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ABSTRACT

Propagation of longitudinal acoustic waves in a one-dimensional piezoelectric structure with space-time modulated electrical boundary
conditions is investigated. An analytical model allowing the calculation of eigenmodes for spatially continuous shifts of electrical boundary
conditions is compared with finite difference time domain simulation results for a discrete set of time-varying spatially fixed conditions.
Both models predict that such a structure behaves as a nonreciprocal device exhibiting unidirectional propagation properties in some
frequency ranges. The modulus and direction of the modulation speed vector strongly affect this nonreciprocal behavior. Moreover, other
nonlinear phenomena such as frequency up and down conversions, wave packet distortion, and parasitic echoes occurring in such systems
are investigated in detail. The importance of these phenomena is discussed in the context of nonlinear acoustic wave-based components for
radio-communication systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5110869

I. INTRODUCTION

In his pioneering work, Lord Rayleigh1 established that mate-
rials exhibiting a spatial periodicity may present unusual wave dis-
persion properties such as frequency bandgaps, where the
propagation of waves is forbidden. This periodicity may result from
the geometry of the structure,2 its composition such as in usual
phononic crystals3 but can also be associated with some applied
boundary condition.4,5 More recently, it was also shown that a
structure whose physical characteristics such as the permittivity6,7

or the dimensions8 vary periodically in time may also possess
bandgaps. However, these bandgaps occur in the wave number
domain and are oriented vertically in the band structure (i.e., the
frequency vs wavenumber diagram) compared to the horizontal fre-
quency bandgaps in conventional spatially periodic media.9,10

These vertical bandgaps are associated with instabilities, i.e., waves
with complex frequencies whose amplitude grows and/or decays
everywhere in space due to their exponential time dependence.9

Periodically time-dependent media may exhibit intriguing wave
phenomena. For example, temporal modulation of the refractive
index of a photonic system was shown to introduce an effective
gauge potential for photons isomorphic to the Aharonov-Bohm

effect for electrons.11 It may be used to create topologically nontriv-
ial properties for photons.12 Torrent et al.13 have proven that in a
dissipative material with time dependent mechanical characteristics,
dissipation can be compensated by the amplification of the fields
due to the time-dependent properties. Periodicity of the propagation
medium may also depend on both time and spatial coordinates.14

The effect of such space-time modulation on wave propagation
was investigated a few decades ago in the context of parametric
amplification by Cassedy et al.15 in a linear transmission line made
of a series of LC resonators with distributed time-space periodic
shunt capacitances. In the last few years, there has been a renewed
interest in space-time modulated structures (or STMS) due to their
nonreciprocal behavior associated with time reversal symmetry
breaking. Indeed, it was shown that the dispersion relation of a
medium loses its symmetry with respect to the frequency axis once
it is space-time modulated whatever the way this modulation is
performed.16–20 Consequently, dispersion curves of a STMS seem
to be “tilted” with respect to their reference configuration in a non-
modulated medium.21 Due to this tilting, directional bandgaps
occur22 i.e., such a medium may exhibit in the same frequency
range a stop band for forward propagation and a pass band for
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backward propagation and thus behave as a one-way wave propaga-
tion device. For example, bulk elastic waves with unidirectional
backscattering-immune topological states have been observed in a
time-dependent elastic superlattice. The superlattice results from
spatial and temporal modulations of the stiffness of the elastic
medium that should be achieved experimentally through the photo-
softening of a chalcogenide glass.23 Trainiti et al.22 investigated the-
oretically the propagation of elastic waves in beams whose density
and Young’s modulus are periodic functions of time and position.
They observed that there exists a critical value of the modulation
speed to maximize the nonreciprocal effect. In all these structures,
spatiotemporal modulation of their physical characteristics (density
and/or elastic moduli) is required.

In a recent paper,24 we investigated the propagation of longi-
tudinal elastic waves in a one-dimensional structure made of a peri-
odic set of thin piezoelectric rods separated with electrodes and
considered the peculiar case where time-dependent electrical boun-
dary conditions are applied to the electrodes. In practice, electrodes
are either grounded or left floating, depending on time. Interest
devoted to this kind of structure results from their unique bandgap
properties even in the time-independent case. They exhibit bandg-
aps associated only with the charge density located on the elec-
trodes, much larger than those observed in usual one-dimensional
elastic or piezoelectric super-lattices.5 Calculations of transmission
coefficients with the help of the finite difference time domain
(FDTD) method revealed that a frequency splitting phenomenon
occurs in this STMS, i.e., when submitted to an input wave of fre-
quency Fc, the output signal exhibits peaks at frequencies
+Fc þ n cm

a , where n is a signed integer, cm the modulation speed,
and a the distance between two grounded electrodes. This general-
ized nonlinear phenomenon occurs in any structure that is modu-
lated in time6,25–27 and is analogous to the classical acousto-optical
Brillouin scattering.28 Additionally, our piezoelectric STMS
becomes strongly nonreciprocal, and for specific modulation char-
acteristics, one-way wave propagation can be achieved. Compared
to other STMS (see Refs. 10, 22, 23, and 29), the piezoelectric
system we proposed does not require a modulation of mechanical
characteristics of constituent materials but only changes in time of
electrical boundary conditions that can be realized with the help of
adequate dynamic electrical circuits.

The present paper also concerns the one-dimensional piezo-
electric structure with space-time modulated electrical boundary
conditions of Ref. 24. Its purpose is twofold. First, to facilitate
STMS design, an analytical model is developed, supplying the dis-
persion curves of the structure as a function of its geometry, its
material properties, and its modulation parameters. The validity of
the model is verified by comparison with FDTD simulations
results. Second, to investigate the applicative potential of STMS, a
series of FDTD simulations is performed to analyze the system
behavior in terms of signal transformations.

Consequently, the paper is organized as follows. The charac-
teristics of the piezoelectric STMS are recalled in Sec. II. To gain
further insight into the nonlinear phenomena that occur in the
STMS and also to analyze rigorously the effect of the modulation
speed on the directional bandgaps, we develop in Sec. III a theoreti-
cal model to derive an analytical expression of its band structure.
This model is built upon the approach proposed by Nassar et al.16

and fully takes into account the piezoelectric properties of the
propagating medium. It is validated by comparison with FDTD
simulations and its results are discussed in Sec. IV. In Sec. V,
several characteristics of strongly nonlinear systems are investigated,
such as frequency up and down conversions, wave packet distor-
tions and parasitic echoes. The observations presented in this
section shed light on the potential applications of STMS in nonlin-
ear acoustic wave-based components for radio-communication
systems. Finally, conclusions are drawn in Sec. VI. An appendix
contains the details of the FDTD model adapted to the simulation
of the response of an STMS of finite length to an incoming signal.
In contrast with the analytical model of Sec. III, all FDTD simula-
tions take into account that, in practice, the number of available
electrodes in the piezoelectric propagating medium is limited, and
thus changes in electrical boundary conditions are only possible for
a discrete set of electrode locations.

II. SYSTEM UNDER STUDY

The system studied in this paper is a one-dimensional stack of
identical piezoelectric rods polarized along their length and sepa-
rated by thin metallic electrodes [see Fig. 1(a)]. Electrodes can be
connected to the electrical ground or left floating. It is assumed
that rod radius is small enough compared to the wavelength to
enable monomode propagation in the frequency range of interest
(i.e., there is only one longitudinal mode and no radial mode), and
that electrodes are thin enough to neglect their mechanical proper-
ties. Poisson effects at the piezoelectric-metal interfaces and losses
are also neglected. In all of the following, the distance between
two grounded electrodes is always fixed to a ¼ 1 cm. Rods are
made of lead zirconate titanate, with density ρ ¼ 7450 kg=m3,
elastic stiffness modulus at constant electric field cE ¼ 4:3486
�1010 N=m2, piezoelectric constant e ¼ 25C=m2, and dielectric
permittivity constant at constant strain εS ¼ 9:4034� 10�9 F=m.
With these parameters, the speed of longitudinal waves in the pie-
zoelectric rods is then cb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cE þ e2=εSð Þ=ρp ¼ 3842m=s. On the

electrical side, a simple model is assumed, with perfect electrical
connections to the ground. This means that electrode potential can

FIG. 1. (a) Schematic view of the piezoelectric crystal considered in the analyti-
cal model, i.e., an infinite system with an arbitrarily large number of closely
spaced electrodes that can be connected to the ground (connected electrodes
in blue), effectively behaving as if the electrical grounds were continuously
shifted. (b) Schematic view of the model used in the FDTD calculations. Only a
limited number of electrodes are present (in blue), and their connections to the
ground are modulated in time and space. For both systems, distance between
two grounds is a. A and B correspond to either the source location or the trans-
mission measurement point, and “CPML” denotes the Convolution-Perfectly
Matched Layers.
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instantly change from a given value to zero when an electrode is
grounded and that there is no limitation on the electrical currents
flowing between an electrode and the ground. In practical imple-
mentations of this type of system, the circuits used to create the
switchable connections will have to be taken into account. It
should be pointed out here that all modulations considered in this
paper require only relatively low-frequency electronic circuits. For
instance, cm ¼ 2000m=s with a ¼ 1 cm corresponds to a clock fre-
quency of 200 kHz.

An important point of the following models is the concept of
equivalent “moving” grounded electrodes. The idea is that the system
should include a large set of uniformly spaced individual electrodes,
with only a subset connected to the electrical ground at any moment.
The subset is then changed as a function of time to simulate a shift
of grounded electrodes. It has been demonstrated5 in the “static” case
(i.e., when cm ¼ 0) that floating electrodes have a negligible effect on
propagation, and thus only the grounded subset is relevant. The
“dynamic” case is more subtle, since an electrode may trap electrical
charges when it is disconnected from the ground during operation.
However, as electrostatic equilibrium is reached instantaneously,
these additional charges on floating electrodes are static and, there-
fore, can only induce fluctuations of the static polarization field
inside the piezoelectric material. In the following, these fluctuations
play no role, since only dynamic physical fields are considered.

III. ANALYTICAL MODEL

In the one-dimensional piezoelectric material, the constitutive
equations can be written in the form

S ¼ sDT þ gD, (1)

E ¼ �gT þ βTD, (2)

with S, E, T , and D the dynamic strain, electric field, stress, and
electric displacement fields, and sD, g, and βT the compliance at
constant electric displacement, piezoelectric constant, and imper-
meability at constant stress. Gauss’s law is expressed in any of the
piezoelectric elements separated by thin electrodes, giving

@D
@x

¼ 0: (3)

Additionally, Newton’s law is

@T
@x

¼ @

@t
(ρv), (4)

with ρ and v the material density and particle velocity, respectively.
A state vector is defined in the static frame as

η ¼
v
�T
@w
@t
D

0
BB@

1
CCA, (5)

with w the electric potential. Using Eqs. (2)–(4), the space deriva-
tive of this state vector may be expressed as

@η

@x
¼

@v
@x

� @T
@x

@2w
@x@t
@D
@x

0
BBBB@

1
CCCCA ¼

@S
@t

@
@t (�ρv)

� @E
@t
0

0
BBB@

1
CCCA ¼ @

@t
� A½ �

v
�T
@w
@t
D

0
BB@

1
CCA

0
BB@

1
CCA, (6)

with

A½ � ¼
0 sD 0 �g
ρ 0 0 0
0 g 0 βT

0 0 0 0

0
B@

1
CA: (7)

Matrix A½ � depends on position and time only if space-time modu-
lations of material parameters are considered. Here, it is indepen-
dent of time, since only space-time modulations of boundary
conditions are present. It is assumed in this model that the struc-
ture supports a large number of closely spaced electrodes that can
be connected to the electrical ground. Therefore, the space-time
modulations can be approximated as a continuous shift of
regularly-spaced grounded electrodes, with velocity cm. Let us con-
sider a moving frame of reference traveling with this shift, with
spatial and temporal coordinates (ξ, t) ¼ (x � cmt, t). Time and
space derivatives in the moving frame are related to time and space
derivatives in the static frame through

@

@x
,
@

@t

� �
¼ @

@ξ
, � cm

@

@ξ
þ @

@t

� �
: (8)

As A½ � is independent of t, Eq. (6) is rewritten using Eq. (8) as

@

@ξ
I½ � � cm A½ �ð Þηð Þ þ A½ � @η

@t
¼ 0: (9)

Equation (9) takes a standard form if a new state vector
ψ ¼ I½ � � cm A½ �ð Þη is defined, namely,

@ψ

@ξ
þ B½ � @ψ

@t
¼ 0, (10)

with

B½ � ¼ A½ � I½ � � cm A½ �ð Þ�1

¼ 1
1� c2mρs

D

cmρsD sD 0 �g
ρ cmρsD 0 �cmρg

cmρg g 0 βT 1� c2mρs
D

� �� c2mg
2ρ

0 0 0 0

0
BB@

1
CCA:

(11)

In the moving frame, the system is a standard spatially periodic
medium, and we can look for harmonic solutions subject to the
Bloch-Floquet relation, i.e., ψ ξ, tð Þ ¼ ψ ξð Þe�iΩt and ψ ξþ að Þ
¼ ψ ξð ÞeiKa, with Ω and K the angular frequency and wavenumber
in the moving frame of reference. The state vector then satisfies
ψ ξð Þ ¼ Mp ξ, ξ0ð Þ� �

ψ ξ0ð Þ for any two spatial positions ξ and ξ0,
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with Mp
� �

being the matricant, which links state vectors at different
positions within the piezoelectric elements.

From Eq. (10), it may be deduced that Mp ξ, ξ0ð Þ� �
is the solu-

tion of the ordinary differential equation

@

@ξ
Mp ξ, ξ0ð Þ� � ¼ iΩ B½ � Mp ξ, ξ0ð Þ� �

: (12)

Equation (12) is then simplified into

@

@ξ
Np ξ, ξ0ð Þ� � ¼ J½ � Np ξ, ξ0ð Þ� �

, (13)

with

Np ξ, ξ0ð Þ� � ¼ eλ(ξ�ξ0) Mp ξ, ξ0ð Þ� �
, λ ¼ �iΩ cm

c2b�c2m
,

cb ¼ 1ffiffiffiffiffi
ρsD

p and J½ � ¼ iΩ B½ � þ λ I½ � (14)

Solution of Eq. (13) is then simply Np ξ, ξ0ð Þ� � ¼ e J ξ�ξ0ð Þ½ �. This
matrix exponential can be calculated by different methods. One
obtains

Np ξ, ξ0ð Þ� � ¼
cos(ζ) icbsDsin(ζ) 0 �igcbsin(ζ)
i

cbsD
sin(ζ) cos(ζ) 0 � g

sD cos(ζ)� eλ ξ�ξ0ð Þ� �
g
sD cos(ζ)� eλ ξ�ξ0ð Þ� �

igcbsin(ζ) eλ ξ�ξ0ð Þ iΩ ξ� ξ0ð Þ βT þ g2

sD

	 

eλ ξ�ξ0ð Þ � ig2cb

sD sin(ζ)

0 0 0 eλ ξ�ξ0ð Þ

0
BBBB@

1
CCCCA, (15)

with ζ ¼ Ω ξ� ξ0ð Þ cb
c2b�c2m

. These last expressions allow to calculate
Mp ξ ¼ a, ξ0 ¼ 0ð Þ� �

.
Matricants can be chained if the cell includes more than one

material, or if special boundary conditions are present between
cells. Here, two matricants need to be chained, namely, Mp(a, 0)

� �
representing propagation through a single piezoelectric material of
length a and ME½ � corresponding to the passage through an elec-
trode. The product of these two matricants Mcell½ � ¼ Mp

� �
ME½ �

must comply with the Bloch-Floquet relation

Mcell½ � ¼ eiKa I½ �: (16)

Matricant ME½ � is found using the assumption that electrical
electrodes are metallic layers of negligible thickness. Consequently,
particle velocity, stress field, and electric potential are continuous
across the electrode. Electric displacement D discontinuity across
grounded metallic electrodes is related to the electric charge density
on the electrode, which does not directly appear in our equation
system as a variable. Let us define a variable FD representing the
ratio between D values on both sides of the electrode. ME then
takes the following form:

ME ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 FD

0
BB@

1
CCA: (17)

Mcell½ � ¼ Mp
� �

ME½ � is now expressed entirely as a function of mate-
rial parameters, FD, K , and Ω. The fourth line of matrix equation
(16) combined with Eqs. (14), (15), and (17) directly gives the
value of FD,

FD ¼ eiKa: (18)

The equation system formed by the remaining three lines can be
simplified noting that state vectors are always considered at
grounded electrode locations. Thus, we can fix @w

@t ¼ 0 and drop
this variable. Finally, the existence of a nontrivial solution to this
simplified set of equations is equivalent to the vanishing of the
determinant of matrix,

Msys
� � ¼ M1,1

cell � eiKa M1,2
cell M1,4

cell
M2,1

cell M2,2
cell � eiKa M2,4

cell
M3,1

cell M3,2
cell M3,4

cell

0
@

1
A: (19)

det Msys
� �� � ¼ 0 is the dispersion equation. It can be written as

cos Ka� Ωac=cb
1� c2

� �
� cos Kað Þ k233

1� c2
sinc

Ωa=cb
1� c2

� �

¼ cos
Ωa=cb
1� c2

� �
� k233
1� c2

sinc
Ωa=cb
1� c2

� �
, (20)

with k233 ¼ g2

g2þβT sD
being the piezoelectric coupling coefficient

squared and c ¼ cm=cb being the normalized modulation speed.
This form reduces to the dispersion relation given in Ref. 5 when
cm ¼ 0. Equivalently, the following form can be used:

X � 1ð Þ2 Yþ �Y�ð Þ þ 2i Ωa
cbk233

X�Yþð Þ X�Y�ð Þ ¼ 0, with

X ¼ eiKa, Yþ ¼ e�
iΩa

cbþcm , and Y� ¼ e
iΩa

cb�cm :
(21)

This second form is expressed as a second degree polynomial in X
and thus allows finding easily the values of X (and then K) if Ω is
known. It should be noted that this dispersion relation is consid-
ered in the complex K and complex Ω space. If a given (K ,Ω)
couple is a solution of the dispersion equation, the corresponding
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(k, ω) couple (i.e., wavenumber and frequency in the static frame)
is obtained through k¼ K , ω¼ Ωþ cmk. As pointed out before,
the STMS is a standard space-periodic medium in the moving
frame. Therefore, in the moving frame, dispersion branches outside
the first Brillouin zone are simple translations of branches in the
first Brillouin zone, with translation vectors (nG, 0) (with n a
signed integer and G the reciprocal lattice period 2π=a) in the
wavenumber-frequency space. However, since the change of vari-
ables from (K ,Ω) to (k, ω) introduces a progressive frequency shift,
dispersion branches in the static frame are invariant by translations
of vector (nG, ncmG). A direct consequence of this property is that
dispersion curves for an STMS generally appear as tilted with
respect to the unmodulated system.

Among the solutions of the dispersion relation, (k, ω) couples
corresponding to exponentially space-growing (negative imaginary
part of k) and time-growing (positive imaginary part of ω) ampli-
tudes cannot be discarded a priori, since the STMS is an active
system with constantly changing connections to the ground behav-
ing as an electrical pump.

IV. ANALYTICAL MODEL RESULTS AND VALIDATION

Figure 2 shows dispersion diagrams (solid black and red lines)
obtained for four values of grounded electrode shift velocity cm,
namely, 0 (i.e., the linear case), 500, 1000, and 2000 m/s. Diagrams
for negative values of cm can be obtained by simply flipping the
wavenumber axis. These dispersion diagrams are presented in the
static frame and thus correspond to (k, ω) couples. As pointed out
before, dispersion relation solutions are generally complex. Here,
only the solutions with real values of ω (i.e., neither time-growing
nor time-decaying) are plotted. Branches with real and complex
values of k are distinguished with black and red colors. All

diagrams are plotted for values of the real part of k up to +3π=a.
It can be noted that due to the “tilting” of the band structure, there
always exists available real wavenumbers for any given frequency
[i.e., any horizontal line on Figs. 2(b)–2(d) crosses an infinity of
black curves]. For this reason, the notion of “bandgap” is not trivial
here, and transmission dips cannot be expected a priori even in the
presence of branches with complex wavenumbers. Moreover, the
coupling process between an incident harmonic signal and any
Bloch wave inside the STMS necessarily involves a series of
different frequencies. In the following, a “main” dispersion branch
will be defined. It is the branch starting at (k, ω) ¼ (0, 0) and with
the phase velocity closest to cb. In many classical periodic systems,
it may be safely assumed that a large part of the energy carried by
Bloch waves is associated with wavenumbers located on this
branch. This is equivalent to assuming that the Bloch wave is close
to a plane wave propagating in a structure with no periodicity. As a
consequence, if this hypothesis is correct, the frequency ranges of
the complex parts of this main dispersion branch should corre-
spond to transmission dips.

Several important properties can be pointed out in the disper-
sion diagrams of Fig. 2. First, for the values of cm considered here,
frequency ranges of bandgaps located on the main dispersion
branch with positive and negative group velocity become quite
different when cm increases. For cm ¼ 500m=s, there is still a
partial frequency overlap, which disappears for cm ¼ 1000 and
2000 m/s. Additionally, dispersion curves show significant defor-
mation. Interestingly, dispersion curve deformations predicted by
this model go beyond the changes obtained when considering a
simple wavenumber-dependent frequency shift of the cm ¼ 0 case
[i.e., considering that the (K , Ω) solutions of the nonlinear case are
equal to the (k, ω) of the linear problem, and simply applying
(k, ω) ¼ (K , Ωþ cmk)]. In particular, (a) for the widest bandgaps,

FIG. 2. Space-time Fourier transform of the stress field inside a long STMS for a broadband incident signal and cm ¼ 0 [(a) and (b)], 500 [(c) and (d)], 1000 [(e) and (f )],
and 2000 m/s [(g) and (h)], simulated by FDTD. The four top and bottom graphs show results for propagation from A to B and from B to A (as recalled by the white
arrows), respectively. All graphs are overlapped with the corresponding dispersion diagrams obtained with the analytical model. The progressive increase of cm highlights
the dispersion branch distortion effect or tilting. Black and red branches correspond to modes with real or complex wavenumbers, respectively. The horizontal axis is the
real part of the wavenumber. Horizontal dashed lines show the main frequencies of interest for the following simulated cases, namely, 110 and 165 kHz.
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gap boundaries correspond to clearly different wavenumbers, (b)
low-frequency group velocities are significantly modified, and
(c) for the largest values of cm, the distance between the two disper-
sion curves closest to (k, ω) ¼ (π=a, 2π � 100 kHz) is greatly
reduced. Property (c) is of special interest, as it can be shown that
for even larger values of cm, those two real branches merge and
create a new type of bandgap. However, since in this case the Bloch
mode is unstable (time-growing), its study goes beyond the scope
of this paper.

To validate this model, it is compared with results obtained
with a one-dimensional FDTD code (see Appendix). In FDTD cal-
culations, it is possible to define electrical grounds at every spatial
node location, to obtain the same kind of continuous shift as in the
analytical model (see Ref. 24). However, since electrode spacing is
much coarser in practice, we choose to evaluate STMS performance
with five electrodes per period a, i.e., 2 mm-spaced electrodes. At
every instant, one electrode out of five is grounded. The grounded
set is shifted at fixed time intervals Δt ¼ a

5cm
.

All simulations consider similar finite 1D systems, namely, an
STMS stack with two 10 cm-long piezoelectric bars on its sides,
and 5 cm-long CPML (Convolution-Perfectly Matched Layers, see
Appendix) regions at both ends. A point stress field source is
always placed in one of the piezoelectric bar regions. Figure 1(b)
shows a schematic view of the simulated systems. To facilitate the
evaluation of the wavenumber content of the modes propagating
inside the STMS, a system of length 80a is first considered. To
highlight full dispersion branches with a single simulation, a broad-
band source is chosen, namely, a Ricker pulse with central fre-
quency 400 kHz. Figure 2, along with the analytical diagrams,
shows the results of a Fourier transform (FT) in time and space for
the stress field inside the STMS, over the total simulation time, for
four velocities and both propagation directions (source at point A
or B, as defined in Fig. 1). The numerical and analytical results
agree, both in pass bands and bandgaps. Note that all these FT
results support the definition of a main dispersion branch carrying
most of the energy, as defined previously.

In addition to the dispersion branches predicted by the analyt-
ical model, Fig. 2 also exhibits much weaker ones [oblique lines
most visible in Figs. 2(c) and 2(d)], as well as some bright spots
[for instance around (k, ω) ¼ (1:2π=a, 2π � 195 kHz) in Fig. 2(g)].
These features are absent from simulations that consider quasicon-
tinuous shifts for the grounded electrode locations. Part of the
problem can be explained by noting that if electrode separation is
a=5, then any spatiotemporal modulation with velocity cm is strictly
equivalent to the modulation with velocity �4cm. In other words, a
shift of one fifth of a period in one direction is equivalent to a shift
of four fifths in the opposite one. This simple argument shows that
secondary dispersion branches can be excited in this type of
system. It can also explain the additional bright spots that
are usually associated with unstable regimes. Here, for instance,
cm ¼ 2000m=s is stable, but �4cm ¼ �8000m=s is strongly unsta-
ble (supersonic regime30).

V. SIGNAL DISTORTION ANALYSIS

Dispersion relations calculated with the analytical model
provide information about the available propagation modes inside

the structure, but do not give direct insight concerning the coupling
process at the STMS interfaces, and consequently its signal trans-
mission properties. First, as pointed out before, by construction,
the system exhibits frequency conversion phenomena, since Bloch
modes in time-space modulated media contain a series of frequen-
cies. It has been shown31 that these phenomena can become quite
significant in the case of elastic beams presenting a space-time
modulation of Young’s modulus. Up and down frequency conver-
sions generally occur both inside the system and at its interfaces.
Different applications may be targeted depending on conversion
efficiency. A STMS with strong conversion efficiency could be used
in a frequency synthesizer, whereas minimal frequency conversion
would be preferable for the realization of nonreciprocal compo-
nents. Additionally, signal distortion should be verified directly for
wave packets transmitted through the system. Phase characteristics
and the existence of parasitic echoes are especially important for
potential radio-communication applications.

To study these effects, the FDTD code is exploited. The previ-
ously described finite system is simulated again, this time with
a length of 14a, and with different pulse or harmonic incident
signals.

Figure 3 shows the simulated stress field amplitude as a func-
tion of time t and position x in the system for different values of
cm, and different drives. The CPML regions on the sides of the sim-
ulation domain exhibit evanescent fields and are hidden in this
figure, for clarity. In all cases, the source is an added stress field
located at the point indicated by a vertical solid line, 5 cm away

FIG. 3. Stress field amplitude as a function of time and position in the STMS,
for pulse signals with center frequencies Fc ¼ 110 kHz [(a)–(c)] or 165 kHz
[(d)–(f )] emitted from the left [(a), (b), (d), and (e)] or from the right [(c) and (f )],
and for cm ¼ 0 [(a) and (d)] or 1000 m/s [(b), (c), (e), and (f )]. The modulated
piezoelectric structure is located between the dashed lines. The source location
is shown with a solid line.
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from the device region. Its time evolution corresponds to a gaussian
pulse with center frequency either 110 or 165 kHz. The two top
graphs serve as a reference, showing field patterns in the (linear)
cm ¼ 0 case for the two different incident pulse signals. Since a
bandgap is present only in the 130–190 kHz range in this case, the
pulse centered on 165 kHz is strongly reflected at the STMS input
interface (dashed vertical line on the left), whereas the pulse cen-
tered on 110 kHz is partly transmitted. In the latter case, in the
STMS, changes in both group and phase velocities are clearly
visible [they correspond to pulse peak and phase front slopes in
(x, t) graphs], as well as multiple pulse reflections due to the
effective impedance mismatch between the STMS and the sur-
rounding homogeneous piezoelectric medium. The four bottom
graphs show results for cm ¼ 1000m=s, the same two incident
pulse signals as before, and for sources located either on the left or
on the right. For cm ¼ 1000m=s and the pulse centered around
110 kHz, a strong nonreciprocity effect can be noted. The pulse
incident on the left propagates through the system, with field pat-
terns roughly similar to those obtained for cm ¼ 0. On the other
hand, the pulse incident on the right is strongly reflected, with
most of the energy inside the structure localized within the first few
cells. For cm ¼ 1000m=s and the pulse centered around 165 kHz,
the bandgap effect evidenced in the linear case disappears. For both
source locations, the pulse is transmitted through the structure.
However, field patterns for the source on the right [Fig. 3(f)]
are clearly not a mirror image of those for the source on the left
[Fig. 3(e)]. In particular, the frequency of the signal reflected at the
output interface is lower in the latter.

The strong reflection at the STMS input side in Fig. 3(c)
shows that, at least in this case, the coupling mechanism at an
STMS-piezoelectric bar interface is dominated by the main disper-
sion branch previously defined. In other words, when the frequency
of an incident signal is inside of a main branch bandgap, it is
reflected and does not couple to Bloch waves with same frequency
but larger wavenumbers.

To further analyze the STMS influence on pulse signals, stress
field amplitude at a point located 5 cm away from the structure on
its output side is plotted in Fig. 4 (in blue) for the six cases of
Fig. 3. On all graphs, the signal probed when the STMS is replaced
by a homogeneous piezoelectric material of the same length is
shown in red. Since group delays are generally different in each
case, an additional time shift (Δt) is artificially added on those ref-
erence signals to highlight their similarities with or differences
from those which have been transmitted through the STMS.
Transmitted signals for cm ¼ 0 and incident pulses centered
around 110 [Fig. 4(a)] and 165 kHz [Fig. 4(d)] show the expected
behavior for transmission through a periodic structure outside and
inside of a Bragg bandgap, respectively. In Fig. 4(a), the second
echo is quite visible, confirming the impedance mismatch between
STMS and surrounding medium and thus the creation of reflected
pulses at its interfaces, even in this linear case. Among the four
other plotted signals (cm = 0), only Fig. 4(c) exhibits a suppressed
transmission, in agreement with Fig. 3(c), whereas Figs. 4(b), 4(e),
and 4(f ) show limited signal distortion with respect to the reference
(in red), apart from slightly different group delays and a weaker
second echo. Figure 4(b) is particularly interesting since it corre-
sponds to a case where the second echo is actually weaker for cm ¼
1000m=s than for cm ¼ 0. The fact that different echoes are
affected differently by the STMS is a direct consequence of its non-
reciprocal transmission properties and corresponds to a form of
backscattering immunity effect: whereas the first echo propagates
once “downstream” (with respect to electrode shift), the second
propagates twice downstream and once “upstream.” This kind of
property could be exploited in applications where parasitic echoes
are to be minimized even though impedance matching cannot be
ensured.

Figure 5 shows amplitude and phase data for the transmitted
pulses presented in Fig. 4. Amplitude data show that the
transmission coefficient contrast between forward and backward
directions for cm ¼ 1000m=s can reach about 20 dB around

FIG. 4. Stress field amplitude as a
function of time, probed at a point
located 5 cm away from the STMS on
its output side, for pulse signals with
center frequencies Fc ¼ 110 kHz [(a)–
(c)] or 165 kHz [(d)–(f )] emitted from
the left [(a), (b), (d), and (e)] or from
the right [(c) and (f )], and for cm ¼ 0
[(a) and (d)] or 1000 m/s [(b), (c), (e)
and (f )]. The signal in red is a time-
shifted reference (see text).
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110 kHz [Fig. 5(a)]. Frequency conversion effects are not negligible
in this case (for example, around 80 kHz). For the pulse centered
on 165 kHz [Fig. 5(c)], gaussian pulse shape is remarkably similar
between both forward and backward cases for cm ¼ 1000m=s and

the system without any grounded electrode. This is consistent with
the previous observations on time signals: in some cases, the space-
time modulation can actually “reduce” the influence of the
periodically-spaced grounded electrodes. As pointed out before, the

FIG. 5. Stress field magnitude [(a) and (c)] and phase [(b) and (d)] data corresponding to the time data of Fig. 4 for the pulse signals with center frequencies
Fc ¼ 110 kHz [(a) and (b)] and Fc ¼ 165 kHz [(c) and (d)]. In each panel, the four curves correspond to cm ¼ 0 (dotted magenta line), cm ¼ 1000m=s with a propagation
direction from left to right (solid blue line), from right to left (solid black line) and the reference obtained by replacing the STMS by a simple piezoelectric bar of same
length (dashed red line).

FIG. 6. Magnitude of space-frequency domain [(c), (d), (g), and (h)] and wavenumber-frequency domain [(a), (b), (e), and (f )] Fourier transforms of stress field data are
shown in Fig. 3, for the pulse signals with center frequency Fc ¼ 110 kHz [(a)–(d)] or 165 kHz [(e)–(h)] emitted from the left [(a), (c), (e), and (g)] or from the right [(b),
(d), (f ), and (h)], only for cm ¼ 1000m=s. Vertical dashed and solid lines in the space-frequency domain graphs are the same as in Fig. 3. Analytical dispersion curves
(real part only) are reproduced in white in the wavenumber-frequency domain graphs. The horizontal solid and dashed lines show the incident center frequency Fc and the
Brillouin scattered frequencies Fc þ n cm

a (n being an integer), respectively. Note that for the wavenumber-frequency Fourier transform, only the STMS region is considered.
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periodic structures under study are always dispersive, and they
introduce time delays with respect to propagation in a simple
medium. However, provided that their transmission properties in
phase are simple enough, they could still prove useful for the reali-
zation of (nonlinear) components. Figures 5(b) and 5(d) show the
frequency derivative of the phase of the same time signals as
before. For the two gaussian pulses considered, phase evolution is
remarkably linear around the center frequency.

Frequency conversion effects in the STMS can also be studied
by repeating the time-domain Fourier transform of Fig. 5 for each
FDTD node location, as shown in Figs. 6(c), 6(d), 6(g), and 6(h)
for cm = 1000 m/s only, or by applying a double space-time Fourier
transform similar to that of Fig. 2, as shown in Figs. 6(a), 6(b),
6(e), and 6(f). These figures show energy repartition in frequency
and real space or reciprocal (wavenumber) space, over the entire
duration of the simulation. They help identifying and localizing all
frequency conversion effects occurring in the system. As pointed
out before, frequency conversions can only occur between a given
frequency f and frequencies +f þ ncm=a with n being a (signed)
integer. For the pulse signal with center frequency Fc ¼ 110 kHz,
forward and backward transmissions are accompanied by signifi-
cant down (from 110 kHz to 10 kHz) and up (from 110 kHz to
210 kHz) conversion effects, respectively. An important point is
that for backward transmission, the up-converted signal is not
transmitted. It is only present in the reflection on the input inter-
face and, consequently, does not affect the unidirectional transmis-
sion of energy. For the pulse signal with frequency Fc ¼ 165 kHz,
the same general properties are observed, even though it corre-
sponds to a pass band for both directions in this case. Note that in
Figs. 6(g) and 6(h), small signals are generated around 35 and
235 kHz, respectively. They correspond to frequency conversions
from Fc ¼ 165 kHz to �Fc þ 2cm=a ¼ 35 kHz and �Fc þ 4cm=a
¼ 235 kHz, respectively. It should be noted that these results do
not give much information about the exact locations where fre-
quency conversions occur in the system, at least in the general case.
Figure 6(d) clearly shows that a strong frequency conversion effect
occurs at the input interface, but is a special case, since the Bloch
wave is evanescent inside the STMS. Calculations with sliding
window time Fourier transforms (not presented here) show that in
general, frequency conversions occur at input and output interfaces,
and also inside the STMS.

Up to this point, we focused on a few specific operation
regimes (i.e., choices of cm and Fc), but the models presented here
can be exploited in parametric studies. For instance, the analytical
model of Sec. III can be used to calculate the wavenumber imagi-
nary part for the main dispersion branch as a function of frequency
and modulation speed [Fig. 7(a)]. To simplify this parametric
study, the dispersion relation is used in its second form [Eq. (21)],
setting a real Ω and solving for K . This means that inside bandg-
aps, there exists an imaginary part of frequency (in the static
frame) for plotted solutions (since ω ¼ Ωþ cmk and k is complex).
However, it can be shown that for the system under study, these
solutions are very close to those with real frequencies ω and
complex wavenumbers k. This analytical parametric study can be
compared with FDTD parametric studies, using exactly the same
setup as in Figs. 3–6, but with harmonic incident signals. In these
calculations, the parameter of interest is the fundamental frequency

transmission coefficient (FFTC) magnitude for harmonic incident
signals of different frequencies and for different values of cm. The
parametric study result for continuous grounded electrode shifts
was already presented in Ref. 24 and is reproduced here in Fig. 7(b)
for comparison purposes. The similarity between the two graphs
traduces the strong influence of the main dispersion branch bandg-
aps on the STMS transmission properties. Finally, Fig. 7(c) shows
the FFTC spectra for the model considered in the current paper,
i.e., with 2 mm-spaced electrodes. Again, the main FFTC features
are strongly correlated with the predictions of the analytical model.
Secondary transmission dips also appear, and their frequencies
generally decrease when cm increases, in opposition with the main
dips. Even though the analytical model of Sec. III is insufficient to
predict these secondary dips, the general explanation is the same as
for the secondary branches of Fig. 3, namely, that discrete shifts
cannot be associated with a single modulation velocity.

FIG. 7. (a) Imaginary part of wavenumber k for the main dispersion branch,
obtained with the analytical model, as a function of frequency in the static frame
and cm in normalized (left axis, cm=cb) and absolute (right axis) units. FFTC as
a function of fundamental frequency and cm (or cm=cb) (b) for continuous
grounded electrode shifts (reproduced from Ref. 24) and (c) for the same dis-
crete set of 2 mm-spaced electrodes as in Figs. 3–6.
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Finally, based on these FDTD calculations with harmonic
signals, it is possible to quantify transmission efficiency for the pre-
viously studied cases. Transmission efficiency for the fundamental
frequency is the FFTC. Table I summarizes the values obtained for
the unmodulated case and for cm ¼ 1000m=s, considering propa-
gation from A to B or from B to A, for Fc ¼ 110 kHz and 165 kHz.
Additionally, transmission efficiency for frequency converted
signals can be defined as the magnitude of the transmitted field at
frequency Fc þ n cm

a normalized by the source amplitude at Fc. This
quantity, labeled frequency conversion transmission coefficient
(FCTC), is also shown in Table I, for the same cases as before, and
for n ¼ þ1 and �1. Both FFTC and FCTC values obtained with
harmonic signals are consistent with the observations based on
Figs. 3–6, which used gaussian pulse signals.

VI. SUMMARY AND CONCLUSION

We investigated the propagation of longitudinal acoustic
waves in a one-dimensional structure made of a periodic set of
finite piezoelectric rods separated with electrodes and considered
the peculiar case where time-dependent electrical boundary condi-
tions are applied to the electrodes. An analytical model is proposed
that allows writing closed form solutions of the dispersion relation
of such STMS. The model evidenced the tilting of the band struc-
ture with respect to their reference configuration in a nonmodu-
lated medium that strongly depends on the modulus and the
direction of the modulation speed vector. Due to the tilting, such a
medium may exhibit in the same range of frequency, a stop band
for forward propagation and a pass band in the opposite direction.
This nonreciprocal behavior results from time symmetry breaking
associated with the temporal modulation of the electrical boundary
conditions. The structure with a nonreciprocal behavior behaves as
a one-way wave propagation device and may have many potential
technological applications. Beyond the case of the piezoelectric
STMS studied here, it should be noted that the general principle of
the developed model could be applied in different wave physics
problems with space-time modulations of boundary conditions.
For instance, it could be adapted for the study of piezomagnetic
phononic crystals,32 or more generally acoustic wave propagation in
systems with modulated mechanical boundary conditions, such as
moving support points. In addition to the analytical model devel-
opment, with the aim of studying the effect of the space-time mod-
ulation on an acoustic wave propagating through the finite
structure, we performed FDTD numerical calculations that predict
accurately the system response to incoming signals. Nonlinear phe-
nomena that may have important consequences for the potential

applications of STMS, such as frequency up and down conversions,
wave packet distortions, and parasitic echoes, were also analyzed.
In particular, limited distortion of “passing” signal was evidenced
in the one-way propagation configuration.

Compared to other space-time modulated structures,22,23,29 the
proposed piezoelectric system does not require a modulation of
mechanical characteristics of constituent materials but only changes
in time of electrical boundary conditions that can be realized with
the help of adequate dynamic electrical circuits. This should facilitate
the manufacturing of one-way wave propagation devices.

APPENDIX: FINITE DIFFERENCE TIME DOMAIN MODEL

In the piezoelectric medium, physical equations used for the
FDTD model are Gauss’s law [Eq. (3)], Newton’s law [Eq. (4)], and
equations of piezoelectricity with independent variables S ¼ @u

@x and
E ¼ � @w

@x

T ¼ cE
@u
@x

þ e
@w

@x
, (A1)

D ¼ e
@u
@x

� ϵS
@w

@x
, (A2)

where u is the particle displacement, e the piezoelectric constant,
and ϵS the dielectric permittivity at constant strain. v, T , _D, and _f
are chosen as state variables where _ denotes partial derivative as a
function of time. Equations (3), (A1), and (A2) are, respectively,
written as

@ _D
@x

¼ 0, (A3)

@T
@t

¼ cE
@v
@x

þ e
@ _w

@x
, (A4)

_D ¼ e
@v
@x

� ϵS
@ _w

@x
: (A5)

Infinitely thin electrodes located between the piezoelectric elements
are represented by equations relating the mechanical and electric
fields at both sides of the electrodes

Tþ ¼ T�, vþ ¼ v�, _Dþ ¼ _D� (A6)

TABLE I. Values of fundamental frequency transmission coefficients (FFTC) and frequency conversion transmission coefficients (FCTC) considering harmonic signals of
frequency Fc = 110 kHz or 165 kHz, for cm = 0 and for cm = 1000 m/s with both propagation directions. FCTC values are given for the first higher and lower harmonics, i.e.,
Fc þ n cm

a with n = +1 and −1, respectively. “N.A.” indicates that the FCTC calculation is not applicable to the unmodulated case.

FFTC (dB) FCTC n = +1 (dB) FCTC n =−1 (dB)

cm and direction Fc = 110 kHz Fc = 165 kHz Fc = 110 kHz Fc = 165 kHz Fc = 110 kHz Fc = 165 kHz

cm = 0 −3.76 −50.18 N.A. N.A. N.A. N.A.
cm = 1000 m/s, A to B −0.74 −1.92 −17.68 −31.74 −9.91 −9.87
cm = 1000 m/s, B to A −22.85 −3.91 −22.94 −21.99 −28.29 −31.00
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for a floating electrode and

Tþ ¼ T�, vþ ¼ v�, _Dþ � _D� ¼ _σ, (A7)

where σ is the free charge surface density on the grounded electrode.
These equations are discretized with the Yee algorithm.33 Specific
Convolution-Perfectly Matched Layers34,35 are used at both ends of
the discretization mesh to alleviate unwanted reflection of waves on
these ends. At time step tn ¼ nΔt, we compute firstly velocity at
each space grid point i using discretized Newton’s equation

Vn
i ¼ Vn�1

i þmi
Δt
Δx

(T
n�1

2
iþ1 � T

n�1
2

i )þmAiA
n�1
i , (A8)

where Δx is the grid spacing and mi the mass term associated to grid
point i. mAi and Ai are, respectively, the memory coefficient and the
memory variable at grid point i inside the CPML zone and vanish
elsewhere. Secondly, time derivative of electric potential is obtained
for all space grid points using the equation of electrostatics

_Φ
n ¼ [Mϵ]

�1 [Me]V
n þ [MB]B

n þ [MC]C
n � _Σ

n
	 


, (A9)

which is obtained by discretizing and combining Eqs. (A3) and
(A5). _Φ

n
, Vn, and _Σ

n
are the vectors containing the values of _f, v,

and _σ for all space grid points at time step tn. Vectors Bn and Cn

contain the values of memory variables at time step tn for space
grid points inside the CPML zone and zeros otherwise. It may be
noted that the change of boundary condition on the electrodes vs
time is introduced via Eq. (A9) by prescribing _Φ

n
i ¼ 0 (grounded

case) or _Σ
n
i ¼ 0 (floating case) at each grid point corresponding to

an electrode. Finally, the stress at each space grid point i is evalu-
ated at time step tnþ

1
2 using the discretized equation issued from

Eq. (A4),

T
nþ1

2
i ¼ T

n�1
2

i þ ki
Δt
Δx

(Vn
i � Vn

i�1)þ pi
Δt
Δx

( _Φ
n
i � _Φ

n
i�1)

þmBiB
n�1

2
i þmCiC

n�1
2

i , (A10)

where ki and pi are, respectively, stiffness and piezoelectric terms
associated to grid points i.
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