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IEMN (UMR 9929 CNRS), ISEN Department, Institut Sigoe d’Electronique du Nord, 41 boulevard
Vauban, 59046 Lille Cedex, France

(Received 30 September 1994; revised 19 May 1995; accepted 29 May 1995

The finite element approach has been previously used, with the help afithecode, to model the
scattering of acoustic waves by single or doubly periodic passive stru¢Awr€s Hladky-Hennion

et al, J. Acoust. Soc. Am90, 3356—-3367(1991)]. This paper presents a new extension of this
technique to the analysis of the propagation of plane acoustic waves in passive periodic materials
without losses and describes with particular emphasis its application to doubly periodic materials
containing different types of inclusions. In the proposed approach, only the unit cell of the periodic
material has to be meshed, thanks to Bloch—Floquet relations. The modeling of these materials
provides dispersion curves from which results of physical interest can be easily extracted:
identification of propagation modes, cutoff frequencies, passbands, stopbands, as well as effective
homogeneous properties. In this paper, the general method is first described, and particularly the
aspects related to the periodicity. Then a test example is given for which analytical results exist. This
example is followed by detailed presentations of finite element results, in the case of periodic
materials containing inclusions or cylindrical pores. The homogenized properties of porous
materials are determined with the help of an anisotropic model, in the large wavelength limit. A
validation has been carried out with periodically perforated plates, the resonance frequencies of
which have been measured. The efficiency and the versatility of the method is thus clearly
demonstrated. €1995 Acoustical Society of America.

PACS numbers: 43.20.Bi, 43.20.Gp, 43.20.Jr, 43.35.Cg

INTRODUCTION To avoid model restriction, several authors have also
used a numerical approach. Using the boundary integral
Periodic materials, such as porous or fibrous materialequation method, Achenbach and Kitafahave provided
and composites, have araisen a great deal of interest and atgpersion curves for a periodic material containing spherical
now widely used in underwater acoustics, signal processingavities. Bennét has used a transfer-matrix approach
as well as for medical imaging applications. Particularly, incoupled to the finite element method to describe the disper-
order to explain their physical behavior, the propagation ofsion curves in a periodic material: this method has provided
harmonic elastic waves through periodic materials can bgood results but is restricted to propagation directions paral-
studied. From the dispersion curves, many results of physicaél to the periodicity. Ruff® has used a three-dimensional
interest can be easily extracted: propagation modes, cutofinite element analysis to determine the acoustic behavior of
frequencies, passbands, stopbands, as well as effective hglane waves propagating through bubbly liquids having pe-
mogeneous properties of these structures and their validitsiodic bubble distributions. Also, Mat al! have developed
limits. a finite element method in the case of infinitely long, cylin-
Many authors have built accurate mathematical modelsirical pores when the waves propagate perpendicularly to the
for the propagation of harmonic elastic waves through peripores axis. This method uses the symmetry of the elementary
odic materials, based on the Bloch—Floquet théoffus  periodic cell. The finite element approach has been previ-
Audoly and Dumey have studied periodic materials contain- ously used by Hladky-Hennioat al,'?~** with the help of
ing cylindrical inclusions, using a multiple-scattering the ATILA code!®*° to model the scattering of acoustic
approactt. Tao and Sheng used a method based on the iteravaves by single periodic passive structures, such as compli-
tive solution of the inhomogeneous elastic wave equation irant tube grating$? by doubly periodic passive structures,
the case of porous materidlsyhereas Aulcet al. developed  such as Alberich anechoic coatinspr to study the free-
an elastodynamic theory for periodic composite matefials.field voltage sensitivity and the transmitting voltage response
Braga and Herrmarinhave studied acoustic propagation of active periodic structures, such as 1-3 piezocompo¥ites.
through periodically layered composites. Nemat-Nasser an@ihe efficiency and the versatility of the finite element
Yamad4 and Baste and Gard’ have analyzed the propaga- method to describe the acoustical behavior of periodic struc-
tion of harmonic elastic waves through one-directional ortures have been demonstrated, particularly because this ap-
three-directional composites. Though efficient, all theseroach allows the modeling of any geometrical shapes, made
methods require in many cases a lot of algebraic developap with any elastic or piezoelectric, isotropic or anisotropic
ments, which restrict their use to a small humber of givenmedia, by simply building the specific mesh. The aim of this
geometries or to given propagation directions. paper is to extend the finite element approach previously
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described?1* to the study of the propagation of harmonic
elastic waves in passive periodic materfdls.

In the method proposed here, the periodic material is
supposed to be periodic in one, two, or three space direc-
tions, finite or infinite in the others. Because of Bloch—
Floquet relations between displacement values at points
which are separated by the geometrical period, only one unit
cell is meshed with finite element&:* Within this cell, a
phase relation is applied on nodes separated by one period,
defining boundary conditions between adjacent cells. The \
phase relation is related to the wave number of the incident \,\‘
wave in the periodic material. The dispersion curves present \\\\\\\\\\\\§\\
the variations of the eigenfrequencies versus the wave num- y ‘\ N \‘
ber. They provide phase velocity and group velocity for each \\\\\\\\\\\\\\\\\\\\
propagation mode, stopbands, passbands, etc.

In the first part of this paper, the theoretical formulation
is given, with emphasis on the aspects related to the period-
icity. For the sake of simplicity, only the two-dimensional FIG. 1. Schematic description of a doubly periodic material.
mathematical model is described. In the second part, the
comparison between numerical and analytical results obwhich is called the wave number and is dendte@he time
tained for an homogeneous and isotropic material is first predependence is written a&s ot
sented and displays a nice agreement validating the method. Because the material is assumed to be periodic and in-
Then the results obtained for a periodic array of square infinite in thex andy directions, any space functidh (dis-
clusions embedded in a matrix are presented. Finally, matgylacement, .).has to verify the classical Bloch relation
rials containing a periodic array of cylindrical pores are stud- ' .
ied. The dispersion curves obtained by calculation provide F(x+2dg,y+2dy) = e24ak s fel 20k 030 ()
phase velocity, in the large wavelength limit. So, the homog- = el ®agi¥bF (x,y). (1)
enized properties are determined with the help of an aniso-
tropic model. Using these effective properties, the resonancg
frequencies of perforated plates are determined with the help
of the finite element method and are compared to the mea- Using relation(1) allows us to reduce the model to only
sured resonance frequencies. Then, the homogenization prore unit cell, which can be meshed using finite eleménts.
cess is validated. Writing relation (1) between the displacement values for
nodes that are separated by one period provides the boundary
conditions between adjacent cells. Using the finite element
method with the help of theriLa code!?~'°the unit cell is
meshed and divided into elements connected by nodes. Fig-

(A

N
.\.\ \Q\\\\\\\ \\§§\

N\
=\

X

. Finite element modeling of the unit cell

|. THEORETICAL FORMULATION
A. General mathematical model

To present the model, although a lot of other cases can
also be dealt with, the doubly periodic material of reference Cy B, F = Fy el?
is an infinite elastic medium with a periodic array of cylin- f
drical pores which is described in Fig. 1. The material is
without losses. In this model, the pores are infinite and are
set parallel to the axis. Thus the problem is bidimensional  f=F, ei*®
and only depends on the andy coordinates, using plane
strain conditions.

The material is theoretically assumed to be infinite in the
x andy directions, and to be doubly periodic. The whole
domain is split into successive unit cells. Each unit cell con-
tains one cylindrical pore and a small part of the surrounding
material. This cell is detailed in Fig. 2. Due to the periodicity
of the material, theA; and A, lines, parallel to the axis,
and theB; andB, lines, parallel to thex axis, limit the unit
cell, which is 21, wide in thex direction and 2, wide in the %
y direction. In Fig. 2, corners are marked by the letter C. F=F, F=F, i

Then the material is excited by a plane, monochromatic
wave, th_e direction of InCIden_C_e of \_NhICh IS_ marked by anFIG. 2. Schematic description of a doubly periodic material, used to define
angled with respect to the positive axis. The incident wave ea, | A,, B,, B, lines, theC;, C,, Cs, C, points, and the incident
is characterized by a real wave vector the modulus of wave.

2d,,
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and in the inner domaih, relations(3) imply a simple matrix

Cs B, Cy . . .
relation betweerd and Ui which can be written
Q, Ua1
™ Ugs
U=[PyJUr=[Pul| |, | (4)
C1
U,
Al Az In the same way, a matrix relation can be defined be-
tween the vectoF and the reduced vectdi:
FAl
_ _ FB:L
F=[PelFe=[P¢l| £ |- 5
c1
0
C, k B, C, .
y Thus the equation to be solved can be reduced to
- ) [PU]*T([Kuu]_wZ[M])[PU]UR:([KR]_wZ[MR])UR
=[Py]* [Pe]Fg. (6)
FIG. 3. Finite element mesh of the unit cell. Finally, the matrice$Kg] and[Mg] are divided follow-

ing four parts,A;, B;, C; andl, and the resulting equation

ure 3 presents the unit cell, containing the solid structuré®
Qg, the boundary lineg\;, A,, By, andB,, and the cor- ([Kr]— @ [MR])Ug=0, (7)
nersC,, C,, Cs, andC,.

If a modal analysis is considered, the whole system o
equations is, classically [Kr]=[Pul* Ky I[Pul,

([Kyul — @’ [M])U=F, 2) [MR]=[Py]* TMI[Py]. ®)
where the unknown is the vector of nodal values of the dis-  The detailed expressions §Kr] and [Mg] are pre-
placemenU. [K,,] and[M] are, respectively, the structure sented in Appendix A of Ref. 13. In terms of finite elements,
stiffness and coherent mass matricesis the angular fre-  this operation is the static condensation of degrees of free-
quency.F contains the nodal values of the applied forces.dom belonging toA,, B,, C,, Cs, andC,. The reduced
[Kuuls [M], andF result, respectively, from the merging of matrice K] and[Mg] are Hermitian, because eigenval-
elementary matrices and vec{dt;,], [M®], andF®, where ues andk wave numbers are real. The computation «of
e stands for the element number. In all the following ex-eigenvalues when the wave vector is complex necessitates
amples, isoparametric elements are used, with a quadratife development of new algorithms, which are not yet avail-

1where

interpolation along element sides. able.
The angular frequency is a periodical function of the
C. Application of the periodic boundary conditions wave vectork. Thus the problem can be reduced to the first

Brillouin zone?! The dispersion curves are built varyikgn

the first Brillouin zone, for a given propagation direction.
The whole diagram is deduced using symmetries. In the case
é)f Fig. 2, the wave numbek varies as

The application of the periodic boundary conditions im-
plies that the phase relatigh) between nodal values belong-
ing to theA; and A, lines, on the one hand, to th&, and
B, lines, on the other hand, has to be incorporated in th

matrix equation(2). The unit cell is divided into nine parts: 0y=atand,/d,),

the four lines A;, A,, B;, and B,, the four corners

C., Cy,, Cs, andCy, and the inner domaith. Displace- 0<|6|<6y=0<ks -———— , (9)
ment vectorU and force vector= are then split into the 2d,, cos 6

corrtesEondTg nine parts. Due to relati@, their compo- o gl - . -

nents have to verify o=<| |\2:> <k<Zd.snd -

Upz=Ups€/%a,  Ugy=Ug €%, Ucy=Uc el%,

Ucs=Ug 8%, Ugy=Ug,el(#a*eb). (3) 1. RESULTS

Then, owing to the equilibrium of interconnecting forces A. Homogeneous and isotropic material

between two adjacent cells, relatidh) leads to analogous In this section, the propagation of plane harmonic waves
relations for the force vectorf,, which corresponds to in an infinite, homogeneous, and isotropic elastic medium is
forces applied to inner nodes, is equal to zero. Defining thetudied as a classical test example. The material is alumi-
reduced vectobr as a vector containing the nodal values of num, whose physical properties afe=7.31x10'° Pa, v

the displacement on th&; andB; lines, on theC; corner  =0.325, angp=2770 kg m 3. Using plane strain conditions,
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finite element results are compared to the analytical results,
6 . . o following the relation

- . w=c\(nm/d)?+ (ky+mm/d)? (10

wheren and m are integers, and is either equal to the
L1 longitudinal wave velocityc, or to the transverse wave ve-
4l - locity c. Whenn is not equal to zero, the corresponding
branches are hyperbolic curves and are due to the wave vec-
tor whose components are determined as modutusazd
3t could be set in any Brillouin zont.
The agreement between the curves is quite good, when
the reduced angular frequenay is lower than 4. It corre-
sponds to the validity limit of the\/4 criterion?? which
states that the largest length of each element in a given mesh
n=0 has to be smaller than a quarter of the transverse wavelength
in the material. This section is a strong validation for the
method.

0 ' : - : ; Using a nonsymmetrical mesh instead of a symmetrical

0 02 04 06 08 1 mesh gives identical resufS Whenk is not parallel to the

K = 2dk/n X ory axis, the agreement between the finite element results
and the analytical results is perfect. In this case the analytical

FIG. 4. Dispersion curves for a homogeneous, isotropic material: Variationgelation is similar to relatiori10), butk, is not equal to 0. A
of the reduced angular frequenciesas a function of the reduced wave few examples are detailed in Ref. 20.
numberk Full lines: analytical results. Markers: FEM results.

3(1-2v)p

® = 2dw/

the material is supposed to be infinite in theirection and is B+ Periodic array of square inclusions

set in thexy plane. Using the finite element method to solve In this case, the periodic material is a periodic array of
this problem, an arbitrary square unit cell is meshed, whosequare inclusions, supposed to be infinite in one direction.
side A is equal to 4 cm. It is partitioned into 16 finite ele- Then the problem is bidimensional. The square inclusions,
ments. The wave vectdt is selected in the first Brillouin  the side of which is equal to& are made of brassE(
zone in thexy plane. =9.2x 10'° Pa, »=0.33, p=8270 kg m 3), denoted material
The calculation is performed whénis chosen parallel 1, characterized by its longitudinal velocity; and trans-
to they axis, which corresponds to a normal incident waveverse velocitycr;. They are embedded in aluminum, denoted
vector (§=0°). Figure 4 presents the variations of the re-material 2, characterized by its longitudinal veloaity, and
duced eigenangular frequencies=w2dyE/3(1-2v)] as  transverse velocitg,. They are arranged as a doubly peri-
a function of the reduced wave numbdek2d/ 7). The  odic material. The grating spacing is denotet(Eig. 5). For

a) b)
4 4 ¢
N
3 F \ ---------------- 3 \\
s2r 2d 3ol e A2
Q Q el A
n [0 “~~.\\ /‘ 1
'8 _ a/d=0.00 (8 g
a/d = 0.25 S~ /
1 —_— = 1| ~
0 /2 I I I I ) a/d — 100 O ‘__ I ' I ‘
0 02 04 06 08 1 0 02 04 06 08 1
k = 2dk/% k = 2dk/%

FIG. 5. Dispersion curves for a periodic array of square inclusions for different mfibs/ariations of the reduced angular frequenciess a function of
the reduced wave number(a) First longitudinal mode(b) First two transverse modes.
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FIG. 6. Periodic array of square inclusions: Views of the displacement field
at given instant, foa/d=0.25 withk=7/2d. (a) First mode(pointA,). (b)
Second modépoint A,).

this analysis, the wave vectéris set parallel to thg axis.
Figure 5a) presents the dispersion curves for the first
longitudinal mode when the rati&/d is varying from 0 to 1.
Clearly, the quasilongitudinal velocity, in the large wave-
length limit, varies fromc , to ¢ ;. In the same way, Fig.
5(b) presents the dispersion curves for the first and second
transverse modes. The quasitransverse velocity varies from ~
Ct, to crq. Moreover, the introduction of inhomogeneities in \;,<"' . mep/5000
the unit cell implies the opening of a gap at the Brillouin 0.5} o L . :
zone boundary. The passbands are related to real wave num- 7 E7/5000
bers and stopbands are related to complex wave numbers eI
(evanescent wavgswhich are not calculated and do not ap- A e
pear in Fig. 5. The largest stopband is whed=0.5. This 0 WETTY - ' - )
fact can be easily explained using a view of displacement 0 0z 04 06 03 !
fields at a given instant for the first transverse mode at the k= 2dk/n
boundary of the Brillouin zon€éFig. 6). In the heterogeneous
.medlu.m’ these d|splacement f|§lds .are different, duef' to th=0.503: Variations of the reduced angular frequengiess a function of the
inclusion. Thus the correspondlng e!genvalues are dlﬁeren“educed wave numbér Full lines: symmetrical modes with respect to the
However, in an homogeneous medium, these displacemeftayis. pashed lines: antisymmetrical modes with respect toytiaeis.

fields become identical, considering a translation of lengttDotted lines: lines which slopes correspond to the longitudinal or transverse
d along the wave vectadk. velocities in the homogeneous material (cr) and in the homogenized
material in the large wavelength limi€{,cy).

——— ===

® = 2dw/5000
\
\

EIG. 7. Dispersion curves for a periodic array of cylindrical pores th

C. Periodic array of cylindrical pores respond to antisymmetrical modes. The first one is a quasi-

A periodic material containing infinite cylindrical pores transverse propagative mode. There is no crossing between
with circular cross section is considered. The pores are perihe branches of one familgymmetrical or antisymmetrical
odically spaced in th& andy directions. Air cavities are not whereas symmetrical branches can cross antisymmetrical
meshed. The material is PVCEE3.78<10° Pa, v=0.4, branches. The introduction of pores in the material induces
p=1430 kg m3) in which longitudinal and transverse ve- the opening of a gap at the Brillouin zone boundary.
locities are denoted; andcy. The radius of the pore is The low-frequency branches of the curves can be ap-
denoteda. The porosity is defined aB= wa?/4d?, where proximated to two straight lines whose slopes are
2d is the pore spacing. The maximum value feris /4, ¢, /5000 andwC{/5000. They can be compared to the dis-
which corresponds to a contact between the pores. The wayersion curves for PVC without inclusions, which are
vectork is set perpendicular to the pore axis, and parallel tcstraight lines of sloperc, /5000 andwc;/5000. In that case,
the y axis. Figure 7 presents the dispersion curvesRor the sound propagates slower in the heterogeneous medium
=0.503a/d=0.8). Because the unit cell is symmetric with than in the homogeneous medium, and the effect increases
respect to they axis and because the wave vector is parallelwith porosity.
to this axis, the curves can be split into symmetrical or anti-  For different porosities, the dispersion curves have been
symmetrical branches, which are identified with the help ofdrawn and the phase velocities in the large wavelength limit
the computed displacement field. The full lines correspond tdvave been calculated, using the slope of the low-frequency
symmetrical modes with respect to thexis. The firstone is  branches. Figure 8 presents the variations of the normalized
a quasilongitudinal propagative mode. The dashed lines cotengitudinal and transverse velocitieég/c, andc{/ct as a
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FIG. 9. Slowness curves fd?=0.503: Variations of the inverse of veloci-
ties as a function of the incident angde Full lines: semianalytical results.
Points: FEM results. Stars: points for the calculation of the effective stiff-

ness constants.
the three effective stiffness constants are then deduced:
666:5612'(00)1

C11=pCL(0°), (13

C1o=p(EF(0°) — 28%(45%)).

With the help of Christoffel's equation, the longitudinal and
transverse velocities can be calculated using effective prop-
erties, for any incident angle.

WhenP=0.503, Fig. 9 presents in polar coordinates the
slowness curves for quasilongitudinal and quasitransverse
waves, i.e., the variations of the inverse velocities as a func-
tion of the incident angle. The full lines correspond to the
analytical results, using effective properties. The points cor-
FIG. 8. Variations of the normalized longitudinal velocity/c, and of the respond to the fml_te element method results. The stars cor-
normalized transverse velocity /c; as a function of the porosity and of ~ reéspond to the points chosen for the computation of the ef-
the incident anglé, in the case of a periodic array of cylindrical pores. fective properties, The agreement is very good between the
curves, validating the homogenization process.

Figure 10 presents the porosity variations of the normal-
ized homogenized stiffness constadig/c,;, C;,/Cqp, and

Ces/Ces Wherec,1, Ci,, andcgg are the PVC stiffness con-
stants, and the anisotropic coefficights defined as

(b)

function of the porosity? and of the incident anglé. As the
porosity increases, the wave velocities decrease.

For a given porosity, the quasitransverse velocityand
the quasilongitudinal velocitg, vary as a function of the

incident angle. So, the porous material must be considered as A=2Cgg/(C11— C12)- (14
?n r:ﬁrpogter}iousﬁanilsotrgpm _?N\edm.rfw_"n, n:hthe llafrge WaVeinese curves show that the material is more anisotropic
ength limit. The effective densitp verifies the relation when the porosity increases.
p=(1-P)p. (11) . . .
) ) o D. Tridimensional model of the periodic array of
The effective stiffness tens@c] is chosen as cylindrical pores
€y Cp O The aim of this section is to evaluate the accuracy of the
[E]=|Cp Cun O] . (12) homogenization process with the help of experimental re-

0 o0 & sults. Three plates made of PVC are studied. They are all 20

66 mm thick, 309 mm long, and 206 mm wide. The first plate is
Using the finite element method, the computation of veloci-full. The two other plates are periodically perforated with,
ties in the large wavelength limit has been performed forespectively, 300 and 600 holéBig. 11). The hole’s diam-
only two incident angle®. Thanks to Christoffel’'s equations, eter is
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FIG. 10. Porosity variations of the normalized homogenized stiffness con-
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stantsCy;/Cq1, C12/C1p, andCqg/Cqg and porosity variations of the aniso-
tropic coefficientA.

equal to 7 mm. Thus the porosities are, respectively, 0.192 [¢]=

and 0.385 for the second and the third plates.

First, the dispersion curves are calculated considering
the three plates as infinite in the three space directions. For 0 0 0 0 0 &g
the full plate, a tridimensional unit cell is meshed, with arbi- -

Mt
N

2 \2:1

FIG. 12. Schematic description of a doubly periodic material, considered as
a triply periodic material and finite element mesh of the unit cell.

The dispersion curves provide three low-frequency branches
which can be approximated to three straight lines. Then, the
two quasitransverse and the quasilongitudinal velocities are
determined in the large wavelength limit.

In the same way, the material can be homogenized with
the help of an anisotropic model, in which the stiffness ten-
sor is
[ 611 612 613 0
E:12 611 613 0
E:13 a13 633 0
0 0 O Cu
0 0 O 0 Cu O

0
0
0
0

o o o o

(15

trary dimensions. For the two perforated plates, a tridimenin view of determining the six effective stiffness constants of
sional unit cell is meshed containing one pore of arbitraryth® porous material in the large wavelength limit, the two
thickness & along thez axis (Fig. 12. The wave vector is
characterized by the two angl@sand ¢ defined in Fig. 12.

FIG. 11. Schematic description of the three plates made of PVC, withou

z

PVC%

309

300 holes

&
. 8

W

e ]
e

X

600 holes

e

res

o

re
T T T T

TTHTHET

Jas

holes, containing 300 holes, and containing 600 holes.

holes
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quasitransverse and the quasilongitudinal velocities have to
be computed for two different propagation directiot%
=90°, ¢=45° and(0#=45°, ¢=0°). Then, using the classical
Christoffel equation, the six effective stiffness constants are
deduced.

Using the effective properties, the second and the third
plates are meshed as an homogeneous and anisotropic plate.
By this way, we avoid meshing the 300 or the 600 holes.
Then, a modal analysis is performed which provides the
resonance frequencies and the corresponding displacement
field. The resonance modes are classified into four catego-
ries, according to the type of symmetry of their displacement

TABLE I. Resonance frequencies for the full plate made of PVC.

feem fexp Error frem fexp ErTON
No. (Hz) Type (Hz7 % No. (Hz) Type (Hz) %

1078.1 SA 1075-0.3
12904 AA 1257 -2.6
1463.7 SS 1462-0.1
1873.1 SS 1867-0.3

1 305.6 AA 307 +0.5
2 346.3 SS 355 +2.6
3 7028 AS 701 -0.3
4
6

© 00N O

8150 SS 815 +0.0
886.8 SA 902 +1.7

Langlet et al.: Acoustic waves in periodic materials 2798



TABLE II. Resonance frequencies for the plate made of PVC containingtropic model. A careful validation has been carried out with
300 holes. periodically perforated plates, the resonance frequencies of
which have been measured.

This technique can now be used for the analysis of the
propagation of plane acoustic waves in single periodic mate-
12;3-‘; 22 ff116 —i-g rials, such as a waveguid&?*or in triply periodic materials,
6341 AA 621 -21 13029 SS 1721 -25 ;uch ~as 10composne or penqdlc arrays of spherical
680.2 SS 681 +0.1 15773 AA 1548 —1.9  Inclusions.” Moreover, an extension of the technique can be
755.6 AS 748 -1.0 performed in a view to model coupled fluid—solid periodic
material and active periodic materiaté.In that case, the
dispersion curves provide results of physical interest, par-
ticularly for piezocomposite$~2’ homogenized wave ve-
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