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Determination of the Total Texture
Function from Individual Orientation
Measurements by Electron Backscattering Pattern

T. BAUDIN and R. PENELLE

The orientation distribution function (ODF) calculation is usually performed using pole figures
measured by X-ray or neutron diffraction. However, this kind of experimental technique does
not allow total ODF to be determined, since the odd terms of the series expansion are not directly
accessible from pole figures. The individual orientation measurement technique can be used,
but it is necessary to evaluate the right onientation number necessary for a statistically reliable
ODF. For samples at the surface, at the fifth of thickness from the surface and at the center of
a Fe 3 pet Si sheet, this study shows that only 100 orientations are sufficient to find the principal
components of the texture, but this number must be increased by a factor of 10 to evaluate with
rather good accuracy the heights of the peaks. Indeed., to obtain a good correlation with an ODF
calculated from pole figures measured by X-ray diffraction, the number of orientations needed
is about 1000.

I. INTRODUCTION

FOR some years, researchers have been very inter-
ested in the characterization of (local and global) texture
from individual orientation measurements. The actual
studies have the following two aims.

(1) The first one consists of *local relutive studies™ which
allow one to show the crystallographic orientation of one
or several grains in a polycrystal and then the misori-
entation between these grains. These studies lead also to
very interesting crystallographic and microstructural re-
sults, such as the orientation of grains near a failure, the
evolution of the orientation of single crystal during de-
formation, erc.

(2) The second one, which consists of a “global abso-
lute study,” allows one to establish statistical functions
(orientation distribution function (ODF), misorientation
function, position function, correlation function, etc.).
For this, it is necessary to measure both the crystallo-
graphic orientation and the shape and size (micro-
structure) of cach grain and also to characterize some
parameters, such as the shape of modeled orientations
and the number of measurements to determine functions
which are statistically admissible.



One of these functions is the ODF which cannot be
totally calculated by global techniques, such as X-ray or
neutron diffraction, since only the even part of the series
expansion can be determined. A first solution consists
of using the mathematical method which allows one to
evaluate the odd part by using the even part of the ODF
knowing that the total function is the sum of the even
and odd parts. A second method consists of evaluating
the parts of this function using individual orientations
which are modeled by Gaussian functions. The aim of
this study is to compare these different methods and, in
particular, to try to determine the number of orientations
necessary to calculate a total ODF,

II. DETERMINATION OF
THE TEXTURE FUNCTION

A. Calculation Principle

The ODF is generally calculated using pole figures
measured by X-ray or neutron diffraction techniques. The
fundamental relation linking pole density to the ODF can
be solved by different methods:

(1) the Bunge'"* or the Roe"*! method using the series
expansion (harmonic method);

(2) the discretization method'** (vector method);

(3) the probabilistic method;"'*'" and

(4) the integral transformation method'? (inversion
formula).

The first approach is used for this study and is de-
scribed using the Roe formalism.

B. Harmonic Method

With the global (X-ray or neutron diffraction) or local
electron backscattering pattern (EBSP) analysis, it is
necessary 1o resolve the following equation:

- ! !
F@ =2 2 D finm Tn (@ (1
=0 = | g=~{
where F(g) is the ODF expressed in the Euler space, g
is an orientation characterized by the y, 6, and ¢ angles
(Roe notation), TY, (g) is the generalized spherical har-
monic function, and the f,,, are the coefficients of the
ODF which can be estimated from pole figures measured
by X-ray or neutron diffraction or from individual ori-
entation measurements.
. X-ray or newtron diffraction
The fundamental relation which links the pole density
to the ODF must be solved:

g(n.x) = I Fig)dy {2]

0



where g(7,x) is the pole density at a point defined by
the 5 and y spherical coordinates on the {hk!} pole figure
and dy is the differential element of a rotation around
the normal of the diffracting plane.

These two functions, g(n,x) and F(g), can be ex-
panded on the spherical harmonics basis. After expand-
ing the integral defined in Eq. [2], a relation is obtained
between the pole density and the f,,, coefficients; thus,
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where ¥7 (h,) and ¥;"(n,x) are surface spherical harmon-
ics (the asterisk denotes the complex conjugate) and h,
corresponds to the {hk/} Miller indices of the ith pole
figure.

However, this kind of diffraction technique does not
allow the separation of +hk, and —h, directions of centro-
symmetric crystals, and so, in fact, the measured pole

figure is the superposition of two parts corresponding,
respectively, to the pole figure of the equivalent direc-
tion +h and —h; therefore,

1
ginx) = 2 [gesmx) + g-s(n.0)] [4]
with
q.4nx) = q-un.x)
Then, Eq. [3] can be expressed as

‘ﬂn-x)=§‘:§‘;z2r(yi ,)

- fiun Y7 ") Y7(11.%) (5)

Bunge™ has shown that the £, coefficients (or €1 using
his notation) which describe a virtual texture can be writ-
ien as

/2

B = C{"* for I even
Gr=cri+(—-nj/2
= ( for / odd

This last relation shows that the odd part of the ODF
cannot be directly determined using pole figures. More-
over, this indeterminacy can lead to the appearance of
ghost components which lack physical meaning due to
the absence of the odd part of the total ODF.

2. Single orientation measurement

The f,., (Eq. [1]) can be calculated from individual
orientation measurements. The first problem is deter-
mining how to model each orientation.

Bunge!'*! proposed to model each orientation g, with
a Dirac function, the total function F(g) being the sum
of N Dirac functions. However, Wagner''” showed that
this approach leads to negative domains (linked to trun-
cation effects, since the series expansion is calculated for
a finite L value), knowing that, by definition, the total
ODF. which is the sum of even F(g) and odd F(g) func-
tions, is always positive or equal to zero:

Flg) = F(g) + F(g) =0 [6]



Some authors have proposed''*'* the use of Gaussian
functions and to express the f,,, coefficients as

N
P 7:/ 2 KT, *(s) (71
with
i exp(—1’®}/4) — exp[—(I + 1D} /4]
| = exp(—9;/4)

The @, parameter is linked to the width at the halfheight
b of the Gaussian by the relation

®,=5H/2VIn2 9]

Moreover, Wagner''! has shown that @, can be linked
to a p parameter characterizing the texture sharpness and
to the number (V) of measured individual orientations.
So, for a cubic material and a triclinic texture, Wright
and Adams"'” have found the relation

(VA
@, = (g) (10]

The value of p must be cqual to one for a random
texture and tends toward zero for a strong texture. For
intermediate textures, which is the case in the present
study, p is taken equal to 0.5 (see, for example,
Reference 13 in the case of rhombohedral materials and
Reference 19 in the case of a cubic material). Conse-
quently, the @, expression (Eq. [10]) allows one to de-
termine the Gaussian shape in terms of the number of
measured individual orientations.

It is now known that the influence of the odd ODF is
not negligible relative to the even ODF (see, for ex-
ample, Reference 12). For example. Figure 1 shows the
sections at ¢ = 0 deg of F(g), F(g), and F(g) in the (,6)
plane, calculated for the brass component {011K211), with
@, = 6 deg (b = 10 deg) and L = 34. Let us remark
that the imposed orientation is obviously found again,
but, moreover, other components without physical
meaning appear in the section of F(g) (Figure 1(a)).
However, the “mirror piclures" of these components ap-
pear in the section of F(g) (Figure 1(b)) and therefore
disappear in the section of F(g). On this last section,

(81
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Fig. 1 —{011}(211) crientation—HM: (a) even part, (b) odd parn, and
(¢) total texture function.



there remain imperfections, such as little positive or neg-
ative domains (in these domains, the absolute value of
F{g) 1s less than 0.5): these are only due to the truncation
error.

C. Marhematical Method

The example described in Section B led some authors
to propose mathematical methods (MMs) to evaluate the
oddpanoflheODFEalculuedfrunpolcﬁgm.

If F(g) < 0, then Fig) = —F(g); i.e., the positivity
condition of F(g) is verified. This condition must also
suppress some positive peaks of F(g) which have no
physical significance; so, for a glven positive value of
F(g), the same relation (F(g) = —F(g)) has to be used.
In these conditions, Dahms and Bunge'™ have proposed
a method which is a refinement of the zero range method
(see Esling'™'). One of the advantages of this method is
that experimentally determined even terms are retained.

Let us note that other methods not used here have been
proposed by Van Houtte™ who developed the quadratic
method and by Wang er af '™ who developed the max-
imum entropy method.

The principle of this MM (see also Bunge™*') consists
of calculating the nth order approximation of F(g), i.e.,
“'F(g), with the relation

“F(g) = *"F(g) + “F(g) 1
with
“F(g) = Fg) 112]
where "“F(g) is defined according to

- _uv-l)F(g) fOf (= "F(g) < o
-
e { 0 for k=0 1

and ' denotes the odd part of “'F(g) and allows calcu-
lation of the f,., cocfficients:

Fom = ] “F(g)TAg)dg [14]

and the ""F(g) function nccessary to continue the cal-
culation (Eq. [11]). These authors have also generalized
this method assuming that a condition F(g) > r,, can
be used, which means that a solution is sought with a
given “background™ (0 < r, < 1). It is evident that
this procedure can only converge if a solution with the
properties defined by Eq. [15] really exists.

=—1) =1
m — B F(g) + Fon for F(g) <
f(‘) - { 0 f“(c-lbr(x) = . [lS]

Wagner ez al.'"™ have tried to analyze the effect of
the r., choice on the determination of the complete
ODF and have shown that r., = ¢(7,X) knowing that
Fi(8)ee = g0 X)nia-

This result is a very interestung approximation of the
true ODF in the case of a theoretical example which
Wagner et al. presented (Tabie I). However, their method
does not scem to modify the results of a real texture of



Table 1. Evolution of F(g),.,, and Fig)., in Terms of r
r Figluw Flg)a

Theoretical 1otal ODF - 504 0.72
Calculation 0.00 4.00 0.10
Calculation 0.72 5.00 0.72

a low-carbon steel, since the variations of F(g).,. and
F(2) e are very slow in terms of r,

D. §. Matthies Method

The two previously described methods are based on
the use of the harmonic method which leads to truncation
error, since some series expansions are performed to a
finite L value. To suppress this problem, the S. Matthies
method (SMM) allows an exact solution to be determined.

For that, Matthies er al.'" use the relation

FI(S,@) = N(S)e™™= [16)
with
@ = @(go.8) and 0=8S==

F(S,®) represents the total texture function (or F(g))
calculated for a given orientation (g,) modeled by a
Gaussian function in the G (Euler) space (g € G). The
term N(S) is a constant of normalization calculated using
Bessel functions (see Matthies er al.''¥). The § param-
eter allows one to characterize the g, orientation shape.
For § = 0, Eq. [16] describes a random distribution, and
if § tends to infinity, the orientation is modeled by a
Dirac function. The term § is linked to the b parameter
by the relation

$ = In 2/[2 sin’ (b/4)] 117]
with
b=2w

Kb w(S>1), [-.q |16} becomes the same as that
proposed by Bunge,” a traditional Gauss distribution:

F(®0.@) = N(®pe “/'&" (18]

This approach also allows calculation of F(g) (and so

F(g)) using F(g) and a ghost function F{(g) expressed
with Bessel functions:

Fig) = ﬂ'H"'a(g) 119]

We note that it is possible to express F{(g) using the
fiun cocfficients (see Esling®®') of the HM, but we find
again the truncation problem.

To illustrate the interest in this kind of calculation, we
use this method to determine, for the {011K211) orien-
tation, ﬁml-:(g). then F(g), after having calculated F{(g).
and finally F(g), which are presented, respectively, in
Figures 2(c), (b). and (a). It is interesting to see that the
maximal values of these functions are higher than those
determined with the harmonic method (HM), indicating
that the series calculation with L = 34 is not sufficient.



Moreover, if g(g € G) is far from g,, then the back-
ground is taken equal to zero and the waves observed on
Figure 1(c) vanish on Figure 2(c).

E. Discussion

In the case of a single orientation, the truncation error
is obviously very important when the HM is used; thus,
it is more interesting to use the S.M.M. which gives an
exact solution. However, for polycrystal materials, it be-
comes difficult to compare the results determined with
the SMM with those obtained by X-ray diffraction gen-
erally calculated using the HM. So, in this study, the
SMM is only used to test the L value and all the other
tests are made using the HM with a fixed L value.

IlI. CHARACTERIZATION OF
THE PRIMARY RECRYSTALLIZATION
TEXTURE OF A Fe 3 pet Si SHEET

The aim of this section is to compare local and global
textures measured on three Fe 3 pet Si samples at the
surface, at the fifth of the thickness and at the center of
a recrystallized sheet. The fifth of the thickness is cho-
sen, because during the final annealing for secondary re-
crystallization which is performed under hydrogen
atmosphere, it was shown that Goss grains grow in the
subsurface, i.e., between the fourth and fifth of sheet
thickness from the surface. From these comparisons, one
can finally evaluate the best values of parameters to as-
scss a good representation of F(g) using the modeling
principle of each individual orientation by a Gaussian
function.

A. X-ray Diffraction Study

The pole figures have been determined by X-ray dif-
fraction in reflection transmission.™*"! The ODF is de-
termined assuming an orthorhombic symmetry of texture
and with L = 22. Two main preferential orientations are
found:

{111K112): F(g) increases from the center of the sheet
to the surface (F(g) = 8 to 10); and

{100K012): F(g) decreases from the center to the sur-
face (F(g) = 510 3).

Maximom « 165,67

(@)  rinimume -5.69 Maximum= 236,52

Minime® e 0,76

Fig. 2—{011K211) onentation—SMM: (@) cven pant, (b) odd part,
and (c) total texture function.



The sections at @ = 0 and 45 deg of F(g) are presented
in Figure 3 in the case of sample cut off at the center of
the sheet. On these section plots, one can see immedi-
ately the maximum peaks corresponding 10 the two pref-
crential orientations:

{1T11K112) at ¢ = O deg, 8 = 55 deg, ¢ = 45 deg and

¢ = 60 deg, 6 = 55 deg, ¢ = 45 deg: and

{100K012) at ¢ = 20 deg, 6 = 0 deg, ¢ = 45 deg and

¢ = 25 deg, 6 = 0 deg, ¢ = 0 deg.

Finally, it is important to emphasize that with the X-ray
diffraction technique, the Goss component {110K001) was
not detected.

Using the MM described earlier, the true ODF F(g)
can be evaluated. This calculation is performed with
Faie = 0.0 (the experimental values of ¢(7,x)... are near
0.0) and for 20 iterations to obtain a good convergency
of maximal and minimal values of F(g). (Note that the
number of iterations can be decreased using an optimi-
zation parameter’™?" which was not used in this study
since the time factor was not important here.)

Figure 4(a) shows, for the three samples, the evolution
of F(g),.. as a function of the iteration step (n). A large
decrease appears in the absolute values of F(g).., for n
less than 10 and then F(g),,, remains approximately con-
stant. So this figure shows that convergence is rcached
after 20 iteration steps. Note (Figure 4(b)) that this con-
vergency is also verified on the F(g)yynun- and
F(2)pmumzy-n curves which show that the evolution of
“F(g) to “"F(g) is about 15 to 20 pet.

225
180

135

¢

Fig. 3—X-ray diffraction—sample at the center of the sheet
thickness @ = 0 and 45 deg section plots. Intensity levels at
P S,
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Fig. 4— Mathematical method: (a) evolution of the mimmum of Fig)
as the iteration step (n); () evolution of the maxima of F(g) as the
iteration step (n).

B. Single Orientation Measurements

To measure single orientations from polycrystalline
samples, several techniques can be used:

Electron diffraction

transmission electron microscopy
selected area channeling patterns
electron channeling pattern
electron backscattering pattern

X-ray diffraction

Kossel pattern
Laue pattern.

In this study, the EBSP technique, developed by
Dingiey,"™ is used. The EBSP are KIKUCHI patterns
visualized by a phosphorus screen; the pattern is sent to
a low level light camera via a fiber-optic bundle and then
imaged on 2 TV monitor which is connected to a com-
puter. The patterns are interpreted on line for different
classes of crystal symmetry.

For cach sample, 1000 individual orientations have been
measured with the EBSP technique.*"! Figure 5 shows
the {200} pole figures measured on these three samples,
by X-ray diffraction and by EBSP techniques.

The F(g) functions are calculated using the HM to L
= 22 (i.e., in the same conditions as those used for the
analysis of data given by X-ray diffraction). Indeced,
Rouag™ has shown that with L = 22, the mean square
error between experimental and calculated pole densities
is less than 5 pet. However, this parameter will be dis-
cussed further.

Figures 6(a) through (c) show respectively for the
sample cut off at the surface of the sheet, the sections
at ¢ = 45 deg of F(g). F(g), and F(g) in the (,8) plane.
It is interesting to note gualitatively the rather good
agreement between F(g) functions calculated using pole
figures (Figure 3(b)) and electron diffraction. This result
suggests that in a first approximation, the number of ori-
entations is sufficient. However, it seems interesting to
optimize this number (see also Reference 19 for an alu-
minum sheet, Reference 32 for an Fe 3 pet Si sheet, and
Reference 33 for a titanium zlloy).

From a general point of view, the results obtained using
single orientation measurements match those obtained
using X-ray diffraction. In particular, the increase of F(g)



Fig. 5—{200} pole figures. Comparison between X-ray diffraction
and electron backscattered diffruction: (@) surface, (b) fifth, and (c)
center,

(a) (b)

Fig. 6— Sample at the surface of the sheet ¢ = 45 deg section plots
of (@) Fig). (b) F(g), and (¢) Fig). Intensity levels at 0, 1, . . ., 10,
///: negative values.



from the center to the surface of the sheet for the
{111}X112) orientation and the decrease of F(g) for the
{100K012) orientation are verified. Moreover, it is in-
teresting to note that the height of F(g) is not negligible,
since it corresponds to about 15 to 20 pct of F(g) but
does not modify the evolution of F(g).

Figures 7(a) through (c) allow comparison of the total
texture functions F(g). respectively, for the samples at
the surface, at the fifth, and at the center of the sheet.
Some negative domains due to truncation errors remain,
but they are not drawn because they are negligible. These
section plots of F(g) show that the sharpness of F(g) for
the {111}112) and {100K012) orientations evolves in the
same way as that described before for F(g).

So, qualitatively, a rather good agreement is ob-
served. Quantitatively, the results are also similar, par-
ticularly when the texture gradient through the sheet
thickness is observed (Figure 8). However, a discrep-
ancy is observed for the {100012) component. This dif-
ference, for the sample at the fifth of the sheet thickness,
can be due to a shift with respect to the exact position
corresponding to the fifth because of the electrolytic
polishing.

Using the MM, it is possible to observe the evolution
of F(g) through the thickness of the sheet (Figure 8). The
discrepancies between these last curves are larger than
those observed for F(g) and can have the following origins:

(1) the MM tends to minimize the F(g) values (see re-
sults presented, for example, by Dahms and Bunge'™);
and
(2) the MM adds errors linked to the determination of
F(g) using X-ray diffraction and to the calculation method.
It is worth noting that only one Goss grain, among the
3000 studied, was found in the middle of the sheet thick-
ness and not at the fifth. So it is obvious that the volume

Fig. 7—¢ = 45 deg section plots of F(g): (a) surface, () fifth, and
(¢) center. Intensity levels at 1, 2, . . ., 10.



fraction of the Goss grains is very low and that, more-
over, they are randomly distributed through the sheet
thickness, contrary to the previous assumptions (see also
Reference 31).

C. Discussion

‘This study allows the following points to be considered.

(1) The odd pant of the ODF is not negligible, since it
corresponds to about 15-20 pet of F(g).

(2) The different experimental methods used to calcu-
late F(g) give similar results (this remark is also true for
F(g)) knowing that experimental and numerical ervors
appear.

So, the above points can explain the observed differ-
ences. However, one can verify some of these parame-
ters and, in particular, try to answer the most important
question:

“Is the number of individual orientations sufficient to
obtain an F(g) function statistically admissible (by com-
parison with “measurable function,” for example, by
X-ray diffraction)?”

IV. DISCUSSION OF RESULTS
A. Influence of the L Parameter

To verify the results obtained with the EBSP tech-
nique, the ODF calculated by Rouag'®! is used. In these
conditions, the L value is fixed to 22 (which is sufficient
when the measured and calculated pole figures are com-
pared). However, it is interesting to show the influence
of L on the F(g) (and F(g)) evaluation.

For the center of the sheet, Figures 9(a) and (b) show,
respectively, the evolution of the F(g) and F(g) maxima
in terms of the ¢ Euler angle. These curves are deter-
mined using the EBSP technique and calculated with the

Surface or Swrface
ol 205 i

Fig. 8 — Texture gradient in the thickness of the sheet



SMM and the HM with L = 34 and 22. They are com-
pared to the F(g) values obtained by X-ray diffraction in
the first figure and to the F(g) values calculated with the
MM in the second case. Note, however, that these last
two comparisons allow us to give only an evaluation of
error which is perhaps not realistic, since the minimum
number of orieptations is not tested (the presented results
obtained by EBSP technique are determined using 1000
orientations).

If F(g) and F(g), determined with the SMM, are the
true values, it appears that the HM with L = 34 gives a
very good solution, particularly for F(g). For F(g). the
discrepancy between these two curves increases since the
F(g) values increase (comparatively to the F(g) values),
showing that /. must be increased. However, the HM
with L = 22 gives a good approximation of the true re-
sult and moreover of the curve determined by X-ray dif-
fraction. This last point is less true for F(g). It is also
interesting to remark that the calculation with L = 22
leads to some imperfections (see Figure 9(b) at ¢ = 35
to 40 deg). It seems that this lack of coincidence of max-
ima is essentially due to the employment of a grid which
can lead to a ¢, 8, and ¢ shift of 5 deg.

In conclusion, it appears that for our samples (and so
for this kind of texture), if the HM is used, the L = 34
value must be used to obtain a very good approximation
of F(g) and F(g). Though the value of L = 22 is not

12 ?(y) Center ; N=1000 B, = 5°

10

- 5 MM,
—— MM L= 34
———— MM L=22
o X-roy

(a)

12) Fg) Center ; N=1000 @, = 5°

—-— S.MM

— F AR

e MM [ %22
o MM

(»)

Fig. 9— Influence of L on the calculation of (@) Flg) and (b) F(g).



sufficient, it gives a rather good approximation of F(g)
and F(g), the aim of this study being the comparison of
ODF obtained with the same value of L, so L = 22 is
kept.

B. Influence of p Parameter

To model each individual orientation by a Gaussian
function, the Wright and Adams"'? relation (Eq. [10]) is
used. This relation allows the @, parameter to be linked
to the number of orientations using the p parameter char-
acterizing the sharpness of the texture. As is the case
with some other authors,'™ p = 0.5, corresponding to
an average texture, is chosen arbitrarily. In this section,
this parameter is tested to show its influence on the de-
termination of #(g) and F(g). Figure 10 allows us to say
that for a given L (= 22) value, the p value modifies
the texture sharpness but does not modify the shape of
F(g) — ¢ curves.

To verify the p = 0.5 value, the evolutions of F(g)
and F(g) in terms of p have been observed for the three
samples, respectively, in Figures [1(a) through (c). These
curves are compared to the maximum values of F(g) and
F(g) calculated using pole figures and the MM. If the
{111K112) orientation is considered, it appears that the
intersection of these curves characterizing F(g) occurs,
respectively, for (a) p = 0.40, (b) p = 045, and
(c) p = 0.60. So, taking into account the experimental
errors, it scems that p = (.5 constitutes a good approx-
imation. For the intersection of the curves characterizing
F(g). the p values are larger, so p = 0.60, p = 0.75.
and p = 0.75, respectively. However, it has been shown,
in our case particularly, that because of experimental er-
rors, the MM minimizes the F(g) values, and if an error
of about 10 pet is assumed, the p = 0.5 value is found
again. Concerning the values of F(g) and F(g) for the
{100}{012) orientation, it is most difficult to conclude,
particularly for samples at the surface and at the fifth of
the sheet thickness. Indeed, the calculated curves are
above the “experimental curves.” This problem is es-
sentially linked to reasons, such as experimental errors
and number of orientations.

Wright and Adams'™ used a mean square crror
measurement to describe the difference between two

3
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Fig. 10— Influence of p on the F(g) calculation for a given L (= 22)
value
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ODFs, F(g) and Fy(g). This is given by the following
equation:

I ’
o=1/3 > (Fdg) ~ Fug)l (20]
=1

where the sum was taken over a5 x § % 5 deg grid in
Euler space. However, since the texture can be com-
pletely characterized by the coefficients of the series ex-
pansion, Eq. [20] can be replaced with a modification
of the so-called texture index (Bunge'™), so (see ulso
Roe'") with '.fh- g .flnw'

Jan = D A7 [l (21]

Lma

This texture difference Index has the advantage over
Fq. [20] in that it is not dependent on the “fineness™ of
the comparison grid in Euler space or the number of
companson points used in the caleulation and it also scales
with the order of the series expansion. It is casily adapt-
aPIc for considering both odd and even (J44), only odd
(J4n). or only even (Jy) coelficients.

So to complete this analysis of the influence of the p
parameter, the square root of the texture difference index
(which is homogencous to the mean square error) is cal-
culated in terms of p.

The evolution of these curves (Figures 12(a) through
(¢)) shows a large decrease of (Jye)' and (J)'”* for
the small values of p (<0.4 to 0.5) and then a small
decrease for the large values of p. In this case, it is very
difficult to estimate where these curves converge and to
determine the p value ut this point. However, these curves
show that p = (.5 constitutes a good approximation.

The actual results, determined for N = 1000, show
that when the L = 22 and p = 0.5 parameters are used,
the values of F(g) and F(g) are in a good agreement with
those determined using pole figure measurements and the
MM. Now, the L and p parameters are fixed to analyze
the influence of the orientation number.,



C. Influence of N Parameter

In a ficst approximation, there appears to be good
agreement between results obtained by X-ray diffraction
and EBSP, but it is interesting to try to determine the
optimum orientation number sufficient to calculate a rep-
resentative ODF.

Figure 13 shows, for example, for the sample studied
at the fifth, the ¢ = 45 deg section plots for ODFs cal-
culated using even coelficients for 100, 200, 300, . . .,
1000 orientations, which arc compared to the ODFs cal-
culated using pole figures.

It is interesting to note that the principal components
of the texture appear only after 100 measurements, and
it scems that after 600 measurements, the texture does
not change. To determine the optimum onentation num-
ber, Wright and Adams''® proposed calculation of the
mean square ermor (o) between F(g)y00, F(8) 10w, and the
classical ODF (respectively, o = 1.89 and 0.89). Then,
assuming a simple linear evolution, they found that 1800
measurements would be pecessary to match the accuracy
of the classical ODF. For the three samples studied, the
calculation of (Ju)'” and (Ju)'” shows that if a simple
linear evolution is assumed, the optimum value of V is
found between 2000 and 3100 (Figures 14(a) and (b)).
However, it appears that this linear evolution assumption
constitutes a bad approximation of experimental results.

So, to complete these first results, the maximum val-
ues of F(g) and F(g) are analyzed in terms of orientation
number (Figures 15(a) through (f)). For the three sam-
ples and the two oricntations, large vanations of F(g)
appear for small values of N, and then Fig) tends toward
a value which is in a good agreement with the expen-
seem to converge when N tends toward about 800
measurements. The evolution of Fig) in terms of N is
similar. It 1s less obvious that the convergence is ob-
tained for the sample at the fifth of the thickness sheet,
particularly for the {I111}112) orientation. However, it
can be seen that the increase of F(g) between 800 and
1000 orientations is lower than between 400 and 600 or
600 and 800. So, it seems that about 800 to 1000 ori-
entations are sufficient to calculate the ODF. To be ab-
solutely sure, it would be necessary to measure more
than 1000 orientations on one sample.

To determine the N optimum value, the F(g) and
F(g)-N curves are assumed independent of N when this
optimum value is reached. To test this assumption, the
measurements on the three samples have been combined
to obtained a theoretical sample characterized by 3000
orientations. Note that in the case of neutron diffraction,
the pole figures are measured on a bulk sample, so the
F(g) maximal value of this sample can be approximated
averaging the maximum of the ODF of extreme textures
determined by X-ray diffraction. In these conditions, Fig)
takes the value of 8.7 for the {111}{112) orientation and
4.2 for the {100{012) orientation. Obviously, it is a bad
approximation, since each set of 1000 orientations has
been determined in three particular planes of the sheet
and not continuously through the sheet thickness.

Figure 16 shows the evolution of F(g) and F(g) max-
ima for the two principal orientations in terms of the
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Fig. 13— Sample at the fifth of the sheet thickness —¢ = 45 deg section plots of Fig) for 100, 200, . . ., 1000 measurements and comparison
with X-ray diffraction.



IlIlllV'Trl1l'

{ ‘aﬂ)w

05 _J_I_.I_I_I_L_.I_u_.l._w
.
o
Number of messurements (N) Number of measurements(N)
(a) (b)

Fig. 14— Evolution of the square root of the texture difference index
as N for the three samples: (@) (Ja)'” and (D) (o).

number of measurements. It appears that the curve cor-
responding to the first orientation {111}{112) is stabilized
after about 1500 measurements around a value of 8.3.
In the case of the second orientation {100}{012), after
100 measures, the F(g) value is reached and then fluc-
tuates around a value of 4.2 to 4.3. If, by using these
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Fig. 16— Evolution of F(g) and Fig) as N—3000 mecasurements

last curves concerning the second orientation, it is more
difficult to cvaluate the optimum number of orientations,
it is interesting to note that the difference between the
minimal and maximal values of F(g) on the complete
curve (between 200 and 3000 measures) is about 25 pct
and only about 8 pect in the domain included between
1500 and 3000 mecasurcs. These results show that the
stability of the kind of curves shown on Figures 15(a)
through (f) is real.
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Thus far only the evolution of F(g) and F(g) were
studied in terms of the orientation number. To complete
this work, the evolution of the pole density (§(n.x)) 1s
observed in terms of N. Figure 17 shows the evolution
of maximum of {110}, {200}, and {112} calculated pole
figures assuming the 3000 orientations. The stability of
these curves is absolutely obtained after about 1400 ori-
entations (particularly because of the large variation of
G(n.x) of the {200} pole figure for little values of N).

In summary, it appears that to calculate an ODF sim-
ilar to that determined by X-ray diffraction, about 800
measurements are necessary. On the other hand, to sim-
ulate a neutron diffraction measurement. in our case (for
a given texture sharpness and a given grain size), it is
useful to measure about 1500 orientations. Obviously,
this last N estimate is linked to the texture gradient, so
Figure 18 shows that for 2000 combined orientations using
orientations measured at the fifth and at the center of the
sheet (because the texture gradient between these two
samples is weak), the evolution of F(g) and F(g) in terms
of N begins to stabilize after about 1000 mcasurements
(between 800 and 1500). Indeed, after 1000 orientation
measurements, the values of F(g) and F(g) do not vary
in large proportions: for the {111}{112) orientation, the
variations around an average value are about 5 pct, and
for the {100}{012), about 7 pct.

D. Influence of Sample Symmetry

Rouag®®! has calculated the ODF using pole figures
with an orthotropic texture symmetry, whereas all cal-
culations using individual orientations are performed with
a trichinic texture symmetry. It is interesting to verify the
discrepancy with respect to the orthotropic symmetry.
Figure 19 shows, for example, the case of the 3000
measurements. Since in the case of triclinic symmetry,
the ¢ domain includes four domains of ¢ corresponding
to the orthotropic symmetry, four maximum values of
F(g) and F(g) can be determined for each {111}{112) and
{100K012) orientation. These curves show that the dif-
ference with respect to the orthotropic symmetry is not
very important, and so the calculation can be made with
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the onthotropic symmetry. In these conditions, Figure 20
shows the evolution of F(g) and F(g) in terms of N for
the two main orientations. The point where the stability
of these curves occurs is not easy to determine, since for
the {111K112) orientation, F(g) and F(g) increase con-
tinuously to N equal 3000 measurements. However, one
can sec that after some relatively large vanations to about
1600 measurements, these variations vanish and at this
point the F(g) and F(g) values are not very different than
the values at 3000 mecasurements (ermror lower than
10 pet). Consequently, this example shows that the in-
fluence of the sample symmetry is not very important
for the ODF calculation.



E. Discussion

To determine a total ODF using the EBSP technique,
it is necessary (o test some parameters which appear in
this kind of calculation. The most important is the num-
ber of measurements. This parameter is related to other
ones, such as the texture sharpness and the grain size.
So, for example, if a scanning domain of 80 mm’ is as-
sumed, if the grain diameter is about 0.5 mm, 400 grains
are measured in X-ray diffraction, and if this diameter
is equal to about 50 um, 40,000 grains are taken into
account if the grains are modeled by spheres. In the case
of studied samples, it appears that these 40,000 oricn-
tations can be replaced by about 1000 to obtain a statis-
tically admissible texture function.

Finally, note that this orientation number allows us to
calculate the texture function to a rather good approxi-
mation, particularly for the sample at the center, because
the sharpness of the two principal orientations is not very
different. For the two other samples, the agreement re-
mains satisfactory; however, the discrepancy between
ODF values calculated from pole figures and from in-
dividual orientations increases for the {100{012) oricn-
tation. This phenomenon can be due 10 some experimental
or numerical errors but can also be explained by an ori-
entation number which is perhaps not sufficient when the
secondary orientation is close to the “background.™ In
this last case, to verify the orientation number, it is nec-
essary to measure more than 1000 orientations on each

sample.

V. CONCLUSION

It scems that 1000 individual onientations allow us to
estimate with good agreement a texture function deter-
mined using pole figures. Moreover, this technique is
very interesting comparatively to the global techniques,
such as X-ray and ncutron diffraction, since it allows us
to calculate directly a total ODF and also to link the ori-
entations of grains to their positions in the sample. So,
with the new developments in automatic orientations
measurements,™ (see, for example, Wright ef al.,™ who
can measure 1800 orientations per hour), they can re-
place advantageously the global techniques. However,
this technique cannot be used in the case of heavily cold-
worked materials. Indeed, when the coherent domains
of diffraction urc smaller than the beam size, the Kikuchi
patterns are difficult to interpret.

The aim of this work was principally the evaluation
of the orientation number to assess the texture function
of a Fe 3 pet Si sheet. The results are so determined for
a given material and for a given texture and cannot be
directly extrapolated to other materials (or 10 the same
material with different texture) or to solve other prob-
lems, such as, for example, the determination of spe-
ciality of grain boundaries ™!
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