parameter γ. For the latter, an asymptotic expansion of traveling waves will be computed.
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2.1 TW for the limit Hele-Shaw system
We look for traveling wave-type solutions of (3) of the form (n, p) = (N,P )(x− ct), where c > 0 is
a constant representing the TW speed and N,P are real nonnegative functions. We may assume
that c > 0, since for c = 0 we find again the stationary solutions, and the case c < 0 can be
reduced to c > 0 by reflection.

Lemma 2.1. Let c > 1 be arbitrary, and let ξ denote the traveling wave variable ξ = x− ct.

1. Define the profile (NHS , PHS) ∈ L∞(R)×W 1,∞(R) by

NHS(ξ) =


(

1− 1

c

)
e−

ξ
c if ξ > 0,

1 if ξ < 0,

PHS(ξ) =

{
0 if ξ > 0,

1− eξ if ξ < 0.
(11)

Then (NHS , PHS)(x − ct) is a traveling wave moving at speed c solution of the Hele-Shaw
system

cN ′ + (NP ′)′ +NΦ(P ) = 0, (12)
0 ≤ N ≤ 1, (1−N)P = 0, P ≥ 0, (13)

P (P ′′ + Φ(P )) = 0. (14)

2. Let (N,P ) ∈ L∞(R)×W 1,∞(R) be a traveling wave profile moving at speed c of the Hele-Shaw
system (3) satisfying the following conditions at ±∞

lim
ξ→−∞

N(ξ) = lim
ξ→−∞

P (ξ) = 1, lim
ξ→+∞

N(ξ) = lim
ξ→+∞

P (ξ) = 0.

Assume furthermore that 0 ≤ P ≤ 1. Then there exists ξ0 ∈ R such that (N,P ) =
(NHS , PHS)(· − ξ0).

Remark 2.2. • The Lipschitz regularity assumption on P ensures that the term P ′N is well-
defined, as a product of two L∞ functions.

• An important feature of the analysis is the continuity of the flux (c+P ′)N on R (in particular,
at the transition point ξ0). This property will determine the value of N(ξ+0 ).

Proof. It is easily checked that (NHS , PHS) is a solution of (12)-(14). Hence the difficulty is
to prove that all solutions are equal to (NHS , PHS) (up to a translation). As announced in
Remark 2.2, we introduce the flux J = cN + NP ′, which satisfies J ′ = −NΦ(P ) ∈ [−1, 0].
Hence J is Lipschitz continuous and decreasing. Using the values of N,P at ±∞, we find that
J(−∞) = c, J(+∞) = 0, and therefore 0 ≤ J ≤ c a.e.

Since P is Lipschitz continuous, the set {P > 0} is a countable union of disjoint open intervals,
say ∪

j∈J
(aj , bj). On any such interval (aj , bj), we have N = 1 and

−P ′′ = Φ(P ) = 1− P, ∀ξ ∈ (aj , bj).

Hence, there exist C±j such that

P (ξ) = 1 + C+
j e

ξ + C−j e
−ξ, ∀ξ ∈ (aj , bj).

Note that the case bj = +∞ is excluded, since N(+∞) = 0, and that C−j = 0 if aj = −∞.
Furthermore, on any interval (aj , bj), we have J = c + P ′ ∈ [0, c], and J ′ = P ′′ ≤ 0. Hence P
is non-increasing and concave on (aj , bj). If aj , bj ∈ R, we have additionally P (aj) = P (bj) = 0,
since aj , bj ∈ ∂{P > 0}. This entails that P (ξ) = 0 for all ξ ∈ (aj , bj), which is absurd. Hence J is
a singleton and there exists ξ0 ∈ R such that {P > 0} = (−∞, ξ0). Furthermore, since P (ξ0) = 0,
we find that

P (ξ) = 1− eξ−ξ0 , ∀ξ < ξ0. (15)
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Let us now consider the free phase, i.e. the set {P = 0} = [ξ0,+∞[. In (the interior of) this
interval, the equation becomes

cN ′ = −N, ∀ξ > ξ0.

The solution of the above linear equation is of the form

N(ξ) = C exp

(
−ξ − ξ0

c

)
.

We infer that in (ξ0,+∞), J = cC exp
(
− ξ−ξ0c

)
. By continuity of J at ξ = ξ0, we obtain

c− 1 = J(ξ−0 ) = J(ξ+0 ) = cC.

Thus C = (c− 1)/c, and we find that (N,P ) = (NHS , PHS)(· − ξ0).

2.2 Qualitative properties of traveling waves for the porous medium
equation (1)

Let us now consider traveling waves for the porous medium equation (1). We are interested in
the behavior of such profiles in the limit γ → +∞, with a fixed velocity c > 0. In the following
two subsections, we aim to derive qualitative and quantitative information on the profiles when
γ � 1.

The existence of a profile Nγ solution to (4)-(5) is ensured by a former study of Gilding and
Kersner [10]. More precisely, as a particular case of [10], one has the following result.

Theorem 2.3 (Gilding & Kersner [10]). Let c∗γ =
√

γ
γ+1 .

1. System (4)-(5) has a unique solution Nγ (up to a shift) for every c ≥ c∗γ and no solution for
c < c∗γ .

2. When c = c∗γ , Nγ is a sharp front, i.e. the support of Nγ is bounded from above, and, modulo
translation,

Nγ(ξ) =

{
(1− exp (cξ))

1/γ for ξ < 0,
0 for ξ ≥ 0.

3. When c > c∗γ , Nγ is positive, strictly monotonic and satisfies

(ln(1−Nγ))′(ξ)→

√
1 +

c2

4γ2
− c

2γ
=

1√
1 +

c2

4γ2
+

c

2γ

as ξ → −∞, (16)

and
(ln(Nγ))′(ξ)→ −1

c
, as ξ → +∞.

The above theorem guarantees the existence (and the uniqueness up to a shift) of a TW Nγ for

all c ≥ c∗γ =

√
γ

γ + 1
; the smoothness of Nγ when c > c∗γ ; the monotonically decreasing behavior

of Nγ and its boundedness on R. Notice that the sharp front with minimal speed c = c∗γ is only
Hölder continuous with exponent 1/γ at ξ = 0. The fact of Nγ+1

γ being continuously differentiable
in the whole domain means this traveling wave is a weak solution in the usual sense, while from
the physics perspective, it indicates the presence of continuous flux.

Since Theorem 2.3 is adapted from Theorem 1 in [10], we refer to this work for a detailed proof.
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Figure 1: Density and pressure profiles for finite values of γ and limit profiles, c = 1.5.

From now on, we pick a velocity c > 1 independent of γ, so that c > c∗γ
1. We also fix the shift

in Nγ by imposing

Nγ(0) =

(
1

γ

) 1
γ

. (17)

The goal of this subsection is to prove the following result:

Proposition 2.4. Let c > 1 and let (Nγ , Pγ), Pγ := pγ(Nγ) = Nγ
γ , be the unique bounded weak

solution to (4) satisfying (17). Let (NHS , PHS) ∈ L∞(R) ∩W 1,∞(R) be the reference traveling
wave solution moving with speed c of the Hele-Shaw system, see (11).

1. The following convergence properties hold:

• Weak-star convergence:

Nγ ⇀ NHS in w∗ − L∞, Pγ ⇀ PHS in w∗ −W 1,∞;

• for any compact set K ⊂ R

Pγ → PHS in C(K);

• Nγ → 1 uniformly on R− and P ′γ → P ′HS uniformly in C(]−∞, 0]).

2. Pointwise bounds for Pγ on R−: setting λ = (−c+
√
c2 + 4)/2, we have,

1−
(

1− 1

γ

)
eλξ ≤ Pγ(ξ) ≤ 1−

(
1− 1

γ

)
eξ, ∀ ξ ≤ 0. (18)

The rest of this subsection is devoted to the proof of Proposition 2.4.
L∞ bounds. From Theorem 2.3, we know that N ′γ ≤ 0 with limξ→−∞Nγ = 1, limξ→+∞Nγ = 0,
so that

0 ≤ Nγ(ξ), Pγ(ξ) ≤ 1, ∀ ξ ∈ R.

Therefore, there exist (N,P ) ∈ L∞ × L∞(R) such that up to the extraction of a subsequence,
Nγ ⇀ N , Pγ ⇀ P in w∗−L∞(R). Furthermore, N,P are non-increasing. The choice of shift (17)

1All the results of this paper remain true with little or no modification if the velocity cγ > c∗γ depends on γ in
such a way that cγ → c̄ with c̄ > 1. However for the sake of readability, we have chosen cγ ≡ c > 1.
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implies that Nγ(0) → 1, Pγ(0) → 0. Hence, since Nγ is non-increasing, Nγ converges uniformly
towards 1 on ] − ∞, 0], and Pγ converges uniformly towards zero on [0,+∞[. It follows that
N(ξ) = 1 for ξ < 0 and P (ξ) = 0 for ξ > 0.

Strong convergence of Pγ and Jγ. Define the flux

Jγ := cNγ + γN ′γN
γ
γ = cNγ +NγP

′
γ . (19)

We observe that equation (4) can be written as

J ′γ = −Nγ(1−Nγ
γ ),

so that Jγ is decreasing on R. Combining the latter with the L∞ bounds on Nγ yields

−1 ≤ J ′γ ≤ 0,

0 = Jγ(+∞) ≤ Jγ ≤ Jγ(−∞) = c.
(20)

In particular, cNγ +NγP
′
γ ≥ 0. Since we already know that Pγ is non-increasing, it follows that

−c ≤ P ′γ ≤ 0, 0 ≤ Pγ ≤ 1. (21)

From inequality (20) (resp. (21)) and Ascoli’s theorem, Jγ (resp. Pγ) converges strongly, up
to a subsequence, in C(K) for any compact set K ⊂ R. Note also that P ′γ

∗
⇀ P ′ in L∞(R); since

Nγ converges uniformly towards 1 on R−, we find that J = cN +NP ′ = c+ P ′ on ]−∞, 0[.
The exact same cannot be done with Nγ . Indeed, from (4) and (20), we can deduce the

following bounds for Nγ

−c Nγ
Nγ
γ γ
≤ N ′γ ≤ c

1−Nγ
Nγ
γ γ

. (22)

Note that obtaining an L∞ bound implies controlling N1−γ
γ γ−1 in L∞ over any compact on R

when γ → +∞. This is impossible as Nγ ∈ (0, 1). In fact, we show in what follows that N is
discontinuous at ξ = 0.

Passing to the limit in equation (4). We can write the diffusion term as

(NγP
′
γ)′ = (γN ′γN

γ
γ )′ =

γ

γ + 1
(Nγ+1

γ )′′ =
γ

γ + 1
(PγNγ)′′.

Since Pγ converges strongly in C(K) for all compact set K ⊂ R, while Nγ converges weakly-* in
L∞(R), we can pass to the (weak) limit in equation (4).

We obtain that (N,P ) satisfies the following equation in the sense of distributions

−cN ′ − (NP )′′ = N(1− P ). (23)

The same argument also shows that J = cN + (NP )′ on R.

Limit in the free phase (ξ > 0). We recall that P = 0 in R+. Hence, in (0,+∞), equation
(23) becomes

−cN ′ = N.

We recognize the ODE satisfied by NHS in the free phase in the Hele-Shaw system. It follows that

N(ξ) = C exp

(
−ξ
c

)
∀ξ > 0,

for some C > 0.

Limit in the congested phase (ξ < 0). We recall that N = 1 on ] − ∞, 0[. Inserting this
information into (23), the following elliptic equation (complementarity equation) is obtained

P ′′ + (1− P ) = 0 in D′((−∞, 0)). (24)
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From P (0) = 0 (recall that P is continuous), it follows that P (ξ) = 1− eξ for ξ ∈ R−.

(N,P) satisfies (13). We know that P = 0 on [0,+∞) and N = 1 on R−; hence, P (1−N) = 0
on R as in (13).

Jump relation at ξ = 0. We recall that the flux J = cN + (NP )′ is continuous on R, and in
particular at ξ = 0. Thus,

lim
ξ→0+

N(ξ) = 1− 1

c
. (25)

Gathering all the information, we find that (N,P ) = (NHS , PHS). Furthermore, since the limit
is uniquely identified, we deduce that the whole sequence (Nγ , Pγ) converges (in the sense given
above).

Sub- and super-solution for Pγ on R−. Using (21), it follows that

−P ′′γNγ = Nγ(1− Pγ) + (c+ P ′γ)N ′γ ≤ Nγ(1− Pγ), (26)

whence
−P ′′γ ≤ 1− Pγ on R.

Now, let ξ1 ∈ R be arbitrary, and let P1 := Pγ(ξ1). We have for P+ := 1 − (1 − P1)eξ−ξ1 that
−P ′′+ = 1− P+. Thus

−(Pγ − P+)′′ ≤ −(Pγ − P+) on (−∞, ξ1),

and Pγ(ξ1) = P+(ξ1), Pγ(−∞) = P+(−∞).

It follows from the maximum principle that Pγ ≤ P+ for ξ ≤ ξ1. In particular, taking ξ1 = 0 and
P1 = 1/γ,

0 ≤ Pγ(ξ) ≤ −
(

1− 1

γ

)
eξ, ∀ξ ≤ 0. (27)

In a similar fashion, recalling that γPγ ≥ 1 on R− and P ′γ ≤ 0, we have

−P ′′γ = 1− Pγ +
cP ′γ
γPγ

+
(P ′γ)2

γPγ
≥ 1− Pγ + cP ′γ .

Arguing as before, we define P−(ξ) = 1−
(

1− 1
γ

)
eλξ, where λ is the positive root of λ2+cλ−1 = 0

(i.e. λ = (−c+
√
c2 + 4)/2). By definition of λ, P− satisfies

−P ′′− = 1− P− + cP ′−, lim
ξ→−∞

P−(ξ) = 1, P−(0) =
1

γ
.

We infer from the maximum principle that

1−
(

1− 1

γ

)
eλξ ≤ Pγ(ξ), ∀ ξ ≤ 0. (28)

Uniform convergence of the flux and of P ′γ on R−.
We recall that J ′γ = −Nγ(1− Pγ). The pointwise bounds on Pγ imply that

|J ′γ | ≤ eλξ, ∀ξ ≤ 0, ∀γ > 0.

It follows immediately that Jγ converges towards JHS uniformly in C(R−). Since

P ′γ =
Jγ
Nγ
− c,

we infer that P ′γ also converges uniformly towards P ′HS in C(R−).

This concludes the proof of Proposition 2.4.
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2.3 Phase portrait of Nγ and further consequences
In this subsection, we derive other properties of the family (Nγ)γ>0, which will be useful in our
stability analysis. This will involve a thorough description of the behaviour of Nγ in the transition
zone, i.e. in the vicinity of the point ξ = 0. To that end, we will introduce several remarkable
abscissas, corresponding to points where the behavior of Nγ changes. For the reader’s convenience,
we included a list of these abscissas in Appendix A, together with an indication of where they are
defined and their size.

The next lemma states that Nγ admits a unique inflection point.

Lemma 2.5. There exists a unique ξ0γ ∈ R such that N0
γ is concave on (−∞, ξ0γ) and convex on

(ξ0γ ,+∞).

Proof. The proof relies crucially on the analysis of the phase portrait of Nγ . In order to plot the
phase portrait of Nγ , we use the results of [18], together with the following remark: using equation
(4), we have

dN ′γ
dNγ

=
dN ′γ
dξ

dξ

dNγ

= − 1

γNγ
γN ′γ

[
cN ′γ + γ2(N ′γ)2Nγ−1

γ +Nγ(1−Nγ
γ )
]
.

The term in brackets in the right-hand side is a polynomial of degree two in N ′γ , with coefficients
depending on Nγ . Hence dN ′γ/dNγ vanishes if and only if Nγ

γ (1 − Nγ
γ ) ≤ c2/(4γ2) and N ′γ ∈

{Q−(Nγ), Q+(Nγ)}, where

Q±(N) =
1

2γ2Nγ−1

(
−c±

√
c2 − 4γ2Nγ(1−Nγ)

)
. (29)

Note that the curves Γ± = {(N,Q±(N)), N ∈ (0, 1)} each consist of two branches, for N ∈ (0, N1)
and N ∈ (N2, 1). The points Ni are the roots of the discriminant, i.e. Nγ

i (1 − Nγ
i ) = c2/(4γ2).

The curves Γ+ and Γ− intersect at N = N1 and at N = N2. Note that N1 and N2 depend on γ,
but we omit this dependency in order to lighten the notation. A straightforward analysis shows
that

N1 = 1− 2 ln γ

γ
+ o

(
ln γ

γ

)
, N2 = 1− c2

4γ3
+ o

(
1

γ3

)
, (30)

with
Q±(N1) ∼ −2

c
, Q±(N2) ∼ − c

2γ2
.

Furthermore, Q+(N) ∼ −Nc for N � 1, while Q−(N) → −∞ as N → 0; and, Q+(N) ∼
−γ(1−N)/c for 1−N � 1, while Q−(1) = −c/γ2.

Note also that with the normalisation of the previous section, i.e. Nγ(0) = γ−1/γ , we have
Nγ(0) ∈ [N1, N2].

Now, let us denote by T (resp. S) the interior region between the curves Γ− and Γ+ for
0 < N < N1 (resp. N2 < N < 1). We also denote by Γ the curve (Nγ , N

′
γ), which we orientate in

the direction of growing Nγ . We make the following observations:

(i) for all Nγ ∈ (N1, N2), dN ′γ/dNγ ≥ 0;

(ii) for all Nγ ∈ (0, N1) (resp. Nγ ∈ (N2, 1)), dN ′γ/dNγ < 0 iff (Nγ , N
′
γ) ∈ T

(resp. (Nγ , N
′
γ) ∈ S);

(iii) if Γ crosses one of the curves Γ±, then dN ′γ/dNγ = 0 at the crossing point and therefore the
tangent to Γ at the crossing point is horizontal;

(iv)
dQ±
dN

≷ 0 for all N ∈ (N2, 1);
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(v)
dQ±
dN

≶ 0 for all N ∈ (0, N1);

(vi) when ξ → −∞, we have Nγ(ξ)→ 1, and N ′γ(ξ) ∼ −

(√
1 +

c2

4γ2
− c

2γ

)
(1−Nγ(ξ)).

Figure 2: Trajectory Γ in the phase plane (N,N ′), c = 2, γ = 5. On the right, enlargement around
the point (1, 0) and the region S.

The proof of all items is easy and left to the reader, except for (v), which we prove below. Note
that (vi) is a consequence of (16). It follows from (vi) that for Nγ in a neighborhood of 1 (the size
of which depends on γ), the curve Γ is above Γ+. Furthermore, (ii), (iii) and (iv) imply that if the
curve Γ intersects the region S, then it cannot exit S. It follows that Γ lies strictly above Γ+ for
all N ∈ (N2, 1) (see Figure 2 on the right). Consequently, for all Nγ ∈ (N1, 1), dN ′γ/dNγ ≥ 0.

Let us now prove that dQ+/dN ≤ 0 for all N ∈ (0, N1) (the inequality for Q− is easier and
left to the reader). We have, setting P = Nγ ,

dQ+

dN
=

d

dN

[
− c

2γ2Nγ−1

(
1−

√
1− 4γ2

c2
Nγ(1−Nγ)

)]

= − c

2γ2Nγ−1

−γ − 1

N

(
1−

√
1− 4γ2

c2
Nγ(1−Nγ)

)
+

2γ3

c2
Nγ−1(1− 2Nγ)√

1− 4γ2

c2 N
γ(1−Nγ)


= − c

2γ2Nγ

− 4γ2(γ − 1)P (1− P )

c2(1 +
√

1− 4γ2

c2 P (1− P ))
+

2γ3P (1− 2P )

c2
√

1− 4γ2

c2 P (1− P )


= −

γ(1− 2P )− (γ − 2 + 2P )
√

1− 4γ2

c2 P (1− P )

c(1 +
√

1− 4γ2

c2 P (1− P ))
√

1− 4γ2

c2 P (1− P )
.

Note that for 0 < N < N1, P = O(1/γ2). In this regime, it can be easily checked that the
numerator of the right-hand side is positive, and therefore dQ+/dN < 0 for all N ∈ (0, N1). This
completes the proof of (v).

We deduce that for N ∈ (0, N1), the curve Γ can cross Γ+ at most once, as Γ exits the region
T . Now, let us argue by contradiction and assume that there exists N1

γ ∈ (0, N1) such that
(N1

γ , (N
1
γ )′) ∈ Γ lies above Γ+. Then there are two possibilities:

• either (Nγ , N
′
γ) is above Γ+ for all Nγ ∈ (0, N1). In that case, dN ′γ/dNγ ≥ 0 for all

Nγ ∈ (0, N1). Since (0, 0) ∈ Γ and N ′γ ≤ 0, it follows that N ′γ = 0 for all Nγ ∈ (0, N1), which
contradicts Theorem 2.3;
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• or there exists N2
γ ∈ (0, N1

γ ) such that (N2
γ , (N

2
γ )′) ∈ Γ ∩ T . In that case, since Γ and Γ+

intersect at most once, there exists N3 ∈ (0, N1) such that for all Nγ ∈ (0, N3), (Nγ , N
′
γ) ∈

Γ ∩ T and for Nγ ∈ (N3, N1), (Nγ , N
′
γ) is above Γ+. Since dN ′γ/dNγ > 0 for N ∈ (N1, 1),

N ′γ reaches a minimum for Nγ = N3, and the value of this minimum is Q+(N3) ≥ Q+(N1) ∼
−2/c. Thus N ′γ is bounded in L∞. Using Ascoli’s theorem, we infer that Nγ converges
uniformly on C(K) for any compact set K ⊂ R as γ → +∞. Since NHS is discontinuous at
ξ = 0, we have reached a contradiction.

We conclude that (Nγ , N
′
γ) remains below Γ+ for all Nγ ∈ (0, N1), and therefore Γ does not cross

Γ+. Using once again the fact that minN ′γ must blow up as γ → +∞, we infer that Γ and Γ−
intersect exactly once, at a point where Nγ = N0

γ ∈ (0, N1), and N0
γ is such that Q−(N0

γ )→ −∞
as γ → +∞. For all Nγ ∈ (0, N0

γ ), dN ′γ/dNγ ≤ 0, and for Nγ ∈ (N0
γ , 1), dN ′γ/dNγ ≥ 0. Thus we

obtain the phase portrait drawn in Figure 2.
Let us now go back to the analysis of ξ ∈ R 7→ Nγ(ξ). There exists a unique ξ0γ ∈ R such

that Nγ(ξ0γ) = N0
γ . Note that dN ′γ/dNγ and N ′′γ have opposite signs. Hence, Nγ is concave on

(−∞, ξ0γ) and convex on (ξ0γ ,+∞).

The following lemma summarizes properties on ξ0γ and N0
γ :

Lemma 2.6. We normalize the function Nγ so that Nγ(0) = γ−1/γ . We have the following
properties:

• ξ0γ > 0 and limγ→+∞ ξ0γ = 0;

• supγ>0 supξ<0 |N ′γ(ξ)| < +∞ and ‖N ′γ‖L∞(R) = −Q−(N0
γ )→ +∞ as γ → +∞;

• limγ→+∞N0
γ = 1− c−1;

• For γ large enough, for all ξ ≥ ξ0γ ,

0 ≤ Nγ(ξ) ≤ N0
γ exp

(
− 1

2c
(ξ − ξ0γ)

)
;

• P ′γ → P ′HS and Nγ → NHS in Lploc(R) for all p ∈ [1,+∞[;

• Let ξ∗γ > ξ0γ such that N ′γ(ξ∗γ) = − 1
c

(
1− 1

c

)
. Then, ξ∗γ → 0 and Nγ(ξ∗γ) → 1 − c−1 as

γ → +∞.

Proof. • First step: Upper bound on N0
γ and on ξ0γ .

The analysis of the phase portrait entails immediately that ‖N ′γ‖L∞(R) = −Q−(N0
γ ). As

recalled above, if Q−(N0
γ ) remains bounded, then Nγ converges strongly in C(K) for any compact

set K, which is absurd since NHS is discontinuous. Hence, Q−(N0
γ ) must blow up. Since

− c

γ2(N0
γ )γ−1

≤ Q−(N0
γ ) ≤ − c

2γ2(N0
γ )γ−1

,

we deduce that (N0
γ )γ = o(γ−2))� γ−1 = Nγ(0)γ . Thus ξ0γ > 0.

Since the flux Jγ is decreasing on R, it follows that Jγ(ξ0γ) ≤ Jγ(0). Now

Jγ(ξ0γ) = cN0
γ + γ(N0

γ )γQ−(N0
γ ) =

(
c+O

(
1

γ

))
N0
γ , (31)

and
Jγ(0) = γ−1/γ

(
c+ P ′γ(0)

)
.

Thanks to the sub- and super-solutions for Pγ on R− from Proposition 2.4, we know that for all
ξ < 0, (

1− 1

γ

)
(1− eλξ) ≤ Pγ − Pγ(0) ≤

(
1− 1

γ

)
(1− eξ),
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where λ = (
√
c2 + 4 − c)/2. Hence P ′γ(0) ∈ [−(1 − γ−1),−(1 − γ−1)λ]. We deduce that Jγ(0) ≤

c− (1− γ−1)λ, and therefore

N0
γ ≤

(
c+O

(
1

γ

))−1(
c−

(
1− 1

γ

)
λ

)
≤ 1− λ

c
+O

(
1

γ

)
. (32)

Hence lim supγ→+∞N0
γ ≤ (c− λ)/c < 1.

The bound on P ′γ(0) also implies the boundedness of N ′γ on R−. Indeed, since ξ0γ > 0, N ′γ is
decreasing and negative on R−, and

sup
ξ<0
|N ′γ(ξ)| = |N ′γ(0)| = −

P ′γ(0)

γNγ(0)γ−1
= O(1).

Let us now address the upper bound on ξ0γ . We recall that Nγ is concave on (−∞, ξ0γ).
Consequently, for all ξ ∈ (0, ξ0γ),

0 ≤ Nγ(ξ) ≤ Nγ(0) +N ′γ(0)ξ.

In particular, taking ξ = ξ0γ , we deduce that

ξ0γ ≤ −
Nγ(0)

N ′γ(0)
= −γPγ(0)

P ′γ(0)
= − 1

P ′γ(0)
,

since Pγ(0) = γ−1 by choice of our normalization. We deduce in particular that

0 ≤ ξ0γ ≤
1

λ(1− γ−1)
.

• Second step: Super-solution for Nγ on (ξ0γ ,+∞).
We recall that Nγ is convex on (ξ0γ ,+∞). As a consequence, using the equation on Nγ , we

have

−cN ′γ = Nγ(1−Nγ
γ ) + γN ′′γN

γ
γ + γ2(N ′γ)2Nγ−1

γ ≥ Nγ(1− (N0
γ )γ) ∀ξ ∈ (ξ0γ ,+∞). (33)

The Grönwall Lemma then implies that

Nγ(ξ) ≤ N0
γ exp

(
−

1− (N0
γ )γ

c
(ξ − ξ0γ)

)
, ∀ξ ≥ ξ0γ . (34)

Recalling (32), we deduce that for γ large enough, for all ξ ∈ (ξ0γ ,+∞),

Nγ(ξ) ≤ N0
γ exp

(
− 1

2c
(ξ − ξ0γ)

)
. (35)

• Third step: Strong convergence of P ′γ and Nγ .
We start with an L2 bound for P ′γ . From (4), Pγ is solution to

−cP ′γ − γPγP ′′γ − (P ′γ)2 = γPγ(1− Pγ). (36)

Integrating equation (36) over R gives

(γ − 1)

∫
R
|P ′γ(ξ)|2dξ = −c+ γ

∫
R
Pγ(1− Pγ) dξ.

Hence, we get the following inequality

‖P ′γ‖2L2(R) ≤
γ

γ − 1

(
‖Pγ‖L1(R+) + ‖1− Pγ‖L1(R−)

)
.
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The right-hand side is uniformly bounded with respect to γ thanks to sub-solution for Pγ on R−
(see Proposition 2.4) and to the upper bound for Nγ on (ξ0γ ,+∞) (see (35)). On the interval
(0, ξ0γ), we simply use the fact that ξ0γ is bounded and Pγ ≤ Pγ(0). Hence, (P ′γ)γ>1 is bounded in
L2(R).

We now show an additional strong convergence of (P ′γ)γ in L2. Going back to Equation (36)
and taking into account that (P ′γ)γ is uniformly bounded in L2(R), we have for any ψ ∈ C∞c (R):∫

R
ψPγ

[
P ′′γ + (1− Pγ)

]
dξ = − 1

γ

∫
R
ψ
[
cP ′γ + (P ′γ)2

]
dξ → 0 as γ → +∞.

Hence, by integration by parts in the left-hand side:

−
∫
R
ψ(P ′γ)2 dξ −

∫
R
ψ′PγP

′
γ dξ +

∫
R
ψPγ(1− Pγ) dξ → 0 as γ → +∞.

From the previous bounds, it is clear that

−
∫
R
ψ′PγP

′
γ dξ+

∫
R
ψPγ(1−Pγ) →

γ→+∞
−
∫
R
ψ′PHS P

′
HS dξ+

∫
R
ψPHS(1−PHS) dξ =

∫
R
ψ(P ′HS)2,

using the complementarity equation (24). Finally,∫
R
ψ(P ′γ)2 dξ →

∫
R
ψ(P ′HS)2 dξ as γ → +∞,

which means that (P ′γ)γ converges strongly in L2
loc(R) to P ′HS .

We then recall that Jγ = Nγ(c + P ′γ). Since (P ′γ)γ converges in L2
loc, there exists a sub-

sequence (which we still denote by P ′γ) which also converges almost everywhere. Recall that (Jγ)γ
converges in C(K) for any compact set K ⊂ R. Therefore (Nγ)γ converges almost everywhere -
up to a subsequence - on any set of the form ∩γ>0{c+ P ′γ ≥ δ}, with δ > 0.

Let K be a compact set in R, and let M = supK JHS < c, m = infK JHS > 0. There exists
γK > 0 such that for γ ≥ γK , Jγ(K) ⊂ [m/2, (c + M)/2]. Since Jγ ≤ c + P ′γ , we deduce that
c + P ′γ ≥ m/2 on K for γ ≥ γK . Whence (Nγ)γ converges almost everywhere on K, up to a
subsequence. Since Nγ is bounded in L∞, Lebesgue’s dominated convergence theorem implies
that (Nγ)γ converges towards NHS in Lp(K) for any p ∈ [1,+∞[. Note that the limit is uniquely
identified. Hence the whole sequence (Nγ)γ converges in Lploc.
• Fourth step: Convergence of ξ0γ and N0

γ .
We argue by contradiction and assume that lim supγ→+∞ ξ0γ > 0. Then there exists ξ̄ > 0 such

that ξ̄ ≤ ξ0γ for a subsequence. We recall that N ′′γ ≤ 0 on (0, ξ̄). Passing to the limit in the sense
of distributions along this subsequence, we obtain that N ′′HS ≤ 0 in D′((0, ξ̄)), which is absurd.
Thus ξ0γ → 0 as γ → +∞.

Let us now go back to (31). We recall that Jγ converges uniformly towards JHS , and that
JHS(0) = c− 1. It follows that limγ→+∞N0

γ = 1− c−1.
• Fifth step: Asymptotic behavior of ξ∗γ and Nγ(ξ∗γ).

First, notice that ξ∗γ is well-defined since N ′γ is increasing on (ξ0γ ,+∞), with N ′γ(+∞) = 0 and
limγ→+∞N ′γ(ξ0γ) = −∞. Furthermore, since Nγ(ξ∗γ) ≤ N0

γ , lim supγ→+∞Nγ(ξ∗γ) ≤ 1− c−1.
In order to prove that limγ→+∞ ξ∗γ = 0, we argue once again by contradiction and we assume

that lim supγ→+∞ ξ∗γ > 0. Thus there exists δ > 0 such that ξ∗γ ≥ δ along a subsequence. By
monotony of N ′γ , we know that N ′γ(ξ) ≤ N ′γ(ξ∗γ) = −c−1(1 − c−1) for all ξ ∈ (ξ0γ , δ) ⊂ (ξ0γ , ξ

∗
γ).

Thus, passing to the weak limit, we find that there exists a non-empty open interval included in
(0,+∞) on which N ′HS ≤ −c−1(1− c−1). This contradicts the explicit expression of N ′HS on R+,
namely N ′HS(ξ) = −c−1(1− c−1)e−ξ/c for ξ > 0; and therefore limγ→+∞ ξ∗γ = 0.

The convergence of Nγ(ξ∗γ) towards 1− c−1 follows from the same arguments as the one of N0
γ :

we note that
Jγ(ξ∗γ) = cNγ(ξ∗γ)− γ 1

c

(
1− 1

c

)
Nγ(ξ∗γ)γ .
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Since lim supγ→+∞Nγ(ξ∗γ) < 1, the second term in the right-hand side converges towards zero
exponentially fast. We also recall that by uniform convergence of Jγ , Jγ(ξ∗γ)→ JHS(0) = c− 1 as
γ → +∞. Hence limγ→+∞Nγ(ξ∗γ) = 1− c−1.

Note that thanks to the above Lemma, we can pass to the limit in the pressure equation (26),
i.e. take the limit of quantities such as NγP ′′γ , even though P ′′HS has a Dirac mass at the point
where NHS has a discontinuity.

Corollary 2.7. As γ → +∞,

NγP
′′
γ ⇀ −1ξ<0e

ξ − (c− 1) ln

(
1− 1

c

)
δ(ξ) in D′(R)

where δ is the Dirac mass at ξ = 0.

Proof. Let us rewrite the pressure equation (26) as

−NγP ′′γ = Nγ(1− Pγ) + Jγ(lnNγ)′.

According to Proposition 2.4 and Lemma 2.6,

Nγ(1− Pγ)→ 1ξ<0e
ξ + 1ξ>0

(
1− 1

c

)
e−ξ/c in Lploc(R)

Jγ → JHS = 1ξ≤0(c− eξ) + 1ξ>0(c− 1)e−ξ/c in C(K),

ln(Nγ)→ 1ξ>0

(
ln

(
1− 1

c

)
− ξ

c

)
in Lploc(R)

for all 1 ≤ p < +∞ and for any compact set K ⊂ R.
The result follows easily.

The same method also allows us to pass to the limit in products such as P ′′γ f(Nγ), for any
continuous function f . We find that

P ′′γ f(Nγ) ⇀ −1ξ<0f(1)eξ − (c− 1)F

(
1− 1

c

)
δ(ξ),

where F (z) = −
∫ 1

z
f(t)/t2 dt for z > 0.

2.4 Quantitative bounds for the profiles Nγ

In order to prove our quantitative stability result in Theorem 1.5, we will need some quantitative
information on the asymptotic behavior of Nγ and its derivatives (e.g., the size of ‖N ′γ‖L∞). This
subsection is devoted to the proof of such bounds.

More precisely, we prove the following result:

Lemma 2.8. There exists a constant C > 1, depending only on c, such that the following properties
hold, for any γ > 0:

sup
0<|h|≤1

sup
x∈R

1

|h|
|Nγ(x+ h)−Nγ(x)|

Nγ(x)
+

∥∥∥∥N ′γNγ
∥∥∥∥
∞
≤ Cγ ,

sup
0<|h|≤1

sup
x∈R

1

|h|

∣∣∣∣Nγ(x+ h)−Nγ(x)

N ′γ(x)

∣∣∣∣ ≤ Cγ , sup
ξ<0

∣∣∣∣1− Pγ(ξ)

P ′γ(ξ)

∣∣∣∣ ≤ C.
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Proof. Bound on N ′γ/Nγ in the free zone ξ > ξ∗γ.

We set Lγ :=
N ′γ
Nγ

+ c−1. Using the equation and the convexity of Nγ in ξ > ξ∗γ , see (33), we
have

−cN ′γ(ξ) ≥ Nγ(ξ)(1−(Nγ(ξ))γ) =⇒ Lγ(ξ) =
N ′γ(ξ)

Nγ(ξ)
+

1

c
≤ (Nγ(ξ))γ

c
≤

(Nγ(ξ∗γ))γ

c
, ∀ ξ ≥ ξ∗γ .

Furthermore, since N ′γ(ξ∗γ) = −c−1(1 − c−1) and Nγ(ξ∗γ) → 1 − c−1, we immediately infer that
Lγ(ξ∗γ) vanishes as γ → +∞. We now derive an equation for Lγ in order to obtain a lower bound
on Lγ . We have, using the equation on Nγ ,

L′γ =
N ′′γ
Nγ
−

(N ′γ)2

N2
γ

= − 1

γNγ+1
γ

(
Nγ(1−Nγ

γ ) + cN ′γ + γ2(N ′γ)2Nγ−1
γ

)
−

(N ′γ)2

N2
γ

= − cLγ
γNγ

γ
+

1

γ
− (γ + 1)

(
Lγ −

1

c

)2

.

Thus Lγ satisfies the differential equation

L′γ +

[
(γ + 1)Lγ +

c

γNγ
γ
− 2(γ + 1)

c

]
Lγ =

1

γ
− γ + 1

c2
.

Note that the coefficient c
γNγγ
− 2(γ+1)

c is exponentially large in the free zone, and drives a strong
convergence of Lγ towards zero. Thus the whole idea is to prove that the quadratic term (γ+1)L2

γ

does not perturb the linear behavior. This easily follows from a bootstrap argument. First, note
that there exists a non-empty open interval on the right of ξ∗γ on which Lγ > −2|Lγ(ξ∗γ)|. Let us
set

ξ̃γ := sup{ξ > ξ∗γ , Lγ > −2|Lγ(ξ∗γ)| on (ξ∗γ , ξ)}.

On the interval (ξ∗γ , ξ̃γ), we have

−2|Lγ(ξ∗γ)| ≤ Lγ(ξ) ≤
(Nγ(ξ∗γ))γ

c
,

and therefore Lγ converges uniformly towards zero on this interval. If ξ̃γ = +∞, we obtain a
uniform bound on N ′γ/Nγ in the free zone. If ξ̃γ < +∞, then Lγ(ξ̃γ) = −2|Lγ(ξ∗γ)| < 0. Thus at
ξ = ξ̃γ , for γ large enough

(γ + 1)Lγ +
c

γNγ
γ
− 2(γ + 1)

c
>

c

2γNγ
γ
. (37)

Thus by continuity, this property remains true on a non-empty open interval on the right of ξ̃γ .
We now define

ξmax := sup{ξ > ξ̃γ , (37) holds and Lγ < 0 on (ξ̃γ , ξ)}.

Then ξmax > ξ̃γ > ξ∗γ , and on the interval (ξ̃γ , ξmax), we have, since Lγ(ξ) < 0

L′γ +
c

γNγ
γ
Lγ ≤

1

γ
− γ + 1

c2
≤ − γ

2c2
,

L′γ +
c

2γNγ
γ
Lγ ≥

1

γ
− γ + 1

c2
≥ −γ + 1

c2
.
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The Grönwall Lemma then implies that for all ξ ∈ (ξ̃γ , ξmax),

Lγ(ξ) ≤ −2|Lγ(ξ∗γ)| exp

(
−
∫ ξ

ξ̃γ

c

γNγ
γ

)
− γ

2c2

∫ ξ

ξ̃γ

exp

(
−
∫ ξ

ξ′

c

γNγ
γ

)
dξ′,

Lγ(ξ) ≥ −2|Lγ(ξ∗γ)| exp

(
−
∫ ξ

ξ̃γ

c

2γNγ
γ

)
− γ + 1

c2

∫ ξ

ξ̃γ

exp

(
−
∫ ξ

ξ′

c

2γNγ
γ

)
dξ′.

Now, we recall that for ξ > ξ∗γ , for γ sufficiently large,

Nγ(ξ) ≤ Nγ(ξ∗γ) ≤ 1− 1

2c
.

Thus for all ξ ∈ (ξ̃γ , ξmax),

Lγ(ξ) ≥ −2|Lγ(ξ∗)| exp

(
−(ξ − ξ̃γ)

c

2γ

(
1− 1

2c

)−γ)

−γ + 1

c2

∫ ξ

ξ̃γ

exp

(
−(ξ − ξ′) c

2γ

(
1− 1

2c

)−γ)
dξ′

≥ −2|Lγ(ξ∗)| exp

(
−(ξ − ξ̃γ)

c

2γ

(
1− 1

2c

)−γ)
− 2γ(γ + 1)

c3

(
1− 1

2c

)γ
.

Note that the right-hand side of the above inequality converges uniformly towards zero. In par-
ticular, for γ sufficiently large, Lγ(ξ) ≥ −1 for all ξ ∈ (ξ̃γ , ξmax). It follows that

(γ + 1)Lγ +
c

γNγ
γ
− 2(γ + 1)

c
≥ c

γNγ
γ
− (c+ 2)(γ + 1)

c
≥ 3c

4γNγ
γ
∀ξ ∈ (ξ̃γ , ξmax).

The upper bound on Lγ(ξ) also shows that the threshold Lγ(ξ) = 0 is never reached for finite ξ.
By a bootstrap argument, we deduce that ξmax = +∞. The above inequalities imply, in particular,
that

Lγ → 0 uniformly on (ξ∗γ ,+∞).

Remark 2.9. The uniform convergence of Lγ towards zero yields the existence of sub-solutions of
Nγ in the zone ξ > ξ∗γ . Indeed, let δ > 0 be arbitrary. Then for γ large enough, Lγ ≥ −δ, and
therefore N ′γ

Nγ
≥ −(c−1 + δ). By the Grönwall Lemma, we obtain

Nγ(ξ) ≥ Nγ(ξ∗γ) exp

(
−
(

1

c
+ δ

)
(ξ − ξ∗γ)

)
. (38)

Bound on N ′γ/Nγ and on the first difference quotient in L∞.
We distinguish between ξ < ξ∗γ and ξ > ξ∗γ and we write, for γ sufficiently large,∥∥∥∥N ′γNγ

∥∥∥∥
∞

= max

(
sup
ξ<ξ∗γ

|N ′γ |
Nγ

, sup
ξ>ξ∗γ

∣∣∣∣Lγ − 1

c

∣∣∣∣
)

≤ max

(
1

Nγ(ξ∗γ)
‖N ′γ‖∞,

1

c
+ 1

)
≤ C|Q−(N0

γ )| ≤
(

1− 1

2c

)−γ
.

Let us now consider the difference quotient

1

|h|
|Nγ(x+ h)−Nγ(x)|

Nγ(x)
.

We will need to distinguish several cases:
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• Case x < ξ∗γ : in that case, Nγ(x) ≥ Nγ(ξ∗γ)→ 1− c−1, and therefore the difference quotient
is bounded by C‖N ′γ‖∞.

• Case x > ξ∗γ :

– Sub-case h > 0: we write Nγ(x + h) − Nγ(x) =
∫ h
0
N ′γ(x + y) dy, and we recall that

since Lγ is uniformly bounded, |N ′γ | ≤ CNγ for some constant C in (ξ∗γ ,+∞). Using
the monotony of Nγ , we deduce that the difference quotient is bounded.

– Sub-case h < 0 and x+ h > ξ∗γ : an argument similar to the sub-case h > 0 applies. In
that case, we obtain, using a variant of Remark 2.9,

1

|h|
|Nγ(x+ h)−Nγ(x)|

Nγ(x)
≤ CNγ(x+ h)

Nγ(x)
≤ C.

– Sub-case x + h ≤ ξ∗γ : in that case, note that x = x + h − h ≤ ξ∗γ + 1 since |h| ≤ 1.
Hence, Nγ(x) ≥ Nγ(ξ∗γ + 1), which is uniformly bounded from below thanks to (38).
Thus the difference quotient is bounded by C‖N ′γ‖∞.

Gathering these results, we obtain the bounds announced in the Lemma.

Bound on (1− Pγ)/P ′γ on R−.
Let Mγ := (1 − Pγ)/P ′γ . According to Proposition 2.4, Mγ → (1 − PHS)/P ′HS = −1 locally

uniformly on R−. So, for γ sufficiently large,Mγ(ξ) ∈ [−3/2,−1/2] for all ξ ∈ [−1, 0]. Furthermore
we know that

N ′γ
P ′γ

(ξ) =
1

γ(Nγ(ξ))γ−1
→

ξ→−∞

1

γ
, lim

ξ→−∞

1− Pγ(ξ)

1−Nγ(ξ)
= lim
N→1−

1−Nγ

1−N
= γ,

so that, thanks to Theorem 2.3,

Mγ(ξ) =
N ′γ(ξ)

P ′γ(ξ)

1−Nγ(ξ)

N ′γ(ξ)

1− Pγ(ξ)

1−Nγ(ξ)
→ −

(√
1 +

c2

4γ2
− c

2γ

)−1
, as ξ → −∞.

Now, let us consider the interval (−∞,−1]. There are two possibilities:

• either Mγ(ξ) is between Mγ(−1) and Mγ(−∞) for all ξ ∈ (−∞,−1]. In that case, for γ
sufficiently large, Mγ(ξ) ∈ [−3/2,−1/2] for all ξ ∈ (−∞,−1];

• or Mγ takes values outside the interval [Mγ(−1),Mγ(−∞)]. In that case Mγ reaches a local
extremum at some ξM ∈ (−∞,−1), and therefore M ′γ(ξM ) = 0.
Let us compute M ′γ . Using the equation satisfied by Pγ (26), we have

M ′γ = −1−
P ′′γ (1− Pγ)

(P ′γ)2

= −1 +
1− Pγ
(P ′γ)2

(
1− Pγ +

cP ′γ
γPγ

+
(P ′γ)2

γPγ

)

= −1 +M2
γ + c

Mγ

γPγ
+

1− Pγ
γPγ

.

At ξ = ξM , the right-hand side vanishes, and therefore

Mγ(ξM ) =
1

2

(
− c

γPγ(ξM )
±

√
4 +

c2

γ2Pγ(ξM )2
− 4

1− Pγ(ξM )

γPγ(ξM )

)
.

Note that, thanks to (18), Pγ(ξM ) ≥ Pγ(−1) ≥ 1−e−λ > 0. Hence,Mγ(ξM ) = ±1+O(γ−1).
Recalling that Mγ < 0 on R−, we deduce that Mγ(ξM ) = −1 +O(γ−1).
Once again, for γ sufficiently large, we find that Mγ(ξ) ∈ [−3/2,−1/2] for all ξ ∈ (−∞,−1].
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Hence, we deduce in all cases that for γ sufficiently large,

−3

2
≤ 1− Pγ

P ′γ
≤ −1

2
, ∀ξ ∈ R−. (39)

Note that these bounds (which are stronger than what is announced in the statement of the
lemma) imply in particular the following inequalities, which are easy consequences of the Grönwall
Lemma: for all ξ ≤ ξ′ ≤ 0, for γ large enough,

(1− Pγ(ξ)) exp (−2(ξ′ − ξ)) ≤ 1− Pγ(ξ′) ≤ (1− Pγ(ξ)) exp

(
−2

3
(ξ′ − ξ)

)
. (40)

Bound on the second difference quotient.
We now address the bound on

sup
0<|h|≤1

sup
x∈R

1

|h|

∣∣∣∣Nγ(x+ h)−Nγ(x)

N ′γ(x)

∣∣∣∣ .
Once again, we will need to distinguish between several zones. First, note that

1

|h|

∣∣∣∣Nγ(x+ h)−Nγ(x)

N ′γ(x)

∣∣∣∣ =
1

|h|

∣∣∣∣Nγ(x+ h)−Nγ(x)

Nγ(x)

∣∣∣∣ ∣∣∣∣Nγ(x)

N ′γ(x)

∣∣∣∣ .
Hence, for x > −2, this difference quotient is bounded by

sup
x∈R

sup
0<|h|≤1

1

|h|

∣∣∣∣Nγ(x+ h)−Nγ(x)

Nγ(x)

∣∣∣∣ sup
x>−2

Nγ(x)

|N ′γ(x)|
.

For x > ξ∗γ , Nγ/N ′γ = (Lγ − c−1)−1, and we recall that Lγ converges uniformly towards zero on
(ξ∗γ ,+∞). Hence, Nγ/N ′γ is uniformly bounded on (ξ∗γ ,+∞). And looking at the variations of N ′γ ,
we infer that

sup
x∈(−2,ξ∗γ)

Nγ(x)

|N ′γ(x)|
≤ max

(
1

|N ′γ(−2)|
,

1

|N ′γ(ξ∗γ)|

)
≤ Cγ.

Thus
sup

0<|h|≤1
sup

x∈(−2,+∞)

1

|h|

∣∣∣∣Nγ(x+ h)−Nγ(x)

N ′γ(x)

∣∣∣∣ ≤ γCγ ≤ Cγ1 ,
for some constant C1 > C.

We now consider the interval (−∞,−2). Since |h| ≤ 1, we have x + h ≤ −1. Hence, x and
x+ h are in the congested zone. We write

1

h

Nγ(x+ h)−Nγ(x)

N ′γ(x)
=

∫ 1

0

N ′γ(x+ τh)

N ′γ(x)
dτ.

Recall that N ′γ = γ−1P ′γN
−(γ−1)
γ . Hence,

N ′γ(x+ τh)

N ′γ(x)
=
P ′γ(x+ τh)

P ′γ(x)

Nγ(x)γ−1

Nγ(x+ τh)γ−1
.

Note that Nγ−1
γ = Pγ/Nγ is uniformly bounded from above and from below on (−∞,−1). Thus

we focus on the quotient P ′γ(x+ τh)/P ′γ(x), which we further decompose as

P ′γ(x+ τh)

P ′γ(x)
=

P ′γ(x+ τh)

1− Pγ(x+ τh)

1− Pγ(x+ τh)

1− Pγ(x)

1− Pγ(x)

P ′γ(x)
=

Mγ(x)

Mγ(x+ τh)

1− Pγ(x+ τh)

1− Pγ(x)
.
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Using (40) and (39), we deduce that ∣∣∣∣P ′γ(x+ τh)

P ′γ(x)

∣∣∣∣ ≤ Ce2|h|.
Hence,

sup
0<|h|≤1

sup
x≤−2

1

|h|

∣∣∣∣Nγ(x+ h)−Nγ(x)

N ′γ(x)

∣∣∣∣ ≤ C.
Our nonlinear stability result will hold in weighted Sobolev spaces. The weights will depend

on the function Nγ and its derivative, and therefore will have abrupt changes in the transition
zone (0, ξ∗γ). In order to monitor precisely these changes, we introduce two additional abscissas
ξ−γ and ξ+γ , which we define as follows:

Definition 2.10 (Definition of ξ−γ and ξ+γ ).

• The abscissa ξ−γ ∈ R is the unique point where

Pγ(ξ−γ ) =

(
c3

(c− 1)(γ + 1)

)1/2

. (41)

• The abscissa ξ+γ ∈ R is the unique point such that Nγ(ξ+γ ) ∈ (0, N0
γ ) and

N ′γ(ξ+γ ) = − c− 1

4γ2Nγ(ξ+γ )γ−1
.

Remark 2.11. • Note that ξ−γ is well-defined by monotony of Pγ , and ξ−γ < 0 since Pγ(ξ−γ ) >
Pγ(0);

• The definition of ξ+γ is a little more intricate. We recall that for all Nγ ∈ (0, N0
γ ), Q−(N) <

N ′γ < 0, where Q− is defined in (29) and dN ′γ/dNγ ≤ 0 for all Nγ ∈ (0, N0
γ ); we refer to the

analysis of the phase portrait in the previous subsection (see also Fig. 2).

Now, define Q̃(N) by

Q̃(N) := − c− 1

4γ2Nγ−1 .

It is clear from the definition of Q̃ and Q− that Q− < Q̃ for all N ∈ (0, N0
γ ), and Q̃ is

monotone increasing on that interval. Consequently, the curve (Nγ , N
′
γ) intersects the curve

(N, Q̃(N)) exactly once on the interval (0, N0
γ ) (see Figure 3). We denote the abscissa of the

intersection point as N+
γ , and ξ+γ is defined implicitly as Nγ(ξ+γ ) = N+

γ .

Let us now give some properties of ξ+γ and ξ−γ , which will be used in the next section:

Lemma 2.12 (Properties of ξ+γ and ξ−γ ). For γ large enough, the following properties hold:

• ξ−γ < 0 < ξ0γ < ξ+γ < ξ∗γ . As a consequence, limγ→+∞Nγ(ξ+γ ) = 1− c−1;

• ξ−γ = O(γ−1/2), and ξ+γ = O(γ−1);

• P ′γ ≤ −γ−1(c− 1)/4 for all ξ ∈ (ξ−γ , ξ
+
γ ).
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Figure 3: Definition of the point N+
γ in the phase plane (N,N ′), c = 2, γ = 5.

Proof. Relative positions of ξ0γ , ξ+γ , ξ∗γ.
By definition of ξ+γ , Nγ(ξ+γ ) < N0

γ , and thus ξ0γ < ξ+γ . Furthermore, we recall that N ′γ is
monotone increasing on (ξ0γ ,+∞), and

N ′γ(ξ+γ ) = − c− 1

4γ2Nγ(ξ+γ )γ−1
≤ − c− 1

4γ2(N0
γ )γ−1

→ −∞.

Whence N ′γ(ξ+γ ) < N ′γ(ξ∗γ), and therefore ξ+γ < ξ∗γ . The limit of Nγ(ξ+γ ) follows from the monotony
of Nγ and the fact that limγ→+∞Nγ(ξ0γ) = limγ→+∞Nγ(ξ∗γ) = 1− c−1 (see Lemma 2.6).

Size of ξ−γ .
First, considering the sub-solution for Pγ defined in (18), we see that ξ−γ > −1. Using (39), we

recall that P ′γ is bounded away from zero on (−1, 0), for γ large enough. Hence,

|Pγ(ξ−γ )− Pγ(0)|
sup(ξ−γ ,0)

|P ′γ |
≤ |ξ−γ | ≤

|Pγ(ξ−γ )− Pγ(0)|
inf(ξ−γ ,0) |P

′
γ |

,

and thus
C−1
√
γ
≤ |ξ−γ | ≤

C
√
γ
.

Lower bound for |P ′γ | on (ξ−γ , ξ
+
γ ) and size of ξ+γ .

Let us introduce yet another intermediate point ξint
γ such that

Nγ(ξint
γ ) = 1− (2c)−1. (42)

We recall that Nγ(ξ0γ) → 1 − c−1, and therefore ξint
γ ∈ (0, ξ0γ) for γ large enough. Now, for

ξ ∈ (ξ−γ , ξ
int
γ ), we have Nγ(ξ) ∈ [1− (2c)−1, 1], and

P ′γ =
Jγ − cNγ

Nγ
≤ Jγ

1− 1
2c

− c.

We recall that Jγ(ξ) → c − 1 uniformly on that interval. Thus P ′γ ≤ −C < 0 on (ξ−γ , ξ
int
γ ) for γ

sufficiently large, for some uniform constant C.

23



In particular, since Pγ(ξint
γ ) = (1− (2c)−1)γ is exponentially small, it follows that

ξint
γ ≤

|Pγ(ξint
γ )− Pγ(0)|

inf [0,ξint
γ ] |P ′γ |

≤ C

γ
.

Let us now consider the intervals (ξint
γ , ξ0γ) and (ξ0γ , ξ

+
γ ). Using the notations introduced in

Lemma 2.5 and (30), it is easily checked that Nγ(ξint
γ ) ≤ N1. As a result, using the phase portrait

of Nγ (see Figure 2), N ′γ ≤ Q−(Nγ) for all ξ ∈ (ξint
γ , ξ0γ). Consequently,

P ′γ = γN ′γ(ξ)
(
Nγ(ξ)

)γ−1
≤ γ

(
Nγ(ξ)

)γ−1 × 1

2γ2
(
Nγ(ξ)

)γ−1 (− c−√c2 − 4γ2
(
Nγ(ξ)

)γ
(1−

(
Nγ(ξ)

)γ
)
)

≤ − c

2γ
, ∀ξ ∈ (ξint

γ , ξ0γ).

For ξ ∈ (ξ0γ , ξ
+
γ ), the argument is similar. On this interval, N ′γ ≥ Q−(Nγ), but N ′γ ≤ Q̃(Nγ) by

definition of ξ+γ (see Figure 3). Thus

P ′γ(ξ) ≤ γ
(
Nγ(ξ)

)γ−1 ×(− c− 1

4γ2
(
Nγ(ξ)

)γ−1
)
≤ −c− 1

4γ
, ∀ξ ∈ (ξ0γ , ξ

+
γ ).

We obtain the desired lower bound on |P ′γ | on (ξint
γ , ξ+γ ). It follows that

ξ+γ − ξint
γ ≤

|Pγ(ξ+γ )− Pγ(ξint
γ )|

inf(ξint
γ ,ξ+γ ) |P ′γ |

≤ Cγ
(

1− 1

2c

)γ
= o(γ−1).

Hence, ξ+γ and ξint
γ are exponentially close. The estimate on ξ+γ follows.

As an immediate consequence of the previous lemma, we can compute the size of an integral
which will play an important role in the next section:

Lemma 2.13. There exists a constant C > 0, such that as γ → +∞,∫ ξ+γ

ξ−γ

1

γNγ
γ (z)

dz ≤ Cγ.

Proof. Using Lemma 2.12, we recall that |P ′γ | = γ|N ′γ |Nγ−1
γ ≥ (c− 1)γ−1/4 on (ξ−γ , ξ

+
γ ). Hence,∫ ξ+γ

ξ−γ

1

γNγ
γ

=

∫ ξ+γ

ξ−γ

|N ′γ |
γ|N ′γ |Nγ

≤ 4

c− 1
γ

∫ ξ+γ

ξ−γ

|N ′γ |
Nγ

≤ 4

c− 1
γ ln

(
Nγ(ξ−γ )

Nγ(ξ+γ )

)
≤ Cγ.

Let us conclude this section by saying a few words about the proof of Theorem 1.1. The sizes
and signs of ξ−γ and ξ+γ are given in Lemma 2.12. Inequality (6) follows from the monotony of Nγ
and from the definition of ξ−γ . Let us briefly discuss the inequality claimed in (7). Actually, the
reader may check that the derivation of sub- and super-solutions on R− made in (27)-(28) can be
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easily adapted to the interval (−∞, ξ−γ ], using the fact that Pγ(ξ−γ ) = O(γ−1/2) and γPγ ≥ C
√
γ

on (−∞, ξ−γ ]. It follows that

1−
(
1− Pγ(ξ−γ )

)
eµγξ ≤ Pγ(ξ) ≤ 1−

(
1− Pγ(ξ−γ )

)
eξ,

where µγ is the positive root of µ2 + c
C
√
γµ− 1 = 0. It is straightforward that µγ = 1−O(γ−1/2),

which leads to inequality (7).
The size of ‖N ′γ‖∞ in the intermediate region (ξ−γ , ξ

+
γ ) is an easy consequence of Lemma 2.6,

and the bounds on the pressure in that zone follow from the monotony of Pγ , the definition of ξ−γ
and the asymptotic behavior of Nγ(ξ+γ ) (see Lemma 2.12).

Eventually, the lower and bounds on Nγ in the free zone follow from (38) and (35) respectively.
The convergence properties for Nγ , Pγ at the end of Theorem 1.1 are a consequence of Lemma

2.6 and Proposition 2.4.

3 Stability of the profiles Nγ

The goal of this section is to prove that the solution of the equation

∂tnγ − γ∂x
(
nγγ∂xnγ

)
= nγ

(
1− nγγ

)
(43)

associated to an initial datum that lies between two shifts of the profile Nγ , converges (in a sense
specified below) towards Nγ as t→ +∞. Let us recall that according to the work of de Pablo and
Vázquez [6] (see also [20, 27]), equation (43) associated with such an initial datum has a unique
global generalized solution. Furthermore, it will follow from the comparison principle that this
solution remains bounded from below by a shift of Nγ . In particular, nγ remains strictly positive
everywhere, and the solution is in fact a classical solution.

After a presentation of the general strategy, we discuss in depth the two main steps of the
proof: the analysis of the linearized system and, next, the control of the nonlinear contributions.
To keep the presentation as seamless as possible, we have postponed the proof of some technical
lemmas to the next section.

This section contains rather technical ingredients. Therefore, in order to alleviate the notation
as much as possible, we will systematically drop the dependency with respect to γ in the computa-
tions and proofs: Nγ will be denoted by N , nγ will be denoted by n, etc. We only keep track of
this dependency in the statement of our main result.

In the whole section, for all weights and coefficients f(t, x) that only depend on ξ = x− ct, we
denote f(t, x) = f̄(x− ct).

3.1 Overall strategy
We define here our notion of stability and convergence towards the profile Nγ . We introduce a
weight

w0(ξ) = KNγ
γ (ξ)(N ′γ(ξ))2 exp

(∫ ξ

ξ−γ

c

γNγ(z)
dz

)
, (44)

with a normalization constant K chosen so that w0(ξ−γ ) = 1. The definition of w0 is dictated by
a certain ODE (a kind of dual problem) that the weight should satisfy, see (51) and Section 4.1,
which leads to formula (44).

We will prove that for sufficiently small and decaying initial data,∫
R

∣∣∣nγ(t, x)−Nγ(x− ct)
N ′γ(x− ct)

∣∣∣2w0(x− ct) dx→ 0 as t→ +∞. (45)

The result is summarized in the following theorem.
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Theorem 3.1. There exists η1, η2 ∈]0, 1[ such that the following result holds. Let γ > 1 be fixed,
sufficiently large. Let us assume that n0γ lies between two shifts of Nγ , i.e. there exists h > 0 such
that n0γ(x) ∈ [Nγ(x + h), Nγ(x − h)] for all x ∈ R. Let nγ be the solution of (1) associated with
n0γ and

uγ(t, x) :=
nγ(t, x)−Nγ(x− ct)

N ′γ(x− ct)
.

Assume that ∫
R
|uγ(0, x)|2w0(x) dx < +∞.

If h ≤ ηγ2 , the following inequalities hold∫
R
|uγ(t, x)|2w0(x− ct) dx ≤ e−η

γ
1 t

∫
R
|uγ(0, x)|2w0(x) dx ∀t ≥ 0,

γ

∫ ∞
0

∫
R
|∂xuγ(t, x)|2Nγ

γ (x− ct)w0(x− ct) dx dt ≤
∫
R
|uγ(0, x)|2w0(x) dx.

(46)

Note that this statement is merely a rephrasing of Theorem 1.5 in terms of the unknown uγ .
We emphasize that uγ is a natural variable when linearizing equation (43) around Nγ(x − ct).
Indeed, since equation (43) has constant coefficients and Nγ(x− ct) is a particular solution of the
equation, it is classical that ∂xNγ(x−ct) is a solution of the linearized equation around Nγ(x−ct)
(and we also recall that ∂xNγ does not vanish on R). Moreover, nγ(t, x) − Nγ(x − ct) is also a
solution of the linearized equation, up to a quadratic remainder which we will treat perturbatively.
Therefore working with energies depending on uγ is similar to deriving relative entropies for the
system.

The result relies on two main estimates: a L∞ control on n−N (almost immediate, see below
Lemma 3.9) and a more complicated L2 weighted estimate on the variable u. Indeed, an easy
computation (see subsection 4.1) shows that u satisfies the equation

∂tu+ b∂xu− a∂2xu =
γ

γ + 1

∂2xG(u)

N ′(x− ct)
− G(u)

N ′(x− ct)
, (47)

with a(t, x) = ā(x− ct), b(t, x) = b̄(x− ct) and

ā := γNγ , b̄ := −2γ

(
NγN ′

)′
N ′

= −2γ2Nγ−1N ′ − 2γNγN
′′

N ′
,

and

G(u) := nγ+1 −Nγ+1(x− ct)− (γ + 1)Nγ(x− ct)(n−N(x− ct)) (48)

=
(
N(x− ct) + uN ′(x− ct)

)γ+1 −Nγ+1(x− ct)− (γ + 1)Nγ(x− ct)uN ′(x− ct).

Let us make a few remarks before exposing the main ingredients of the proof. First, we
emphasize that all unknowns and coefficients depend on γ (i.e. b, a, u,G,N). As mentioned
above, we chose not to make this dependency explicit in our notation. Second, equation (47) has
a structure of the type

∂tu+ Lu = G[u],

where L is a linear operator, corresponding to the linearization of equation (43) around n = N ,
and G[u] is a quadratic operator in the sense of (50) below.

Quite classically, the core of our proof relies on the two following observations:

• The linear operator L is coercive in some weighted H1 space. More precisely, there
exists a weight w and a constant δγ > 0 with the following property: for any v ∈ C2c (R),∫

R
(b̄∂ξv − ā∂2ξv)vw ≥

∫
R

(∂ξv)2āw +
δγ
2

∫
R
|v|2e

√
γξ − c

2

∫
R
|v|2∂ξw. (49)

26



Note that the last term will enter the time derivative of the energy
∫
|u|2w when we perform

energy estimates.
This type of coercivity property had been identified by Leyva and Plaza in [17], without the
L2 term

∫
R |v|

2e
√
γξ, which will play a crucial role in the energy estimates.

• The nonlinear term G[u] is quadratic. More precisely, for all u ∈ H1
loc(R),

|G[u]| ≤ Cγ |u|(|u|+ |∂xu|). (50)

Hence, if ‖u‖L∞ is small enough, we can hope to absorb this term in the energy dissipation
provided by the coercivity of L.

The remainder of the section is devoted to a more rigorous statement and to the proofs of the
above heuristic arguments. Concerning the smallness of the L∞ bound, a possible strategy could
be to differentiate equation (47) with respect to x and to derive uniform, high regularity bounds
on u. This strategy is likely to succeed. However, it will probably come at a high technical
cost. Consequently, to simplify the proof and the presentation, we chose here to take advantage
of the parabolic structure of this scalar equation and use the comparison principle (or maximum
principle), which immediately implies an L∞ bound on n and u.
Remark 3.2. Let us mention by anticipation that the constant δγ in (49) will be small, while the
constant Cγ in (50) will be very large. Whence we will need ‖u‖L∞ to be very small (in fact,
exponentially small) to treat the quadratic term as a perturbation. This is related to the strong
singularities in N ′γ which were highlighted in the previous section (recall that ‖N ′γ‖L∞ blows up
exponentially, see Lemmas 2.6 and 2.8).

Let us now present the main ideas of the proof.

Structure of the linearized system - weighted L2 estimate

We start from a reference weight w0, which is defined as the solution of the differential equation{
(āw0)′(ξ) +

(
b̄(ξ)− c

)
w0 = 0 for ξ ∈ R,

w0(ξ0) = 1 for some ξ0 ∈ R.
(51)

Below, we will take ξ0 = ξ−γ , where ξ−γ is defined in Definition 2.10. This weight is identical
to that of Leyva and Plaza in [17, Section 3.1], although our derivation differs from theirs, see
subsections 4.1 and 4.3. For this weight w0, we have the following

Lemma 3.3 (Stability estimates for the linearized system). Let u be a smooth solution to

∂tu+ b∂xu− a∂2xu = S, (52)

where S is a general source term. The following equality holds, with w0(t, x) = w0(x− ct)∫
R
|u(t, x)|2w0(t, x) dx+ 2

∫ t

0

∫
R
a(s, x)(∂xu(s, x))2w0(s, x) dx ds

=

∫
R
|u0(x)|2w0(x) dx+ 2

∫ t

0

∫
R
S(s, x)u(s, x)w0(s, x) dxds. (53)

Furthermore the weight w0 fulfills the following properties:

Lemma 3.4 (Asymptotic behaviors of w0). The solution of (51) with ξ0 = ξ−γ is given by

w0(ξ) = KNγ(ξ)(N ′(ξ))2 exp

(∫ ξ

ξ−γ

c

ā(z)
dz

)
, (54)

where the normalization constant K is chosen so that w0(ξ−γ ) = 1. We find that K ∝ γ3/2.
Consequently w0 has the following asymptotic behaviors:
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• as ξ → +∞, w0 has a double exponential growth: there exist C1, C2, C > 0 independent of γ
such that for all ξ ≥ C,

exp (exp (C1γξ)) ≤ w0(ξ) ≤ exp (exp (C2γξ)) ; (55)

• as ξ → −∞, w0 decreases exponentially to 0: there exists C > 0 independent of γ such that
for all ξ ≤ −C,

C−1
K

γ2
exp

(
2

(
1 +

C
√
γ

)
ξ

)
≤ w0(ξ) ≤ C K

γ2
exp

(
2

(
1− C
√
γ

)
ξ

)
. (56)

Lemmas 3.3 and 3.4 will be proved in subsections 4.2 and 4.3 respectively.

Spectral gap and Poincaré inequality

However, the sole weight w0 is not entirely sufficient to have an exponential decay in time of
the energy

∫
R |u|

2w0. Indeed, in order to prove such an exponential decay, we need a Poincaré
inequality of the type ∫

R
|v|2w0 ≤ Cγ

∫
R
(∂xv)2āw0, ∀ v ∈ C1c (R).

In other words, we need to prove a spectral gap inequality. To the best of our knowledge, such
an inequality does not hold for the weight w0. However, we are able to prove a variant of such an
inequality, with an additional L2 term in the right-hand side:

Proposition 3.5 (Weighted Poincaré-type inequality). There exists a constant C̄ independent of
γ and a constant Cγ ≤ Cγ such that, for any v ∈ C1c (R),∫ ξ−γ

−∞
v2γNγ

γw0dξ +

∫ +∞

ξ+γ

v2
1

γNγ
γ
w0dξ ≤ C̄

∫
R

(∂ξv)2āw0 dξ + Cγ

∫
R
v2e
√
γξ dξ. (57)

In particular, there exists η1 ∈ ]0, 1[ independent of γ, such that

ηγ1

∫
R
v2w0dξ ≤

∫
R

(∂ξv)2āw0 dξ +

∫
R
|v|2 exp(

√
γξ)dξ.

Proposition 3.5 is proved in Section 4.4.

Remark 3.6. • We recall that we defined ξ−γ so that Pγ(ξ−γ ) = Nγ(ξ−γ )γ =
(

c3

(c−1)(γ+1)

)1/2
.

Consequently, in the first integral of (57), the term γNγ
γ is bounded from below by C√γ.

• In a similar way, for ξ > ξ+γ , we have Nγ ≤ 1− (2c)−1, so that the term 1
γNγγ

in the second
integral in the left-hand side of (57) is exponentially large.

• We stated this result for v ∈ C1c (R), but the result can be extended to v in suitable weighted
Sobolev spaces by a classical density argument.

• Let us give a few motivations for the weight e
√
γξ in the right-hand side of (57). We actually

have some freedom in the choice of the coefficient of the exponential that we take equal to
αγ =

√
γ. We could a priori take a larger coefficient αγ with respect to γ. However αγ must

satisfy a number of conditions. First, an important feature is that the growth (resp. decay)
of this weight as ξ → +∞ (resp. ξ → −∞) is lower (resp. stronger) than the one of w0. By
doing so, the energy estimate (53) with weight w0 will not be perturbed when w0 is replaced
by w = w0φ with φ defined below in (58).
Moreover, the energy dissipation provides a very good control of the energy in the two zones
ξ < ξ−γ and ξ > ξ+γ , as we can see in inequality (57). The additional term

∫
R v

2e
√
γξ is
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only needed in the transition zone (ξ−γ , ξ
+
γ ), as we shall see in the course of the proof. Our

choice αγ =
√
γ is actually motivated by the need to control, uniformly with respect to γ,

the exponential exp(αγξ
−
γ ) (see in particular (80)). Since ξ−γ = O(γ−1/2), it leads us to set

αγ =
√
γ.

• The proof of Proposition 3.5 relies on the quantitative estimations of Lemma 2.8, and will
be performed in subsection 4.4.

As a consequence, if we are able to have an additional lower-order dissipation term in the energy
estimate (the term

∫
|v|2e

√
γξ in the right-hand side), the exponential decay of the energy for the

linearized system will follow. In order to get this extra dissipation, it is sufficient to modulate
slightly the weight w0. More precisely, we define w = w0φ̄ where

φ̄(−∞) = 2,

φ̄′(ξ) = − δγ√
γ

exp (
√
γξ) (ā(ξ)w0(ξ))−1,

(58)

and the constant δγ > 0 is chosen such that φ̄(+∞) ≥ 1.
Lemma 3.4 ensures that φ̄′ ∈ L1(R), and therefore φ̄ is well-defined and monotonous. Note

that since 1 ≤ φ̄ ≤ 2 by construction, the weights w0 and w are equivalent. However, choosing w
gives us the following additional control:

Lemma 3.7. Under the same assumptions and notation as in Lemma 3.3, we have∫
R
|u(t, x)|2w(t, x) dx+ 2

∫ t

0

∫
R
(∂xu)2aw dxds+ δγ

∫ t

0

∫
R
|u(s, x)|2 exp (

√
γ(x− cs)) dxds

=

∫
R
|u0(x)|2w(x) dx+ 2

∫ t

0

∫
R
S(s, x)u(s, x)w(s, x) dxds, (59)

with
δγ ≥ ηγ3 , (60)

for some constant η3 ∈ ]0, 1[ independent of γ.

Lemma 3.7 is proved in Section 4.2.

Definition 3.8. In the rest of the paper, we set

Dγ(t) := 2

∫
R

(∂xu(t, x))2a(t, x)w(t, x)dx+ δγ

∫
R
|u(t, x)|2 exp(

√
γ(x− ct))dx,

which is the total dissipation term.

Note that Proposition 3.5 allows us to control the energy by the total dissipation term Dγ , up
to an exponentially small multiplicative constant. Gathering Proposition 3.5 and Lemma 3.7, we
see that any solution of the linearized equation (52) with S = 0, with an initial datum such that∫
R |u0|

2w0 <∞, decays exponentially (at a rate (η1η3)γ , which we rename as ηγ1 ) as t→ +∞.

L∞ estimate

In order to prove that the dynamics of the nonlinear equation (47) are driven by the linearized
part of the equation, and that the nonlinear term in the right-hand side of (47) can be treated
perturbatively, we will need a last ingredient, which is a direct consequence of the comparison
principle:

Lemma 3.9 (L∞ estimate). Let h > 0 be small enough and assume that n0 lies between two shifts
of the reference profile N :

N(x+ h) ≤ n0(x) ≤ N(x− h).
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Then, for all t ≥ 0, for all x ∈ R,

N(x+ h− ct) ≤ n(t, x) ≤ N(x− h− ct).

From Lemma 2.8, we have

‖u‖L∞(R+×R) +

∥∥∥∥n−N(x− ct)
N(x− ct)

∥∥∥∥
L∞(R+×R)

≤ Cγh, (61)

where C is a positive constant independent of γ.

Equipped with this estimate and the control in L∞ from Lemma 3.9, we can control the nonlinear
contributions and deduce an exponential decay of the L2 weighted norm as t→ +∞, as stated in
Theorem 3.1. The next subsection is devoted to the control of the nonlinear terms. We then give
a proof of Theorem 1.5 at the end of section 3.

3.2 Control of the nonlinear terms and long-time behavior
We now address the proof of Theorem 3.1 using the tools described above. Let u be a smooth
solution to (47), we get by applying (59):∫

R
|u|2w0φ dx+ 2

∫ t

0

∫
R
a(∂xu)2w0φ dxds+

∫ t

0

∫
R
|u|2δγ exp(

√
γ(x− cs)) dxds

=

∫
R
|u0|w dx+

2γ

γ + 1

∫ t

0

∫
R

∂2xG(u)

∂xN
uw0φ dxds− 2

∫ t

0

∫
R

G(u)

∂xN
uw0φ dxds. (62)

Observe that the first term of the right-hand side comes from the nonlinear diffusion while the
second comes from the reaction term. We also recall that

G(u) = (N + u∂xN)γ+1 −Nγ+1 − (γ + 1)Nγu∂xN.

First, let us estimate G(u).

Lemma 3.10. Assume that∥∥∥∥u∂xNN
∥∥∥∥
∞

=

∥∥∥∥n(t, x)−N(x− ct)
N(x− ct)

∥∥∥∥
∞
≤ 1

γ
,

where N, ∂xN are evaluated at x− ct.
Then

|G(u)| ≤ Cγ2(u∂xN)2Nγ−1, (63)

|∂xG(u)| ≤ Cγ3|∂xN | Nγ−2(u∂xN)2 + Cγ2Nγ−1|u∂xN | |∂x(u∂xN)| (64)

≤ Cγ3|∂xN | Nγ−2(u∂xN)2 + Cγ2Nγ−1(∂xN)2|u| |∂xu|
+ Cγu2|∂xN |2N−1 + Cγu2|∂xN |,

for some constant C > 0 independent of γ.

Proof. The first estimate can be easily proved by writing

G(u) = Nγ+1g

(
u∂xN

N

)
,

where g(X) = (1 +X)γ+1 − 1− (γ + 1)X. A Taylor expansion at order two close to X = 0 shows
that if |X| ≤ γ−1,

|g(X)| ≤ 1

2
γ(γ + 1)

(
1 +

1

γ

)γ−1
|X|2 . γ2|X|2.
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Estimate (63) follows. We also know by convexity that G(u) ≥ 0.
For the second estimate, we differentiate G and get

∂xG(u) = (γ + 1)∂xN
(

(N + u∂xN)γ −Nγ − γNγ−1u∂xN
)

+ (γ + 1)∂x(u∂xN)
((
N + u∂xN

)γ −Nγ
)
.

Reasoning as before, we infer that

|∂xG(u)| ≤ C(γ + 1)γ2|∂xN ||u∂xN |2Nγ−2 + C(γ + 1)γ|∂x(u∂xN)||u∂xN |Nγ−1.

To obtain the last set of inequalities, we use Equation (4) on N , and we recall that

γ∂2xNN
γ = −c∂xN − γ2(∂xN)2Nγ−1 −N(1−Nγ),

which concludes the proof of the lemma.

Lemma 3.11 (Control of the nonlinear reaction term). There exists a constant η2 ∈]0, 1[ such
that if ∥∥∥∥u∂xNN

∥∥∥∥
∞
≤ ηγ2 ,

then the following inequality holds ∣∣∣∣∫
R

G(u)

∂xN
uw0φ dx

∣∣∣∣ ≤ 1

4
Dγ . (65)

Proof. Using Lemma 3.10, we have∣∣∣∣∫
R

G(u)

∂xN
uw0φ dx

∣∣∣∣ ≤ Cγ2 ∫
R
|u|3|∂xN |Nγ−1w0φ dx,

that we want to absorb in the left-hand side of the equality (62) thanks to the diffusion and
damping terms:

Dγ = 2

∫
R
a(∂xu)2w0φ dx+

∫
R
δγ exp(

√
γ(x− ct))u2 dx,

with δγ ≥ ηγ3 , η3 ∈ ]0, 1[. Recalling Proposition 3.5, we observe that it suffices to have

Cγ2
∥∥∥∥u∂xNN

∥∥∥∥
∞
≤ (η1η3)γ

4
,

which concludes the proof, choosing η2 < η1η3.

Lemma 3.12 (Control of the nonlinear diffusion term). There exists a constant η2 ∈]0, 1[ such
that if

‖u‖∞ +

∥∥∥∥u∂xNN
∥∥∥∥
∞
≤ ηγ2 ,

then the following inequality holds∣∣∣∣∫
R

∂2x(G(u))

∂xN
uw0φ dx

∣∣∣∣ ≤ 1

4
Dγ . (66)
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Proof. Integrating by parts the nonlinear term stemming from the diffusion, we have∫
R

∂2x(G(u))

∂xN
uw0φ dx = −

∫
R
∂xG(u)∂xu

(
w0φ

∂xN

)
−
∫
R
∂xG(u)u∂x

(
w0φ

∂xN

)
. (67)

• We first address the first term in the right-hand side of (67), using the estimate on ∂xG(u)
from Lemma 3.10. It follows that∣∣∣∣∫

R
∂xG(u)∂xu

(
w0φ

∂xN

)∣∣∣∣ ≤ C

∫
R
γ3Nγ−2|u|2|∂xu|(∂xN)2w0φ

+C

∫
R
γ2|u||∂xu|2Nγ−1|∂xN |w0φ

+C

∫
R
γ|u|2|∂xu|

|∂xN |
N

w0φ

+C

∫
R
γ|u|2|∂xu|w0φ

=

4∑
i=1

Ii.

We then address each term Ii separately. We start with the term I2. Recalling that ā = γNγ , we
simply write

I2 ≤ Cγ
∥∥∥∥u∂xNN

∥∥∥∥
L∞

∫
R

(∂xu)2aw0φ,

which is smaller than Dγ/16, provided ‖u∂xN/N‖∞ ≤ (16Cγ)−1.
For all other terms, we first perform a Cauchy-Schwarz inequality. We have,

I1 ≤ C
(∫

R
(∂xu)2aw

)1/2(
γ5
∫
R
|u|4Nγ−4(∂xN)4w0φ

)1/2

,

I3 ≤ C
(∫

R
(∂xu)2aw

)1/2(∫
R
γ|u|4 (∂xN)2

Nγ+2
w0φ

)1/2

,

I4 ≤ C
(∫

R
(∂xu)2aw

)1/2(∫
R
γ|u|4N−γw0φ

)1/2

.

We then bound each integral with |u|4 in the right-hand side by using the Poincaré inequality
from Proposition 3.5 and the L∞ estimate on u. The simplest term is I1, for which we have

I1 ≤ Cγ5/2‖u‖L∞
∥∥∥∥∂xNN

∥∥∥∥2
L∞

(∫
R
(∂xu)2aw

)1/2(∫
R
|u|2w0φ

)1/2

≤ Cγ5/2‖u‖L∞
∥∥∥∥∂xNN

∥∥∥∥2
L∞

(η1η3)−γ/2Dγ .

Concerning the term I3, we have∫
R
γ|u|4 (∂xN)2

Nγ+2
w0φ ≤ γ

∥∥∥∥u∂xNN
∥∥∥∥2
L∞

∫
R
|u|2w0φ

Nγ
.

Using Proposition 3.5, we have∫
R
|u|2w0φ

Nγ
=

∫
ξ>ξ+γ

|u|2w0φ

Nγ
+

∫
ξ<ξ+γ

|u|2w0φ

Nγ

≤ C̄γ

∫
R
(∂xu)2aw0φ+ γCγ

∫
R
u2e
√
γ(x−ct)dx

+
1

N(ξ+γ )γ

∫
ξ<ξ+γ

|u|2w0φ

≤ C ′γDγ ,
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for some exponentially large constant C ′γ . The above inequality also allows us to bound I4. Thus,
provided

‖u‖L∞
∥∥∥∥∂xNN

∥∥∥∥2
L∞
≤ δ0(η1η3)γ/2γ−5/2,

‖u‖L∞ ≤ δ0(C ′γ)−1/2γ−1/2,∥∥∥∥u∂xNN
∥∥∥∥
L∞
≤ δ0 inf

(
(C ′γ)−1/2γ−1/2,

1

γ

)
,

for some small constant δ0 independent of γ, we infer that∣∣∣∣∫
R
∂xG(u)∂xu

(
w0φ

∂xN

)∣∣∣∣ ≤ 1

8
Dγ .

• Let us now consider the second term in the right-hand side of (67). Computing the weight
in the right-hand side and using the definitions of φ (58), w0 (54) and the equation satisfied by
N , we find

∂ξ

(
w0φ̄

∂ξN

)
= ∂ξφ̄

w0

∂ξN
+ φ̄∂ξ

(
w0

∂ξN

)
= ∂ξφ̄

w0

∂ξN
+Kφ̄∂ξ(∂ξNN

γ) exp

(∫ ξ

ξ−γ

c

ā

)

+Kφ̄∂ξNN
γ c

ā
exp

(∫ ξ

ξ−γ

c

ā

)

= − δγ√
γ

exp(
√
γξ)

γNγ∂ξN
− K

γ
φ̄N(1−Nγ) exp

(∫ ξ

ξ−γ

c

ā

)
=: W1 +W2.

We then use the estimate on ∂xG(u) from Lemma 3.10, treating W1 and W2 separately. We
have, concerning the terms with W1,∣∣∣∣∫

R
∂xG(u)uW1

∣∣∣∣ ≤ C
δγ√
γ

[∫
R
γ2|u|3 (∂xN)2

N2
e
√
γξ +

∫
R
γ
|∂xN |
N
|u|2|∂xu|e

√
γξ

]
+C

δγ√
γ

∫
R
|u|3N−γ

(
1 +
|∂xN |
N

)
e
√
γξ.

Using a Cauchy-Schwarz inequality for the second integral, we get∣∣∣∣∫
R
∂xG(u)uW1

∣∣∣∣ ≤ Cδγγ
3/2

∥∥∥∥u∂xNN
∥∥∥∥
L∞

∥∥∥∥∂xNN
∥∥∥∥
L∞

∫
R
u2e
√
γξ

+Cδγ

(∫
R
(∂xu)2aw

)1/2 ∥∥∥∥u∂xNN
∥∥∥∥
L∞

(∫
R

u2

Nγw0
e2
√
γξ

)1/2

+C
δγ√
γ

(
‖u‖L∞ +

∥∥∥∥u∂xNN
∥∥∥∥
L∞

)∫
R

u2

Nγ
e
√
γξ.

Thanks to the growth and decay properties of the weight w0 at ±∞, we claim that there exists a
constant C > 1 such that

e
√
γξ ≤ Cγw(ξ), ∀ξ ∈ R. (68)

We postpone the proof of this inequality to the end of Section 4.3.
It follows that ∫

R
u2e
√
γξ dx ≤ Cγ

∫
R
u2w ≤ Cγ(η1η3)−γDγ .
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Concerning the integral
∫
R
u2

Nγ e
√
γξ, using Proposition 3.5 together with (68) gives∫

R

u2

Nγ
e
√
γξ ≤ CγDγ +

∫
x−ct<ξ+γ

u2

Nγ
e
√
γξ

≤ CγDγ + Cγ
∫
x−ct<ξ+γ

u2e
√
γξ

≤ CγDγ ,

with a constant C > 1 which changes from line to line. The last term is treated in the same
fashion, noticing that e2

√
γξ/w0 ≤ Cγe

√
γξ. We obtain∣∣∣∣∫

R
∂xG(u)uW1

∣∣∣∣ ≤ Cγ (∥∥∥∥u∂xNN
∥∥∥∥
L∞

+ ‖u‖L∞
)
Dγ ≤

1

8
Dγ ,

provided ‖u‖L∞ and ‖u∂xN/N‖L∞ are small enough (exponentially small with γ).
There remains to address the terms containing W2. We have, using Lemma 3.10 and recalling

the expression of the weight w0 from Lemma 3.4,∣∣∣∣∫
R
∂xG(u)uW2

∣∣∣∣
≤ Cγ2

∫
R

|∂xN |
N
|u|3w + Cγ

∫
R
u2|∂xu|w +

∫
R
|u|3 w

Nγ
+

∫
R

|u|3(1−Nγ)

|∂xN |Nγ−1 w.

Using the same arguments as before, we find that the first three terms are bounded by(
γ2
∥∥∥∥u∂xNN

∥∥∥∥
L∞

(η1η3)−γ + γ‖u‖L∞Cγ + γ ‖u‖L∞ (η1η3)−γCγ
)
Dγ ,

and can be absorbed in Dγ under the assumptions of the lemma, provided η2 is sufficiently small.
There remains the last term, which has an additional singularity in the congested zone because

of the ∂xN factor in the denominator (note that in the free zone ξ > ξ+γ , |∂xN | & N , so that
this singularity can be treated thanks to the weighted Poincaré inequality from Proposition 3.5.)
However this singularity is compensated by the factor (1−Nγ) in the numerator. More precisely,
we have, for ξ ≤ ξ+γ and using Lemmas 2.8 and 2.12∣∣∣∣ 1−Nγ

∂xN Nγ−1

∣∣∣∣ = γ

∣∣∣∣1− PP ′

∣∣∣∣ . γ2.

Hence, ∫
x−ct≤ξ+γ

|u|3(1−Nγ)

|∂xN |Nγ−1 w ≤ Cγ
2‖u‖L∞

∫
|u|2w ≤ Cγ2‖u‖L∞(η1η3)−γDγ .

Gathering all the terms, we obtain the inequality announced in the Lemma.

3.3 Proof of Theorem 1.5
Let us now complete the proof of Theorem 1.5. First, we choose h so that h ≤ η2/C, where
η2 ∈]0, 1[ is the constant appearing in Lemmas 3.11 and 3.12, and C is the constant in (61). Then
Lemma 3.9 entails that

‖u‖∞ +

∥∥∥∥u∂xNN
∥∥∥∥
∞
≤ ηγ2 .

It follows from Lemmas 3.11 and 3.12 that the sum of the two nonlinear terms in the right-hand
side of (62) is bounded by

∫ t
0
Dγ/2. Therefore, we obtain for all t ≥ 0,∫

R
|u|2w +

1

2

∫ t

0

Dγ ≤
∫
R
|u0|2w.
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Letting t→ +∞, we obtain the control of the diffusion announced in Theorem 1.5. Now, applying
the Poincaré inequality from Proposition 3.5 and Lemma 3.7, we have for all t ≥ 0,∫

R
|u|2w +

ηγ3 η
γ
1

2

∫ t

0

∫
R
|u|2w ≤

∫
R
|u0|2w.

The exponential decay with a rate (η1η3)γ/2 (which we rename ηγ1 ) follows easily from the Grönwall
Lemma.

4 Proofs of some technical results
This section is devoted to the proof of several results used in section 3: we start with the derivation
of the equation satisfied by u(t, x) = (n(t, x)−N(x− ct))/∂xN(x− ct), for which we analyze the
structure of the linearized system. We therefore justify the introduction of the weights w and w0.
We then prove the growth and decay estimates on w and w0 announced in Lemma 3.4. Eventually,
we prove the Poincaré inequality announced in Proposition 3.5.

4.1 Derivation of the equation on u

In this subsection, we prove that u defined by

u(t, x) =
n(t, x)−N(x− ct)

∂xN(x− ct)
,

is a solution of (62). As in the previous section, we omit the dependency in γ for simplicity.
First, we recall that n and N(x−ct) are both solutions of (43), in which we rewrite the diffusion

term as
γ∂x(nγ∂xn) =

γ

γ + 1
∂xxn

γ+1.

Recalling the definition of G(u) from (48), where u(t, x) := (n(t, x)−N(x− ct))/∂xN(x− ct), we
write (omitting x− ct in the argument of N)

nγ+1 −Nγ+1 = (γ + 1)Nγ(n−N) +G(u).

Introducing ν(t, x) = n(t, x)−N(x− ct), we find that ν is a solution of

∂tν − γ∂2x(Nγν)− ν (1− (γ + 1)Nγ) =
γ

γ + 1
∂2x(G(u))−G(u). (69)

Observe that, from (4), ∂xN(x− ct) is a (negative) solution of the linearized equation

∂t∂xN(x− ct)− γ∂2x(Nγ∂xN(x− ct))− (1− (γ + 1)Nγ) ∂xN(x− ct) = 0.

Let us compute the equation satisfied by u = ν/∂xN . Using the identity

∂2xu = ∂x

(
∂xν

∂xN
− ν∂2xN

(∂xN)2

)
=

∂2xν

∂xN
− ν

(∂xN)2
∂3xN − 2

∂2xN

∂xN
∂xu,

we infer that

∂tu+ b∂xu− a∂2xu =
γ

γ + 1

∂2xG(u)

∂xN
− G(u)

∂xN
, (70)

where a(t, x) = ā(x− ct), b(t, x) = b̄(x− ct) and

b̄ := −2γ∂xN
γ − 2γNγ ∂

2
xN

∂xN
, ā := γNγ . (71)
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4.2 Structure of the linearized system: Lemmas 3.3 and equality (59)
Proof of Lemma 3.3. Multiplying (47) by 2uw0 and integrating on R, we obtain formally

d

dt

∫
R
|u|2w0 −

∫
R
|u|2∂tw0 +

∫
R

2u∂xu(bw0 + ∂x(aw0)) + 2

∫
R
aw0(∂xu)2 = 2

∫
R
Suw0.

Integrating by parts the middle term gives∫
R

2u∂xu(bw0 + ∂x(aw0)) = −
∫
R
|u|2∂x(bw0 + ∂x(aw0)).

Gathering all the terms yields

d

dt

∫
R
|u|2w0 −

∫
R
|u|2 [∂tw0 + ∂x(bw0 + ∂x(aw0))] +

∫
R
aw0(∂xu)2 = 2

∫
R
Suw0.

Now, let us look at the term between brackets. As w0 = w0(x− ct),

[∂tw0 + ∂x(bw0 + ∂x(aw0))] =
[
−cw′0 + (b̄w0 + (āw0)′)′

]
(x− ct),

= ∂x
(
(āw0)′ + (b̄− c)w0)

)
(x− ct),

= 0,

from the definition of w0 given in (51). This implies

d

dt

∫
R
|u|2w0 + 2

∫
R
aw0(∂xu)2 = 2

∫
R
Suw0,

and therefore, integrating with respect to t,∫
R
|u(t, x)|2w0(t, x)dx+ 2

∫ t

0

∫
R
a(s, x)w0(s, x)(∂xu(s, x))2dxds

=

∫
R
|u0(x)|2w0(0, x)dx+ 2

∫ t

0

∫
R
Suw0.

Note that w0(0, x) = w0(x). Hence, we obtain the identity announced in the Lemma.

Proof of equality (59). This proof is very similar to that of Lemma 3.3. Observe first that for
w = w0φ, one has

−[∂tw + ∂x(bw + ∂x(aw))](t, x) =
(
cw0φ̄− b̄w0φ̄− (āw0φ̄)′

)′
(x− ct),

= −
(
āw0φ̄

′)′ (x− ct).
Note that from the definition (58) of φ, āw0φ̄

′ = − δγ√
γ exp(

√
γξ). Hence,

−[∂tw + ∂x(bw + ∂x(aw))](t, x) = δγ exp(
√
γ(x− ct)).

Proceeding exactly as in the proof of Lemma 3.3, we obtain

d

dt

∫
R
|u|2w −

∫
R
|u|2 [∂tw + ∂x(bw + ∂x(aw))] + 2

∫
R
aw(∂xu)2 = 2

∫
R
Suw,

d

dt

∫
R
|u|2w + δγ

∫
R
|u(t, x)|2 exp(

√
γ(x− ct))dx+ 2

∫
R
aw(∂xu)2 = 2

∫
R
Suw,

and therefore, integrating again with respect to t gives for all t ≥ 0,∫
R
|u(t, x)|2w(t, x)dx+ δγ

∫ t

0

∫
R
|u(s, x)|2 exp(

√
γ(x− cs))dx ds

+ 2

∫ t

0

∫
R
a(s, x)w(s, x)(∂xu(s, x))2dx ds =

∫
R
|u0(x)|2w(x)dx+ 2

∫ t

0

∫
R
Suw.

The Poincaré inequality stated in Lemma 3.7 is an easy consequence of Proposition 3.5 and of the
equivalence between the weights w and w0.
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4.3 Properties of the weights w0 and w: Lemma 3.4, estimate (60) and
inequality (68)

Proof of Lemma 3.4. Let us rewrite equation (51) as

(āw0)′ +
b̄− c
ā

(āw0) = 0,

which yields, since w0(ξ−γ ) = 1,

āw0(ξ) = ā(ξ−γ ) exp

(∫ ξ

ξ−γ

c− b̄
ā

)
, ∀ξ ∈ R.

We recall that

ā = γNγ , b̄ = −2γ2Nγ−1∂xN − 2γNγ ∂
2
xN

∂xN
,

hence

−
∫ ξ

ξ−γ

b̄(z)

ā(z)
dz = 2

∫ ξ

ξ−γ

[
(Nγ)′(z)

Nγ(z)
+
N ′′(z)

N ′(z)

]
dz

= 2 ln

(
(N(ξ))γ

(N(ξ−γ ))γ

)
+ 2 ln

(
|N ′(ξ)|
|N ′(ξ−γ )|

)
,

and therefore

w0(ξ) =
ā(ξ−γ )

ā(ξ)
exp

(∫ ξ

ξ−γ

c

ā

)
exp

(
−
∫ ξ

ξ−γ

b̄

ā

)
(72)

=
1

(N(ξ−γ ))γ(N ′(ξ−γ ))2
(N(ξ))γ(N ′(ξ))2 exp

(∫ ξ

ξ−γ

c

ā
dz

)
. (73)

Therefore we find the expression announced in Lemma 3.4, with a normalization constant

K :=
1

(N(ξ−γ ))γ(N ′(ξ−γ ))2
.

Let us now estimate K. We recall that ξ−γ is defined in (41). Since N ′ = γ−1P ′P
1
γ−1, it follows

that

N ′(ξ−γ ) =
1

γ
P ′(ξ−γ )

(
(c− 1)(γ + 1)

c3

) 1
2−

1
2γ

,

and thus

K =

(
c3

(c− 1)(γ + 1)

) 1
2−

1
γ γ2

P ′(ξ−γ )2
.

The sub- and super-solutions for P (see Proposition 2.4) entail that P ′(ξ−γ ) is bounded from above
and below. Hence, K is of order γ3/2.

For ξ ≥ ξ∗γ , we know from (10) that there exist 0 < A1 < A2 < 1 (close to 1− c−1) such that

A1e
− 2
c ξ ≤ N(ξ) ≤ A2e

− ξ
2c . (74)

Moreover, remember that Lγ = N ′

N + 1
c converges uniformly to 0 on [ξ∗γ ,+∞) as γ → +∞ (see

the proof of Lemma 2.8). Hence, for any η > 0, there exists γ0 such that for all γ > γ0, N ′/N ∈
[−1/c− η,−1/c+ η] for all ξ ∈ [ξ∗γ ,+∞). By (74), we deduce that

Ã1e
− 2
c ξ ≤ |N ′(ξ)| ≤ Ã2e

− ξ
2c , (75)
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with Ã1,2 ∈ (0, 1). As a consequence w0 has a double exponential growth as ξ → +∞: for all
ξ > ξ∗γ ,

KAγ1 Ã
2
1 exp

(
−2

γ + 2

c
ξ

)
exp

(
2c2

γ2
A−γ2

(
exp

( γ
2c
ξ
)
− exp

( γ
2c
ξ∗γ

)))
≤ w0(ξ) (76)

≤ KAγ2 Ã2
2 exp

(
−γ + 2

2c
ξ

)
exp

(
c2

2γ2
A−γ1

(
exp

(
2γ

c
ξ

)
− exp

(
2γ

c
ξ∗γ

)))
exp

(∫ ξ∗γ

ξ−γ

c

ā

)
.

Furthermore, using Lemma 2.13, we have∫ ξ∗γ

ξ−γ

c

ā
≤ Cγ +

∫ ξ∗γ

ξ+γ

c

ā
≤ η−γ1

for some constant η1 ∈ [0, 1]. Estimate (55) from Lemma 3.4 follows.

For ξ → −∞, we have using (16) and denoting λ̃ =
√

1 + c2

4γ2 − c
2γ ,

w0 = KNγ(N ′)2 exp

(∫ ξ

ξ−γ

c

γNγ

)
∼

ξ→−∞
Kλ̃2P (1−N)2 exp

(∫ ξ

ξ−γ

c

γP

)
.

Recalling estimates (7), we get

C
√
γ

(ξ − ξ−γ ) ≤
∫ ξ

ξ−γ

c

γP
≤ c

γ
(ξ − ξ−γ ), (77)

and, for |ξ| ≤ C with C independent of γ

C−1

γ

(
1− C ′
√
γ

)
exp (ξ) ≤ 1−N ≤ C

γ

(
1− C ′
√
γ

)
exp

((
1− C
√
γ

)
ξ

)
.

Gathering the terms results in

C−1
K

γ2
exp

(
2

(
1 +

C
√
γ

)
ξ

)
≤ w0 ≤ C

K

γ2
exp

(
2

(
1− C
√
γ

)
ξ

)
,

and we deduce the result announced in Lemma 3.4.

Estimate of the constant δγ in w. Let

ψ̄ := φ̄′āw0 = − δγ√
γ

exp (
√
γξ) .

Using Lemma 3.4 and recalling (74), we observe that the double exponential growth of w0 domi-
nates the growth in ψ as ξ → +∞. On the other hand, for ξ ≤ −C, we have

ψ̄(ξ)

ā(ξ)w0(ξ)
= − δγ√

γ

exp
(√
γξ
)

γ(N̄(ξ))γw0(ξ)
≥ −C δγ

γ
exp

((
√
γ − 2

(
1 +

C
√
γ

))
ξ

)
.

Hence, for γ large enough, √γ − 3 > 0 and
ψ̄(ξ)

ā(ξ)w0(ξ)
decreases exponentially to 0 as ξ → −∞.

We conclude then to the integrability of
ψ̄

āw0
on R.

Let us now study the behavior of φ. For that purpose, we analyze separately the different
regions according to the value of ξ.
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• for ξ > ξ+γ : according to the definition of ξ+γ and to Lemma 2.8, |N ′γ | ≥ CNγ on this interval,
and therefore

|φ̄′(ξ)| = − ψ̄(ξ)

ā(ξ)w0(ξ)

≤ C δγ
γ3/2K

exp(
√
γξ)

N2γ+2
γ

exp

(
−
∫ ξ

ξ−γ

c

γNγ
γ

)
.

Integrating by parts,∫ ∞
ξ+γ

exp(
√
γξ)

N2γ+2
γ

exp

(
−
∫ ξ

ξ−γ

c

γNγ
γ

)

=
γ exp(

√
γξ+γ )

cNγ(ξ+γ )γ+2
exp

(
−
∫ ξ+γ

ξ−γ

c

γNγ
γ

)
+
γ

c

∫ ∞
ξ+γ

d

dξ

(
exp(
√
γξ)

Nγ+2
γ

)
exp

(
−
∫ ξ

ξ−γ

c

γNγ
γ

)

=
γ exp(

√
γξ+γ )

cNγ(ξ+γ )γ+2
exp

(
−
∫ ξ+γ

ξ−γ

c

γNγ
γ

)

+

∫ ∞
ξ+γ

[
γ3/2

cNγ+2
γ

−
γ(γ + 2)N ′γ

cNγ+3
γ

]
e
√
γξ exp

(
−
∫ ξ

ξ−γ

c

γNγ
γ

)
Using the definition of ξ+γ from Definition 2.10 and the monotony of N ′γ (see also Fig. 3), we
get ∫ ∞

ξ+γ

exp(
√
γξ)

N2γ+2
γ

exp

(
−
∫ ξ

ξ−γ

c

γNγ
γ

)

≤
γ exp(

√
γξ+γ )

cNγ(ξ+γ )γ+2
exp

(
−
∫ ξ+γ

ξ−γ

c

γNγ
γ

)

+

∫ ∞
ξ+γ

[
γ3/2

cNγ+2
γ

+
γ(γ + 2)(c− 1)

4cγ2N2γ+2
γ

]
e
√
γξ exp

(
−
∫ ξ

ξ−γ

c

γNγ
γ

)
.

We can easily see that the second term in the right-hand side is smaller than the one in the
left-hand side. Hence, recalling that ξ+γ = O(γ−1), we deduce that there exists a constant
C, independent of γ, such that

∫ ∞
ξ+γ

exp(
√
γξ)

N2γ+2
γ

exp

(
−
∫ ξ

ξ−γ

c

γNγ
γ

)
≤ Cγ

exp

(
−
∫ ξ+γ

ξ−γ

c

γNγ
γ

)
(Nγ(ξ+γ ))γ

≤ η−γ3 ,

for some constant η3 ∈]0, 1[, so that∫ ∞
ξ+γ

|φ̄′(ξ)| dξ ≤ δγη−γ3 (78)

for some possibly different constant η3 ∈]0, 1[.

• for the intermediate region ξ ∈ [ξ−γ , ξ
+
γ ], we write∫ ξ+γ

ξ−γ

|φ̄′(z)|dz =
δγ√
γ

∫ ξ+γ

ξ−γ

e
√
γz

γ(N(z))γ
× 1

K(N(z))γ(N ′(z))2 exp(
∫ z
ξ−γ

c
γNγ )

dz

=
δγ

γ−1/2K

∫ ξ+γ

ξ−γ

e
√
γz

(P ′(z))2(N(z))2
exp

(
−
∫ z

ξ−γ

c

γNγ

)
dz.
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Now, using Lemma 2.12 and the definition of ξ−γ , we have in this region, for γ large enough,

|P ′(ξ)| ≥ C

γ
, N(ξ) ≥ N(ξ+γ ) > 1− 1

c
− η, (N(ξ))γ ≤ P (ξ−γ ) = O

(
1
√
γ

)
,

with η ∈]0, 1− c−1[, and thus∫ ξ+γ

ξ−γ

|φ̄′(z)|dz ≤ C δγ
γ−5/2K

e
√
γξ+γ

∫ ξ+γ

ξ−γ

exp

(
− C

γ1/2
(z − ξ−γ )

)
dz

≤ Cγ3/2δγ
(

1− exp

(
−C

ξ+γ − ξ−γ√
γ

))
≤ Cγ1/2δγ , (79)

where we have used the fact that ξ+γ = O(γ−1), ξ−γ = O(γ−
1
2 ) (cf. Lemma 2.12).

• for ξ < ξ−γ , we use Lemma 2.8

sup
ξ<0

∣∣∣∣1− P (ξ)

P ′(ξ)

∣∣∣∣ ≤ C,
and the control (18)

1− P (ξ) ≥
(

1− 1

γ

)
eξ ∀ ξ < 0,

to infer that

−
∫ ξ−γ

−∞
φ′(z)dz =

δγ
γ−1/2K

∫ ξ−γ

−∞

e
√
γz

(P ′(z))2(N(z))2
exp

(∫ ξ−γ

z

c

γNγ

)
dz

≤ C δγ
γ−1/2K

∫ ξ−γ

−∞

e
√
γz

(1− P (z))2
e
c√
γ (ξ
−
γ −z)dz

≤ C δγ
γ−1/2K

∫ ξ−γ

−∞
e
√
γze−2ze

c√
γ (ξ
−
γ −z)dz

≤ C δγ
γ−1/2K

∫ ξ−γ

−∞
e
√
γ

2 zdz

≤ Cγ−3/2δγ , (80)

thanks to the fact that ξ−γ = O(γ−1/2) (cf. Lemma 2.12). Combining (78)-(79)-(80), there exists
η3 ∈ ]0, 1[, independent of γ, such that for δγ = ηγ3 ,

∣∣∫
R φ̄
′
∣∣ ≤ 1.

Proof of inequality (68). First, using (76), we find that for ξ > ξ∗γ , the inequality follows easily
from the fact that A2 < 1 and from the convexity of the exponential.
For ξ < ξ−γ , using (77) together with the estimate of K, we have

w0 ≥ K

γ2
(P ′)2P

2
γ−1 exp

(
C
√
γ

(ξ − ξ−γ )

)
≥ C
√
γ

(P ′)2 exp

(
C
√
γ

(ξ − ξ−γ )

)
.

Recalling (39) together with the sub/super solutions for P from Proposition 2.4, we infer that for
ξ < ξ−γ ,

w0 ≥
C
√
γ

exp

((
2 +

C
√
γ

)
ξ

)
.
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Inequality (68) follows on this zone.
There remains to consider the transition zone (ξ−γ , ξ

∗
γ). In this region, using Lemma 2.5, we merely

note that
w0 ≥ Cγ3/2Nγ(N ′)2 ≥ Cγ3/2N(ξ∗γ)γ min

(
N ′(ξ−γ )2, N ′(ξ∗γ)2

)
.

By definition of ξ∗γ , N ′(ξ∗γ) is a constant independent of γ. As for N ′(ξ−γ ), we have, by definition
of ξ−γ and recalling Lemma 2.12,

N ′(ξ−γ ) =
1

γ
P ′(ξ−γ )P (ξ−γ )

1
γ−1 =

1

γ
P ′(ξ−γ )

(
c3

(c− 1)(γ + 1)

) 1
γ−

1
2

≤ −Cγ−3/2.

Therefore, since N(ξ∗γ) → 1 − c−1 as γ → ∞, we deduce that there exists a constant η ∈ (0, 1)
such that

min
(ξ−γ ,ξ∗γ)

w0 ≥ ηγ .

Inequality (68) follows easily.

4.4 Proof of the weighted Poincaré inequality
Proof of Proposition 3.5. To lighten the notations, we forget in what follows the notation ·̄ when
it is clear that we work with functions of variable ξ. Formally, we have the following inequalities,
for any ρ ∈ C2(R) and v ∈ C1c (R)

0 ≤
∫
R

(
∂ξ(vρ)

)2
dξ

=

∫
R

[
ρ2(∂ξv)2 + v2(∂ξρ)2

]
dξ + 2

∫
R
v∂ξvρ∂ξρdξ

=

∫
R

[
ρ2(∂ξv)2 + v2(∂ξρ)2

]
dξ −

∫
R
v2∂ξ(ρ∂ξρ)dξ

=

∫
R
ρ2(∂ξv)2dξ −

∫
R
v2ρ∂2ξρ dξ.

Note that when ρ is positive and strictly convex, we obtain a Poincaré inequality. We want to
apply this inequality with ρ := (āw0)1/2. However, the weight ρ is not convex on R and we cannot
guarantee the sign of the second integral. Let us compute the derivatives of ρ. Using (54), we
have

ρ = −
√
γKN ′Nγ exp

(∫ ξ

ξ−γ

c

2γN(z)γ

)
,

consequently,

ρ′(ξ) =
√
γK exp

(∫ ξ

ξ−γ

c

2γN(z)γ

)[
−(N ′(ξ)N(ξ)γ)′ − c

2γ
N ′(ξ)

]
.

We recall that
−cN ′ − γ(N ′Nγ)′ = N(1−Nγ),

so that

ρ′(ξ) =
√
γK exp

(∫ ξ

ξ−γ

c

2γNγ(z)

)[
1

γ
N(ξ)(1−Nγ(ξ)) +

c

2γ
N ′(ξ)

]
.
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Differentiating once again and using the equation on N , we get

ρ′′(ξ) =

√
K

γ
exp

(∫ ξ

ξ−γ

c

2γNγ(z)
dz

)[
N ′(1− (γ + 1)Nγ) +

c

2
N ′′ +

c

2γNγ−1 (1−Nγ) +
c2

4γ

N ′

Nγ

]

=

√
K

γ
exp

(∫ ξ

ξ−γ

c

2γNγ(z)
dz

)
[N ′(1− (γ + 1)Nγ)

− c

2γNγ

(
cN ′ + γ2(N ′)2Nγ−1 +N(1−Nγ)

)
+

c

2γNγ−1 (1−Nγ) +
c2

4γ

N ′

Nγ

]
= −

√
K

γ
N ′ exp

(∫ ξ

ξ−γ

c

2γNγ(z)
dz

)[
(γ + 1)Nγ +

c2

4γNγ
+ cγ

N ′

2N
− 1

]
.

Note that ρ′′ ≥ 0 provided the term in brackets is non-negative. The bracketed term is a sum of
four terms, among which the first two are positive, and the last two are negative. Furthermore,

γ + 1

c
Nγ +

c

4γNγ
=

(√
γ + 1

c
Nγ −

√
c

4γNγ

)2

+

√
γ + 1

γ
≥ 1 +

1

4γ
, ∀γ ≥ 1,

so that

ρ′′ ≥ −

√
K

γ
N ′ exp

(∫ ξ

ξ−γ

c

2γNγ

)[
(γ + 1)

(
1− 1

c

)
Nγ +

c(c− 1)

4γNγ
+

1

4γ
+ cγ

N ′

2N

]
. (81)

Thus the only zone where ρ′′ is non-positive is the region where the last term in the above bracket
is not dominated by the others. Decomposing the domain in three zones, we have

• Free zone: In ξ ≥ ξ+γ , using the notations of Section 2 and recalling Definition 2.10 and
Figure 3, we have

N ′(ξ) ≥ Q̃(N) = − c− 1

4γ2(N(ξ))γ−1
,

so that
cγ
|N ′|
2N
≤ c(c− 1)

8γNγ
, ∀ ξ ≥ ξ+.

Recalling the expressions of ρ and w0, we infer that for ξ > ξ+

ρρ′′ ≥ C
√
γK

√
K

γ
(N ′)2Nγ exp

(∫ ξ

ξ−γ

c

γNγ(z)
dz

)
C

γNγ

≥ C

γNγ
w0.

• Congested zone: for ξ ≤ ξ−γ , we have P ≥ P (ξ−γ ) =
(

c3

(c−1)(γ+1)

)1/2
while P ′ ∈ [−c, 0].

Hence, we ensure that

−cP ′ ≤ c2 ≤ (γ + 1)

(
1− 1

c

)
P 2 ∀ ξ ≤ ξ−γ ,

and therefore
−cγ N

′

2N
≤ (γ + 1)

2

(
1− 1

c

)
Nγ ∀ ξ ≤ ξ−γ .

Let us mention that this inequality is precisely the property that lead us to the normalization
(2.10) and to the definition of ξ−γ . We deduce then

ρρ′′ ≥ K(N ′)2N2γ exp

(∫ ξ

ξ−γ

c

γNγ(z)
dz

)
(γ + 1)

2

(
1− 1

c

)
≥ CγNγw0.
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• Transition zone: For ξ ∈ [ξ−γ , ξ
+
γ ], we can always bound the negative contribution as follows

ρ(ρ′′)− ≤
cγ

2
K|N ′|3 exp

(∫ ξ

ξ−γ

c

γNγ(z)
dz

)
Nγ−1 ≤ Cγe

√
γξ,

for ξ ∈ (ξ−γ , ξ
+
γ ), where

Cγ ≤ Cγ5/2‖N ′‖3L∞(ξ−γ ,ξ
+
γ )

exp

(∫ ξ+γ

ξ−γ

1

γNγ

)
.

Using Lemma 2.13, we find that Cγ ≤ Cγ for some constant C > 1 independent of γ, where
the exponential growth stems from ‖N ′‖L∞(ξ−γ ,ξ

+
γ ).

Gathering all the terms, we obtain∫
ξ≤ξ−γ

v2ρρ′′ +

∫
ξ≥ξ+

v2ρρ′′ ≤
∫
R

(∂ξv)2āw0 +

∫ ξ+

ξ−γ

v2ρ(ρ′′)−.

Replacing ρρ′′ by their lower bounds on (−∞, 0) and on (ξ+,+∞), we obtain the inequality
announced in the proposition.

A List of abscissas
We list below the main abscissas we have introduced throughout the paper and briefly describe
their use.

Abscissa Size/Order Definition Description

ξ−γ O(γ−1/2) Def. 2.10 p. 22 sup. limit of the congested zone in Section 3 -
see (81)

ξintγ O(γ−1) Def. (42) p. 23 point on the left-side of the interface with P ′γ ≤
−C < 0, it is used to characterize the size of ξ+γ

ξ0γ ξintγ < ξ0γ < ξ+γ
O(γ−1)

Lem. 2.6 p. 14 abscissa characterizing the change of convexity
of Nγ , it corresponds to the minimum of N ′γ

ξ+γ O(γ−1) Def. 2.10 p. 22 inf. limit of the free zone in Section 3 - see (81)

ξ∗γ ξ+γ < ξ∗γ Lem. 2.6 p. 14 the value of N ′γ(ξ∗γ) corresponds to the value of
N ′HS on the right-side of the interface, it char-
acterizes the zone where Nγ has an exponential
behavior
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