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Abstract

Suppose that we observe a short time series where each time-t-specific data-structure consists

of many slightly dependent data indexed by a and that we want to estimate a feature of the law of

the experiment that depends neither on t nor on a. We develop and study an algorithm to learn

sequentially which base algorithm in a user-supplied collection best carries out the estimation

task in terms of excess risk and oracular inequalities. The analysis, which uses dependency graph

to model the amount of conditional independence within each t-specific data-structure and a

concentration inequality by Janson [2004], leverages a large ratio of the number of distinct a-s to

the degree of the dependency graph in the face of a small number of t-specific data-structures.

The so-called one-step ahead Super Learner is applied to the motivating example where the

challenge is to anticipate the cost of natural disasters in France.

1 Introduction

Caisse Centrale de Réassurance and the cost of natural disasters in France. In France,

Law no82-600 of July 13th 1982 imposes a compulsory extension of the guarantee for all property
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insurance contracts for the coverage of natural catastrophes. This law defines the legal framework

of the natural disasters compensation scheme, of which Caisse Centrale de Réassurance (CCR) is

a major actor in France. With the French State guarantee, CCR provides its cedents1 operating

in France (i.e., the insurance companies operating in France that CCR reinsures) with unlimited

coverage against natural catastrophes. In order to better anticipate the risks, CCR has developed an

expertise in natural disasters modeling. The so-called “cat models” [Mitchell-Wallace et al., 2017]

exploit portfolios and claims data collected from CCR’s cedents to enable a better appreciation of

the exposures2 of CCR, of its cedents and of the French State. Our study proposes a new method to

better predict the aforementioned exposures. Termed “one-step ahead sequential Super Learning”,

rooted in statistical theory, the method allows to learn from short time series of many slightly

dependent data.

Statistical challenges. Developing such a method presents several technical challenges. From a

theoretical point of view, we have to deal with a time series (Ōt)t≥1 whose time-t-specific component

Ōt consists of a large collection (Oα,t)α∈A of data that are dependent but such that there is a large

amount of independence among them. The time series is observed only at a limited number of time

steps, a drawback that could be mitigated by the large cardinality of A. Furthermore, for reasons

that we will present later on, we favor the development of a learning algorithm that works in an

online fashion. The learning algorithm should build upon a library of competing algorithms, either

to select the one that performs best or to combine the algorithms into a single meta-algorithm

that performs almost as well as all possible combinations thereof (this is known as stacking, or

aggregating, or Super Learning in the literature). Of course, assessing the said performances is not

easy, notably because it requires some form of online cross-validation procedure. From the applied

point of view, assembling the learning data set is difficult because the data come from many sources

and take on various shapes. Moreover, some of the data are only partially available. Details will

be given later on.

1A cedent is a party in an insurance contract that passes the financial obligation for certain potential losses to the
insurer. In return for bearing a particular risk of loss, the cedent pays an insurance premium.

2The state of being subject to loss because of some hazard or contingency.
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Organization of the article. Section 2 presents the theoretical development and analysis of the

one-step ahead sequential Super Learner. Readers who are more interested in the application than

in the theory could jump to Section 2.2 for a summary. Section 3 presents the complete applica-

tion. The main objective is exposed in finer detail; the actual implementation of the algorithm is

described; the obtained results are reported and commented upon. Section 4 closes the article on

a discussion. Further details are given in the appendix.

2 A new result for the one-step ahead sequential Super Learner

Let (Ōt)t≥1 be a time-t-ordered sequence of observations where each Ōt is in fact a finite col-

lection (Oα,t)α∈A of (α, t)-specific elements of a measured space O. We are especially inter-

ested in situations where the variables (Oα,t)α∈A are conditionally dependent given the σ-field

Ft−1 := σ(Oα,τ : α ∈ A, 1 ≤ τ < t) generated by past observations (by convention, F0 := ∅), but

there is a large amount of conditional independence between them.

We rely on conditional dependency graphs to model the amount of conditional independence.3

Assumption 1. There exists a graph G with vertex set A such that if α ∈ A is not connected by

any edge to any vertex in A′ ⊂ A, then Oα,t is conditionally independent of (Oα′,t)α′∈A′ given Ft−1

and (possibly) a known, fixed summary measure Z̄t := Summ(Ōt) of each observation Ōt.
4

For every t ≥ 1 the summary measure Z̄t writes as Z̄t := (Zα,t)α∈A ∈ ZA. It is said fixed

because it is derived from Ōt by evaluating at Ōt the fixed (in t ≥ 1 and α ∈ A) function Summ.

The adverb possibly hints at the case where Summ maps every Ōt to an uninformative, empty

summary.

We let deg(G) denote 1 plus the maximum degree of G (i.e., 1 plus the largest number of edges

that are incident to a vertex in G). The smaller is deg(G), the more conditional independence we

can rely on.

Our main objective is to estimate a feature θ? of the law P of (Ōt)t≥1, an element of a parameter

space Θ that is known to minimize over Θ the risk induced by a loss ` and P. We consider the

3Janson [2004] exploits the finer notion of fractional chromatic numbers.
4This notion of conditional dependency graph is weaker than the one that requires that (Oα,t)α∈A1 and (Oα,t)α∈A2

be conditionally independent given Ft−1 and Z̄t whenever A1,A2 are disjoint subsets of A with no edge between
them.
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specific situation where the feature θ? can also be defined as the shared minimizer over Θ of all the

risks induced by a loss ` and all the conditional marginal laws of Oα,t given Zα,t (“all” refers to all

α ∈ A and t ≥ 1).

For instance, we can address a situation where, firstly, each Oα,t decomposes as Oα,t :=

(Xα,t, Yα,t) with Xα,t ∈ X a collection of (α, t)-specific covariates and Yα,t ∈ [−1, 1] a corresponding

outcome of interest; secondly, under P, the exists a (fixed) graph G with vertex set A such that, for

all t ≥ 1, if α ∈ A is not connected by any edge to any vertex in A′ ⊂ A, then Oα,t is conditionally

independent of (Oα′,t)α′∈A′ given Ft−1; thirdly, there exists under P (a fixed) θ? : X → [−1, 1]

such that E(Yα,t|Xα,t = x, Ft−1) = θ?(x) for all x ∈ X . In that situation, the loss ` can be the

least-square loss function that maps any θ : X → [−1, 1] to the function (x, y) 7→ (y− θ(x))2. Note

that here, every Zα,t is empty.

Generally, we make the following assumption.

Assumption 2. There exists a loss function ` : Θ → RO×Z such that the feature of interest

θ? minimizes all the risks θ 7→ E[`(θ)(Oα,t, Zα,t)|Zα,t, Ft−1] over Θ, “all” referring to all α ∈ A

and t ≥ 1. Moreover, for every θ ∈ Θ and sequence (θt)t≥1 of elements of Θ adapted to (Ft)t≥1

(i.e., such that each θt is Ft-measurable), for all t ≥ 2 and non-negative integers ε1, ε2 such that

ε1 + ε2 = 2,

E

[∑
α∈A

(`(θt−1)(Oα,t, Zα,t))
ε1 × (`(θ)(Oα,t, Zα,t))

ε2

∣∣∣∣∣Z̄t, Ft−1

]

=
∑
α∈A

E [(`(θt−1)(Oα,t, Zα,t))
ε1 × (`(θ)(Oα,t, Zα,t))

ε2 |Zα,t, Ft−1] .

Assumption A2 guarantees some form of stationarity in P pertaining to its feature of interest θ?.

Thanks to it there is hope that we can learn θ? from Ō1, . . . , Ōt even with t small if the cardinality

|A| of A is large (in fact, if the ratio |A|/deg(G) is large).

Section 2.1 presents the one-step ahead sequential Super Learner, a collection of assumptions on

the law P of the time series (Ōt)t≥1 and on its feature θ?, and our theoretical analysis of the one-step

ahead sequential Super Learner’s performance under these assumptions. Section 2.2 summarizes the

content of Section 2.1 and Section 2.3 gathers comments on Section 2.1. The proofs are presented

in Appendix A and B.
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2.1 The one-step ahead sequential Super Learner and its oracular performances

The one-step ahead sequential Super Learner. Let θ̂1, . . . , θ̂J be J algorithms to learn θ?

from (Ōt)t≥1. In words, for each j ∈ JJK := {1, . . . , J}, θ̂j is a procedure that, for every t ≥ 1, maps

Ō1, . . . , Ōt to an element of a j-specific subset Θj of Θ, namely θj,t ∈ Θj (by convention, θj,0 is a

fixed, pre-specified element of Θj). The one-step ahead sequential Super Learner that we are about

to introduce is a meta-algorithm that learns, as data accrue, which algorithm in the aforementioned

collection performs best.

Strictly speaking, the one-step ahead sequential Super Learner really is an online algorithm if

each of the J algorithms is online, that is, if for each j ∈ JJK and t ≥ 1, the making of θj,t consists

in an update of θj,t−1 based on newly accrued data Ōt. If that is not the case, then the Super

Learner is merely a sequential algorithm, updated at every time step t.

The measure of performance takes the form of an average cumulative risk conditioned on the

observed sequence (Z̄t)t≥1. For every j ∈ JJK, the risk (for short) of θ̂j till time t ≥ 1 is defined as

R̃j,t :=
1

t

t∑
τ=1

E
[
¯̀(θj,τ−1)(Ōτ , Z̄τ )

∣∣Z̄τ , Fτ−1

]
where (1)

¯̀(θ)(Ōτ , Z̄τ ) :=
1

|A|
∑
α∈A

`(θ)(Oα,τ , Zα,τ ) for all θ ∈ Θ, τ ≥ 1. (2)

The empirical counterpart of (1) is

R̂j,t :=
1

t

t∑
τ=1

¯̀(θj,τ−1)(Ōτ , Z̄τ ) =
1

t|A|

t∑
τ=1

∑
α∈A

`(θj,τ−1)(Oα,τ , Zα,τ ). (3)

At each time t ≥ 1, the collection of (j, t)-specific empirical risks is minimized at index ĵt:

ĵt ∈ arg min
j∈JJK

R̂j,t (4)

(the unlikely ties are broken arbitrarily). The one-step ahead sequential Super Learner is the

meta-algorithm that learns θ? by mapping Ō1, . . . , Ōt to θĵt,t for every t ≥ 1.

To assess how well the one-step ahead sequential Super Learner performs, we compare its risk

to that of the oracular algorithm that learns θ? by mapping Ō1, . . . , Ōt to θj̃t,t at each time t ≥ 1,
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where

j̃t ∈ arg min
j∈JJK

R̃j,t (5)

(again, the unlikely ties are broken arbitrarily). This is discussed next.

Comparing the one-step ahead sequential Super Learner to its oracular counterpart.

So far we have defined the risks of θ̂1, . . . , θ̂J , see (1). By analogy, for every θ ∈ Θ and t ≥ 1, let

the risk of θ at time t be

R̃t(θ) :=
1

t

t∑
τ=1

E
[
¯̀(θ)(Ōτ , Z̄τ )

∣∣Z̄τ , Fτ−1

]
.

The risk R̃t(θ) can be interpreted as the risk till time t ≥ 1 of a dummy algorithm that constantly

maps Ō1, . . . , Ōt to θ (the algorithm is said dummy because it does not learn). Let θ◦ ∈ Θ be such

that

R̃t(θ
◦) ≤ min

j∈JJK
min
θ∈Θj

R̃t(θ).

Under A2, θ◦ could be set to θ?, but other choices might be made on a case by case basis. Our

main results compare the excess risks of the one-step ahead sequential Super Learner and of the

oracle, that is, they compare

R̃ĵt,t − R̃t(θ
◦) to R̃j̃t,t − R̃t(θ

◦).

They rely on the following assumptions.

For every θ ∈ Θ, let ∆◦`(θ) := `(θ)− `(θ◦).

Assumption 3. There exists b1 > 0 such that supθ∈Θ ‖∆◦`(θ)‖∞ ≤ b1. Moreover there exists

b2 ∈]0, 2b1] such that, almost surely, for all α ∈ A, t ≥ 1 and θ ∈ Θ,

|∆◦`(θ)(Oα,t, Zα,t)− E [∆◦`(θ)(Oα,t, Zα,t)|Zα,t, Ft−1]| ≤ b2.

Assumption 4. There exist β ∈]0, 1] and γ > 0 such that, almost surely, for all α ∈ A, t ≥ 1 and
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θ ∈ Θ,

E
[(

∆◦`(θ)(Oα,t, Zα,t)
)2
∣∣∣∣Zα,t, Ft−1

]
≤ γ

(
E [∆◦`(θ)(Oα,t, Zα,t)|Zα,t, Ft−1]

)β
.

Assumption 5. There exists v1 > 0 such that, almost surely, for all α ∈ A, t ≥ 1 and θ ∈ Θ,

Var [∆◦`(θ)(Oα,t, Zα,t)|Zα,t, Ft−1] ≤ v1.

Assumption A4 is a so-called “variance bound”, a well-known concept in statistical learning

theory [Bartlett et al., 2005, Koltchinskii, 2006, Bartlett et al., 2006]. Under A3, the radius of the

loss class is bounded. Note that if A3 is met, then so is A5 necessarily. We can now state our

main results.

Theorem 1 (High probability oracular inequality). Suppose that A1, A2, A3, A4 and A5 are

met. Define

v2 :=
3π

2

[(
15b2

|A|/ deg(G)

)2

+
64v1

|A|/ deg(G)

]
. (6)

Fix arbitrarily two integers N,N ′ ≥ 2 and a real number a > 0, then set x(a,N) := a[2−Nv2/γ]1/β,

x′(a,N ′) := ab12−N
′
. For all t ≥ 1 and x ≥ x(a,N), it holds that

P
[
R̃ĵt,t − R̃t(θ

◦) ≥ (1 + 2a)
(
R̃j̃t,t − R̃t(θ

◦)
)

+ x
]
≤ 2JN

[
exp

(
− tx

2−β

C1(a)

)
+ exp

(
− tx

C2(a)

)]
, (7)

where C1(a) := 25−β(1+a)2γ/aβ, C2(a) := 8(1+a)b2/3. Moreover, for all t ≥ 1 and x ≥ x′(a,N ′),

it also holds that

P
[
R̃ĵt,t − R̃t(θ

◦) ≥ (1 + 2a)
(
R̃j̃t,t − R̃t(θ

◦)
)

+ x
]

≤ 2e2JN ′

[
exp

(
− [|A|/(tβ deg(G))]x2−β

C ′1(a)

)
+ exp

(
− [|A|/deg(G)]x

C ′2(a)

)]
, (8)

where C ′1(a) := 26+2βe2(1 + a)2γ/aβ, and C ′2(a) := 60e(1 + a)b2.

We derive the following oracular inequality in expectation from Theorem 1.
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Corollary 2 (Oracular inequality for the expected risk). Suppose that A1, A2, A3, A4 and A5

are met. For any a ∈]0, 1], it holds that

E
[
R̃ĵt,t − R̃t(θ

◦)− (1 + 2a)
(
R̃j̃t,t − R̃t(θ

◦)
)]
≤ 3

(
C1(a)

t
log(2JN)

)1/(2−β)

+
2C2(a)

t
log(2JN) (9)

provided that N ≥ 2 is chosen so that

N ≥ β

2− β
log(t) + log(C3)

log(2)
(10)

where C3 := (v2/γ)(2−β)/β/(25−βγ) with v2 given by (6). Moreover, it also holds that

E
[
R̃ĵt,t − R̃t(θ

◦)− (1 + 2a)
(
R̃j̃t,t − R̃t(θ

◦)
)]

≤ 3

(
C ′1(a)

|A|/(tβ deg(G))
log(2JN ′)

)1/(2−β)

+
2C ′2(a)

|A|/ deg(G)
log(2JN ′) (11)

provided that N ′ ≥ 2 is chosen so that

N ′ ≥ β

2− β
log(|A|/(tβ deg(G))) + log(C ′3)

log(2)
(12)

where C ′3 := b1/(2
6+2βe2γ).

2.2 Summary of Section 2.1

Given J algorithms θ̂1, . . . , θ̂J to learn θ? from (Ōt)t≥1, the one-step ahead sequential Super Learner

is a meta-algorithm that learns, as data accrue, which one performs best. In words, for each

j ∈ JJK := {1, . . . , J}, θ̂j is a procedure that, for every t ≥ 1, maps Ōt to an element θj,t of Θ.

Strictly speaking, the one-step ahead sequential Super Learner really is an online algorithm if

each of the J algorithms is online, that is, if for each j ∈ JJK and t ≥ 1, the making of θj,t consists

in an update of θj,t−1 based on newly accrued data Ōt. If that is not the case, then the Super

Learner is merely a sequential algorithm, updated at every time step t.

The (unknown) t-specific measure of performance of each θ̂j , R̃j,t (1), takes the form of an
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average cumulative risk conditioned on the observed sequence (Z̄t)t≥1 introduced in Assumption A1.

The (unknown) t-specific oracular meta-algorithm is indexed by the oracular j̃t ∈ JJK (5).

We use the (known) t-specific empirical counterpart R̂j,t (3) of R̃j,t to estimate j̃t with the

(known) t-specific ĵt (4). Algorithm θ̂j with j = ĵt is the one-step ahead sequential Super Learner

at time t.

The oracular inequalities in Corollary 2 have a familiar flavor for whoever is interested in Super

Learning or, more generally, the aggregation or stacking of algorithms. In essence, as more data

accrue, the expected risk of the one-step ahead sequential Super Learner is smaller than (1 + a)

(a chosen small) times the expected risk of the oracular meta-algorithm up to an error term of

the form constant times (log(J log(I2))/I2)1/(2−β) where I grows like the amount of information

available (the constant β ∈]0, 1] appears in one of the assumptions). In (9), I2 equals t. In (11),

I2 equals |A|/(tβ deg(G)). In the next section we show that if the ratio |A|/ deg(G) is sufficiently

large (both in absolute terms and relative to t) (see (14)), then the oracular inequality (11) can be

sharper than the oracular inequality (9) in Corollary 2, revealing that we managed to leverage a

large ratio |A|/ deg(G) in the face of a small t.

2.3 Comments

Leveraging a large ratio |A|/ deg(G) in the face of a small t. Our results generalize

those of Benkeser et al. [2018] in two aspects. First, they do not require assumptions akin to

their assumptions A3 and A4, which are meant to deal with the randomness at play in R̃j,t and

Var[∆◦`(Oα,t, Zt)|Zt, Ft−1]. Instead we exploit a so-called stratification argument inspired by Cesa-

Bianchi and Gentile [2008]. Second, our results leverage the fact that, as explained at the beginning

of Section 2, each t-specific observation is a collection (Oα,t)α∈A of (α, t)-specific data points with a

large amount of conditional independence between them, as modelled by the conditional dependency

graph G. Recall that deg(G) equals 1 plus the maximum degree of G. The smaller is deg(G) the

more conditional independence we can rely on.

If one chooses N = N ′ in (9) and (11), then it is easy to check that the two terms in the

right-hand side expression of (11) are smaller than their counterparts in (9) if and only if

t1+β ≤ |A|/ deg(G)

2e28β
and t ≤ |A|/ deg(G)

45e/2
. (13)
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Furthermore, a simple sufficient condition for (13) to be met is

t1+β ≤ |A|/deg(G)

2e28β
and

|A|
deg(G)

≥ 24e× (3/(2e))1/β . (14)

Thus, if (14) is met (note that 24e× 3/(2e) = 36 ≥ 24e× (3/(2e))1/β whatever is β ∈]0, 1]) and if

we make the following (valid) choices in Corollary 2,

N = N ′ ≥ β

2− β
log(|A|/(tβ deg(G))) + log(C ′3) +

(
log[C3/(2e

28βC ′3)]
)

+

log(2)
,

then the oracular inequalities (9) and (11) for the expected risk hold true, the latter being sharper

than the former. In words, our analysis does take advantage of the fact that |A|/ deg(G) is large in

the face of t being comparatively small.

A few details on the proofs. Theorem 1 notably hinges on the Fan-Grama-Liu concentration

inequality for martingales [Theorem 3.10 in Bercu et al., 2015] and on the following result, tailored

to our needs and derived from a concentration inequality for sums of partly dependent random

variables shown by Janson [2004]. For each j ∈ JJK and t ≥ 1, introduce the two (j, t)-specific

averages of conditional variances

varj,t :=
1

|A|
∑
α∈A

Var [∆◦`(θj,τ−1)(Oα,tZα,t)|Zα,t, Ft−1] , (15)

ṽarj,t :=
1

t

t∑
τ=1

Var
[
∆◦ ¯̀(θj,τ−1)(Ōτ , Z̄τ )

∣∣Z̄τ , Fτ−1

]
. (16)

Theorem 3. Suppose that A3 and A4 are met. For each j ∈ JJK, ṽarj,t ≤ v2 almost surely (see

(6) for the definition of v2). Moreover, for any V > 0 and all x ≥ 0, if

F̃V :=

[
max
τ∈JtK
{varj,τ} ≤ V

]
, (17)

then

P
[
|[R̂j,t − R̂t(θ◦)]− [R̃j,t − R̃t(θ◦)]| ≥ x, F̃V

]
≤ exp

(
2− [|A|/ deg(G)]x2

32e2V + 15eb2x

)
. (18)

Our proof of Theorem 3 consists in deriving a Rosenthal inequality from Janson’s concentration

10



inequality [2004], following Petrov’s line of proof [1995], in using a convexity argument, then in

applying the same method as in [Dedecker, 2001, Corollary 3(b)] (inspired by the proof of Theorem 6

in [Doukhan et al., 1984]). Inequality (18) plays a key role in the derivation of (11). The fact that

the first term in the right-hand side expression in (11) features |A|/(tβ deg(G)) and not |A|/ deg(G)

may be deemed pessimistic but is inherent to our scheme of proof. Note that substituting a sharp

Marcinkiewicz-Zygmund-like inequality [Rio, 2009, Theorem 2.9] for the convexity argument that

leads to (49) does not solve the issue.

Furthermore, it is noteworthy that our results extend seamlessly to the case that every ex-

pression `(θτ−1)(Oα,τ , Zα,τ ) with θτ−1 Fτ−1-measurable is replaced by an expression of the form

`(θτ−1)(Oα,τ , Zα,τ )×ωτ (Oα,τ , Zα,τ ), where ωτ is a Fτ−1-measurable weighting function. This proves

very useful in the context of reinforcement learning, allowing to rely on importance sampling weight-

ing.

Comments on the assumptions. Assumptions A2, A3, A4, A5 are quite typical. Like in the

context of the application motivating our study, suppose for example that each Oα,t decomposes

as Oα,t := (Zα,t, Xα,t, Yα,t) ∈ Z × X × [−B,B] =: O where Xα,t ∈ X is a collection of covariates,

Zα,t ∈ Z is a fixed summary measure thereof (i.e., as explained earlier, Zα,t is derived from Xα,t

by evaluating at Xα,t a known, fixed (in t ≥ 1 and α ∈ A) function), and Yα,t ∈ [−B,B] is

a bounded real-valued outcome of primary interest. Suppose moreover that, for all α ∈ A and

t ≥ 1, the conditional law of Yα,t given (Xα,t, Zα,t) = (x, z), (Zα′,t)α′∈A and Ft−1 admits the

conditional density y 7→ f?(y|x, z) with respect to some measure λ(dy) on [−B,B]. In this context,

the conditional expectation y 7→ θ?(y|x, z) of Yα,t given (Xα,t, Zα,t) = (x, z) (for all (x, z) in the

support, under P, of any (Xα,t, Zα,t)) is an eligible feature of interest.

Let Θ be the set of measurable functions on X × Z taking their values in [−B,B]. Given by

`(θ) : ((z, x, y), z) 7→ (y − θ(x, z))2 (for all θ ∈ Θ), the least-square loss function ` : Θ → RO×Z

satisfies A2. In addition, we can choose θ◦ := θ? and A3, A4 (with β = 1) and A5 are met.

The fact that A4 is met follows from a classical argument of strong convexity recalled, for self-

containedness, in Appendix A.

11



3 Anticipating the cost of natural disasters

In this section, we apply one-step ahead sequential Super Learning to anticipate the cost of natural

disasters. Section 3.1 presents the context and objective in details, Section 3.2 describes the data

that we exploit, and Section 3.3 models the problem in the terms of the theoretical Section 2.

Then, Section 3.4 discusses the implementation of the one-step ahead sequential Super Learner and

Section 3.5 presents and comments its results.

3.1 More on the context and the objective

To better anticipate the risks, CCR has developed an expertise in natural disasters modeling. Its

cat models exploit portfolios and claims data collected from CCR’s cedents to enable a better

appreciation of the exposures of CCR, of its cedents and of the French State.

The natural disasters compensation scheme created by French Law no82-600 is triggered when

the following three necessary conditions are met:

1. a government decree declaring a natural disaster must be published in the French Journal

Officiel;

2. the lost and/or damaged property must be covered by a property and casualty insurance

policy;

3. a causal link must exist between the declared natural disaster and the sustained loss and/or

damage.

The mayor of a city can request the government declaration of natural disaster by sending a form

to their prefect. All over France, the prefects gather the forms and send them to the relevant

Interministerial Commission. The commission examines all requests and delivers the declaration

of natural disaster if additional criteria are met. These criteria characterize what is considered as

a natural disaster. For instance, for drought events (the natural catastrophes that we focus on,

also known as subsidence5 events in the literature, for reasons that the next paragraph clarifies),

the criteria evaluate the intensity of the drought. It is noteworthy that the criteria are regularly

updated by the commission – we shall discuss further this point in Section 4. If the Interministerial

5The process by which land or buildings sink to a lower level.
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Commission delivers a favorable opinion, confirmed by the publication in the Journal Officiel of a

government decree declaring a disaster, then CCR indemnifies the insurance companies once they

have indemnified the policyholders.

As revealed earlier, we focus on drought events. Such events are caused by the clay shrinking

and swelling during a calendar year (and must be distinguished from agricultural drought events).

Drought events entail cracks on buildings, which can be covered by an insurance policy. In order to

manage the risks inherent in the natural disasters compensation scheme, CCR must anticipate the

costs generated by drought events in particular. This is crucial for the pricing of non-proportional

reinsurance treaties, and for reserving (that is to say, to anticipate forthcoming payments). The

present study tackles the challenge of predicting the cost of drought events from a data set that we

describe next.

3.2 Data

The data set that we exploit to predict the costs of drought events is composed of several data sets

of different natures. The data are commonly grouped in two classes, depending on whether they

concern the natural disaster itself or any of the remaining relevant characteristics that complete

the description of the financial impact of the natural disaster on the insurance industry. We choose

to group the data in two other classes, depending on whether they come from the cedents or from

another source.

Data from cedents. CCR reinsures 90% of the French natural disasters insurance market. Con-

tractually, CCR’s cedents must share their portfolios (i.e., the location and characteristics of the

insured goods) and claims data. Thanks to this mechanism, CCR has gathered a large data set

that runs from 1990 to this day.

Data from other sources. The data from cedents are enriched with other data collected from

four French organizations. The National Institute for Statistical and Economic Studies (INSEE)

and Geographic National Institute (IGN) provide information on the cities (population, area, pro-

portions of buildings by years of construction for INSEE; tree coverage rate for IGN). The French

Geological Survey (BRGM) provides a mapping of the clay shrinkage-swelling hazards in France.
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Figure 1: Chunks from five arbitrarily chosen time series of Soil Wetness Index (SWI) over the
course of one year. It does not come as a surprise that the soil is drier during summer than during
winter.

Finally, Météo France provides a soil wetness index (SWI). This last feature consists of time series

of values (one every decade) ranging between -3.33 (very dry soil) and 2.33 (very wet soil). Figure 1

presents five one-year chunks of SWI time series.

Working at the city-level. It is noteworthy that the spatial resolution of SWI data is 8×8km2,

which is much larger than the 90%-quantile of the French cities area (30 km2; only 1.3% of the

French cities have an area larger than 65 km2 – data from 2014). This issue will be discussed

further in Section 4. It justifies why we choose to work at the city-level as opposed to the house

level, by aggregating at every time point all data from each city into a single, time and city-specific

observation.

• City-level costs of drought events. For every time point and each city, the city-level cost of

drought event is the sum of all house claims over the city’s area.

• City-level SWI. For every time point and each city, the city-level SWI is the convex average of

the SWIs of the 8× 8km2 squares that overlap the city’s area, the weights being proportional

to the areas of the intersections.

• City-level description. For every time point and each city, a city-level description encapsulates

the city’s profile. The description is multi-faceted. It contains: an indicator of whether or

14



not a natural disaster was declared by the government; the overall insured value obtained by

summing the insured values over the city’s area; a summary of the city’s clay hazard, defined

as the proportions of houses falling in each of four categories of clay hazard; a summary of the

city’s dwelling age, i.e., how old houses are, under the form of the proportions of houses falling

in each of four categories; the climatic and seismic zones (a five-category and a four-category

variables); a summary of the city’s vegetation; the city’s number of houses, population, area,

average altitude, and density, defined as the ratio of the number of houses to the area. In

addition, a variety of features are described by quantiles that summarize distributions (e.g.,

the 30-quantiles of the distribution of the house-specific product of SWI and insured value,

or the 30-quantile of the distribution of the house-specific product of the ground slope and

insured value, to mention just a few). Overall, the city-level description consists of a little

more than 430 variables.

3.3 Modeling

The sequence of observations. In the context of the anticipation of the cost of natural disasters,

each Oα,t decomposes as Oα,t := (Zα,t, Xα,t, Yα,t) where

• Yα,t ∈ [0, B] is the city-level cost of the drought event for city α at year t,

• Zα,t is the city-level SWI for city α at year t,

• Xα,t is the city-level description that encapsulates city α’s profile at year t, including an

indicator Wα,t ∈ {0, 1} that equals 1 if and only if a natural disaster has been declared by

the government for that city and that year.

By convention, Yα,t = 0 if Wα,t = 0 (that is, in the absence of a declaration of natural disaster).

Formally, Xα,t includes Zα,t. For notational simplicity, we rewrite each Xα,t as (Wα,t, Xα,t, Zα,t) ∈

{0, 1} × X × Z, the “new” Xα,t being the “old” Xα,t deprived of Zα,t (but not of Wα,t).

The feature of interest and related loss function. We assume that, for all α ∈ A and

t ≥ 1, the conditional law of Yα,t given (Wα,t, Xα,t, Zα,t) = (1, x, z), (Zα′,t)α′∈A and Ft−1 admits

a conditional density y 7→ f?(y|x, z) with respect to some measure on [0, B]. In this context, the
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conditional expectation y 7→ θ?(y|x, z) of Yα,t given (Wα,t, Xα,t, Zα,t) = (1, x, z) (for all (x, z) in the

support of any (Xα,t, Zα,t) conditionally on Wα,t = 1) is an eligible feature of interest.

Set O := {0, 1} × X × Z × [0, B] and let Θ be the set of measurable functions on X × Z

taking their values in [0, B] and such that θ(x, z) = 0 if w = 0. Given by `(θ) : ((w, x, z, y), z) 7→

(y − θ(x, z))21{w = 1} (for all θ ∈ Θ), the least-square loss function ` : Θ → RO×Z satisfies A2.

In addition, we can choose θ◦ := θ? and A3, A4 (with β = 1) and A5 are met. The fact that A4

is met follows from the classical argument of strong convexity recalled in Appendix A.

Of A and G. Here, A represents the set of French cities. The dependency graph G used to model

the amount of conditional independence operationalizes two different types of spatial dependence:

one geographical and the other administrative. The former corresponds to the dependency caused

by the proximity between two cities in geological and meteorological terms as well as in terms of

vegetation. The latter corresponds to the dependency caused by the administrative proximity be-

tween two cities that belong to a same “communauté de communes” (i.e., community of communes,

a federation of municipalities). This second type of spatial dependence is less obvious than the first

one. It arises from the fact that a declaration of natural disaster must be requested by the mayor

of a city (see Section 3.1). If, in a small federation, a mayor makes such a request, then it is likely

that the other mayors will as well.

The cardinality of A is of order 36, 000. In 2019, there were approximately 1, 000 federations

of municipalities in France, regrouping approximately 26, 000 cities. The federation regrouped

approximately 30 cities in average.

3.4 Implementation

We implement our statistical analysis in R [R Core Team, 2021]. All our Super Learners are

implemented based on the SuperLearner library [Polley et al., 2019].

Base algorithms. The base algorithms θ̂1, . . . , θ̂J belong to one among four classes of algo-

rithms: the class of algorithms based on small to moderate-dimensional working models (linear

regression; lasso, ridge and elastic net regressions [Simon et al., 2011]; multivariate adaptive re-

gression splines [Milborrow, 2020]; support vector regression [Karatzoglou et al., 2004]; gradient
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boosting with linear boosters [Chen et al., 2021]); the class of algorithms based on trees (CART [Th-

erneau and Atkinson, 2019], random forest [Wright and Ziegler, 2017], gradient boosting with tree

boosters [Chen et al., 2021]); the class of k-nearest neighbors algorithms; the class of algorithms

based on high-dimensional neural networks [Allaire and Chollet, 2021]. Most of the aforementioned

algorithms contribute several base algorithms through the choice of different hyper-parameters.

The k-nearest-neighbors algorithms are customized. Each of them focuses on one of the quantiles

summarizing a feature of interest (see Section 3.2) and uses the Kolmogorov-Smirnov distance as a

measure of similarity between every pair of quantiles (viewed as cumulative distribution functions).

Discrete and continuous one-step ahead sequential Super Learners. The one-step ahead

sequential Super Learner that learns θ? by mapping Ō1, . . . , Ōt to θĵt,t for every t ≥ 1 (4) is known

as a discrete Super Learner. The continuous Super Learner is the discrete Super Learner when the

collection of base algorithms consists of all convex combinations
∑

j∈JJK σj θ̂j of the base algorithms

θ̂1, . . . , θ̂J where (σ1, . . . , σJ) ranges over the discretized simplex {(σ1, . . . , σJ) ∈ {(k − 1)/K : k ∈

JK + 1K}J :
∑

j∈JJK σj = 1} with a large integer K. Note that the cardinality of this collection of

base algorithms is of order Θ(KJ) and much larger than J . This is not overly problematic because

J in (9) and (11) plays a role through log(J)/I2 with I2 = t or I2 = |A|/(tβ deg(G)), one of them

at least being supposed large.

For every t ≥ 1, the σ-specific algorithm
∑

j∈JJK σj θ̂j maps Ō1, . . . , Ōt to
∑

j∈JJK σjθj,t. From

a computational point of view, we do not use the larger collection of base algorithms obtained by

convex combination. Instead, we directly solve

arg min
σ∈Σ

1

t

t∑
τ=1

¯̀
(∑

j∈JJK σjθj,τ−1

)
(Ōτ , Z̄τ ) (19)

(where Σ is the whole simplex), which can be interpreted as a convexified version of (4).

More one-step ahead sequential Super Learners and the overarching one-step ahead

sequential Super Learner. We propose and implement two more extensions. The first extension

builds upon the interpretation of (19) as the so called meta-learning task consisting in predicting

Yα,τ under the form
∑

j∈JJK σjθj,τ−1(Xα,τ , Zα,τ ) for all α ∈ A, 1 ≤ τ ≤ t. We consider other meta-

learning methods m to predict Yα,τ based on θ1,τ−1(Xα,τ , Zα,τ ), . . . , θJ,τ−1(Xα,τ , Zα,τ ), Xα,τ , Zα,τ
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for all α ∈ A, 1 ≤ τ ≤ t. Each meta-learning method m yields its own m-specific (discrete or

continuous) Super Learner.

The second extension builds upon the first one. The collection of m-specific Super Learners

can be considered as a collection of base algorithms. This raises the question of learning which one

performs best. To answer this question, we can rely on what we call the overarching (discrete or

continuous) Super Learner.

Meta-learning methods and overarching meta-learning method. In view of the four

classes of base algorithms described in the first paragraph of this section, the meta-learning methods

belong to one among two classes of methods: the class of methods based on small to moderate-

dimensional working models (linear regression with nonnegative coefficients [Mullen and van Stokkum,

2012]; lasso, ridge and elastic net regressions [Simon et al., 2011]; support vector regression [Karat-

zoglou et al., 2004]; gradient boosting with linear boosters [Chen et al., 2021]); the class of algo-

rithms based on trees (extra trees, a variant of random forest [Wright and Ziegler, 2017]; gradient

boosting with tree boosters [Chen et al., 2021]). The overarching Super Learner uses the meta-

learning method based on linear regression with nonnegative coefficients. The discrete overarching

Super Learner selects which among the Super Learners (viewed as base algorithms) performs best.

The continuous overarching Super Learner learns which convex combination of the Super Learners

(viewed as base algorithms) performs best.

Overall, we implement 27 base algorithms and 48 Super Learners.

3.5 Results

min. 1st qu. median mean 3rd qu. max

23 162.5 607 1072.3 1921.5 4436

Table 1: Quantiles and mean of the yearly numbers of cities for which a declaration of natural
disaster was delivered by the government as a result of a drought event. The time series runs from
1995 to 2017. Overall, we count 24,663 such declarations.

We observe the time series (Ōt)t≥1 from 1995 to 2017. We also observe the years 2018 and 2019

but do not know yet the city-level or global costs of drought events for these two years. Overall

we count 24,663 observations Ōα,τ for which a declaration of natural disaster was delivered by the
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government as a result of a drought event. The quantiles and mean of the yearly numbers of cities

for which a declaration of natural disaster was delivered are reported in Table 1.

Figure 2: Evolution (from 2007 onward) of the weights attributed by the overarching Super Learner
to 4 of its base algorithms, each one a Super Learner itself using its own meta-learning method.
The other base algorithms get no weight at all (on this time window).

Among the 48 Super Learners, the overarching continuous Super Learner attributes positive

weights to the same four Super Learners consistently from 2007 to 2017, see Figure 2. Moreover,

the discrete overarching Super Learner is consistently one of these four Super Learners.

Figure 3 represents the global costs of drought events as predicted by the discrete and contin-

uous overarching Super Learners. We observe that the discrete and continuous overarching Super

Learners make predictions that are consistent each year. The experts, who naturally focus on the

years for which the real costs happen to be the largest because the financial stake is then the

highest, deem them very satisfactory.

Overall, the averages (over the years) of the ratios of the predicted costs to the real costs equal

106% (discrete overarching Super Learner) and 112% (continuous overarching Super Learner). The

ratios range from 67% (discrete overarching Super Learner) and 70% (continuous overarching Super

Learner), in 2016, to 164% (discrete overarching Super Learner) and 180% (continuous overarching

Super Learner), in 2012. The year 2016 is known by the experts to be atypical, and challenging,

because the average cost (understood here as the ratio of the total cost of the year’s drought event

to the corresponding number of declarations of natural disaster delivered that year) is particularly

large. Conversely, the average cost in the year 2012 is particularly small.
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Figure 3: Presentation (from 2007 onward) of the real costs of drought events and their predictions
made by the discrete and continuous overarching Super Learners.

4 Discussion

We develop and analyze a meta-algorithm that learns, as data accrue, which among J base algo-

rithms better learns a feature θ? of the law P of a sequence (Ōτ )τ≥1, where each Ōτ consists of a

finite collection (Ōα,τ )α∈A of many slightly dependent data. We show that the meta-algorithm, an

example of Super Learner, leverages a large ratio |A|/deg(G) (a measure of the amount of inde-

pendence among the τ -specific Ōα,τ , α ∈ A) in the face of a small number t of time points where

the time series is observed – see the summary presented in Section 2.2. The study is motivated by

the challenge posed by the appreciation of the exposures to drought events of CCR, of its cedents

and of the French State. We implement and use two Super Learners to learn to assess the (global)

costs by predicting the (local) costs at the city-level – see Section 3.5 for a summary of our results.

Reliable prediction of the cost of a drought event must rely on some measure of the drought’s

intensity. We exploit a soil wetness index (SWI) provided by Météo France. Because the spatial

resolution of SWI data is much larger than the 90%-quantile of the French cities area, we choose

to work at the city-level rather than at the address-level, by aggregating all the address-specific

information at the city-level. In future work, we will learn a better measure of the drought’s

intensity at a finer resolution by combining different sources of information pertaining to the soil
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wetness (SWI, rainfall, nature of the soil, to name just a few). Since we know that costs can vary

dramatically at the address-level, we also consider to later try and enhance our predictions by

zooming in back to the address-level, thanks to the finer resolution measure of soil wetness.

In Section 3.1, we explained that the criteria characterizing what is considered as a natural

disaster by the relevant Interministerial Commission are regularly updated. Moreover, even on the

narrow time frame of our study, climate change may have affected the severity of droughts on the

French territory. From a theoretical viewpoint, the marginal law of the (α, τ)-specific covariate

Zα,τ that describes the severity of the drought depends on τ . We tried to give each Oα,τ an (α, τ)-

specific weight to target the (α, t)-specific marginal law of Zα,t when addressing the prediction of

the cost of year t. If any, the benefits were dwarfed by the increase in variability caused by the

learned weighting scheme.
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Suppose that Θ is convex, and that the loss function ` : Θ→ RO is a1-Lipschitz,

|`(θ1)− `(θ2)| ≤ a1|θ1 − θ2| (20)

23

https://CRAN.R-project.org/package=nnls
https://CRAN.R-project.org/package=SuperLearner
https://www.R-project.org/
https://www.jstatsoft.org/v39/i05/
https://CRAN.R-project.org/package=rpart


and a2-strongly convex: for all s ∈ [0, 1] and θ1, θ2 ∈ Θ,

`(sθ1 + (1− s)θ2)− a2
2 (sθ1 + (1− s)θ2)2 ≤ s

(
`(θ1)−

(
a2
2 θ1

)2)
+ (1− s)

(
`(θ2)−

(
a2
2 θ2

)2)

(both inequalities above are understood pointwise). Then the modulus of continuity of ` is lower-

bounded by ρ 7→ a2
8 ρ

2 in the sense that, for all θ1, θ2 ∈ Θ,

1
2 (`(θ1) + `(θ2))− `

(
1
2(θ1 + θ2)

)
≥ a2

8 (θ1 − θ2)2 (21)

(pointwise). Let P be a law on O such that P`(θ) is well defined for all θ ∈ Θ, where we note

Pf :=
∫
fdP . Choose θ◦ ∈ Θ such that P`(θ◦) ≤ P`(θ) for all θ ∈ Θ. Then, for all θ ∈ Θ,

1
2P (`(θ) + `(θ◦)) ≥ P`(1

2(θ + θ◦)) + a2
8 P (θ − θ◦)2

≥ P`(θ◦) + a2
8 P (θ − θ◦)2

≥ P`(θ◦) + a2
8a21
P (`(θ)− `(θ◦))2,

where the first inequality follows from (21), the second holds by convexity of Θ and choice of θ◦,

and the third one follows from (20). Therefore,

P (`(θ◦)− `(θ))2 ≤ 4a21
a2
P (`(θ)− `(θ◦)),

which concludes the argument.

B Proofs

B.1 Proof of Theorem 1

The proof unfolds in three steps.

Step 1: an algebraic decomposition. For all j ∈ JJK, t ≥ 1 and θ ∈ Θ, let us define

H̃j,t := R̃j,t − R̃t(θ◦), Ĥj,t := R̂j,t − R̂t(θ◦), and
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∆◦ ¯̀(θ)(Ōt, Z̄t) := ¯̀(θ)(Ōt, Z̄t)− ¯̀(θ◦)(Ōt, Z̄t)

(¯̀(θ) is defined in (2)). Fix arbitrarily a > 0. An algebraic decomposition at the heart of all studies

of the Super Learner [see, e.g, Dudoit and van der Laan, 2005, van der Laan et al., 2007, Benkeser

et al., 2018]) states that the excess risk of the Super Learner (that is, H̃ĵt,t
) can be bounded by

(1 + 2a) times the excess risk of the oracle (that is, H̃j̃t,t
), plus some remainder terms:

H̃ĵt,t
≤ (1 + 2a)H̃j̃t,t

+Aĵt,t(a) +Bj̃t,t(a)

≤ (1 + 2a)H̃j̃t,t
+ max
j∈JJK
{Aj,t(a)}+ max

j∈JJK
{Bj,t(a)} (22)

where

Aj,t(a) := (1 + a)
(
H̃j,t − Ĥj,t

)
− aH̃j,t and Bj,t(a) := (1 + a)

(
Ĥj,t − H̃j,t

)
− aH̃j,t.

The first terms in the definitions of Aj,t(a) and Bj,t equal ±(1 + a) times

1

t

t∑
τ=1

(
∆◦ ¯̀(θj,τ−1)(Ōτ , Z̄τ )− E

[
∆◦ ¯̀(θj,τ−1)(Ōτ , Z̄τ )

∣∣Z̄τ , Fτ−1

] )
,

that is as the average of the t first terms of a martingale difference sequence. As for the shared

second term in the definitions of Aj,t(a) and Bj,t, it satisfies −aH̃j,t ≤ 0. The second step of

the proof consists in exploiting two so-called Bernstein’s inequalities to control the probabilities

P[Aj,t(a) ≥ x] and P[Bj,t(a) ≥ x] for x ≥ 0.

Step 2: Bounding positive deviations of Aj,t(a) and Bj,t(a). Set arbitrarily two integers

N,N ′ ≥ 2 and a real number x ≥ 0. The analysis of P[Bj,t(a) ≥ x] is exactly the same as that of

P[Aj,t(a) ≥ x], so we present only the latter. The key to the analysis is a so-called stratification

argument inspired by Cesa-Bianchi and Gentile [2008].

For every j ∈ JJK and t ≥ 1, recall the definitions (15) and (16) of varj,t and ṽarj,t. On the

one hand, by A4 and because the functions of a real variable u 7→ u2 and u 7→ uβ are respectively
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convex and concave, it holds that

ṽarj,t ≤
1

t

t∑
τ=1

E
[(

∆◦ ¯̀(θj,τ−1)(Ōτ , Z̄τ )
)2∣∣∣Z̄τ , Fτ−1

]

≤ γ

(
1

t

t∑
τ=1

E
[
∆◦ ¯̀(θj,τ−1)(Ōτ , Z̄τ )

∣∣Z̄τ , Fτ−1

])β
= γ

(
H̃j,t

)β
(23)

almost surely. Moreover, it also holds that ṽarj,t ≤ v2 almost surely by Theorem 3. The previous

upper bound and (23) play a key role in the first version of Step 2 (Step 2 (v1)) presented below.

On the other hand, by A2, A4, and because the function u 7→ uβ is concave it holds almost surely

that, for all τ ∈ JtK,

varj,τ ≤
1

|A|
∑
α∈A

E
[
(∆◦`(θj,τ−1)(Oα,τ , Zα,τ ))2

∣∣∣Zα,τ , Fτ−1

]
≤ γ

(
E
[
∆◦ ¯̀(θj,τ−1)(Ōτ , Z̄τ )

∣∣Z̄τ , Fτ−1

])β
.

Consequently if H̃j,t ≤ B (an inequality that holds almost surely when B = b1, by A3), then it

also holds that

B ≥ H̃j,t =
1

t

t∑
τ=1

E
[
∆◦ ¯̀(θj,τ−1)(Ōτ , Z̄τ )

∣∣Z̄τ , Fτ−1

]
≥ 1

t

t∑
τ=1

(varj,τ/γ)1/β.

In summary we will use that, for any B > 0,

1
{
H̃j,t ≤ B

}
≤ 1

{
max

1≤τ≤t
{varj,τ} ≤ γ(tB)β

}
= 1{F̃γ(tB)β} (24)

(F̃V is defined for any V > 0 in (17)). The upper bound H̃j,t ≤ b1 and (24) play a key role in the

second version of Step 2 (Step 2 (v2)) presented below.

Step 2 (v1). Set v
(−1)
2 := 0 and, for all i ∈ JN − 1K, v(i)

2 := 2i+1−N × v2. In view of (23) and since

ṽarj,t ∈ ∪Ni=0[v
(i−1)
2 , v

(i)
2 ] almost surely, it holds that

P [Aj,t(a) ≥ x] = P
[
H̃j,t − Ĥj,t ≥

1

1 + a

(
x+ aH̃j,t

)]
≤ P

[
H̃j,t − Ĥj,t ≥

1

1 + a

(
x+ a(ṽarj,t/γ)1/β

)]
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≤
N−1∑
i=0

P
[
H̃j,t − Ĥj,t ≥

1

1 + a

(
x+ a(ṽarj,t/γ)1/β

)
, ṽarj,t ∈ [v

(i−1)
2 , v

(i)
2 ]

]

≤
N−1∑
i=0

P
[
H̃j,t − Ĥj,t ≥

1

1 + a

(
x+ a(v

(i−1)
2 /γ)1/β

)
, ṽarj,t ≤ v(i)

2

]
. (25)

Note that (H̃j,t − Ĥj,t)t≥1 is a martingale adapted to the filtration (σ(Ft, σ(Z̄t+1)))t≥1. By

A3 and the Fan-Grama-Liu concentration inequality for martingales [Theorem 3.10 in Bercu

et al., 2015], (25) implies

P [Aj,t(a) ≥ x] ≤
N−1∑
i=0

exp

(
−1

2

tDi(x)

(1 + a)2

)
, (26)

where, for all i ∈ JN − 1K,

Di(x) :=

(
x+ a(v

(i−1)
2 /γ)1/β

)2

v
(i)
2 + 1

3
b2

1+a

(
x+ a(v

(i−1)
2 /γ)1/β

) .
Set arbitrarily i ∈ JN − 1K ∪ {0} and define xi := 3(1 + a)v

(i)
2 /b2 − a(v

(i−1)
2 /γ)1/β.

• If x ≤ xi, then v
(i)
2 ≥ (x+ a(v

(i−1)
2 /γ)1/β)× b2/(3(1 + a)) hence

Di(x) ≥

(
x+ a(v

(i−1)
2 /γ)1/β

)2

2v
(i)
2

=

(
x+ a(v

(i−1)
2 /γ)1/β

)2−β

2v
(i)
2 /

(
x+ a(v

(i−1)
2 /γ)1/β

)β
≥ x2−β

2v
(i)
2 /

(
x+ a(v

(i−1)
2 /γ)1/β

)β . (27)

If i 6= 0, then (27) entails

Di(x) ≥ x2−β

2γv
(i)
2 /(aβv

(i−1)
2 )

=
x2−β

4γ/aβ
. (28)

If i = 0, then (28) is also met if and only if x ≥ x(a,N), where x(a,N) is defined in the

theorem.
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• Moreover if x ≥ xi, then v
(i)
2 ≤ (x+ a(v

(i−1)
2 /γ)1/β)× b2/(3(1 + a)) hence

Di(x) ≥

(
x+ a(v

(i−1)
2 /γ)1/β

)2

2
3
b2

1+a

(
x+ a(v

(i−1)
2 /γ)1/β

) =
x+ a(v

(i−1)
2 /γ)1/β

2
3
b2

1+a

≥ x
2
3
b2

1+a

. (29)

Therefore, in light of (26), (28), (29) and the definitions of C1(a), C2(a) given in the theorem,

for all x ≥ x(a,N), it holds that

P[Aj,t(a) ≥ x] ≤
∑
i=0

N − 1

[
1{x ≤ xi} exp

(
− t× (2x)2−β

C1(a)

)
+ 1{x ≥ xi} exp

(
− t× (2x)

C2(a)

)]
≤ N

[
exp

(
− t× (2x)2−β

C1(a)

)
+ exp

(
− t× (2x)

C2(a)

)]
. (30)

Step 2 (v2). This step is very similar to Step 2 (v1). Set b
(−1)
1 := 0 and, for all i ∈ JN ′ − 1K,

b
(i)
1 := 2i+1−N ′ × b1. In view of (24) and since H̃j,t ∈ ∪N

′−1
i=0 [b

(i−1)
1 , b

(i)
1 ] almost surely, it holds

that

P [Aj,t(a) ≥ x] = P
[
H̃j,t − Ĥj,t ≥

1

1 + a

(
x+ aH̃j,t

)]
≤

N ′−1∑
i=0

P
[
H̃j,t − Ĥj,t ≥

1

1 + a

(
x+ aH̃j,t

)
, H̃j,t ∈ [b

(i−1)
1 , b

(i)
1 ]

]

≤
N ′−1∑
i=0

P
[
H̃j,t − Ĥj,t ≥

1

1 + a

(
x+ ab

(i−1)
1

)
, H̃j,t ≤ b(i)1

]

≤
N ′−1∑
i=0

P
[
H̃j,t − Ĥj,t ≥

1

1 + a

(
x+ ab

(i−1)
1

)
, F̃

γ(tb
(i)
1 )β

]
. (31)

By A3 and A4, Theorem 3 applies and (31) yields

P [Aj,t(a) ≥ x] ≤
N ′−1∑
i=0

exp

(
2− |A|/ deg(G)

(1 + a)2
D′i(x)

)
, (32)

where, for all i ∈ JN ′ − 1K,

D′i(x) :=

(
x+ ab

(i−1)
1

)2

32e2γ(tb
(i)
1 )β + 15eb2

1+a

(
x+ ab

(i−1)
1

) .
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Set arbitrarily i ∈ JN ′ − 1K ∪ {0} and define x′i := 32e(1 + a)γ(tb
(i)
1 )β/(15b2)− ab(i−1)

1 .

• If x ≤ x′i, then 32e2γ(tb
(i)
1 )β ≥ (x+ ab

(i−1)
1 )× 15eb2/(1 + a) hence

D′i(x) ≥

(
x+ ab

(i−1)
1

)2

64e2γ(tb
(i)
1 )β

=

(
x+ ab

(i−1)
1

)2−β

64e2γ(tb
(i)
1 )β/

(
x+ ab

(i−1)
1

)β
≥ x2−β

64e2γ(tb
(i)
1 )β/

(
x+ ab

(i−1)
1

)β . (33)

If i 6= 0, then (33) entails

D′i(x) ≥ x2−β

64e2γ(tb
(i)
1 )β/(ab

(i−1)
1 )β

=
x2−β

64e2γ(2t/a)β
. (34)

If i = 0, then (34) is also met if and only if x ≥ x′(a,N ′), where x′(a,N ′) is defined in

the theorem.

• Moreover if x ≥ x′i, then 32e2γ(tb
(i)
1 )β ≤ (x+ ab

(i−1)
1 )× 15eb2/(1 + a) hence

D′i(x) ≥

(
x+ ab

(i−1)
1

)2

30eb2
1+a

(
x+ ab

(i−1)
1

) =
x+ ab

(i−1)
1

30eb2
1+a

≥ x
30eb2
1+a

. (35)

Therefore, in light of (32), (34), (35) and the definitions of C ′1(a), C ′2(a) given in the theorem,

for all x ≥ x′(a,N ′), it holds that

P[Aj,t(a) ≥ x] ≤
N ′−1∑
i=0

[
1{x ≤ x′i} exp

(
2− [|A|/(tβ deg(G))]× (2x)2−β

C ′1(a)

)

+ 1{x ≥ x′i} exp

(
2− [|A|/ deg(G)]× (2x)

C ′2(a)

)]

≤ N ′
[

exp

(
2− [|A|/(tβ deg(G))]× (2x)2−β

C ′1(a)

)

+ exp

(
2− [|A|/ deg(G)]× (2x)

C ′2(a)

)]
. (36)
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Step 3: end of the proof. In view of (22), a union bound implies that

P
[
H̃ĵt,t

− (1 + 2a)H̃j̃t,t
≥ x

]
≤ P

[
max
j∈JJK
{Aj,t(a)}+ max

j∈JJK
{Bj,t(a)} ≥ x

]
≤

J∑
j=1

(P [Aj,t(a) ≥ x/2] + P [Bj,t(a) ≥ x/2]) .

For all x ≥ x(a,N), (7) follows from (30) and the above inequality; for all x ≥ x′(a,N ′), (8) follows

from (36) and the above inequality. This completes the proof of Theorem 1. �

B.2 Proof of Corollary 2

Corollary 2 follows from the straightforward application, twice, of the next technical lemma, based

on (7) on the one hand and on (8) on the other hand.

Lemma 4. Let a, b, c > 0, β ∈]0, 1] be some constants and (x(N))N≥2 be a sequence of positive

numbers that decreases to 0. Let U be a real valued random variable such that E[|U |] <∞ and, for

all integer N ≥ 2 and all x ≥ x(N) > 0,

P[U ≥ x] ≤ aN
[
exp(−x2−β/b) + exp(−x/c)

]
. (37)

If N ≥ min{n ≥ 2 : x(n) ≤ b1/(2−β), log(an) ≥ 1}, then

E[U ] ≤ 3(b log(aN))1/(2−β) + 2c log(aN). (38)

Proof of Lemma 4. It is well known that

E[U ] ≤ E[U1{U ≥ 0}] =

∫ ∞
0

P[U1{U ≥ 0} ≥ x]dx =

∫ ∞
0

P[U ≥ x]dx.

Therefore, for any N ≥ 2,

E[U ] ≤
∫ ∞

0

(
1{x < x(N)}+ 1{x ≥ x(N)}aN

[
exp(−x2−β/b) + exp(−x/c)

])
dx

≤ x(N) +

∫ ∞
0

min{1, aN exp(−x2−β/b)}dx+

∫ ∞
0

min{1, aN exp(−x/c)}dx. (39)
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Let us denote by L and R the above left-hand side and right-hand side integrals. Choose N ≥

min{n ≥ 2 : x(n) ≤ b1/(2−β), log(an) ≥ 1}.

Bounding L. Let xL be chosen so that aN exp(−x2−β
L /b) = 1, i.e., xL := (b log(aN))1/(2−β). Now,

thanks to the change of variable u = x2−β/b and because u 7→ u1/(2−β)−1 is nonincreasing,

L = xL + aN

∫ ∞
xL

exp(−x2−β/b)dx

= xL + aNb1/(2−β)

∫ ∞
log(aN)

exp(−u)u1/(2−β)−1du

≤ xL +
aN(b log(aN))1/(2−β)

log(aN)

∫ ∞
0

exp(−u)du

= xL(1 + 1/ log(aN)) ≤ 2(b log(aN))1/(2−β). (40)

Bounding R. Let xR be chosen so that aN exp(−xR/c) = 1, i.e., xR := c log(aN). It is readily

seen that

R = xR + aN

∫ ∞
xR

exp(−x/c)dx = xR + acN exp(−xR/c) = c(1 + log(aN)). (41)

In view of (39), (40), (41), and by choice of N , we obtain

E[U ] ≤ b1/(2−β) + 2(b log(aN))1/(2−β) + c(1 + log(aN))

≤ 3(b log(aN))1/(2−β) + 2c log(aN).

This completes the proof.

Set t ≥ 1 and a ∈]0, 1]. In view of (7), Lemma 4 yields (9) under the sufficient condition that

N ≥ 2 also satisfy (10). Moreover, in view of (8), Lemma 4 also yields (11) under the sufficient

condition that N ≥ 2 also satisfy (12). This completes the proof of the corollary. �

B.3 Proof of Theorem 3

The proof of Theorem 3 hinges on a Bernstein-like concentration inequality for sums of partly

dependent random variables shown by Janson [2004, Theorem 2.3]. Janson emphasizes that his
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theorem uses the independence of suitable (large) subsets of (ζα)α∈A, not any other information

on the dependencies, so that the result must be suboptimal when the dependencies that exist are

weak. We recall the theorem for completeness.

Theorem 5 (Janson [2004]). Let (ζα)α∈A be a collection of random variables with dependency

graph G such that ζα − E[ζα] ≤ B for some B > 0 and all α ∈ A. Define Z := |A|−1
∑

α∈A ζα and

V := |A|−1
∑

α∈AVar[ζα]. Then, for all x ≥ 0,

P [Z− E[Z] ≥ x] ≤ exp

(
− |A|V
B2 deg(G)

h

(
4Bx

5V

))
, (42)

where h : u 7→ (1 + u) log(1 + u)− u.

Note that (18) from Theorem 3 also writes as

P
[
|Ĥj,t − H̃j,t| ≥ x, F̃V

]
≤ exp

(
2− [|A|/ deg(G)]x2

32e2V + 15eb2x

)
.

Following the line of proof of the Rosenthal inequality by Petrov [1995, page 59] (see also the proof

of Theorem 5.2 in [Baraud, 2000]), we use (42) to control E[|Z− E[Z]|p] hence E[|Ĥj,t − H̃j,t|p] (by

convexity) for all p ≥ 2. The bound (18) follows as in [Dedecker, 2001, proof of Corollary 3(b)], a

method inspired by the proof of Theorem 6 in [Doukhan et al., 1984].

We first prove this corollary of Theorem 5. The constants are in no way optimal.

Corollary 6. In the context of Theorem 5, for all p ≥ 2,

E [|Z− E[Z]|p] ≤ 3π

2

[(
15B deg(G)

2|A|

)p
pp +

(
32V deg(G)

|A|

)p/2
pp/2

]
. (43)

Proof of Corollary 6. Fix arbitrarily p ≥ 2. It is well known that E[Up] =
∫∞

0 psp−1P[U ≥ s]ds for

any nonnegative random variable U . Let r > 0 be a constant that we will carefully choose later

on. Set arbitrarily s ≥ 0, define m := s/r, and introduce

Z̃m := |A|−1
∑
α∈A

(ζα − E[ζα])1{|ζα − E[ζα]| < m}.
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It holds that

P(|Z− E[Z]| ≥ s) ≤ P[Z− E[Z] 6= Z̃m] + P[|Z− E[Z]| ≥ s,Z− E[Z] = Z̃m]

≤ P[rmax
α∈A
|ζα − E[ζα]| ≥ s] + P[|Z− E[Z]| ≥ s,Z− E[Z] = Z̃m]

≤ P[rmax
α∈A
|ζα − E[ζα]| ≥ s] + P[|Z̃m − E[Z̃m]| ≥ s− E[Z̃m]]

hence

E[|Z− E[Z]|p] ≤ rpE[max
α∈A
|ζα − E[ζα]|p] +

∫ ∞
0

psp−1P[|Z̃m − E(Z̃m)] ≥ s− E[Z̃m]]ds. (44)

We now note that

|E[Z̃m]| = |E[Z̃m − (Z− E[Z])]|

= |A|−1

∣∣∣∣∣E
[∑
α∈A

(ζα − E[ζα])1{|ζα − E[ζα]| ≥ m}

]∣∣∣∣∣
≤ (m|A|)−1

∑
α∈A

Var[ζα] = V/m.

Therefore if s ≥ s0 :=
√

2rV , then s/2 ≥ V/(s/r) = V/m hence s− |E[Z̃m]| ≥ s/2. In light of (42)

and (44), the rightmost term in (44), say Ip, satisfies

Ip ≤
∫ s0

0
psp−1ds+

∫ ∞
s0

psp−1P[|Z̃m − E[Z̃m]| ≥ s/2]ds

≤ sp0 + 2

∫ ∞
s0

psp−1 exp

(
− |A|Ṽ

4m2 deg(G)
h

(
8ms/2

5Ṽ

))
ds, (45)

where

Ṽ := |A|−1
∑
α∈A

Var[(ζα − E[ζα])1{|ζα − E[ζα]| ≤ m}]

≤ |A|−1
∑
α∈A

E[(ζα − E[ζα])21{|ζα − E[ζα]| ≤ m}]

≤ |A|−1
∑
α∈A

E[(ζα − E[ζα])2] = V.
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Because h(u) ≥ u
2 log(1 + u) for all u ≥ 0, (45) yields

Ip ≤ sp0 + 2

∫ ∞
s0

psp−1 exp

(
− |A|s

10m deg(G)
log

(
1 +

4ms

5Ṽ

))
ds

= sp0 + 2

∫ ∞
s0

psp−1 exp

(
− |A|r

10 deg(G)
log

(
1 +

4s2

5rṼ

))
ds. (46)

If u := s/(5rṼ /4)1/2, then sp−1 ≤ (5rṼ /4)(p−1)/2(1 + u2)(p−1)/2. A change of variable and the

bound Ṽ ≤ V thus imply that the rightmost term in (46) is smaller than

2p

(
5rV

4

)p/2 ∫ ∞
0

(1 + u2)(p−1)/2−r|A|/(10 deg(G))du.

We now choose r := 5(p+1) deg(G)/|A| to guarantee the convergence of the above integral, to π/2,

and conclude that (44) and (46) imply

E[|Z− E[Z]|p] ≤ rpE[max
α∈A
|ζα − E[ζα]|p] + π(rV )p/2(2p/2 + p(5/4)p/2)

≤ (rB)p + π(p+ 1)(2rV )p/2. (47)

Finally, since (p+ 1)/p ≤ 3/2 and p2/p ≤ e2/e ≈ 2.61, we can simplify (47) to (43), thus completing

the proof of Corollary 6.

Fix arbitrarily j ∈ JJK, t ≥ 1, V > 0, and p ≥ 2. To save space introduce, for each τ ∈ JtK,

Zj,τ := ∆◦ ¯̀(θj,τ−1)(Ōτ , Z̄τ )− E
[
∆◦ ¯̀(θj,τ−1)(Ōτ , Z̄τ )

∣∣Z̄τ , Fτ−1

]
.

In view of A1, A2, A3 and A5, Corollary 6 applies and guarantees that almost surely, for all

τ ∈ JtK,

E
[
|Zj,τ |p

∣∣Z̄τ , Fτ−1

]
1{varj,τ ≤ V }

≤ 3π

2

[(
15b2 deg(G)

2|A|

)p
pp +

(
32V deg(G)

|A|

)p/2
pp/2

]
1{varj,τ ≤ V }

≤ 3π

2

[(
15b2 deg(G)

2|A|

)p
pp +

(
32V deg(G)

|A|

)p/2
pp/2

]
. (48)
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It is now easy to show that ṽart,j ≤ v2 almost surely (see (6) for the definition of v2). By A5,

it holds that varj,τ ≤ v1 almost surely for each τ ∈ JtK, hence

ṽarj,t =
1

t

t∑
τ=1

E
[
(Zj,τ )2

∣∣Z̄τ , Fτ−1

]
=

1

t

t∑
τ=1

E
[
(Zj,τ )2

∣∣Z̄τ , Fτ−1

]
1{varj,τ ≤ v1} ≤ v2

because of (48) with p = 2.

We now turn to the proof of (18). In view of (48), by convexity of u 7→ |u|p, it holds that

E
[∣∣∣Ĥj,t − H̃j,t

∣∣∣p 1{F̃V }
]
≤ 1

t

t∑
τ=1

E
[
|Zj,τ |p 1{F̃V }

]
≤ 1

t

t∑
τ=1

E [|Zj,τ |p 1{varj,τ ≤ V }]

=
1

t

t∑
τ=1

E
[
E
[
|Zj,τ |p |

∣∣Z̄τ , Fτ−1

]
1{varj,τ ≤ V }

]
≤ 3π

2

[(
15b2 deg(G)

2|A|

)p
pp +

(
32V deg(G)

|A|

)p/2
pp/2

]
. (49)

Therefore Markov’s inequality implies that, for all x > 0,

P
[∣∣∣Ĥj,t − H̃j,t

∣∣∣ ≥ x, F̃V ] ≤ E
[
x−p

∣∣∣Ĥj,t − H̃j,t

∣∣∣p 1{F̃V }
]

≤ 3π

2

(
15b2 deg(G)p/2 +

√
32|A|V deg(G)p

x|A|

)p
. (50)

By the technical Lemma 7, there exists px > 0 such that

x|A| = 15eb2 deg(G)px/2 +
√

32e2|A|V deg(G)px, and

px ≥ qx := (x|A|)2
(
32e2|A|V deg(G) + 15eb2 deg(G)x|A|

)−1

= x2|A|
(
32e2V deg(G) + 15eb2 deg(G)x

)−1
.

If qx ≥ 2, then px is a valid choice for p in (50). This choice yields the inequality

P
[∣∣∣Ĥj,t − H̃j,t

∣∣∣ ≥ x, F̃V ] ≤ 3π

2
exp(−px) ≤ 3π

2
exp(−qx) ≤ exp (2− qx) .
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Otherwise, P[|Ĥj,t − H̃j,t| ≥ x, F̃V ] ≤ exp(2 − qx) holds trivially. This completes the proof of

Theorem 3. �

Lemma 7. For any a, b, c > 0, there exists p > 0 such that c = b
√
p+ap. Moreover, c2 ≤ (b2+2ac)p.

Proof of Lemma 7. The quadratic equation c = bX + aX2 has a positive solution, so there does

exist p > 0 such that c = b
√
p + ap. Moreover, c2/p = b2 + 2ab

√
p + a2p on the one hand and

2ac = 2ab
√
p + 2a2p ≥ 2ab

√
p + a2p on the other hand, implying that c2/p ≤ b2 + 2ac. This

completes the proof.
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