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Abstract

In this study we investigate a stabilized space-time formulation for linear and non-linear elastodynamics.
We use Isogeometric Analysis (IGA) in order to benefit from its numerical qualities. We focus on two
points: the formulation of stabilized weak-forms in a linear and non-linear context and the interest of using
continuous Galerkin schemes in space and time with higher order and higher continuity basis functions.
We illustrate the numerical performance of these methods through typical impact or vibration problems
commonly encountered in the field of the elastodynamics of solids.
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1. Introduction

The earliest ideas on space-time formulations for solving time-dependent mechanical problems came
from the pioneering work of Oden [49] and Argyris and Scharpf [1]. In Argyris and Scharpf [1], the au-
thors proposed a standard finite element formulation for space. The corresponding discrete time-dependent
problem was handled using a second finite element interpolation over a time interval. The authors used a
Hamiltonian formulation considering both velocity and displacement and showed that the elastodynamics
problem leads to the resolution of sequential linear problems. This approach implies a separation of time
and space and therefore different polynomial approximations can be used for space and time. In one section
of his very general paper on finite elements, Oden [49] proposed another approach for which space and time
are considered as an augmented dimensional finite element problem. Oden [49], proposed the concept of
meshing the space-time domain with finite elements in a more general manner. In this approach, polynomial
approximation should be the same for space and time, as the finite element can be arbitrarily positioned
in the space-time mesh. These ideas of space-time methods did not gain much popularity during the next
20 years due to the fact that during the 70s more robust and efficient implicit algorithms, e.g. [23], were
developed and applied to engineering problems with an acceptable numerical cost. Some authors proposed
some applications of space-time finite elements for elastodynamics such as linear viscoelasticity in the case
of a 1D problem [52], a nonlinear 1D problem [10] or in the case of a linear 1D beam and truss or 2D
plane strain problem [4, 5]. Other applications than elastodynamics were also proposed, such as free surface
problems (see [7]), compressible fluid flows [31], heat transfer problems [9, 12], advection-diffusion equations
[45]. However, most of the previously mentioned studies assumed either a separation of space and time in
the way the approximation and the mesh are built (always structured mesh), or a time integration done with
simplified quadrature rules reducing in some cases to a Crank-Nicolson scheme for the time discretization.

New ideas started to emerge in the early 90s: a Time Discontinuous Galerkin (TDG) method was
proposed for elastodynamics [27, 29]. It combined a discontinuous Galerkin formulation, a stabilized weak
form using least-square terms and discontinuity capturing operators, see also [28]. Least-square terms had
previously been developed in another context by one of the authors, see [18, 43, 42]. The Time Discontinuous
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Galerkin (TDG) method and the Discontinuous Galerkin method (DGM) encountered more success. They
have elicited numerous papers presenting theoretical and numerical results, see for instance [19, 40, 17, 25,
11, 13, 57, 34, 50]. TDG methods have also given rise to other original methods such as the TX-FEM
(Time Extended Finite Element Method) [54] also known as the enriched space-time FEM (eg. [58, 59]),
the Nitsche XFEM-DG method [38], or the combination of the TDG and the PGD (Proper Generalized
Decomposition) [8].

On the other hand, some authors have worked on continuous formulations, such as the Time Continuous
Galerkin (TCG) method. These formulations are similar to the original idea of Oden [49], i.e., no separation
of space and time is made and the space-time domain is meshed either with a structured mesh or with an
unstructured mesh. In particular, some authors have shown the interest of using the p-version of the finite
element method in space and time, [24]. Other have provided comparisons between TCG and TDG for
elastodynamics problems with and without discontinuity. They have shown that the convergence of TCG
is faster than that of TDG for elementary 1D problems [30]. An important aspect in the improvement
of the numerical efficiency is the use of remeshing strategies, which constitute an open field of research.
Applications to 4D problems have also been proposed, e.g. [16, 33].

Regardless of the approach used, an essential aspect of the formulation of space-time methods is the
choice of the weak form. For elastodynamics problems, a common approach is to use the Hamiltonian
principle. It has been used by many authors both for displacement and displacement-velocity formulations.
It is also a natural way to develop semi-discrete time integrators [20]. Clearly, the disadvantage of using
a two-field formulation (displacement-velocity) is the increase in the number of unknowns in the resulting
system, but such formulations make it possible to impose straightforwardly velocity boundary and initial
conditions. Besides the Hamiltonian principle, weak forms can be formulated using arbitrary test functions
and/or their derivatives (also by using single or two-field forms). The stability of the different formulations
is a current issue, which is discussed in the literature for different types of equations. Nevertheless, as can
be seen from previous work, e.g. [27], space-time formulations can exhibit undesired oscillations and the
introduction of dissipative terms using least square terms helps in reducing them.

The Finite Elements Method (FEM) is a highly versatile method but has a major disadvantage in the
description of the geometry. It uses simple geometric elements and can therefore induce approximation errors
and difficulties in representing complex geometries. Unlike the finite elements method, the Isogeometric1

Analysis (IGA) [26, 14], makes it possible to exactly describe complex geometries using NURBS or B-Spline
functions in a similar way to what is done by CAD software. Interested readers can find more informations
on NURBS and B-Spline representation of geometry in [51] and reference therein. Obviously, alternative
methods to IGA that share the idea of an exact description of the geometry can be found in the literature,
such as the NURBS-enhanced FEM (e.g. [56]). The IGA also offers great flexibility in the definition of
approximation spaces, by allowing the control of the order of continuity of the approximation functions at
certain discretization points. Space-Time IGA methods (either continuous or discontinuous) can therefore
be an attractive alternative to Space-Time FEM methods. Some authors have reported interesting results
obtained with such methods: in [37] for a linear parabolic problem using a continuous formulation, in
[41, 44] a specific preconditioner is developed to enhance performance of continuous ST-IGA formulation
also for linear parabolic problem, in [35] and [36] and references therein ST-IGA is used for fluid flow or
fluid-solid interaction problems or in [22] for the Kuramoto–Sivashinsky equation and in [6] for a scalar
advection-diffusion problem.

In this work, our main objective is to propose a continuous ST-IGA formulation that is sufficiently
general and versatile to address a variety of linear and non-linear elastodynamics problems. In the case
of compressible elasticity, we adopt a two-field (displacement/velocity) formulation with additional least
square terms. These supplementary terms are simpler than the ones found in the literature and allow a
straightforward extension to non-linear cases. This form can be interpreted as a penalized formulation with
a consistency condition on the acceleration field. It makes sense with the higher continuity order property
(compared with piecewise Lagrange polynomials of the FEM) of the NURBS-based approximation. We also

1The concept of isogeometric approximation seems to have been proposed for the first time by [21] but for a very different
objective from that of the isogeometric analysis.
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propose a comparison of the numerical results obtained using our ST-IGA formulations with the results
obtained using continuous ST-FEM and semi-discrete FEM simulations with the HHT scheme for transient
dynamic problems (with and without discontinuities). We also show that the continuous form is easily
extendable to nearly-incompressible hyperelasticity with a displacement/velocity/pressure formulation.

The paper is organized as follows. In a first section we present the stabilized weak form for small strain
elasticity (compressible case). In the second section, the formulation is extended to the case of compressible
and quasi-incompressible hyperelasticity. The space-time discretization is detailed in the third section. The
fourth and fifth sections are devoted to the presentation of numerical examples in linear and non-linear
cases.

2. Small-strain elastodynamics

2.1. Problem statement

We consider the space-time cylinder Q = Ω× [0, T ], where Ω ⊂ Rd is a closed domain such that d is the
number of space dimensions and T is the final time. The boundary of Ω is denoted by Γ. Let Γu and Γσ
denote the non-overlapping subregions of Γ such that : Γ = Γu ∪ Γσ, Γu ∩ Γσ = φ. The conservation of the
linear momentum on Q takes the following form in the small strain case:

ρü− divxσ = f ∀(x, t) ∈ Q (1)

where ρ(x) is the material density, u(x, t) is the displacement field, σ(x, t) is the stress tensor and f(x, t)
is the applied body load. Assuming linear isotropic elasticity, the stress tensor can be related to the strain
field, ε(x, t) = 1

2 (∇xu +∇Txu), by the following constitutive equation

σ = 2µε+ λtr(ε)1 (2)

where λ(x, t) and µ(x, t) are Lamé elasticity parameters and 1 is the second order identity tensor. The
problem is fully defined by taking into account the boundary and initial conditions:

u = g(x, t) for x ∈ Γu, t ∈ [0, T ]

σ · n = T(x, t) for x ∈ Γσ, t ∈ [0, T ]

u(x, t = 0) = u0(x) for x ∈ Ω

u̇(x, t = 0) = v0(x) for x ∈ Ω

(3)

where n(x) is the normal to the boundary Γσ.

2.2. A two field weak form

We define the Sobolev spaces H l,k(Q) = {u ∈ L2(Q) : ∂αx u ∈ L2(Q) ∀ α with 0 ≤ |α| ≤ l, ∂it ∈
L2(Q), i = 0, . . . , k} of functions defined in the space-time cylinder Q, where L2(Q) denotes the space of
square-integrable functions, α = (α1, . . . , αd) is a multi-index with non-negative integers, |α| = α1 + . . . +
αd, ∂

α
x u := ∂α1

x1
∂α2
x2
. . . ∂αdxd u with ∂αixi • = ∂αi • /∂xiαi and ∂itu := ∂iu/∂ti.

In order to obtain a two field weak form, we first have to introduce the velocity field, v(x, t) = u̇ and
then transform the second order problem of eq. (1) into a first order system, such that:{

ρv̇ − divxσ − f = 0

ρ(v − u̇) = 0
∀(x, t) ∈ Q

u = g(x, t) for x ∈ Γu, t ∈ [0, T ]

σ · n = T(x, t) for x ∈ Γσ, t ∈ [0, T ]

u(x, t = 0) = u0(x) for x ∈ Ω

v(x, t = 0) = v0(x) for x ∈ Ω

(4)
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Weighting the first two equations of the system (4) by the time derivatives of test functions defined in
appropriate spaces and integrating the equation over the space-time cylinder Q, we obtain the following
weak variational formulation:

Find (u(x, t),v(x, t)) ∈ Hu ×Hv, such that ∀ (δu(x, t), δv(x, t)) ∈ Hu0 ×Hv0∫
Q

(ρv̇ − divxσ − f) ˙δudQ+

∫
Q

ρ (v − u̇) ˙δvdQ = 0
(5)

where Hu = {u ∈ H1,1(Q), u = g on Γu ,u(x, t = 0) = u0(x)}, Hv = {v ∈ H0,1(Q) ,v = ġ on Γu,v(x, t =
0) = v0(x)},Hu0 = {u ∈ H1,1(Q), u = 0 on Γu,u(x, t = 0) = 0},Hv0 = {v ∈ H0,1(Q), v = 0 on Γu,v(x, t =
0) = 0}. After integrating by part the divergence operator and using traction boundary conditions, the weak
variational formulation of eq (5) becomes:

Find (u(x, t),v(x, t)) ∈ Hu ×Hv, such that ∀ (δu(x, t), δv(x, t)) ∈ Hu0 ×Hv0∫
Q

ρv̇ ˙δudQ+

∫
Q

σ : ε( ˙δu)dQ−
∫
P

T ˙δudP −
∫
Q

f ˙δudQ+

∫
Q

ρ (v − u̇) ˙δvdQ = 0
(6)

where P = Γσ × [0, T ] is the space time boundary where external forces apply.
Remarks

1. The previous system is similar to the formulation adopted in [27] but a continuous Galerkin formulation
is used here and no least-square terms are added (we consider additional terms in the following section).

2. The choice of using the time derivatives of test functions is made here as it has been done previously
by other authors, e.g. [29]. The first part of eq. (6) can also be obtained by applying the principle of
virtual power if we consider ˙δu to be a virtual velocity field. Other formulations can be found in the
literature where the time derivatives of the test functions were not used. By proceeding in this way
one obtains a form similar to the principle of virtual work. We can also consider the stationarity of a
Hamiltonian form. Consider, for instance, the following Lagrangian L:

L(u, u̇,v) = KHR(u̇,v)− P(u) (7)

where KHR and P are the kinetic energy (modified according to the Hellinger-Reisner mixed form) and
the potential energy defined such that:

KHR(u̇,v) =

∫
Ω

ρvu̇− 1

2
ρvvdΩ

P(u) =

∫
Ω

1

2
σ : εdΩ−

∫
Ω

fudΩ−
∫

Γσ

TudS

(8)

Using the stationarity of the Hamiltonian, H(u, u̇,v) =
∫ T

0
L(u, u̇,v)dt, leads to:

−
∫
Q

ρ(v − u̇)δvdQ+

∫
Q

ρvδu̇dQ−
∫
Q

σ : ε(δu)dQ+

∫
P

TδudP +

∫
Q

fδudQ = 0 (9)

By integrating by part the second integral and choosing δu such that δu(t = 0) = 0 and δu(t = T ) = 0,
we obtain:

−
∫
Q

ρ(v − u̇)δvdQ−
∫
Q

ρv̇δudQ−
∫
Q

σ : ε(δu)dQ+

∫
P

TδudP +

∫
Q

fδudQ = 0 (10)

which is the same as eq. (6) after replacing δu by ˙δu and δv by ˙δv. Note that the variational form of
eq. (6) leads to a non-symmetric bilinear form while that of eq. (10) is symmetric, as expected. For
some specific choices for the approximation space of u and v and for structured meshes, classical time
integration schemes such as the Crank-Nicholson scheme can be recovered in the case of piecewise linear
approximation functions. However, the use of continuous B-Spline approximations for test functions
and possibly the use of unstructured meshes allow the construction of richer time integration schemes.

3. One advantage of this two field formulation is that it makes it possible to impose the velocity conditions
(initial or boundaries) as Dirichlet conditions.
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2.3. Stabilization of the discrete form in the presence of discontinuities: GAC and GLS

As shown in previous references (e.g. [18]), the discrete forms that can be obtained from the weak
form of eq. (6) do not make it possible to get rid of spurious numerical oscillations that occur in some
typical elastodynamics problems for which time discontinuities appear, such as impact problems (as will be
illustrated in section 5). The addition of supplementary terms can be an appropriate and efficient strategy
for controlling these oscillations. In this section, continuous Galerkin forms having least square terms are
used. Without any restrictions on the choice of the space-time discretization (FE or IGA), uh and vh are
taken to be the continuous approximation fields of the displacement and velocity, respectively. The space
time cylinder is discretized. We denote by Qh its discrete form, such that Qh = ∪eQe where Qe are elemental
entities. We denote by Fph a functional space that is build from polynomials of degree p and we introduce
the subspaces: Huh = {uh ∈ (Fph ∩H1,1(Q))d,uh = g on Γuh ,uh(x, t = 0) = u0(x)} (where Γuh corresponds
to a continuous discretization of Γu), Hvh = {vh ∈ (Fph ∩H0,1(Q))d,vh = ġ on Γuh ,vh(x, t = 0) = v0(x)},
Huh0 = {uh ∈ (Fph ∩ H1,1(Q))d,uh = 0 on Γuh ,uh(x, t = 0) = 0}, Hvh0 = {vh ∈ (Fph ∩ H0,1(Q))d,vh =
0 on Γuh ,vh(x, t = 0) = 0}.

We first define a standard Galerkin Least Square (GLS) form in a similar manner to what was done by
[18, 29]. The system of eq. (6) is modified so that:

Find (uh(x, t),vh(x, t)) ∈ Huh ×Hvh , such that ∀ (δuh(x, t), δvh(x, t)) ∈ Huh0 ×H
vh
0∫

Qh

ρv̇h ˙δuhdQ+

∫
Qh

σ : ε̇(δuh)dQ−
∫
Ph

Th
˙δuhdP −

∫
Qh

fh ˙δuhdQ

+
∑
e

∫
Qe

(ρüh − divxσ − fh)ρ−1τ(ρδ̈uh − divx(C : ε(δuh))dQ+

∫
Qh

ρ (vh − u̇h) ˙δvhdQ = 0

(11)

where τ is a stabilization (numerical) parameter and C is the 4th order elasticity tensor. Hence, this form
can be easily implemented in the linear case, but not as easily in the non-linear case. We propose a new
alternative form based on re-injecting the strong form of the first momentum conservation, ρv̇ = divxσ+ f ,
into the least square term. We obtain the following form:

Find (uh(x, t),vh(x, t)) ∈ Huh ×Hvh , such that ∀ (δuh(x, t), δvh(x, t)) ∈ Huh0 ×H
vh
0∫

Qh

ρv̇h ˙δuhdQ+

∫
Qh

σ : ε̇(δuh)dQ−
∫
Ph

Th
˙δuhdP −

∫
Qh

fh ˙δuhdQ

+
∑
e

∫
Qe

ρ(üh − v̇h)τ(δ̈uh − ˙δvh)dQ+

∫
Qh

ρ (vh − u̇h) ˙δvhdQ = 0

(12)

This form does not cause any difficulties in the implementation of non-linear cases. We choose to call
it Galerkin with Acceleration Consistency (GAC) condition. Both stabilization strategies share the main
idea of adding a mesh-dependent perturbation term. The proof of consistency for both formulations is
straightforward and does not pose any difficulties. Some evidence of stability for the first formulation can be
found in the literature, e.g. [29]. In the following we study the convergence properties of these formulations
for both IGA and FE space-time approximations from a numerical point of view.

3. Finite-strain elastodynamics

3.1. Problem statement

In this section, we distinguish between the current domain Ω(t) and the initial domain Ω0. A material
point in Ω0 is denoted by X, and by x in Ω(t). The transformation, φ(X, t), makes it possible to relate
between both configurations, so that x = φ(X, t). We assume that φ is a bijective function, and so we
can always switch from a current description to a description in the initial configuration. In the following
we adopt a Lagrangian representation of the problem. The space time cylinder is defined such that Q =
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Ω0 × [0, T ]. Therefore, time and space integration commute, so that
∫
Q
dQ =

∫ T
0

∫
Ω0
dQ =

∫
Ω0

∫ T
0
dQ. The

conservation of the linear momentum on Q is similar to eq. (1):

ρ0ü−DIVXΠ = f (13)

where ρ0(X) is the initial material density, Π is the first Piola-Kirchoff stress, DIVX is the Lagrangian
divergence operator and f is the body force defined by unit of initial volume. The dot superscript stands for
the so called material time derivative (derivative with respect to time holding X constant), such that for a
Lagrangian field u̇(X, t) = (∂u(X, t)/∂t)X.

For the constitutive behavior, we restrict ourselves to the case of isotropic hyperelastic materials and
we distinguish between two cases: compressible materials and nearly-incompressible materials. For the first
case, the stress/strain relation is simply obtained from the derivative of a specific free energy potential ψ(F):

Π = ρ0
∂ψ

∂F
(14)

where F is the transformation gradient: F = ∇Xφ = ∇Xu + 1. For a nearly incompressible behavior,
we adopt a formalism based on a hybrid free energy, as described in [39]. This formalism is similar to a
partial Legendre transformation of the Helmoltz energy formulated with a volumetric part. It makes it
possible to introduce the hydrostatic pressure, p, as a thermodynamic state variable and naturally leads to
a displacement/pressure formulation of the conservation equations.

The first Piola-Kirchoff stress is therefore defined by:

Π = Π̄ : PF + JpF−T (15)

where J = det(F), PF is a 4th order tensor that corresponds to the deviatoric operator in the Lagrangian
configuration, Π̄ = ρ0∂ϕ/∂F̄ where ϕ is a hybrid free energy potential (see [39]) and F̄ = J−1/3F. The
additional field p(X, t) stands for the hydrostatic pressure and we need to define a supplementary constitutive
equation that relates p to the volume variation J . For the sake of simplicity, we consider the simplest form:

J − 1 = g(p) (16)

where g is a compressibility function.
The problem is fully defined by taking into account the same boundary and initial conditions as defined

in eqs. (3).

3.2. Variational formulations for compressible and nearly-incompressible problems

For the compressible problem, the variational formulation is very similar to the one of eq. (5):

Find (u(x, t),v(x, t)) ∈ Hu ×Hv, such that ∀ (δu(x, t), δv(x, t)) ∈ Hu0 ×Hv0∫
Q

(ρ0v̇ −DIVXΠ− f) ˙δudQ+

∫
Q

ρ0 (v − u̇) ˙δvdQ = 0
(17)

By integrating by part the divergence operator and adding a least square term, the stabilized version of the
previous equation in its discrete form can be written as:

Find (uh(x, t),vh(x, t)) ∈ Huh ×Hvh , such that ∀ (δuh(x, t), δvh(x, t)) ∈ Huh0 ×H
vh
0∫

Qh

ρ0v̇h ˙δuhdQ+

∫
Qh

Π : ∇X
˙δuhdQ− β

∫
Ph

Th
˙δuhdP − β

∫
Qh

fh ˙δuhdQ

+
∑
e

∫
Qe

ρ0(üh − v̇h)τ(δ̈uh − ˙δvh)dQ+

∫
Qh

ρ0 (vh − u̇h) ˙δvhdQ = 0

(18)

here Th = ΠN where N is the normal to the initial contour Γ. A load parameter β ∈ [0, 1] is introduced
here to control the iterative convergence of the numerical scheme. As for the small strain case, we recover
the principle of virtual power in the first part of the system of eq. (19).
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For the nearly-incompressible formulation, we propose to adopt a three field formulation and we have:

Find (uh(x, t),vh(x, t), ph(x, t)) ∈ Huh ×Hvh × L2(Q),

such that ∀ (δuh(x, t), δvh(x, t), δph(x, t)) ∈ Huh0 ×H
vh
0 × L2(Q)∫

Qh

ρ0v̇h ˙δuhdQ+

∫
Qh

(Π̄ : PF + phJF−T) : ∇X
˙δuhdQ− β

∫
Ph

Th
˙δuhdPt− β

∫
Qh

fh ˙δuhdQ

+
∑
e

∫
Qe

ρ0(üh − v̇h)τ(δ̈uh − δv̇h)dQ+

∫
Qh

ρ0 (vh − u̇h) ˙δvhdQ

+

∫
Qh

(J(uh)− 1− g(ph)) δphdQ = 0

(19)

4. Space-time discretization

4.1. About Isogeometric Analysis

In the following, we briefly recall some fundamental aspects of the Isogeometric Analysis (IGA). For
further details we refer the interested reader to the work of [26, 14] and references therein. We use the
NURBS2 version of the IGA. NURBS are based on B-Splines which are polynomial functions. These func-
tions are defined from a knot vector (a set of points in a parametric space). For instance, in one dimension,
if E = {ξ1, ξ2, ..., ξn+p+1} is a knot vector (where p is the polynomial degree and n is the number of basis
functions), B-Spline functions are recursively defined by the Cox–de-Boor formula:

For p = 0

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise

For p > 0

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ)

(20)

Knots can be repeated at the same position and the number of repetitions of a knot is called the order of
multiplicity of this knot. The continuity order of the approximation functions is equal to the order of the
functions between knots and is equal to the order minus the order of multiplicity at knots. The NURBS
functions are defined by:

Ri,p(ξ) =
Ni,p(ξ)ωi∑n
l=1Nl,p(ξ)ωl

(21)

where ωi is the ith weight that can be viewed as a supplementary coordinate that controls the approximation.
The NURBS functions allow conic sections to be exactly represented.

The space time cylinder can therefore be described, for simple cases3, by a parametric surface or volume
for a 1D or a 2D case. For a 1D problem, the space time cylinder is defined by the following parametric
surface:

t(ξ, η) =

n1∑
i=1

n2∑
j=1

Ri,p(ξ)Rj,p(η)Bti,j

x(ξ, η) =

n1∑
i=1

n2∑
j=1

Ri,p(ξ)Rj,p(η)Bxi,j

(22)

where Bi,j = {Bti,j , Bxi,j} are called control points (similar to nodes’ dofs for finite elements), see Figure 1
for a synthetic view of the description of a space time domain within the IGA for a 2D case.

2Non Uniform Rational B-Spline
3More complex cases can be treated by using multiple patches (multiple parametric geometries)

7



Space-Time mesh

Parametric space 

B-Spline function of order p 
(here p=2)
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0.8

1.0

Space-Time domain

Control points
discretization (knots)

Figure 1: Space-Time cylinder described with B-Spline functions

All the fields (including virtual fields) are approximated with the same basis as the one used for describing
the space-time domain. For instance for a 1D problem in space, the discretized kinematic and velocity fields
are:

uh(ξ, η) =

n1∑
i=1

n2∑
j=1

Ri,p(ξ)Rj,p(η)dui,j

vh(ξ, η) =

m1∑
i=1

m2∑
j=1

Ri,q(ξ)Rj,q(η)dvi,j

(23)

where di,j = {dui,j ,dvi,j} are the values that control the approximation of the fields at control points (which
are not interpolant in general). Discretization for 2D and 3D cases can be derived in the same manner.
Remarks

1. The main concept of Space-Time IGA (or Space-Time FE) does not assume, a priori, any separations
of space and time due to the mapping between the space-time domain and the parametric space. This
mapping plays a fundamental role in these methods.

2. In this work, we only consider cases where we use the basis functions of same order in all the parametric
directions. The tensorial structure of the approximation makes it possible, for example, to consider a
higher polynomial order in a specific parametric direction. This can be relevant to very specific cases
(e.g., when the jacobian operator between the parametric space and the space time cylinder is diagonal).

3. For the sake of simplicity we assume in the following that the displacement and the velocity fields are
described with the same approximation basis (i.e., p = q and mi = ni, ∀i = 1 . . . d). As for the FE
method, the IGA in a multifield context makes it possible to control the meshing (subdiscretization
technique) and the order of approximation of each field. We have additional possibilities, we can also
control the order of continuity of each field at control points, which we cannot do in the case of FE.
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4.2. Matrix form of space/time problems

Using the matrix/vector representation of the approximations of eq. (23):

uh(ξ, η) = Npdu

vh(ξ, η) = Npdv (24)

where Np is a matrix obtained from the approximation functions and du,dv are the vectors obtained from
the unknown values at control points. We can define the following differential operators (that operate on
real or test fields):

u̇h(ξ, η) = Btd
u

∇xuh(ξ, η) = Bxdu

ε(uh(ξ, η)) = Bsym
x du

üh(ξ, η) = Bttd
u

∇xu̇h(ξ, η) = Bxtd
u

ε(u̇h(ξ, η)) = Bsym
xt du

(25)

These operators require the computation of the second derivatives of the approximation functions (we
therefore need p ≥ 2). We also need to compute the space-time jacobian matrix (for a 1D space problem):

J(ξ, η) =


∂t

∂ξ

∂x

∂ξ
∂t

∂η

∂x

∂η

 (26)

With the operators defined in eq. (25) and using the mapping of a space-time element to the parametric
space, the previous weak formulations can be rewritten without difficulties into a matrix form. For instance,
the formulation of eq. (12) can be written as (linear case):[

Kuu Kuv

Kvu Kvv

]{
du

dv

}
=

{
fu
fv

}
(27)

The matrix and vector introduced in eq. (27) are defined by:

Kuu = Ae
∫
Qe

(
BsymT

xt DBsym
x + ρBtt

TτBtt

)
dQ

Kuv = Ae
∫
Qe

(
ρBt

TBt − ρBtt
TτBt

)
dQ

Kvu = Ae
∫
Qe

(
−ρBt

TBt − ρBt
TτBtt

)
dQ

Kvv = Ae
∫
Qe

(
ρBt

TNp + ρBt
TτBt

)
dQ

(28)

and:

fu = Ae
∫
Qe

Bt
TfhdQ+ Se

∫
Pe

Bt
TThdP

fv = 0

(29)

The assembly operator on elements is denoted by Ae and by Se for assembly on element surfaces (or lines)
on the boundary of the space domain (i.e. x = 0 or x = L for a 1D problem).
Remarks
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1. As mentionned previously, the previous linear system does not exhibit any symmetry properties on its
left hand side.

2. Initial and kinematic/velocity boundary conditions are prescribed directly using the values at control
nodes located on the boundary (we should pay attention to the non interpolant behavior of B-Spline
functions on boundaries when g(x, t) and T(x, t) are not constant functions).

For a non-linear problem, such as the one of eq. (18), we obtain a non-linear system to be solved in the
vector form: {

ru(d, β) = 0

rv(d, β) = 0
(30)

where d = [du,dv]T and (ru, rv) are defined by:

ru(d, β) = Ae
∫
Qe

(
ρ0Bt

Tv̇h + BT
xtΠ(uh) + Btt

Tρ0τ(üh − v̇h)
)
dQ− βfu

rv(d, β) = Ae
∫
Qe

(
ρ0Bt

T ((vh − u̇h) + τ(üh − v̇h))
)
dQ

(31)

and β ∈ [0, 1] is a load factor. The procedure used to solve this non-linear system is very standard and com-
pletely identical to a predictive/corrective Newton-Raphson procedure for a quasi-static problem. Starting

from a known solution, (dk, βk), at increment k, we search ∆dk = [∆duk ,∆dvk ]T for a given load increment
∆βk such that ru(dk + ∆dk, βk + ∆βk) = rv(dk + ∆dk, βk + ∆βk) = 0. The linearization of this non-linear
problem leads to:[

Kuu(ukh,v
k
h) Kuv(ukh,v

k
h)

Kvu(ukh,v
k
h) Kvv(ukh,v

k
h)

]{
∆duk

∆dvk

}
=

{
−ru(dk, βk)− fu∆βk

−rv(dk, βk)

}
(32)

We distinguish the predictive and the corrective phases. For the predictive phase, the previous solution
is converged and therefore ru(dk, βk) = 0, rv(dk, βk) = 0 and ∆βk = l where l is a prescribed value.
For the corrective phase, the loading is frozen: ∆βk = 0 and ru(dk, βk) 6= 0, rv(dk, βk) 6= 0. We iterate
with (dk+1, βk+1) = (dk + ∆dk, βk + ∆βk) until convergence to a given tolerance. The matrix terms
Kvu,Kvv,Kuv are identical to those defined previously at eq. (28), the term Kuu is slightly different and
is defined as follows:

Kuu = Ae
∫
Qe

(
BT
xtDnlBx + ρBtt

TτBtt

)
dQ (33)

where Dnl = ∂Π/∂F.

4.3. The specific case of nearly-incompressible problems

The three field formulation presented at eq. (19) is well adapted for nearly incompressible situations
but we need to pay attention to numerical instabilities or oscillations that may occur if we do not carefully
choose the approximation spaces for the pressure and displacement. For isogeometric analysis, different
propositions can be found in the literature. We choose here the one proposed in [32]. It consists in using
the same order of approximations for the pressure and the displacement fields but with a grid subdivision
for the pressure field (i.e. , a coarser mesh for pressure than the one used for velocity/displacement).

Using the same interpolation order for displacement field and pressure field mostly leads to unstable
finite elements, but, because of the subdivision properties of B-Spline, it is not the case for IGA. It was
shown in [32] that this formulation satisfies the inf-sup (or Ladyzhenskaya–Babuska–Brezzi condition) for
small strain formulations and this property seems conserved for finite strain formulations, at least for simple
problems. In any case, we did not experience any typical pressure instability or volumetric locking with this
formulation.

In this work, for ST-IGA, we have chosen to use a coarser mesh size for the pressure only for space
discretization. Figure 2 presents a synthetic view for a 2D space problem. The numerical integration is done
on the finest mesh for all fields using a standard Gauss-Legendre scheme.
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Geometry

Field Field Field

x

y
t

Figure 2: Mesh subdivision technique for the pressure field (3 field formulation for nearly incompressible problems)

t

x

(a) displacement field

t

x

(b) velocity field

Figure 3: Unit space-time domain with body load and homogeneous dirichlet boundary conditions

5. Numerical applications at small-strain

5.1. Convergence study

We consider the case of a unit bar (1D space problem) with homogeneous boundary conditions in space
and time for the displacement and the velocity, subjected to body load f(x, t) defined by:

f(x, t) = 4π2 sin(2πx)

(
E log

(
1 + cos2(2πt)

2

)
− 4ρ

1 + 3 cos(4πt)

(3 + cos(4πt))2

)
(34)

The exact solution is therefore:

u(x, t) = sin(2πx) log

(
1 + cos2(2πt)

2

)
v(x, t) = −4π sin(4πt) sin(2πx)

3 + cos(4πt)

(35)

The space and time domain are chosen to be [0, 1] and so the space-time domain is a unit square. Figure 3
illustrates the test considered. The material parameters are: E = 2 and ρ = 1.
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Figure 4: Convergence study for the bar test without stabilization

This test makes it possible to establish a convergence study while considering both space-time FE and
space-time IGA. For the finite elements, we use quadratic quadrangle with 9 nodes. We compute the
following L2 errors on the space-time domain Q:

erU =

∫
Q

‖uh(x, t)− u(x, t)‖2dQ

erV =

∫
Q

‖vh(x, t)− v(x, t)‖2dQ
(36)

where (uh, vh) is the approximated solution and (u, v) are given by eq. (35). We first plot the results without
any stabilization (τ = 0). We use a uniform mesh refinement (in space and time) and we plot the L2 error
with respect to the element size. Figure 4 shows that we obtain a monotoneous convergence behavior and
by computing the rate of convergence for different polynomial orders (from 2 to 4 for IGA), we can see that
we have an optimal rate of convergence for both ST-FE and ST-IGA. If we compare ST-FE and ST-IGA
for the same polynomial order (p=2), we can see that there are no differences between the quadratic finite
elements and the quadratic NURBS elements for this test.

Figure 5 shows a comparison of the results for different stabilization strategies. It can be noticed that all
formulations are convergent. The convergence rate is affected in a similar manner with both stabilization
strategies (GAC or GLS) with ST-FE or ST-IGA. For the same value of the stabilization parameter, we
obtain a stronger influence on approximations of order 2 while approximations of order 3 do not seem much
affected by the additional stabilization terms.

This simple convergence study illustrates the interest of using higher polynomial orders for space-time
discretizations. It also confirms that GLS and GAC stabilization strategies behave in a similar manner for
both ST-FE and ST-IGA, at least for this simple test.

5.2. Impact of an elastic bar

We consider here the case of the impact of a 1D elastic bar against a rigid wall. This test was first
investigated with ST-FE in [27] and it is a typical benchmark test to investigate the behavior of numerical
oscillations for a wave propagation problem using these numerical methods. The problem is illustrated in
Figure 6(a). A 1D bar is subjected to an initial homogeneous velocity v0. The impact against the rigid wall
is taken into account with displacement and velocity conditions on one side of the bar (here x = 0). These
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Figure 5: Convergence study for the bar test with stabilization (p = 2)
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(b) Stress field on the Space-Time domain (ST-IGA without
stabilization, τ = 0, p = 2)

Figure 6: 1D impact problem of a bar against a rigid wall

conditions are: u(x = 0, t) = 0 and v(x = 0, t) = 0. The other side of the bar is stress free. The material
parameters are E = 1 and ρ = 1. The bar length is L = 1 and the initial velocity is v0 = 1. The stress
analytical solution is a compressive wave that propagates with the velocity c =

√
E/ρ = 1.

Using ST-IGA or ST-FE without any stabilization, we obtain the typical stress solution in the space-time
domain shown in Figure 6(b). Spurious numerical oscillations are obtained regardless the mesh size or the
polynomial order of the approximations. These oscillations propagate over time and solving the problem for
a longer period of time will result in increasingly noisy solutions.

Plotting the stress along the bar at t = 0.5 and using unstabilized formulations (i.e., for τ = 0), we
clearly observe numerical oscillations in the part of the bar subjected to compression. Figure 7(a) shows a
comparison of the results between ST-FE and ST-IGA using the same mesh size, and we observe the same
behavior for both methods. However, as can be seen from the plot of the total energy (see Figure 7(b)),
non-stabilised space-time methods are conservative.
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Figure 7: Results of the bar impact test without stabilization with: ∆t = ∆x = 0.0125

Numerical oscillations can be controlled by adding stabilization terms, as can be seen in Figures 8(a)
and 8(b). First, we can notice from Figure 8(a) that ST-FE and ST-IGA with GLS stabilization of order
2 behave in the same way. As expected, increasing the order of NURBS while keeping other parameters
(mesh size and stabilization parameter) constant leads to a more accurate result in terms of localization of
the compression wavefront. Second, if we compare GAC and GLS stabilizations, we can see from Figure
8(b) that the GAC stabilization seems to be less dissipative than GLS for the same order of approximation,
both for ST-IGA and ST-FEM. This point is more evident in Figure 8(c) where a comparison of the total
energy integrated over the bar upon time is plotted: dotted lines (GAC stablization) are always over solid
lines (GLS stabilization). It is also important to notice that by zooming on the compressive part (Figure
8(d)), small oscillations are still present with ST-FEM but not for ST-IGA.

Another interesting aspect is to investigate the behavior of stabilization strategies for different values of
the stabilization parameter τ . Figure 9 shows that, as expected, the numerical dissipation is directly related
to the value of τ . A good option with ST-IGA of order 2 seems to choose τ approximately in the same order
of magnitude of the meshsize for the time because using a larger value leads to a strong numerical dissipation
without improving the numerical solution. We can also notice that the GLS stabilization with IGA can lead
to a non-monotonic evolution of the total energy for large values of the stabilization parameter.

The impact of the mesh size ratio is also an important point for space-time methods. We define h =
∆t/∆x as the ratio of the time increment to the space discretization parameter. Figure 10 shows the
results obtained with ST-IGA for GLS and GAC stabilization parameters using a constant size of the space
discretization and different time increments. We obtain a correct description of the compression wave using
GAC and GLS only until h = 4. Higher values of the mesh ratio lead to oscillations whatever the value
of the stabilization parameter is. Nevertheless, we can obtain satisfactory results for moderate mesh size
ratios without being limited by the CFL ≤ 1 condition where CFL is the Courant-Friedrichs-Lewy number
(CFL = h here).

This example illustrates some of the principal characteristics of space-time methods that were also found
by other authors in the literature. But these results are obviously not general and should be confirmed by
other numerical tests.

5.3. Two bar impact

This test is very similar to the previous one. We consider the case of an elastic bar with an initial velocity
v0 = 1 that impacts a second elastic bar with different material properties. The boundary conditions and the
dimensions of the bars are illustrated in Figure 11. The material properties of the first bar (colored in blue)
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Figure 8: Results of the bar impact test with different stabilization strategies with: ∆t = ∆x = 0.0125

are: ρ = 1, E = 1, and those of the second bar (colored in red) are: ρ = 1, E = 5.5. The solution just after
the impact corresponds to two compressive waves that propagate from the interface (impact zone) with two
different velocities. After being reflected on both sides, these waves interact with the bi-material interface
(with reflexion and transmission) on the one hand and with each other on the other hand. Therefore, we
obtain, after a few interactions, several waves that propagate with constant but different velocities (Figure
11 shows this typical solution obtained with stabilized ST-IGA).

For this test, we compare the results obtained with ST-IGA stabilized using the GAC formulation (for
this example the stabilization parameter was fixed such that τ = (∆t)1/(p−1) where p is the polynomial order
of the approximation) for different polynomial orders from 2 to 4 with a standard finite element model on
Abaqus. For this model, we used quadratic truss elements with the implicit resolution. The time integration
scheme is the Hilber-Hughes-Taylor scheme (see [23]) with the following parameters α = −0.05, β = 0.275,
γ = 0.55, which corresponds to a transient fidelity integration. For all models, we used the same space-time
discretization with ∆t = ∆x = 0.033. Figure 12 shows the stress along the bar at different times. It can
be seen that the finite element models exhibit strong oscillations, unlike what happens in the case of the
ST-IGA solutions. Increasing the order of approximation both in space and time for the ST-IGA allows
better solutions (more conservative) to be obtained. This can be clearly seen in Figure 13, ST-IGA schemes
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Figure 9: Comparison of stabilization strategies for the bar impact test with ST-IGA of order 2, ∆t = ∆x = 0.0125
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Figure 10: Results of the bar impact test with ST-IGA and ST-FE for various values of the mesh ratio h = ∆t/∆x, with
∆x = 0.0125

t
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v0

2.5

1.5

Figure 11: Impact of 2 elastic bars. The blue bar has an initial velocity v0 = 1 and it is assumed that the two bars stay
perfectly tied after impact. A typical Stress field on the Space-Time domain (ST-IGA with GAC stabilization) is shown.
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Figure 12: Stress along the two bars for different times after impact. Space and time increments are identical for all models:
∆t = ∆x = 0.033

of order 3 and 4 are more conservative than the ones obtained with the FE model on Abaqus.

5.4. Extension of the bar test for truss structures

In this section we show that the previous formulation concerning 1D bar problems can be extended to
the case of a bar in space for applications to truss structures. We assume that each truss in a structure
is described by a space-time patch. Each patch has a local coordinate system with 2 dimensions in space,
(e′x, e

′
y), which is related to a global coordinate system (ex, ey) with the following rotation matrix:{

e′x
e′y

}
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]{
ex
ey

}
= R(θ)

{
ex
ey

}
(37)

The axis e′x corresponds to the direction of the truss and e′y is normal to the truss. We denote by
(u′x(x, t), u′y(x, t)) and (v′x(x, t), v′y(x, t)) the displacement and velocity of the truss in a patch. We also
assume that the normal velocity is constant and the normal displacement is only a function of time, such
that: {

v′y(x, t) = cst

u′y(x, t) = y(t)
(38)
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Figure 13: Energy kinectic + strain energy integrated over the two bars upon time

or equivalently: {
v̇′y = 0

∇x′u′y = 0
(39)

The uniaxial strain and stress in the truss are defined by:

ε(x, t) = ∇x′u′x(x, t) σ(x, t) = Eε(x, t) (40)

The weak form for this problem on a patch is simply obtained from an extension of eq. (12). We first assume
that the angle θ is constant (not time dependent) and we add two supplementary terms (least-square like
terms) that correspond to the constraints defined in eq. (39):

Find (uh(x, t),vh(x, t)) ∈ Huh ×Hvh , such that ∀ (δuh(x, t), δvh(x, t)) ∈ Huh0 ×H
vh
0∫

Qh

ρ(R1v̇h)(R1
˙δuh)dQ+

∫
Qh

σ : ε̇(R1δuh)dQ−
∫
Ph

(R1Th)(R1
˙δuh)dP −

∫
Qh

(R1fh)(R1
˙δuh)dQ

+
∑
e

∫
Qe

ρ(R1üh −R1v̇h)τ(R1δ̈uh −R1δv̇h)dQ+

∫
Qh

ρ (R1vh −R1u̇h) R1δv̇hdQ

+
∑
e

∫
Qe

k1(R2v̇h)(R2δv̇h)dQ+
∑
e

∫
Qe

k2(∇x′R2uh)(∇x′R2δuh)dQ = 0

(41)

where R1 and R2 correspond respectively to the first and second row of R(θ), such that u′x = R1uh and
u′y = R2uh, k1, k2 are penalty parameters. For a multipatch configuration we simply proceed as in the
previous example, two connected patches share a common interface with the same refinement and the same
control points.

As an example of application, we consider the case of an assembly of two trusses that are connected
with a given angle θ0. Each truss is of unit length with the same elastic material whose characteristics are:
E = 1, ρ = 1. The trusses have an initial vertical velocity, v0 = 1, and impact a wall on one side (we assume
that the trusses remain fixed onto the wall after impact), see Figure 14.

Figure 15 shows the results obtained for two configurations: θ0 = 20o and θ0 = 90o. The mesh size is
chosen such that ∆t = ∆x = 0.02. The stabilization parameter and the penalty conditions are taken to be
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Figure 14: Truss impact: Geometry and boundary conditions

τ = 0.02, k1 = 109, k2 = 109. It can be observed that in the situation where θ0 = 90o, the upper truss moves
vertically with a constant velocity but without stress, as expected. The impact wave is not transmitted
to the upper truss in this case, unlike what happens in the case where θ0 = 20o. This simple example
illustrates the potential of space time methods for application to wave propagation problems in structures.
Furthermore they could be extended to cases where the rotation matrix R is not constant on time to deal
with the case of truss structures with pivot connection between trusses. Obviously, beams, shells and other
structural elements can be developed in this framework.

6. Numerical applications at finite-strain

6.1. Nearly-incompressible plane-strain structure subjected to harmonic loading

We consider the case of a non-linear beam like structure (2D plane-strain case) of 5 units of length
in height and 1 unit of length in width (see Figure 16(a)). The beam is fixed on one side and subjected
to a harmonic homogeneous body load f(t) = f0 cos(2πFt). The constitutive material is chosen to be
hyperelastic and we adopt a Mooney-Rivlin potential:

ρ0ϕ = c10(I1(C̄)− 3) + c01(I2(C̄)− 3)

where C̄ = J−2/3C = J−2/3FTF, I1(C̄) = tr(C̄), I2(C̄) = 1
2 ((tr(C̄))2 − tr(C̄2)).

For the compressibility part, we choose the following compressibility function:

g(p) = exp
(p
k

)
− 1

The material parameters are: c10 = 0.9, c01 = 0.1, k = 1000, ρ0 = 0.001. From a linear vibration analysis, we
determine the first three linear modes of this structure. The frequencies of these modes are: F1 = 0.56, F2 =
2.92, F3 = 4.5. In the following we consider a harmonic body load with a frequency chosen between the first
and the second modes of the structure: F = 1.3 with an amplitude of f0 = 0.0184. As for the previous
example, we compare the results of ST-IGA with the results obtained on Abaqus using implicit and explicit
solvers. For the space domain, we used the following mesh size: ∆x = ∆y = 0.25. For the implicit solver, we
consider quadratic hybrid elements (CPE8H) that are adapted to the case of near-incompressible behavior.
For the explicit solver, we are restricted to use linear elements with reduced integration (CPE4R). For the
ST-IGA model, we use the GAC form with a stabilization parameter value of τ = ∆t/(

√
E/ρ), where

E = 6(c10 + c0.1) is the infinitesimal Young modulus and ∆t = 0.14 is the mesh size chosen for the time.
A typical response of the ST-IGA model for the time interval, [0, 10], is shown in Figure 16(b). Figure

17 shows a comparison between the different numerical methods for the displacement and the velocity at a
node located at the top of the structure (the red dot in Figure 16(a)). As expected, the solutions obtained
using ST-IGA and FE with implicit resolution are almost identical, while the explicit resolution exhibits
some differences that are certainly due to the fact that only linear elements are used.

Figure 18 illustrates the main advantage of ST-IGA methods for non-linear problems: we can obtain
more conservative solutions than with standard implicit integration schemes such as the HHT scheme. Table
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(a) deformed configuration for θ0 = 20o (isocolor corresponds
to the x component of the displacement field)

(b) stress field for θ0 = 20o

(c) deformed configuration for θ0 = 90o (isocolor corresponds
to the x component of the displacement field)

(d) stress field for θ0 = 90o

Figure 15: Result of the trusses impact test (ST-IGA with GAC stabilization and p = 2)
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(a) Geometry of the structure
(plane strain case)
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(b) ST-IGA solution on a time slab (isocolor corresponds to
the horizontal displacement)

Figure 16: Harmonic oscillations of a nearly-incompressible beam-like structure
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Figure 17: Displacement and velocity at the top left corner of the structure upon time
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domain
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plane strain structure impact
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(b) ST-IGA solution on a time slab (isocolor corresponds to the norm of
the displacement)

Figure 19: Impact of a plane strain structure on a wall at finite strain

1 allows the numerical characteristics of the different methods to be compared. For ST-IGA, we obtain the
solution on the time slab with only 6 newton iterations (for only one increment for this test) while the
implicit resolution requires 250 increments with 1 or 2 newton iterations per increment. Obviously, there is
a huge difference between space-time continuous formulations and other methods in terms of the size of the
linear system to be solved at each iteration.

∆t Number of increments Newton Iterations
ST-IGA 0.14 1 6
FE implicit (HHT) 0.05 250 1 or 2 per increment
FE explicit 0.00016 62500 -

Table 1: Comparison of characteristics between incremental and space-time resolutions

6.2. Plane strain structure subjected to an impact

The purpose of this test is to evaluate the numerical behavior of the ST-IGA method in a context where
we have a complexity due to both the dynamics (impact situation and non-linear behavior) and to the
geometry. The boundary conditions and the geometry of the structure are given in Figure 19. This plane
strain structure has an initial velocity, v0 = 5 (in the vertical direction), and at t = 0 it impacts a wall at
the top of the structure (we prescribe the separation of the top surface of the structure from the wall). The
material is assumed to be elastic and isotropic and we adopt the following potential of energy:

ρ0ψ =
µ

2
(I1(C)− 3) +

λ

2
ln(J)2 − µ ln(J) (42)

with λ = 0.52, µ = 0.34 and ρ0 = 0.001. As in the previous example, we compare the results obtained
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Figure 20: Displacement and velocity at the bottom right corner of the structure upon time

with standard implicit and explicit finite elements on Abaqus with the results of space-time methods (FE
or IGA based) stabilized with GAC. On Abaqus the behavior law is defined using the subroutine UHYPER.
Therefore we only use the implicit version of Abaqus with transient-fidelity resolution (HHT scheme with
α = −0.05, β = 0.275, γ = 0.55). We use the same mesh size for the discretization of the space domain:
∆x = ∆y = 0.036 for all models.

Figure 20 shows a comparison of the methods for solutions concerning the displacement and velocity
components of a point located at the bottom of the structure (red point in Figure 19(a)). First, it can
be seen that the response obtained with Abaqus exhibits many oscillations of the velocity. The solution
obtained using ST-FE is globally in accordance with the one obtained with Abaqus implicit. ST-IGA
exhibits a similar response immediately after impact but deviates from FE responses especially on the
vertical component (for both displacement and velocity). Obviously, all these models are questionable and
we cannot define a reference solution for this problem, as each model has its own bias.

Nevertheless, we can plot the evolution of the total energy (kinetic energy+strain energy integrated over
the space domain) upon time. Figure 21 shows that the evolution of this energy with the implicit solver of
Abaqus exhibits a non monotonic behavior (increase and decrease in the total energy). This non-monotonous
behavior is obviously completely inconsistent: we can expect a loss of energy due to numerical dissipation
which is intrinsic to the HHT scheme but we do not expect an energy increase. Space-time methods have a
more expected behavior with a monotonic decrease in energy due to the contribution of stabilization terms.
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Figure 21: Energy balance (kinetic energy + strain energy - external power integrated over time) integrated over the space
domain

It can also be noted that ST-FE exhibits a higher rate of decrease than ST-IGA. Therefore, from an energy
point of view, space-time methods behave better than Abaqus Implicit for this test.

Table 2 compares the numerical characteristics of each model. As in the previous example, it is obvious
that ST methods represent a very interesting alternative for solving non-linear dynamics problems. Further-
more, they offer the possibility of developing of high-performance resolution methods based on space-time
domain decomposition strategies and parallelized resolution for time dependent problems.

∆t Number of increments Newton Iterations
ST-IGA (p=2,3) 0.01 2 5 for the first increment and 1 for the second
ST-FE (p=2) 0.01 2 5 for the first increment and 1 for the second
FE Implicit (HHT) 0.001 212 3 to 6 per increment

Table 2: Comparison of characteristics between incremental and space-time resolutions

7. Discussion and concluding remarks

We have developed new space-time isogeometric formulations for elastodynamics problems. These for-
mulations are based on displacement-velocity (and pressure in case of nearly incompressible behaviors) weak
forms. This formalism has made it possible to develop a new stabilization term based on least-squares. This
term (GAC) exhibit the main advantage of being independent of the constitutive law and permit both small
and finite strains problems to be dealt with. The proposed formulation leads to optimal rates of convergence
on trial problems and it is shown that the additional terms play a fundamental role in controlling numerical
oscillations that occur in problems with time discontinuities, such as impact problems. Obviously, specific
methods that can deal more precisely with time discontinuity problems exist in the literature (some of them
are cited in the introduction). However, one main interest of the proposed formulation is that it is general
enough to be applied to different problems without the need to develop specific, case-dependent, terms. We
have explored different cases: small-strain elasticity, compressible and quasi-incompressible hyperelasticity,
and the approach can easily be extended to multi-field and multi-physics problems such as thermo-elasticity.

With regard to the NURBS formulations, we have shown that ST-IGA formulations on the one hand make
it possible to obtain more conservative solutions than semi-discrete methods and, on the other hand, offer
a richness in the construction of approximation spaces: high-order continuity, sub-division techniques, etc.
Obviously the numerical cost of such methods is high, especially for multi-field formulations, but employing
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high order space-time schemes makes it possible to obtain accurate numerical solutions with coarser mesh in
time compared with implicit semi-discrete methods. Therefore, there is several advantages of using NURBS
in this space time context. However, in view of considering more complex or more industrial examples
several enhancements or developments should be done. The first one could be to deal with multi-pach in
space and time with non-conforming meshes using for instance a Nitsche formulation (e.g. [48, 53, 46]).
The Nitsche formulation has the advantage of allowing a control of the order of continuity between patches
for each field of the formulation. This could be interesting for the time dimension in an apriori approach
(i.e. having knowledge of the discontinuities in the time domain). Another alternative is to consider one
patch with local refinements methods in space and time. This can be done using various methods, such as:
T-splines (e.g. [55]), PHT-splines (e.g. [47]), LRB-splines (e.g. [15]), the GIFT method (see [2]), etc. Local
refinement methods could be interesting if used in an adaptative process. However, this also requires the
development of apriori estimators which have the inconvenient of being problem dependent. The second
aspect is related to the computational cost of the quadrature method, some authors have already proposed
alternatives to the standard Gauss-Legendre quadrature, and this could be very interesting in a space-time
context because we have an extra dimension (e.g. [3]). Space-time formulations are also well adapted for
the development of parallel resolution in space and time and references on this topic can be found in the
literature (e.g. [22, 37]).

Finally, we see an open field of research for ST-IGA methods, that we will explore, for solving non-linear
and non-conservative transient problems especially in the case of history dependency of the constitutive
behavior (viscosity, damage, viscoplasticity, etc). In these cases, the set of equations leads to a DAE system
for which a local-global time integration scheme is the most currently employed strategy, which can cause
many difficulties in certain situations (thermo-mechanical coupling, etc).
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