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Abstract

We review the different notions about translation surfaces which are necessary
to understand McMullen’s classification of GL+

2 (R)-orbit closures in genus two. In
Section 2 we recall the different definitions of a translation surface, in increasing
order of abstraction, starting with cutting and pasting plane polygons, ending with
Abelian differentials. In Section 3 we define the moduli space of translation surfaces
and explain its stratification by the type of zeroes of the Abelian differential, the
local coordinates given by the relative periods, its relationship with the moduli space
of complex structures and the Teichműller geodesic flow. In Part II we introduce
the GL+

2 (R)-action, and define the related notions of Veech group, Teichműller disk,
and Veech surface. In Section 8 we explain how McMullen classifies GL+

2 (R)-orbit
closures in genus 2: you have orbit closures of dimension 1 (Veech surfaces, of which
a complete list is given), 2 (Hilbert modular surfaces, of which again a complete list
is given), and 3 (the whole moduli space of complex structures). In the last section
we review some recent progress in higher genus.
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Part I

What is a translation surface?
1 Introduction
Translation surfaces are a great pedagogical tool at almost every level of education. At
the elementary, or secondary, level, you are impeded by the lack of embedding into 3-
space, but billiards provide plenty of access points into geometry. At the undergraduate
level, they help in topology, to explain quotient spaces, or in differential geometry, to
explain atlases and transition maps, or in complex analysis, with meromorphic functions.
At the graduate level, the doors of abstraction burst open, and in a few light steps you get
to the enchanted gardens of moduli spaces, Teichműller theory, and elementary algebraic
geometry. The beauty of the subject lies in the interplay between the basic (cutting and
pasting little pieces of paper) and the abstract (moduli spaces of Riemann surfaces).

There are already many wonderful introductions to translation surfaces (for instance,
[60], [13], [18], [38], or [58]), and this one is in no way meant as a substitute to any of them,
but it could be used as a stepping stone. It is specifically aimed at beginning graduate
students. Mostly, it consists of what, given two (or five) hours and a blackboard, I would
tell a student looking for a thesis subject and eager to know what translation surfaces
are about.

I have tried to include (sketches of) proofs of two types of results: first, those that
are too elementary to be included in the aforementionned introductory papers, but can
still cause a good deal of head-scratching; and some, not uncommon in the subject, that
are of the “takes genius to see it, but not that hard once you know it" variety.

I thank Erwan Lanneau for many useful conversations, the editor of the present
volume, and Pablo Montealegre for their careful reading of the manuscript, and Smail
Cheboui for letting me use some of the beautiful drawings of [5] (the ugly ones are mine).

2 Three different definitions of a translation surface

2.1 The most hands-on definition: polygons with identifications

Let P be a polygon in the Euclidean plane, not necessarily convex, maybe not even
connected, but with its sides pairwise parallel and of equal length. Glue each side to a
parallel side of equal length. There are several ways of doing this, so let’s be a bit more
careful.

First, let us make the convention that we orient the sides of a polygon so that the
interior of the polygon lies to the left.

Now let us identify the sides in pairs, in such a way that the resulting surface is
orientable (see Figure 1 for a non-orientable example). One way to think of it is to
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imagine that the upside of the polygon is painted red, while the downside is painted
black. The surface is orientable if it has one red side, and one black side. This means
that each edge is glued to another edge in such a way that the colors match, so the
arrows on the edges do not match.

Let us assume, furthermore, that we glue each edge to a parallel edge of equal length.
Let n be the number of edges. Thus there exists some permutation σ of {1, . . . , n} such
that vσ(i) = ±vi, for all i = 1, . . . , n. Since we must oppose the arrows when gluing,
there are two possible cases: either vσ(i) = −vi, in which case the two edges are glued
by translation (see Figure 1, top right), or vσ(i) = vi, in which case the edges are glued
with a half-turn (see Figure 1, bottom).

Formally, you define an equivalence relation ∼ on P , and you are considering the
quotient space X = P/ ∼. Although the polygon itself may not be connected, we
require the resulting quotient space to be connected, just because if it is not, we study
its connected components separately. What you get is a compact, orientable manifold
of dimension two (a surface, for short).

torus

sphere

Klein bottle

Figure 1: Here the arrows indicate the gluing, not the orientation of the boundary, so
arrows must match under the gluing. Note that in the case of the sphere, the edges are
not glued by translation, but with a half-turn.
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Here is why the quotient space is a manifold.
What we need is to find, for each x ∈ X, a neighborhood Ux of x in X, and a chart

φx : Ux −→ C, such that for any x, y inX, if Ux∩Uy 6= ∅, then φx◦φ−1
y preserves whatever

structure it is that you want your manifold to come with (if you want a differentiable
manifold, you require φx ◦ φ−1

y to be differentiable, if you want a complex manifold, you
require it to be holomorphic, and so on).

If x is the image in X of an interior point x̄ of P , then x has a neighborhood Ux in
X which is the homeomorphic image in X of an open neighborhood Ūx of x̄ in P (hence
in C). We take the inverse quotient map Ux → Ūx as the chart φx.

Shorter and somewhat sloppier version: the quotient map, restricted to the interior
of P , is a homeomorphism. Identify x with its pre-image. Take a neighborhood Ux of x
which is contained in the interior of P , and take the identity as a chart.

If x is the image in X of an interior point of an edge of P , then x has only two
pre-images in P , and x has a neighborhood in X whose pre-image in P is the reunion
of two half-disks of equal radius and parallel diameters. If the two edges are glued by
translation, we define a chart by the identity on one of the half-disks, and a translation
on the other half-disk. If the two edges are glued with a half-turn, we define a chart by
the identity on one of the half-disks, and a translation composed with a half-turn on the
other half-disk.

If x is the image in X of a vertex of P , then all pre-images in P of x are vertices
P1, . . . , Pk of P , because we glue edges of equal length, and x has a neighborhood Ux in
X whose pre-image in P is a union of circular sectors Si, i = 1, . . . , k, with radius r and
straight boundaries ei and fi, so that fi is parallel to ei+1, and fk is parallel to e1. The
angle θi of the sector Si is the angle between two adjacent (at Pi) edges of P . Note that
since fk is parallel to e1, the angles θi sum to a multiple of π, say pπ. Furthermore, if
the edges fk and e1 are glued by a translation, the angles θi sum to a multiple of 2π. If
the edges fk and e1 are glued with a half-turn, the angles θi sum to an odd multiple of
π. Denote

Θi =
i−1∑
j=1

θj .

We define a chart which takes each Si to a circular sector with vertex at 0, by

Pi + ρ exp i(θ + Θi) 7−→ ρ exp i2
p

(θ + Θi), for 0 ≤ ρ ≤ r, 0 ≤ θ ≤ θi.

We say a point in X which is the image of an interior point of P is of type I, a point
in X which is the image of an interior point of an edge of P is of type II, and a point in
X which is the image of a vertex of P is of type III.

If x and y are both of type I, and Ux ∩ Uy 6= ∅, then φx ◦ φ−1
y is the identity, which

preserves every structure imaginable.
If x and y are both of type I or II, and Ux ∩ Uy 6= ∅, then φx ◦ φ−1

y is either the
identity, or a translation, or a “half-translation" z 7→ −z+c, all of which preserve almost
every structure imaginable.
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If x is of type III and y is of type I, II, or III and Ux ∩ Uy 6= ∅, then φx ◦ φ−1
y is

holomorphic (it is essentially a branch of the p/2-th root). If both x and y are of type
III, we choose Ux and Uy so that Ux ∩ Uy = ∅.

Thus we have defined a complex structure onX (an atlas with holomorphic transition
maps), but this does not tell the whole story. Denote Σ = {x1, . . . , xk} the set of all
images in X of the vertices of P , then if all edges are glued by translation, X \Σ has an
atlas whose transition maps are translations, whence the name translation surface.
Among the three surfaces in Figure 1, only the torus is a translation surface.

If some pair of edges is glued with a half turn, X \ Σ has an atlas whose transition
maps take the form z 7→ ±z + c, in which case X is called a half-translation surface.
The sphere in Figure 1 is a half-translation surface. The Klein bottle is not orientable,
so it is neither a translation nor a half-translation surface.

Points of type III in X with a total angle > 2π will hereafter be called singularities.
While being of type III depends on the polygon, being a singularity only depends on the
quotient space X.

The fact that translations and the z 7→ −z map preserve almost every structure
imaginable on the plane (complex, metric, you name it) entails that translation and
half-translation surfaces come with a lot of structure, and part of the appeal of this
theory is that you can view it from so many different angles.

2.2 Main examples of translation surfaces

Before proceeding further, let us introduce our favorite examples. Probably the first
thing that comes to mind after seeing the definition is an even-sided, regular polygon.

The surface obtained by identifying opposite sides of a square is a torus.
The surface obtained by identifying opposite sides of a regular hexagon is also a

torus, as may be seen by computing the Euler characteristic: one two-cell (the hexagon
itself), three edges (one for each pair of opposite edges of the hexagon), and two vertices
(if the vertices of the hexagon are cyclically numbered, all even (resp. odd)-numbered
vertices are identified into one point), so the Euler characteristic is zero.

For n > 1, the surface obtained by identifying opposite sides of a regular 4n-gon has
genus n, with all vertices identified into one point, with a total angle (4n − 2)π. The
surface obtained by identifying opposite sides of a regular 4n+ 2-gon has genus n, with
two points of type III, both with angle 2nπ.

Another surface of interest is the double (2n+1)-gon, which, from the combinatorial
viewpoint, is the same as the regular 4n-gon, so it has genus n, with all vertices identified
into one point, with a total angle (4n− 2)π. See the double pentagon on Figure 2.

Our second main example is a generalization of the square: imagine that instead of
just one square, you have a finite collection of same-sized squares, each of which has its
edges labeled “right", “left", “top", “bottom", and glue each right (resp. left) edge with a
left (resp. right) edge, and each top (resp. bottom) edge with a bottom (resp. top) edge.
Such surfaces are called square-tiled, or sometimes origami. We have already seen
the one-squared surface, which is a torus. Two-squared surfaces are also tori (compute
the Euler characteristic). The first examples of genus 2 are three-squared (see Figure
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Figure 2: the double pentagon: different polygons, same surface

3). They have only one point of type III, with total angle 6π. A four-squared, genus 2
surface, with two points of type III, each with total angle 4π, is shown in Figure 4.

Note that according to common usage, square-tiled surfaces are translation surfaces,
so the Klein bottle and the sphere in Figure 1 are not square-tiled surfaces, even though
they are actually tiled by squares.

Unlike regular polygons, which are somewhat few and far between, square-tiled sur-
faces are swarming all over the place. In fact, any translation surface may be approxi-
mated, in a sense that will be made precise later, by square-tiled surfaces, just because
any line may be approximated uniformly by a stair-shaped broken line made of horizontal
and vertical segments.

A useful feature of square-tiled surfaces is that they are covers of the square torus,
ramified over one point. Of course there is nothing special about the square here, each
regular polygon comes with its own family of ramified covers.

It is usually not a good idea to try to vizualize the surface X in space, if only because,
having non-positive curvature, it does not embed isometrically in R3. Computing the
Euler characteristic is the way to go. It is interesting, however, when it lets you vizualize
a decomposition of the surface into flat cylinders. Figures 5, 6, and 7 show a topological
embedding into R3 of the surface on the left of Figure 3, called St(3) after [46]. Figures
8, 9, and 10 show a topological embedding into R3 of the surface of Figure 4, called
St(4) after [46].
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Figure 3: Two different three-squared surfaces of genus two, with St(3) on the left

2.3 Definition through an atlas

What if we took the property we have just proved as a definition? Let us say that a
translation surface is a compact manifold X of dimension two, such that there exists
a finite subset Σ = {x1, . . . , xk}, called the singular set of X, and an atlas of X, such
that the transition map between any two charts whose domains do not meet Σ is a
translation, and the transition map between a chart whose domain meets the singular
set, and a chart whose domain does not, is z 7→ zk for some k ∈ N. Is that an equivalent
definition? Meaning, from this data, can we extract a polygon with identifications, so
that when we perform the identifications, we get back the translation atlas?

Well, among the many structures translations preserve, there is the Euclidean metric.
Therefore we can equip our surface X \ Σ with a Riemannian metric which is locally
Euclidean, so its geodesics are locally straight lines. The Riemannian metric may not
extend to the whole of X, but the distance function does. In particular we can draw
geodesics between any two singularities (elements of Σ).

Now, draw geodesics between singularities, as many (but finitely many) of them as
you like, as long as the connected components of the complement in X of those geodesics
are simply connected. Being simply connected, they may be developed to the plane, to
polygons. Then, apply the construction of Subsection 2.1 to this polygon (remember, I
never said the polygon from which X is glued should be connected).

The atlas we obtain from gluing back may not be the same atlas we started with,
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Figure 4: St(4), a four-squared surface of genus 2, with two singularities

• • •

•

•

• •

•

• • •

•

•

• •

•

• •

Figure 5: Identifications for the surface St(3), stage 1

but they share a common maximal atlas. So, with the usual polite fiction of a manifold
as a maximal atlas, the new definition is equivalent to the first one.
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• • •

•

•

Figure 6: Identifications for the surface St(3), stage 2

Although we shall try to ignore it as much as possible, we have to mention the
following annoying

Fact 2.1. Given a homeomorphism f of the surface X, and an atlas (Ui, φi)i on X,
the charts φi may be pre-composed with f , thus giving a new atlas (Ui, φi ◦ f)i, which in
general is not compatible with the first one.

This fact is annoying because it only makes a difference if you tag each point in X
with a label and are interested in tracking each individual label. The usual way around
it is through another polite fiction: decide two maximal atlases are equivalent if they
may be deduced from each other by pre-composition with a homeomorphism (sometimes
it is convenient to restrict to homeomorphisms which are isotopic to the identity map).
Then define your structure as this most unfathomable object: an equivalence class of
maximal atlases.

2.4 Definition of a translation surface as a holomorphic differential

We have seen that a translation surface (as in our first definition) has a complex structure,
which is essentially a protractor (a way to measure angles between tangent vectors at
any point). But it actually has much more: a graduated ruler (since we can measure
distances), and a compass, whose needle points North, wherever you are, except at the
singular set. This is because our polygon is a subset of the Euclidean plane, so we can
choose any direction we want as the North, and since all identifications are translations

10
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•

Figure 7: Identifications for the surface St(3), stage 3

Figure 8: Identifications for the surface St(4), stage 1

11



Figure 9: Identifications for the surface St(4), stage 2

(except at the singular set), this goes down to the quotient space X. At a vertex of
P , the needle of the compass gets a little dizzy, but not in the same way as an actual
compass at the magnetic pole of the Earth would: while the latter has infinitely many
directions to choose from, our compass only has finitely many. If the angle around the
singular point xi is 2kπ, then there are, so to say, k different northes at xi.

Formally, the package (protractor, ruler, compass) is called a holomorphic, or
Abelian, differential, and usually denoted ω. If you have a complex manifold X, a
holomorphic differential is just, for every x ∈ X, the choice of a complex linear map
l(x) from the tangent space to X at x, to C, with the condition that l(x) depends
homomorphically on x. Our X’s have complex dimension one, and the only complex
linear maps from C to itself are the maps z 7→ λz, with λ ∈ C. When we think of the
identity as a holomorphic differential on C, we denote it dz, so we will usually think
of a holomorphic differential ω on X as f(z)dz, with f holomorphic, in local charts,
with the usual compatibility requirement that if two chart domains intersect, and ω
reads f(z)dz in one chart, and g(z)dz in the other, and T (z) is the transition map, then
f(T (z))T ′(z) = g(z) (f and g should be thought of as derivatives, since f(z)dz is a
differential, so we just apply the chain rule for derivatives).

If you would like to see it put another way: if x ∈ X, and v is a tangent vector to
X at x, and we have two different charts φ and ψ at x, such that ω reads f(z)dz in
the chart φ, and g(z)dz in the chart ψ, then ω(x).v reads f(φ(x))φ′(x).v in the chart
φ, and g(ψ(x))ψ′(x).v in the chart ψ. Since the evaluation of ω does not depend on
the chart, we have f(φ(x))φ′(x) = g(ψ(x))ψ′(x). Now let T be the transition map
φ ◦ ψ−1, then, setting z = ψ(x), we have f(T (z))φ′(ψ−1(z)) = g(z)ψ′(ψ−1(z)), which is
f(T (z))T ′(z) = g(z).

12



Figure 10: Identifications for the surface St(4), stage 3

Not every compact manifold has a non-zero holomorphic differential, for instance, if
you try and extend dz to the sphere CP 1, you get a double pole at infinity, so the needle
of your compass will act tipsy at infinity, like at the North Pole. Translation surfaces
are different from CP 1 : the holomorphic differential dz in the plane goes down to a
holomorphic differential on the quotient space X, albeit with zeroes. The order of the
zeroes is given by the angle at the singularities, as follows from the chain rule: if g is
a chart around a singular point, and f is a regular chart, then the transition map is
z 7→ zk, so kf(zk)zk−1 = g(z), in particular g has a zero of order k − 1 at the singular
point.

13



Assume ω reads g(z)dz in some chart (U, φ) at x0 ∈ X, with φ(x0) = 0 and g(0) 6= 0,
so we say that x0 is a regular point of ω. Then we may take a primitive of ω as a new
chart at x0:

ψ : V −→ C
x 7−→

∫ x
x0
ω

where V is some neighborhood of x0, with V ⊂ U . The map ψ is a local biholomorphism
because ω does not vanish at x0. Let G be the local primitive of g, defined in V , such
that G(0) = 0. Note that ψ(x) = G(φ(x)), so the transition map ψ ◦φ−1 between φ and
ψ is G. Thus, by the chain rule, assuming ω reads f(z)dz in the chart ψ, we have

f
(
ψ ◦ φ−1(z)

)
G′(z) = g(z)

so f is constant = 1, that is, ω reads dz in the chart ψ.
Now assume we have two different charts, at different, regular, points x and y, whose

domains intersect, and assume that in both charts ω reads dz. Let φ be the transition
map between the two charts. Then, by the chain rule, we have φ′ = 1, that is, φ is a
translation. Therefore, from a holomorphic differential, we recover a translation atlas,
thus proving the equivalence of our three definitions.

2.5 Definition of a half-translation surface as a quadratic differential

Now assume that instead of a translation surface, we have a half-translation surface.
What could play the role of a holomorphic differential in that case? Well, the z 7→ −z
map does not preserve the linear form dz, but it does preserve the quadratic form dz2.

If you have a complex manifold X, a holomorphic quadratic differential is to
a holomorphic differential what a quadratic form is to a linear form, so it is, for every
x ∈ X, the choice of a complex-valued quadratic form l(x) from the tangent space to
X at x, to C, with the condition that l(x) depends holomorphically on x. Our X’s
have complex dimension one, and the only complex-valued quadratic forms from C to
itself are the maps z 7→ λz2, with λ ∈ C. When we think of the square map as a
quadratic differential on C, we denote it dz2, so we will usually think of a holomorphic
quadratic differential ω on X as f(z)dz2, with f holomorphic, in local charts, with
the usual compatibility requirement that if two chart domains intersect, and ω reads
f(z)dz2 in one chart, and g(z)dz2 in the other, and φ(z) is the transition map, then
f(φ(z))(φ′(z))2 = g(z) (f and g should be thought of as squares of derivatives). Actually
we should be allowing simple poles for f as well, for instance the half-translation sphere
in Figure 1 has four simple poles, but we shall not dwell on that.

Note that given a holomorphic differential ω, written f(z)dz in local coordinates, the
formula f(z)2dz2 yields a quadratic holomorphic differential, so the set of holomorphic
differentials (modulo identification of a differential with its polar opposite) identifies with
a subset of the set of quadratic holomorphic differentials. It is a proper subset, however,
because not every holomorphic function is a square.

While not every quadratic differential is a square, every quadratic differential becomes
a square in a suitable double cover of X, by the classical Riemann surface construction of
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the square root function. For instance, the half-translation sphere in Figure 1 is covered,
twofold, by a 4-square torus, in fact the involution of the covering is the hyperelliptic
involution of the torus. It is often convenient to deal with translation surfaces only,
taking double covers when need be.

2.6 Dynamical system point of view

So far we have seen a translation surface as a geometric, or complex-analytic, object,
but it is interesting to view it as a dynamical system.

We have seen that the North is well-defined on a translation surface X, outside the
singularities; so we have a local flow φt on X, usually called the vertical flow, defined
by “walk North for t miles". The flow is complete (i.e well-defined for any t ∈ R) if we
remove the finite, hence negligible, union of orbits which end in a singularity (which we
call singular orbits).

Of course we can multiply our Abelian differential by eiθ for any θ, thus turning the
vertical by θ, so in fact we have a family of flows indexed by θ ∈ [0, 2π].

We ask the usual dynamical questions: are there periodic orbits? if so, can we
enumerate them? are there invariant measures not supported on periodic orbits? If so,
how many of them?

In the case of the square torus, the questions are readily answered: by taking the
first return map on a closed transversal, we see that the dynamical properties of the flow
in a given direction θ are those of a rotation on the circle. That is, when θ/π ∈ Q, every
orbit is periodic, with the same period.

When θ/π ∈ R \Q, every orbit is equidistributed, that is, the proportion of its time
it spends in a given interval is the proportion of the circle this interval occupies. In
particular the flow in the direction θ is uniquely ergodic, that is, it supports a unique
invariant measure, up to a scaling factor.

In the case of square-tiled surfaces, the answer is equally satisfying. Recall that any
square-tiled surface X is a ramified cover of the square torus, so the flow in the direction
θ on X projects to the flow in the direction θ on the square torus. Therefore, if θ/π ∈ Q,
every orbit of the flow in the direction θ on X projects to a closed orbit in the square
torus, so it must be periodic itself. The period need not be the same for all orbits,
though, for instance the vertical flow on X = St(3) has orbits of period 1 and 2 (see
Figure 3). In fact X = St(3), minus the set of singular orbits, is the reunion of two
cylinders, one made with orbits of length 2, and the other made of orbits of length 1.

The answer when θ/π ∈ R\Q is a bit trickier, because measures cannot be projected,
they may only be lifted, and it is unclear why every invariant measure in X should
be the lift of an invariant measure in the torus, but as in the torus case, orbits are
equidistributed.

This dichotomy between directions which are completely periodic, meaning that
the surface decomposes into cylinders of periodic orbits, and directions which are uniquely
ergodic, is called the Veech dichotomy. In the next sections we are going to see a pow-
erful criterion for unique ergodicity, and apply it to find a larger class of surfaces which
satisfy the Veech dichotomy.
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In general it is hard to prove that a given surface (say, the double pentagon) satisfies
the Veech dichotomy. On the other hand, it is easy to find a surface which does not
satisfy the Veech dichotomy (see Figure 11).

In [29] an example is given of a translation surface with a direction θ such that the
flow in the direction θ is minimal (every orbit is dense) but not uniquely ergodic, that
is, it supports several distinct invariant measures.

x

Figure 11: Take the surface St(3) and shear the top edge to the right by x, keeping the
same gluing pattern.The shaded square projects to the surface as a cylinder of vertical
periodic geodesics of length 1, while the rest projects to a cylinder where every vertical
geodesic is dense, if x is irrational.

3 Moduli space
Now that we know what a translation structure on a surface is, we would like to know
what it means for two translation structures to be the same, or almost the same. Same-
ness is easy to define, if hard to visualize, through atlases: we say two translation struc-
tures (as atlases) are equivalent if they share a common (equivalence class of) maximal
translation atlas. Observe that a necessary condition for sameness is that the number
of singular points, and the angle around each singular point, are the same.

It is a bit harder to see sameness from polygons, because two polygons which look
very different may yield the same surface after identifications, see Figure 2. The correct
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definition of sameness is that two polygons yield the same translation surface if one may
be cut and pasted into the other, provided the pieces are only re-arranged by translation
(no rotation or flip allowed).

It is not always easy to tell when two polygons do not yield the same surface, either.
The two polygons of Figure 3 are really different surfaces, because the one on the right
is foliated, in the vertical direction, by closed geodesics of length 3, while the one on the
left is not.

3.1 Strata

The previous discussion suggests lumping together all translation surfaces with the same
number of singularities, and equal angles around each singularities. The set of all such
translation surfaces is called a stratum (term coined by Veech [55], to be explained
later). It is usually denoted H(k1, . . . , kn), where 2π(ki + 1) is the angle around the i-th
singular point. For instance H(2) is the stratum of surfaces with only one singular point,
of angle 6π, while H(1, 1) is the stratum of surfaces with two singular points, each with
angle 4π.

Note that if two translation surfaces lie in the same stratum, they must have the
same genus. To see this, let us assume, to begin with, that X is obtained by identifying
the sides of a connected 2N -gon, with the vertices identifying into the n singularities of
an Abelian differential ω.

Then the Euler characteristic χ(X) of X is 1−N + n.
Let us say the angle around each singularity xi is 2(ki + 1)π, then the sum of the

interior angles of the polygon equals the sum of the angles around the singularities, that
is,

n∑
i=1

2(ki + 1)π = (2N − 2)π,

whence
n∑
i=1

ki = N − 1− n = −χ(X) = 2genus(X)− 2.

Now, assume thatX is obtained by identifying the sides of a 2N -gon with p connected
components, each with Ni vertices, for i = 1, . . . , p. Then

χ(X) = p− 1
2

p∑
i=1

Ni + n,

and the sum of the interior angles of the polygons is
p∑
i=1

(Ni − 2)π =
n∑
i=1

2(ki + 1)π

whence
n∑
i=1

ki = 1
2

p∑
i=1

Ni − p− n = −χ(X).
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For instance, the stratum H(0) consists of all flat tori. In genus 2, we have the strata
H(2) or H(1, 1), and those are the only strata of genus 2, because the only way the
number 2 can be partitionned is as 1 + 1 or 2 + 0. The surfaces in Figures 2 and 3 lie in
H(2), while the surface in Figure 4 lies in H(1, 1).

The regular 4n-gon, and the double (2n+ 1)-gon, lie in the stratum H(2n− 2). The
regular (4n+ 2)-gon lies in the stratum H(n− 1, n− 1). On the other hand, square-tiled
surfaces are dense in every stratum.

Now we want to define what it means for translation surfaces to be close, that is,
we are looking for a topology on the set of translation surfaces. In fact we can do even
better: we may find local coordinates on a given stratum, thus making the stratum
(almost) a manifold.

3.2 Period coordinates

Fix a basis for the Z-module H1(X,Σ,Z). Such a basis may be chosen as (the relative
homology classes of) α1, . . . , α2g, c1, . . . , cn−1, where g is the genus of X, α1, . . . , α2g are
simple closed curves (based at x1) which generate the absolute homology H1(X,Z), and
for each i = 1, . . . , n− 1, ci is a simple arc joining x1 to xi+1.
Definition 3.1. The period coordinates of the holomorphic differential ω, with respect
to the basis α1, . . . , α2g, c1, . . . , cn−1, are the 2g + n− 1 complex numbers∫

α1
ω, . . . ,

∫
α2g

ω,

∫
c1
ω, . . . ,

∫
cn−1

ω.

The complex numbers
∫
α1
ω, . . . ,

∫
α2g

ω are called the absolute periods of ω, because
the homology classes [α1] , . . . , [α2g] live in the absolute homology H1(X,Z), while the
complex numbers

∫
cn−1 ω, . . . ,

∫
cn−1

ω are called the relative periods of ω, because the
homology classes [c1] , . . . , [cn−1] live in the relative homology H1(X,Σ,Z).

Why this is actually a set of local coordinates on the stratum of X is a theorem
of [53] (see also [13], section 2.3, and also [59], 55). Let us briefly explain the idea.
Assume two holomorphic differential ω1 and ω2 lie in the same stratum and have the
same period coordinates. Assume that ω1 and ω2 are close enough, in some sense, that
they can be considered as smooth (not necessarily holomorphic) differential forms on
the same surface X (seen as a differentiable manifold), with the same homology basis
α1, . . . , α2g, c1, . . . , cn−1. Each holomorphic differential ω1 and ω2 gives you a Euclidean
metric on X, for which geodesic representatives of α1, . . . , α2g, c1, . . . , cn−1 can be found.
Cut X open along these geodesics, in each of the two Euclidean metrics, you get a pair
of 2(2g + 2n − 1)-gons whose sides are represented by the period coordinates of the
holomorphic differentials. Since ω1 and ω2 have the same period coordinates, the two
polygons are isometric, by a translation, so ω1 and ω2 give the same translation structure.

Example: assume (X,ω) is a square-tiled surface. Then the homology basis may be
chosen so that the curves α1, . . . , α2g, c1, . . . , cn−1 lie in the sides of the squares. Thus
the period coordinates lie in Z [i]. Conversely, if all period coordinates lie in Z [i], then
X may be cut into a plane polygon, all of whose vertices lie in Z [i], so X is actually a
square-tiled surface.
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3.3 Dimension of the strata

Thus we know the (complex) dimension of the stratum H(k1, . . . , kn) is 2g+ n− 1. The
largest stratum is the one with 2g − 2 singularities of index 1, its dimension is 4g − 3.
The smallest stratum is the one with only one singularity of index 2g− 2, its dimension
is 2g. The strata are not disconnected from each other, each stratum but the largest one
lies in the closure of one or several of the larger ones: for instance, if we have a sequence
(X,ωm) of translation surfaces in the stratum H(k1, . . . , kn), and

∫
c1
ωm −→ 0 when

m −→ ∞, then the limit surface lies in H(k1 + k2, k3, . . . , kn), because the singularites
x1 and x2 merge in the limit. This is the reason they are called strata, because they are
nested in each other’s closure, like matriochka. The union of all strata, with the topology
given by the period coordinates, is called themoduli space of translation surfaces of
genus g, denoted Hg. It contains the largest (or principal) stratum, denoted H(12g−2),
as a dense open subset, so its dimension is 4g − 3.

While the global topology of Hg is mysterious, we have a simple compactness cri-
terion (Mumford’s compactness theorem, [41]) for subsets of Hg: a sequence Xn

of elements of Hg, of uniformly bounded area, goes to infinity if and only if there exist
closed geodesics in Xn whose lengths go to zero.

3.4 Quadratic differentials

The theory of translation surfaces becomes much more interesting when you think about
it in connection with Teichműller theory.

The set of complex structures on surfaces of genus g is a well-studied object, going
back to Riemann (see [42], reprinted in [43], pp.88-144, or, for the faint of heart, [16]).
It is worth noting that Riemann actually got there when studying Abelian differentials.

It is called the moduli space of complex structures of genus g, and denoted
Mg. It has a topology, but actually it has much more structure than that, in fact it is,
except at some special points which correspond to very symetrical surfaces, a complex
manifold of dimension 3g− 3, provided g > 1. The genus one case is special and will be
discussed in more detail in Section 6.1. The cotangent space to moduli space at a given
X is the vector space of holomorphic quadratic differentials (see [16], Theorem 6.6.1).

Recall that we have just computed the dimension of Hg, which we found to be
4g − 3, while the cotangent bundle of Mg has dimension 6g − 6, so the squares of
Abelian differentials have codimension 2g − 3 in the space of quadratic differentials.

3.4.1 Dimension of strata of quadratic differentials

Following [23], we denote Qg the space of all quadratic differentials of genus g, and
Q(k1, . . . , kn) the set of quadratic differentials with n zeroes, of respective orders k1, . . . , kn,
which are not squares.

Computations identical to those of Subsection 3.1 show that Qg stratifies as the
union of Q(k1, . . . , kn), with k1 + . . .+ kn = 4g − 4.
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It is interesting to compute the dimension of the strata of non-square quadratic
differentials, because there is one notable difference with the Abelian case. In the case of
the Abelian stratum H(k1, . . . , kn) ⊂ Hg, we cut our surface into a 2(2g+n−1)-gon, and
basically said that sides being pairwise equal, you need 2g + n− 1 complex parameters
to determine an element of H(k1, . . . , kn). Let us try to apply the same argument to
quadratic differentials.

Let us take an element of Q(k1, . . . , kn), and cut it into a polygon, whose vertices
correspond to the singularities of the quadratic differential. Let us assume for simplicity
that the polygon is connected. Then the sum of the interior angles of the polygon equals
the sum of the angles around the singularities, which is∑n

i=1(ki+2)π. Thus the polygon
has ∑n

i=1(ki + 2) + 2 = 4g − 4 + 2n + 2 edges. Since the edges are pairwise equal, this
gives us 2g+ n− 1 complex parameters. But then, the largest stratum, with n = 4g− 4
and ki = 1, i = 1, . . . , 4g − 4, would have dimension 6g − 5, instead of 6g − 6 as befits
the cotangent bundle ofMg.

To understand this, we must take a closer look at how we identify the sides of a
polygon. Recall that we made the convention that we orient the sides of a polygon so
that the interior of the polygon lies to the left. With this convention, a necessary and
sufficient condition for plane vectors v1, . . . , vn to be the oriented edges of a polygon is
that v1 + . . .+ vn = 0.

Next, recall that we identify the sides in pairs, in such a way that the resulting
surface is orientable, so each edge is glued to another edge in such a way that the arrows
on the edges do not match.

Recall, furthermore, that we glue each edge to a parallel edge of equal length, so there
exists some permutation σ of {1, . . . , n} such that vσ(i) = ±vi, for all i = 1, . . . , n. Since
we must oppose the arrows when gluing, there are two possible cases: either vσ(i) = −vi,
in which case the two edges are glued by translation, or vσ(i) = vi, in which case the
edges are glued with a half-turn.

In the former case, we may choose vi freely without being constrained by the relation
v1 + . . .+ vn = 0, while in the latter case, it imposes a condition on vi:

−2vi = v1 + . . .+ v̂i + . . .+ v̂σ(i) + . . .+ vn

where the hats mean that vσ(i) and vi are omitted in the sum.
So, when some pair of sides is glued with a half-turn, this pair of sides is determined

by the others, so we lose one complex parameter. Now, saying that the quadratic
differential is not a square is precisely saying that some pair of sides is glued with a
half-turn, since we have seen that when every side is glued by translation, we get an
Abelian differential. Therefore, the dimension of the stratum Q(k1, . . . , kn) is 2g+n−2.

3.5 Another look at the dimension of Hg

Here is another way to understand the fact that dimHg = 4g−3. A translation structure,
or holomorphic differential, consists of the following data: a complex structure on a
surface X, and a complex-valued differential form, holomorphic for the given complex
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structure. As we have seen, a complex structure is determined by 3g − 3 complex
parameters.

Besides, the vector space of holomorphic (for a given complex structure) differentials
has complex dimension g. This is because, given a complex structure X, by the Hodge
theorem, the complex vector space H1(X,C), which has dimension 2g, is the direct
sum of two isomorphic summands, the subspace of holomorphic differentials, and the
subspace of anti-holomorphic differentials. Thus a translation structure is determined
by 3g − 3 + g = 4g − 3 complex parameters, and Hg may be viewed as a real vector
bundle overMg, with fiber H1(X,R).

4 The Teichműller geodesic flow

4.1 Teichműller’s theorem

Take two complex structures X1 and X2 of genus g. Then Teichműller’s theorem says
there exists a holomorphic quadratic differential q on X1, and a number t ∈ R, such
that, assuming for simplicity that q is the square of a holomorphic differential ω, the
1-differential form with real part etRe ω and imaginary part e−tIm ω is holomorphic
with respect to the complex structure X2.

Then one may define, at least locally, a distance function by d(X1, X2) := |t|, and
this distance comes with geodesics (shortest paths): if s ∈ [0, t], and Xs is the complex
structure which makes the complex differential with real part esRe ω and imaginary part
e−sIm ω holomorphic, then d(X1, Xs) = |s|, so the path s 7→ Xs is a geodesic.

Teichműller’s distance has an infinitesimal expression, like a Riemannian metric, and
more precisely, it is a Finsler metric (a Finsler metric is to a Riemannian metric what
a norm is to a Euclidean norm). This was discovered by Teichműller, see [49], p.26,
translated in [50], or just [16], Theorem 6.6.5.

A quadratic differential ω induces a Riemannian (flat except at the singularities)
metric on X, in particular it comes with a volume form, so it makes sense to evaluate
the total volume of X with respect to q, denoted Vol(X, q). The map (X, q) 7→ Vol(X, q),
restricted to the tangent space to Mg at X, is a norm: it is 1-homogeneous, positive
except at ω = 0, and satisfies the triangle inequality. The first two properties are
immediate, the last one may warrant a short proof.

First, observe that if the quadratic differential q is f(z)dz2 in some chart, then the
volume form of q, seen as a flat metric, is i

2 |f(z)| dz ∧ dz̄, because dz ∧ dz̄ = −2idx∧ dy.
This expression is coordinate-invariant, because if q is g(z)dz2 in some other chart, and
T is the transition map, then f(z) = g(T (z))T ′(z)2, so

|f(z)| dz ∧ dz̄ = |g(T (z))|T ′(z)T ′(z)dz ∧ dz̄ = |g(T (z))| (T ′(z)dz) ∧ (T ′(z)dz̄)

so the total volume of q may be calculated in local coordinates. Now, assume we have
two quadratic differentials q1 = f1(z)dz2 and q2 = f2(z)dz2, so q1 + q2 = (f1 + f2)dz2,
the triangle inequality in C yields |f1 + f2| ≤ |f1|+ |f2|, and, integrating over X, we get
Vol(X, q1 + q2) ≤ Vol(X, q1) + Vol(X, q2).
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This norm endowsMg with a metric: if we have a C1 path X(t) inMg, its derivative
Ẋ(t) is a quadratic differential, holomorphic at X(t), and we just say that the velocity
of X at time t is Vol(X, Ẋ(t)). This is not a Riemannian metric, because the norm is
not Euclidean, the specific name is Finsler metric. In any case it induces a geodesic flow
on the cotangent bundle ofMg: start at a complex structure X, in the direction given
by a quadratic differential ω, and go to Xt such that the complex quadratic differential
with real part etRe ω and imaginary part e−tIm ω is holomorphic with respect to the
complex structure Xt.

Most interesting to us here is the fact thatHg, which is a submanifold of the cotangent
bundle of Mg, is invariant by the geodesic flow. In fact, we shall see, in Part II, that
Hg is invariant by a much more interesting action.

4.2 Masur’s criterion

In dynamical systems, we have a saying, which goes “sow in the parameter space, reap
in the phase space". This is particularly relevant to translation surfaces, because the
parameter space Hg comes with so much structure: a geodesic flow, invariant measures,
affine coordinates... Masur’s criterion (possibly the single most useful result in the
theory) is a striking example.

Theorem 4.1 (Masur’s criterion, [28]). Given an Abelian differential ω, the orbit of ω
under the Teichműller geodesic flow is recurrent if and only if the vertical flow of ω is
uniquely ergodic.

The idea is very clearly explained in [39]. We’ll see several applications of Masur’s
criterion, here is one:

Theorem 4.2 ( [21]). Given an Abelian differential ω, for almost every θ, the vertical
flow of eiθω is uniquely ergodic.

Once we have Masur’s criterion, it is easy to get a weak version of Theorem 4.2:
for almost every Abelian differential ω, for almost every θ, the vertical flow of eiθω is
uniquely ergodic. The proof is basically just Poincaré’s Recurrence Theorem. Of course,
to apply it we need an invariant measure of full support and finite total volume, so we
apply it, not on Hg, but on the subset H1

g ⊂ Hg of Abelian differentials of area 1. It is
a theorem by Masur and Veech ( [27], [52]) that the Lebesgue measure induced on H1

g

by the period coordinates has finite total volume.

Part II

Orbits of the GL+
2 (R)-action

Every translation surface may be viewed as a polygon in the Euclidean plane with parallel
sides of equal length pairwise identified. The group GL+

2 (R) acts linearly on polygons,
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mapping pairs of parallel sides of equal length to pairs of parallel sides of equal length,
so it acts on translation surfaces.

Let us take a basis B = (α1, . . . , α2g, c1, . . . , cn−1) of H1(X,Σ,Z). If we cut X into
a polygon along the curves α1, . . . , α2g, c1, . . . , cn−1, the period coordinates of (X,ω) in
the basis B are the sides of the polygon (identifying a complex number and its affix).
So, if A ∈ GL+

2 (R), the period coordinates, in the basis B, of the surface A.(X,ω), are
the complex numbers

A.

∫
α1
ω, . . . , A.

∫
α2g

ω,A.

∫
c1
ω, . . . , A.

∫
cn−1

ω,

where A acting on a complex numbers means that it acts on its affix. The matrix A
induces a homeomorphism (which is actually a diffeomorphism outside the singularities),
from the translation surface (X,ω), to the surface A.(X,ω).

First, let us observe that strata are invariant under GL+
2 (R). This is because acting

by an element of GL+
2 (R) on a polygon does not change the order in which sides are

identified, which determines the singularities, and the angles around the singularities.
The SL2(R)-action contains the geodesic flow, in the following sense: the geodesic,

with respect to the Teichműller metric, which has initial position X, and initial velocity
ω, is the orbit of (X,ω) under the diagonal subgroup of SL2(R),{(

et 0
0 e−t

)
: t ∈ R

}
.

It is usually preferred to deal with the GL+
2 (R)-action rather than with the geodesic

flow, for the following reason, which is a theorem by Eskin and Mirzakhani [10], hence-
forth referred to as the Magic Wand, after [61]. While the invariant sets for the geodesic
flow may be wild (for instance, Teichműller disks contain geodesic laminations, which
are locally the product of a Cantor set with an interval), the closed invariant sets of the
GL+

2 (R)-action are always nice submanifolds (again, ignoring singularities which occur at
very symmetrical surfaces), locally defined by affine equations in the period coordinates.
Any attempt at informally describing the proof, assuming the author could do it, would
be as long as this paper. A recurring theme is the analogy with Ratner’s theorems.

Now, by a result by Masur and (independantly) Veech ( [27, 52]), the geodesic flow
is ergodic, with respect to a measure of full support in Hg, so almost every orbit is
dense; consequently, almost every GL+

2 (R)-orbit is dense. In fact, any stratum supports
a full-support, ergodic measure. This means finding interesting (meaning: other than
strata closures and Hg itself), closed invariant subsets won’t be easy.

5 Veech groups
It may happen that for some polygon P and some element A of GL+

2 (R), both P and
A.P , after identifications, are just the same translation surface X. This happens when
A.P can be cut into pieces, and the pieces re-arranged, by translations, into A.
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The Veech group of (X,ω) is the subgroup of GL+
2 (R) which preserves X. Since

the Veech group must preserve volumes, it is a subgroup of SL2(R), and it turns out
to be a Fuchsian group (see [18], Lemma 2). We sometimes denote it SL(X,ω) after
McMullen.

Take a matrix A in SL(X,ω), then it defines a homeomorphism from X to it-
self, which we again denote A for simplicity. Let A∗ be the linear automorphism of
H1(X,Σ,Z) induced by A. Then the period coordinates of (X,ω), in a basis B of
H1(X,Σ,Z), are exactly the period coordinates of A.(X,ω) in the basis (A∗)−1(B).
Thus, modulo a change of basis, the set of periods is invariant under the Veech group.

Note that SL(X,ω) is never cocompact, by the following argument: a translation
surface always has a closed geodesic, for topological reasons; up to a rotation, we may
assume this geodesic is horizontal. Let l be its length. Applying the Teichműller geodesic
flow for a time t, the length of the closed geodesic becomes e−tl, so the Teichműller
geodesic goes to infinity in the moduli space, therefore SL2(R)/SL(X,ω) cannot be
compact.

The next best thing to being co-compact is to have finite co-volume, Veech groups
of finite co-volume are going to play an important part. Note that for a Fuchsian group
Γ to have finite co-volume, its ends at infinity must be finitely many cusps (see Section
4.2 of [20]).

Now let us see some examples.

5.1 The Veech group of the square torus is SL2(Z)
Figure 12 shows that the matrices

T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)
,

which generate SL2(Z), lie in the Veech group of the square torus. Conversely, every
element of the Veech group preserve the set of periods, so, in the case of the torus, it
must preserve Z [i], hence it must lie in SL2(Z).

5.2 Veech groups of the regular polygons

It is obvious that the rotation by π/n is in the Veech group of the regular 2n-gon. If
you view the double (2n+ 1)-gon as a star, as in Figure 2, you see that the rotation by
2π/(2n+ 1) is in the Veech group of the double (2n+ 1)-gon.

Figure 13 explains how to find a parabolic element in the Veech group of the regular
n-gon: first, the regular n-gon may be cut and pasted into a slanted stair-shape. Then
the matrix (

1 −2 cot πn
0 1

)
brings the slanted stair-shape to its mirror image with respect to the vertical axis, and
the mirror image may be cut and pasted back to a regular n-gon.
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(
0 −1
1 0

)

(
1 1
0 1

)
cut

paste

Figure 12: Action of T and S on the torus T2
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Figure 13: The octagon is cut and pasted into a slanted stair shape

In fact, Veech proved in [54] that the Veech groups of the aforementionned surfaces
are generated by the rotation, and by the parabolic element.

5.3 Veech groups of square-tiled surfaces

The Veech group of a square-tiled surface, if we assume that the squares are copies of
the unit square in R2, is a subgroup of SL2(Z), because any element of the Veech group
must preserve the set of periods, hence it must preserve Z [i]. In fact it has finite index
in SL2(Z) (see [14]).

Figure 15 shows why the parabolic element T 2 lies in the Veech group of the surface
St(3). Figure 14 shows why the parabolic element T does not lie in the Veech group
of the surface St(3), in fact it takes St(3) to the surface on the right in Figure 3. The

25



Veech group of St(3) is generated by T 2 and S, the rotation of order 4. It has index 3
in SL2(Z), the right cosets are those of id, T and its transpose.

In [45] an algorithm is given to compute the Veech group of any square-tiled surface.
It is implemented in the Sagemath package [9].
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Figure 14: Action of T on St(3)
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6 Teichműller disks
The orbit of (X,ω) under GL+

2 (R), or, more properly, its projection to the Teichműller
space Tg, is called the Teichműller disk of (X,ω). The concept (under the name
“complex geodesic", which is still used sometimes) originates in [49], § 121. Here is why
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Figure 15: Action of T 2 on St(3)
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it is called a disk.
Observe that if ω is a holomorphic differential on a Riemann surface X, and A ∈

GL+
2 (R) is a similitude, then A.ω is still holomorphic with respect to the complex struc-

ture of X, so if we are looking at the projection to the Teichműller space Tg, the action
of GL+

2 (R) factors through the quotient space of GL+
2 (R) by similitudes. Recall that

said quotient space is the hyperbolic disk H2.
The Teichműller curve of (X,ω) is the quotient of the hyperbolic disk H2 by

SL(X,ω), which is a Fuchsian group. The fact that SL(X,ω) is a Fuchsian group tells
us that this quotient is a hyperbolic surface, possibly with some conical singularities at
symmetrical surfaces (any symmetry of X is an element of SL(X,ω) which fixes X).

Since the GL+
2 (R)-action contains the Teichműller geodesic flow as a subgroup action,

Teichműller curves, which are GL+
2 (R)-orbits, are invariant under the geodesic flow.

Furthermore, Teichműller curves, as hyperbolic manifolds, are isometrically embedded
inMg (see [44]).

Figure 14 shows that the two surfaces of Figure 3 lie in the same Teichműller curve.

6.1 Example: the Teichműller disk of the torus

The Teichműller disk of the torus is special because it is also the Teichműller space of
the torus.

A torus, as a complex curve, is C/Λ, where Λ = Zu⊕ Zv is a lattice in R2, u and v
being two non-colinear vectors in R2. Since Zu ⊕ Zv = Zv ⊕ Zu, we may assume that
(u, v) is a positive basis of R2. Thus the matrix M whose columns are the coordinates
of u and v, in that order, lies in GL+

2 (R). The Abelian differential we consider on C/Λ

is dz = dx+ idy. A matrix A =
(
a b
c d

)
∈ GL+

2 (R) acts on dz by pull-back :

∀
(
x
y

)
∈ R2, A∗dz

(
x
y

)
= dz

(
A.

(
x
y

))
= dz

(
ax+ by
cx+ dy

)
= ax+ by + i(cx+ dy)

so A∗dz = a.dx + b.dy + i(c.dx + d.dy). The definition of the pull-back means that the
complex 1-form A∗dz on C/Λ, which is non-holomorphic unless A happens to be C-linear,
becomes the Abelian differential dz on the torus C/A.Λ, where A.Λ = ZA.u⊕ ZA.v.

Let (e1, e2) be the canonical basis of R2. The straight segments {tei : 0 ≤ t ≤ 1},
for i = 1, 2, become closed curves in C/Z2 = C/Ze1 ⊕ Ze2. We again denote e1 and
e2, respectively, the homology classes of those closed curves. For any torus C/Λ, with
Λ = Zu ⊕ Zv, M ∈ GL+

2 (R) being the matrix whose columns are the coordinates of u
and v, in that order, M may be viewed as a diffeomorphism from C/Z2 to C/Λ. This
allows us to consider (e1, e2) as a basis of H1(C/Λ,R): e1 (resp. e2) is the homology
class of the closed curve {tu, resp. tv : 0 ≤ t ≤ 1} in C/Λ.

We compute period coordinates in the basis (e1, e2), and since ω = dz, the period
coordinates of C/Λ are z(u) and z(v), where z(u) is the complex number whose affix is
u. So, considering periods as vectors in R2, GL+

2 (R) acts on periods linearly on the left.
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If φ : R2 −→ R2 is a similarity (a non-zero C-linear map), then C/Λ and C/φ(Λ) are
bi-holomorphic. So, if we are interested in the projection of the Teichműller disk to the
moduli space of complex structures, we might as well consider the quotient of GL+

2 (R)
by the subgroup H of similarities, acting on the left. Beware that GL+

2 (R) must then
act on the quotient from the right.

Say two matrices M1,M2 ∈ GL+
2 (R) are equivalent under H if there exists P =(

a c
−c a

)
∈ H, such that PM1 = M2. We use the following representative of an equiva-

lence class:
if u =

(
a
c

)
, v =

(
b
d

)
,M =

(
a b
c d

)
∈ GL+

2 (R), then

1
a2 + c2

(
a c
−c a

)(
a b
c d

)
= 1
a2 + c2

(
1 ab+ cd
0 ad− bc

)
.

Observe that the matrix 1
a2+c2

(
a c
−c a

)
, viewed as a map from C to C, is z 7→ 1

z(u)z. Ge-

ometrically, this means that the complex number which represents (the biholomorphsm
class of) C/Λ, where Λ = Zu ⊕ Zv, is just [z(u) : z(v)] ∈ CP 1, so the canonical repre-
sentative is

[
1 : z(v)

z(u)

]
∈ CP 1.

Since (u, v) is a positive basis of R2, z(v)
z(u) lies in the upper half-plane H2, so we have

a bijection
Ψ : H\GL+

2 (R) −→ H2.

Take an element of H\GL+
2 (R), represented by a matrix

(
1 x
0 y

)
, and an element(

a b
c d

)
of GL+

2 (R). Then, recalling that GL+
2 (R) acts on the quotient from the right,

M :=
(

1 x
0 y

)(
a b
c d

)
=
(
a+ cx b+ dx
cy dy

)
.

Set z = x + iy, so the affixes of the columns of the matrix M are a + cz and b + dz,
then the map Ψ takes the equivalence class of the matrix M to the point dz+b

cz+a in H2.
This means that the map Ψ is equivariant, with respect to the right action of GL+

2 (R)
on right cosets, and the right action of GL+

2 (R) on H2 defined by

H2 ×GL+
2 (R) −→ H2 (1)(

z,

(
a b
c d

))
7−→ dz + b

cz + a
. (2)
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6.1.1 Hyperbolic metric vs. Teichműller metric

So far we have identified the Teichműller disk of the torus with the hyperbolic plane.
We already know that the Veech group of the square torus is SL2(Z), so the Teichműller
curve of the torus is the modular curve H2/SL2(Z) (more on which can be found in [1]).

The hyperbolic plane, as a set, is not particularly interesting; what is interesting
about it is the hyperbolic metric. We shall now see that Teichműller’s metric, on the
Teichműller space of the torus viewed as the hyperbolic plane, is precisely the hyperbolic
metric, up to a multiplicative factor, which we shall ignore.

We shall use the fact that the hyperbolic metric, up to a multiplicative factor, is the
only Finsler metric on H2 invariant under the action of SL2(R). This is because SL2(R)
acts transitively on the tangent bundle of H2, so once we know the length of one tangent
vector at some point, we know the length of every tangent vector, at every point.

By the equivariance of the map Ψ, and since we are not interested in the multiplicative
factor, all we have to check is the invariance of the Teichműller metric under the action
of SL2(R).

Now recall the Teichműller norm, on the fiber, over X, of the holomorphic quadratic
differential bundle, is just the total area. Since SL2(R) preserves area, it preserves the
Teichműller metric. Thus we have proved that the Teichműller metric is a multiple of
the hyperbolic metric on H2. This was originally observed in § 5 of [49].

6.1.2 Hyperbolic geodesics

Let us investigate a little bit the relationship between hyperbolic geodesics and flat tori.
The subgroup

G :=
{
gt =

(
et 0
0 e−t

)
: t ∈ R

}
of SL2(R) is mapped by Ψ to the geodesic

R −→ H2

t 7−→ e−2ti.

For any A =
(
a b
c d

)
∈ SL2(R),

GA =
{(

eta etb
e−tc e−td

)
: t ∈ R

}

is mapped by Ψ to the geodesic

R −→ H2

t 7−→ e2tab+ e−2tcd+ i(ad− bc)
e2ta2 + e−2tc2
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whose endpoints at infinity are b
a and d

c .
Here is a geometric interpretation of the endpoints. Consider the complex differential

form η := A∗dz = a.dx+ b.dy + i(c.dx+ d.dy). Then, for any t ∈ R,

(gtA)∗dz = et<η + ie−t=η,

that is, et<η + ie−t=η is holomorphic on the torus C/Λ, where Λ = gt.A.Z2. So η2

is the quadratic differential given by Teichműller’s theorem (see 4.1), associated with
the geodesic Ψgt., whose real part is contracted along the geodesic, while its imaginary
part is expanded. The endpoints at infinity of the geodesic are the (reciprocals of the
opposites of the) slopes of the respective kernels of the real and imaginary parts of η.

6.1.3 Horocycles

The subgroup

N :=
{
nt =

(
1 t
0 1

)
: t ∈ R

}
of SL2(R) is mapped by Ψ to the horocycle

R −→ H2

t 7−→ i+ t.

For any A =
(
a b
c d

)
∈ SL2(R),

NA =
{(

a+ tc b+ td
c d

)
: t ∈ R

}
is mapped by Ψ to the horocycle

R −→ H2

t 7−→ (a+ tc)(b+ td) + cd+ i(ad− bc)
(a+ tc)2 + c2

whose endpoint at infinity is d
c , and whose apogee is d

c + iad−bc
c2 .

The pull-back, by ntA, of the real 1-form dy, is c.dx+ d.dy, because

(ntA)∗dy
(
x
y

)
= dy

(
ntA

(
x
y

))
= dy

(
(a+ tc)x+ (b+ td)y

cx+ dy

)
= cx+ dy,

in particular (ntA)∗dy is constant along the horocycle Ψ (NA). The point at infinity of
the horocycle is (minus the reciprocal of) the slope of the kernel of the constant 1-form.

The reason for the annoying recurrence of "minus the reciprocal of..." is that the

matrix
(
d b
c a

)
is conjugate, by

(
1 0
0 −1

)
, which acts on the hyperbolic plane by z 7→ −z,

to the inverse matrix A−1 =
(
d −b
−c a

)
.
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If d
c ∈ Q, then all the closed geodesics whose velocity vectors are tangent to the

kernel of c.dx+ d.dy are closed, and of length c2 + d2. So the torus ntA, for t ∈ R, may
be seen as a cylinder of girth c2 + d2, with the boundaries identified. When t varies in
R, the identification varies but the closed geodesics remain fixed.

6.1.4 Relationship between the asymptotic behaviour of hyperbolic geodesics,
and the dynamic behaviour of Euclidean geodesics

The set of slopes of closed geodesics in C/Z2 is Q. The Veech group SL2(Z) acts tran-
sitively on Q. Given a hyperbolic geodesic t 7→ γ(t) in the modular surface H2/SL2(Z),
the following four points are equivalent:

• γ(t) goes to infinity in H2/SL2(Z), when t→∞

• the lifts of γ to H2 have a rational endpoint when t→∞

• all orbits of the vertical flow of the Abelian differential associated with γ are closed

• γ is invariant under the parabolic subgroup of SL2(Z) generated by
(

1 0
1 1

)
.

6.2 Examples of higher genus Teichműller disks

6.2.1 Three-squared surfaces

The Veech group of the surface St(3) is an index 3 subgroup of SL2(Z). It has a
fundamental domain which is an ideal triangle in H2, with ideal vertices −1, 1,∞. The
parabolic transformation T 2 identifies the two vertical boundaries, and the rotation S
identifies the two halves of the semi-circular boundary. The point i, which corresponds
to the identity matrix, that is, to the surface St(3) itself, is a singular point: a conical
point with angle π. This is because it is invariant by S, which acts as the involution
z 7→ −1

z on the hyperbolic plane. The other two three-squared translation surfaces,
which correspond to the matrices T and ST , are both (since the induce the same complex
structure) mapped by Ψ, as defined in Subsection 6.1, to the point 1+i (which is identified
with 1− i by T 2).

The Teichműller curve of St(3) has two cusps, one at∞, and the other at ±1 (which
become the same point in the Teichműller curve). Since St(3) is square-tiled, the set of
slopes of closed geodesics is Q. The difference with the torus is that the Veech group
does not act transitively on Q, it has two orbits, one for each cusp. The orbit of ∞
consists of all fractions p

q , with p 6= q mod 2. The orbit of ±1 consists of all fractions
p
q , with p = q = 1 mod 2.

The first cusp is called a two-cylinder cusp, while the second cusp is called a one-
cylinder cusp, for the following reason. If a geodesic, in the Teichműller curve, escapes
to infinity in the two-cylinder cusp, then any lift of this geodesic to H2 corresponds, by
Teichműller’s theorem, to a quadratic differential, the trajectories of whose real part are
closed, and decompose St(3) into two cylinders of closed geodesics. For instance, the
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vertical direction admits two cylinders, one obtained by identifying the green boundaries
in Figure 5 is made of vertical closed geodesics of length 2, and the other, obtained by
identifying the blue boundaries in Figure 5 is made of vertical closed geodesics of length
1. If a geodesic, in the Teichműller curve, escapes to infinity in the one-cylinder cusp,
then any lift of this geodesic to H2 corresponds, by Teichműller’s theorem, to a quadratic
differential, the trajectories of whose real part are closed, pairwise homotopic, and of
equal length. For instance, all geodesics in the 45° direction, except those that hit the
singular point, are closed and of length 3

√
2.

See [6] for more on this Teichműller curve. Note that the three-squared Teichműller
curve has genus zero, topologically it is a sphere minus two points, one for each cusp.
The genus, and the number of cusps, of Teichműller curves of square-tiled surfaces may
be arbitrarily large. See [17] for the stratum H2; given a square-tiled surface in any
stratum, the genus and number of cusps of its Teichműller curve may be computed
with [9].

6.2.2 Regular polygons

We have seen that the Veech group of the regular polygons is generated by a parabolic
element, and a rotation. The Veech group of the double 2n + 1-gon has a fundamental
domain which looks like Figure 16, left. It has only one cusp, at infinity in Figure
16. This is reflected in the fact that the Veech group acts transitively on the set of
directions of closed geodesics. It is an n-cylinder cusp, meaning that in any direction of
closed geodesic, the surface decomposes into n cylinders.

The point (0, 1) in Figure 16, left, is the image by Ψ of the identity matrix, that
is, the double 2n + 1-gon. In the Teichműller curve it is singular, more precisely it is
a conical point with angle 2π

2n+1 . This reflect the fact that the double 2n + 1-gon is
invariant by a rotation of order 2n+ 1.

The corner of coordinates (± cot π
2n+1 , y), is the image by Ψ, when n = 2, of the

golden L (see [8]), and when n > 2, of stair-shaped polygons (see [26]). Those polygons
are invariant by S, which acts as the involution z 7→ −1

z on the hyperbolic plane, this is
why the corner becomes a conical point with angle π in the Teichműller curve.

The main difference between the Teichműller curve of the double 2n + 1-gon, and
Teichműller curve of the regular 4n-gon, is that the latter has two cusps, at ∞ and
(± cot π

4n , 0) on Figure 16, right. See [47] for more on the Teichműller curve of the
regular octagon, where the fundamental domain is drawn in the hyperbolic disk rather
than in the hyperbolic half-plane.

The Teichműller curve of the octagon, however, is different from the three-square
Teichműller curve, in that both cusps are two-cylinders, meaning that if a geodesic, in
the Teichműller curve, escapes to infinity in any cusp, then any lift of this geodesic to
H2 corresponds, by Teichműller’s theorem, to a quadratic differential, the trajectories
of whose real part are closed, and decompose the octagon into two cylinders of closed
geodesics.

Then, you may ask, how do we distinguish between the cusps ? First, look at the
horizontal direction in the octagon (Figure 13). We leave it to the reader to check that

33



the cylinder made up with the triangles 5 and 6 has height 1 and length 1 +
√

2, while
the cylinder made up with the triangles 1, 2, 3 and 4 has height 1√

2 and length 2 +
√

2.
The module of a cylinder is the ratio of its height to its length. So we see that

for the horizontal direction, the ratio of the modules of the cylinders is 2. What is
important about this ratio of modules, is that it is invariant by GL+

2 (R), simply because
linear maps, while they may not preserve length, preserve ratios of length of collinear
segments. Now we leave it to the reader to check that in the direction of the short red
diagonal, one cylinder is made up of the triangles 1 and 2, while the other is made of
triangles 3, 4, 5, 6, and the ratio of their modules is not 2. This means that no element of
the Veech group takes the horizontal direction to the direction of the short red diagonal,
so the Veech group, acting on the set of directions of closed geodesics, has at least two
orbits, therefore there are at least two cusps.

7 Veech surfaces
When facing a daunting dynamical system, and looking for closed invariant sets, the
first thing to do is to look for small closed invariant sets: if your dynamical system is an
R-action (a flow), you are going to look for fixed points, or periodic orbits. In the case
of an action by a larger group, you are going to look for closed (topologically speaking)
orbits. If the GL+

2 (R)-orbit of a holomorphic differential (X,ω) is closed in Hg, we say

(0, 1)

(cot π
2n+1 , y)(− cot π

2n+1 , y)

(0, 1)

(cot π
4n , 0)(− cot π

4n , 0)

Figure 16: Fundamental domains for the Veech groups of the double 2n+ 1-gon, on the
left, and the 4n-gon, on the right. The number y is such that the circular boundary
meets the vertical boundary perpendicularly. The angle at the point (0, 1) is 2π

2n+1 (left),
and π

2n (right).
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(X,ω) is a Veech surface.

7.1 The Smillie-Weiss theorem

What Veech was after was Veech groups with finite co-volume. Later it was proved
in [48] that having a closed Teichműller disk is equivalent to having a finite-covolume
Veech group.

What follows, while very far from a proof, is meant to convey a bit of the idea.
First, let us assume that for some Abelian differential (X,ω), Γ = SL(X,ω) has finite

co-volume in H2. Then SL2(R)/Γ consists of a compact part K and finitely many cusps
C1, . . . , Cn (see [20]). Therefore K.(X,ω) is compact, so it is closed in Hg, and Ci.(X,ω)
is closed in Hg unless there exists a sequence An of matrices in Ci, which converges to
infinity in SL2(R), and such that An.(X,ω) does not go to infinity in Hg. But recall that
every cusp of H2/Γ is stabilized by a parabolic element of the Veech group, which in
turns yields a decomposition of X into cylinders of closed geodesics. When An goes to
infinity, since An ∈ Ci, the length of the closed geodesics must go to zero, which means
that An.(X,ω) leaves every compact set of Hg.

Conversely, let let us assume that for some Abelian differential (X,ω), the orbit
GL+

2 (R).(X,ω) is closed inHg. First, let us observe that since GL+
2 (R).(X,ω) is closed in

Hg, the embedding of SL2(R)/Γ intoHg is proper (the inverse image of any compact set is
compact). This can be seen from the Magic Wand Theorem of [10]: since GL+

2 (R).(X,ω)
is closed, it must be an embedded submanifold, in particular, it is properly embedded.
This means that the ends at infinity of GL+

2 (R).(X,ω) in Hg are exactly the images in
Hg of the ends at infinity of SL2(R)/Γ.

Now let us ask ourselves, what kind of ends at infinity a closed Teichműller disk may
have?

The first two examples that come to mind are a hyperbolic funnel (an end at infinity
of a quotient of the hyperbolic disk by a hyperbolic element), and a cusp (the thin end a
quotient of the hyperbolic disk by a parabolic element). One difference between the two
is that the former has infinite volume, while the latter has not. Another difference is that
geodesics that go to infinity in a cusp are all asymptotic to each other, while there exists
a point x in H2, and an open interval I of directions such that any geodesic going from
x with direction in I goes to infinity in the funnel. Now we apply Theorem 4.2: among
those directions, there must be a uniquely ergodic one, let us call it θ (meaning that
the vertical flow of eiθω is uniquely ergodic). But then, by Masur’s Criterion, geodesics
corresponding to uniquely ergodic directions do not go to infinity. This contradiction
shows that the ends at infinity of a Teichműller disk are cusps.

Of course, we also have to prove that there are but finitely many cusps. Note that
by [19], a Veech group may be infinitely generated, but in that case it is not the Veech
group of a Veech surface. Here we draw the Magic Wand again: orbits closures are
algebraic subvarieties of Hg, so orbit closures of dimension one cannot have infinitely
many cusps. Now, since cusps have finite volume, a closed Teichműller disk is the union
of a compact part, and finitely many cusps, so it has finite volume.
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7.2 The Veech alternative

The Veech alternative (see [54]) is another great example of sowing in the parameter
space and reaping in the phase space. It says that every direction on a Veech surface
is either uniquely ergodic, or completely periodic. This means that if (X,ω) is a Veech
surface, for every θ ∈ R, the vertical flow of (X, eiθω) is either uniquely ergodic, or every
orbit which does not hit a singularity is periodic. Beware this does not mean the flow
itself is periodic, for the periods of the orbits may not be commensurable.

Let us give some flavour of the proof. Assume the vertical flow on a Veech surface
(X,ω) is not uniquely ergodic, so the orbit of ω under the Teichműller geodesic flow
goes to infinity. Now, since (X,ω) is a Veech surface, the only ends at infinity of its
Teichműller disk are cusps; and a geodesic which goes to infinity in a cusp must be
invariant by the parabolic element which generates the cusp.

7.2.1 Examples of Veech surfaces

The first examples found, by Veech ( [54]), are the surfaces obtained by identifying
opposite sides of a regular 2n-gon.

Once people got interested in Veech surfaces, it was immediately realized (see [14])
that square-tiled surfaces are Veech surfaces, just because their Veech groups are (con-
jugate to) subgroups of SL2(Z), which has finite co-volume.

In general, finding the Veech surfaces in a given stratum is a hard problem. However,
in genus two, it was solved by McMullen in [31–36], see Subsection 8.2.

8 Classification of orbits in genus two
The Magic Wand, magic as it is, does not tell us everything about the orbit closures.
For instance, in most strata, all we know is that

• by ergodicity, almost every orbit is dense

• the union of all orbits of square-tiled surfaces (each of which is closed) is dense.

When are there orbit closures of intermediate dimension? Are there closed orbits (i.e.
Veech surfaces) besides those of square-tiled surfaces? Speaking of square-tiled surfaces,
how do they distribute in Teichműller disks? For instance, could it be that each square-
tiled surface is the only square-tiled surface in its Teichműller disk?

The answers are known in genus two: we have a complete list of non-square-tiled
Veech surfaces ( [4], [32]), a complete list of orbit closures of intermediate dimension
( [33]), and, in the stratum H(2), a complete list of orbits of primitive (more on this
later) square-tiled surfaces ( [17]).

8.1 Square-tiled surfaces

Observe that a square may be subdivided into little rectangles, and then we may use some
matrix in GL2(R) to square the rectangles, so a square-tiled surface may be square-tiled
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in many ways.
Following [17], we say a square-tiled surface is primitive if it is not obtained from

another square-tiled surface by subdivising squares into rectangles and then applying a
matrix to square the rectangles.

Then [17] says that for n > 4, there are exactly two Teichműller disks of primitive
n-square surfaces H(2). For n = 3, 4, there is only one Teichműller disk of primi-
tive n-square surfaces. Each Teichműller disk contains finitely many primitive n-square
surfaces, the exact number is given by the index of the Veech group in SL2(Z). In
genus two it turns out that this index is never 1, however, there exist square-tiled sur-
faces of higher genus whose Veech group is SL2(Z) (see “Eierlegende Wollmilchsau" and
“Ornythorynque" in [13]). Even in genus two the situation is not fully understood, for
instance, we don’t know how many Teichműller disks of primitive n-square surfaces there
are in H(1, 1).

8.2 A homological detour

8.2.1 The tautological subspace

Since the complex-valued 1-form ω is holomorphic, the real-valued 1-forms <(ω) and
=(ω) are closed, by the Cauchy-Riemann relations. We denote S the 2-dimensional
subspace of H1(X,R) generated by the cohomology classes of <(ω) and =(ω).

Recall that H1(X,R) has a symplectic structure: let [X] ∈ H2(X,R) be the funda-
mental class, then

∀a, b ∈ H1(X,R),∃c ∈ R, a ∧ b = c [X] .

The symplectic 2-form is then defined as (a, b) 7→ c. It is Poincaré dual to the intersection
form (the bilinear form Int on H1(X,Z) such that Int(h, k) is the total intersection,
counted with signs, of any two representatives of h and k in transverse position) on
H1(X,R), that is, if P : H1(X,R) −→ H1(X,R) is the Poincaré map, then

∀h, k ∈ H1(X,R), P (h) ∧ P (k) = Int(h, k) [X] .

The subspace S is symplectic, meaning that the 2-form . ∧ ., restricted to S × S, is
non-degenerate. Indeed, recall that in an appropriate chart, ω = dz = dx+ idy, so

<(ω) ∧ =(ω) = dx ∧ dy.

The symplectic orthogonal S⊥ of S is the set of cohomology classes c such that c∧<(ω) =
c∧=(ω) = 0. We leave it as an exercise for the reader that in a symplectic vector space,
the symplectic orthogonal of a symplectic subspace is also symplectic.

Now let us take a look at how the Veech group Γ acts on S. Let γ be an element of Γ,

and let
(
a b
c d

)
∈ SL2(R) be the matrix of the derivative of γ, seen as a diffeomorphism

of X minus its singular set. Let (x, y) be a point in X, in local coordinates, and let
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(u, v) be a tangent vector to X at (x, y). Then

γ∗(dx)(x,y).(u, v) = dx(dγ(x,y).(u, v)) = dx(au+ bv, cu+ dv) = au+ bv

γ∗(dy)(x,y).(u, v) = dy(dγ(x,y).(u, v)) = dy(au+ bv, cu+ dv) = cu+ dv

so the action of Γ by pull-back on S, endowed with the basis [dx] , [dy], is given by the
same matrix as the linear action of γ on R2. For this reason S is sometimes called the
tautological subspace of H1(X,R).

8.2.2 The trace field

The trace field K(Γ) of a subgroup Γ of SL2(R) is the subfield of R generated by the
traces of the elements of Γ. We are going to see that

Lemma 8.1. When Γ is the Veech group of some translation surface of genus two,
K(Γ) = Q

[√
d
]
for some d ∈ N∗.

Of course, for most surfaces, the Veech group is trivial, so the trace field is Q. The
trace field is most interesting when the Veech group is large, especially for Veech surfaces.

e1 e2

f1

e2

f2

e1

f2

f1

Figure 17: On the left, the surface L(a, 1). The sides e1 and f1 have length 1, while
the sides e2 and f2 have length a − 1. The surface decomposes into two cylinders of
horizontal closed geodesics, the lower one of width a and height 1, and the upper one
of width 1 and height a − 1. On the right, the top rectangle in the surface L(a, 1) has
been translated to the left. Sides are still identified by vertical or horizontal translations.
The resulting surface lies in the stratum H(1, 1), like St(4), but it has the same absolute
periods as L(a, 1). The closed curves with respect to which the periods are computed
are drawn in red.
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It is proved in [14] that for a Veech surface of any genus, having Q as its trace field
is equivalent to being in the Teichműller disk of a square-tiled surface. In the genus two
case, this means that if d is a square, then X is parallelogram-tiled (that is, X lies in
the Teichműller disk of a square-tiled surface).

Take γ ∈ Γ, and consider the induced automorphism γ∗ of H1(X,R). Since γ∗ is
induced by a homeomorphism ofX, it preserves the integer latticeH1(X,Z) ofH1(X,R),
and the same goes for (γ∗)−1. Thus the endomorphism γ∗ + (γ∗)−1) of H1(X,R) may
be represented by an integer matrix, in particular its eigenvalues are algebraic numbers.

But recall that γ∗, restricted to S, is just γ, so γ∗ + (γ∗)−1, restricted to S, is just
γ + γ−1 = Tr(γ).Id. Therefore the trace of γ is a double eigenvalue of γ∗ + (γ∗)−1, so
the square of the minimal polynomial χ of Tr(γ) divides the characteristic polynomial
of γ∗ + (γ∗)−1, hence χ has degree at most two.

We have just proved that for every γ ∈ Γ, there exists d ∈ N∗ such that Tr(γ) ∈
Q
[√
d
]
. The same argument applies to any linear combination of traces of elements of

Γ. We claim that d may be chosen independantly of γ. If it were not the case, say,
Tr(γ) ∈ Q

[√
d
]
and Tr(γ′) ∈ Q

[√
d′
]
for some γ′ 6= γ and d′ 6= d, then we could find

a non-quadratic element in K(Γ) (think, for instance, that
√

2 +
√

3 is not quadratic).
Therefore, K(Γ) = Q

[√
d
]
for some d ∈ N∗.

Example. Consider the surface L(a, 1) on the left of Figure 17, where a = 1+
√
d

2 .
For d = 5, this surface lies in the Teichműller curve of the double pentagon, it is usually
called the Golden L (see [7, 8]). For d = 2, it can be shown to lie in the Teichműller
curve of the regular octagon (see 47).

The matrix A :=
(

1 4a
0 1

)
acts on the lower cylinder, whose height is 1 and whose

width is a, as the 4-th power of the horizontal Dehn twist, because

A.

(
0
1

)
=
(

0
1

)
+ 4

(
a
0

)
,

and it acts on the upper cylinder, whose height is a − 1 and whose width is 1, as the
(d− 1)-th power of the horizontal Dehn twist, because

A.

(
0

a− 1

)
=
(

4a(a− 1)
a− 1

)
=
(

0
a− 1

)
+ (d− 1)

(
1
0

)
.

Thus the matrix A lies in the Veech group of L(a, 1). The same arguments apply to

the vertical cylinders, so the matrix
(

1 0
4a 1

)
also lies in the Veech group, and so does

their product
(

1 + 16a2 4a
4a 1

)
, whose trace is 2 + 16a2 = 2 + 4d+ 8

√
d, hence the trace

field of L(a, 1) is Q
[√
d
]
.
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8.2.3 The Jacobian torus

For any manifold X, the Jacobian torus Jac(X) of X is the quotient of H1(X,R) by
the integer lattice H1(X,Z). When X is a Riemann surface, H1(X,R) identifies with the
space of Abelian differentials, by sending an Abelian differential to the cohomology class
of its real part, and H1(X,Z) acts by translations, which are holomorphic, so Jac(X) is
actually a complex manifold.

The Jacobian torus also has a symplectic structure, given by the wedge pairing, and
the symplectic structure is compatible with the complex structure, in the following way:
any complex subspace in H1(X,R) is also a symplectic subspace. If E is any complex
subspace of H1(X,R), then the symplectic orthogonal E⊥ is also a complex subspace.
For instance, the canonical subspace S and its symplectic orthogonal are both complex
subspaces of H1(X,R).

An endomorphism of Jac(X) is a C-linear endomorphism of H1(X,R), which
preserves the integer lattice, so it quotients to a self-map of Jac(X), and is self-adjoint
with respect to the symplectic form. Such a thing actually exists, here is an example.

Assume X is a translation surface of genus two, and γ is an element of the Veech
group of X, such that its trace is irrational (hence quadratic since the genus is two).
Think of the example we have just seen on the surface L(a, 1).

Then both γ∗ and (γ∗)−1 are R-linear endomorphisms of H1(X,R) which preserve
the integer lattice, so the same goes for γ∗ + (γ∗)−1. Recall that T := γ∗ + (γ∗)−1,
restricted to S, is just Tr(γ).Id, so t := Tr(γ) is a double eigenvalue of T . Thus the
Galois conjugate t̄ of t is also a double eigenvalue of T . But both γ∗ and (γ∗)−1 are
symplectic, so, since they preserve S, they must preserve the symplectic orthogonal S⊥.
Therefore, since the dimension of S⊥ is two (recall that the genus of X is two), we get
that T , restricted to S⊥, is t̄Id. This proves that T is C-linear, since it may be expressed

by the matrix
(
t 0
0 t̄

)
in some complex basis.

This is the part that breaks down in higher genus, and the reason why McMullen’s
results in genus two have been dubbed miraculous (see [60]). Let us see exactly how
it breaks down. Assume X is a translation surface of genus g > 2, with a trace field
of degree g (the maximal possible degree). Let γ be an element of the Veech group of
X, whose trace is an algebraic integer of degree g. Then the g − 1 Galois conjugates
of Tr(γ) are double eigenvalues of T = γ∗ + (γ∗)−1, so S⊥ decomposes as a direct sum
of 2-dimensional real subspaces, on each of which T acts by homothety. The trouble
is, those 2-dimensional real subspaces have no reason to be complex subspaces, even
though S⊥ is a complex subspace, so we cannot conclude that T is C-linear. In some
cases (see [24]) T happens to be C-linear, so McMullen’s methods may be applied.

To prove that T is an endomorphism of Jac(X), we still have to prove that T is
self-adjoint with respect to the symplectic form. Since γ is a homeomorphism of X, γ∗
preserves the symplectic form, so the adjoint of γ∗ is (γ∗)−1. Similarly the adjoint of
(γ∗)−1 is γ∗, so T = γ∗ + (γ∗)−1 is self-adjoint.
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8.2.4 Real multiplication

Let X be a translation surface of genus two, with trace field Q
[√
d
]
for some non-square

d ∈ N. Let γ be an element of the Veech group of X, with irrational trace, and let
T = γ∗ + (γ∗)−1.

The endomorphisms of Jac(X) form a ring, and the subring generated by Id and T
is isomorphic to a finite index subring of the ring of integers of Q

[√
d
]
, the isomorphism

being the trace of the restriction to S. Of course there is another isomorphism, which is
the trace of the restriction to S⊥.

For any translation surface, when the ring of endomorphisms of Jac(X) has a subring
isomorphic to (some finite index subring of) the integer ring of some number field K, we
say Jac(X) has real multiplication by K. So, what we have proved so far is

Lemma 8.2. The Jacobian of any non-square-tiled Veech surface of genus two has real
multiplication by some Q

[√
d
]
, with d ∈ N non-square.

For instance, the double pentagon has real multiplication by Q
[√

5
]
, while the oc-

tagon has real multiplication by Q
[√

2
]
. More generally, for any non-square d ∈ N, the

surface L(a, 1), with a = 1+
√
d

2 , has real multiplication by Q
[√
d
]
.

Now, what is the point of all this, you may ask? The point is that there is a way to
know which surfaces have Jacobians with real multiplication, and the stroke of genius
was to think of looking at the problem this way.

Let us denote Wd the projection to the moduli space M2 of the set of translation
surfaces of genus two whose Jacobian has real multiplication by Q

[√
d
]
.

Theorem 8.3. For d ∈ N non-square, Wd is a two-dimensional algebraic subvariety of
M2.

Proof. We will focus on the dimension, and refer the reader to [31] for the algebraicity
statement. Let us forget about Jacobians for a moment, and consider the set of all
complex tori of dimension two (also known, poetically, as principally polarized Abelian
varieties). This set may be viewed as the set of all complex structures on R4/Z4, which
are compatible with the symplectic structure on Z4, that is, denoting (., .) the canonical
scalar product and . ∧ . the symplectic structure, for any a, b, a ∧ b = (a, ib).

Among all tori, let us consider those whose endomorphsim ring contains a copy of (a
finite index subring of) the integer ring of Q

[√
d
]
. Let φ be a generator of said subring,

which then is the Z-module of rank two Z [φ] = {a+ bφ : a, b ∈ Z}. The embedding
of Z [φ] into the ring of endomorphisms of Z4 makes Z4 a Z [φ]-module, necessarily of
rank two. Tensorizing by Q, we may view Q4 as a two-dimensional vector space over
Q
[√
d
]

= Q [φ].
Let φ̄ be the Galois conjugate of φ, so Pφ = (X−φ)(X−φ̄) is the minimal polynomial

of φ, and let Tφ be the endomorphism of Q4 associated with φ. Then Pφ(Tφ) = 0. Since
T preserves Z4, Tφ 6= φId, so Tφ has both φ and φ̄ as eigenvalues, which entails that, as
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an endomorphism of a two-dimensional Q [φ]-vector space, Tφ is diagonalizable. Both
eigenspaces have dimension one over Q [φ], which is dimension two over Q. Since T
is self-adjoint, the eigenspaces are mutually orthogonal, and they are symplectic, for if
they were not, since their dimension is two, then the restriction of the symplectic form
to either of them would vanish, and since they are orthogonal, the symplectic form on
Z4 would be zero, a contradiction.

The complex structure on R4/Z4 is then completely determined by the requirement
that the eigenspaces be complex lines, and by the choice of a complex structure for each
eigenspace, compatible with the symplectic structure. Each choice is determined by one
complex parameter (recall our discussion of the Teichműller space, which is also the
Teichműller disk, of the torus), so the complex structure on R4/Z4 is determined by two
complex parameters.

Next, observe that almost all complex tori are Jacobians: essentially, those who
are not Jacobians of regular surfaces, are Jacobians of degenerate surfaces, for instance
a bouquet of two 1-dimensional tori. So the set of Jacobians of regular surfaces has
dimension two over C.

McMullen’s result actually says much more: the image, in the Teichműller space T2,
of the set of all translation surfaces of genus two whose Jacobian has real multiplication
by Q

[√
d
]
, for d ∈ N non-square, is an holomorphically embedded copy of H2 ×H2. Its

image Wd in the moduli spaceM2 is called a Hilbert modular surface.
Now we’d like to understand how Hilbert modular surfaces behave with respect to

the SL2(R)-action, and the strata.

Lemma 8.4. For any non-square d ∈ N, Wd is SL2(R)-invariant.

Proof. Let (X,ω) be a translation surface of genus two whose Jacobian has real multi-
plication by Q

[√
d
]
, for d ∈ N non-square, let T be an endomorphism of the Jacobian of

X, and let γ be an element of SL2(R). Then (γ∗)−1 conjugates T with an endomorphism
of the Jacobian of γ.(X,ω), so γ.(X,ω) has real multiplication by Q

[√
d
]
.

Recall that we denote by P the canonical projection H2 −→M2.

Lemma 8.5. The intersection P (H(2)) ∩Wd is not empty.

Proof. Consider the surface L(a, 1), with a = 1+
√
d

2 .

Lemma 8.6. The intersection P (H(1, 1)) ∩Wd is not empty.

Proof. Consider the surface on the right of Figure 17, obtained from L(a, 1) by shifting
the upper cylinder to the left. This surface has the same absolute periods as L(a, 1),
hence it has the same Jacobian, since Jacobians ignore relative periods. Hence it lies in
Wd.
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By Lemmata 8.4 and 8.5, P (H(2))∩Wd is a reunion of SL2(R)-orbits, so its dimension
is at least one. If its dimension were two, since two is the dimension of Wd, and the
latter is connected as a quotient of H2 × H2, then H(2) ∩Wd would be the whole of
Wd. But this is impossible by Lemma 8.6. So the dimension of P (H(2)) ∩Wd is one,
and since it is an algebraic subvariety of Wd, it must be a finite union of closed orbits.
There, we have found Veech surfaces in H(2), with trace field Q

[√
d
]
for any non-square

d ∈ N, and proved that there are only finitely many of them, for each d. We have also
proved that the surface L(a, 1) is a Veech surface for a = 1+

√
d

2 , just by computing its
trace field.

Again, McMullen’s results actually say much more: the intersection P (H(2)) ∩Wd

contains exactly one orbit, except when d = 1 mod 8, d 6= 9, in which case there are
exactly two (see [32]). The intersection P (H(1, 1))∩Wd contains no closed orbit, except
when d = 5, in which case it contains exactly one, the Teichműller curve of the regular
decagon (see [34, 35]). An orbit closure is either the orbit itself, in which case it is a
Teichműller curve, of which we have a complete list, orWd for some d, or a whole stratum
(see [33]). Note that in genus two, both strata project surjectively to the moduli space
M2 (see [12], III.7.5, Corollary 1), so an orbit which is dense in its stratum projects to
a dense subset ofM2.

9 What is known in higher genus?
First, a bit of vocabulary: a Veech surface is said to be geometrically primitive if
it is not a ramified cover of a Veech surface of lower genus. For instance, square-tiled
surfaces, other than tori, are not geometrically primitive since they cover the torus.
A Veech surface is said to be algebraically primitive if its trace field has maximal
possible degree, which is the genus of the surface. Veech’s family (the regular polygons)
and McMullen’s family in genus 2 are both algebraically and geometrically primitive, as
well as Ward’s (see [57]).

The general philosophy of Veech surface hunters seems to be that algebraically and
geometrically primitive Veech surfaces are scarce, and you should expect at most finitely
many of them in a given stratum of genus > 2. In [30] this very statement is proved, for
the minimal stratum of each genus > 2.

In [3] a family of Veech surfaces is found, which generalizes Veech’s family. In [36],
[24], the authors find a way around the fact that McMullen’s techniques do not gener-
alize in higher genus, and discover a family of Veech surfaces in genera 3 and 4, which
generalizes McMullen’s family, in the sense that their trace fields are quadratic (so they
are not algebraically primitive). In [37], [11], another family of Veech surfaces in genus
4 is found, again with quadratic trace fields.
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