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Analysis of the propagation of plane acoustic waves in passive
periodic materials using the finite element method

Philippe Langlet, Anne-Christine Hladky-Hennion, and Jean-Noël Decarpigny
IEMN (UMR 9929 CNRS), ISEN Department, Institut Supe´rieur d’Electronique du Nord, 41 boulevard
Vauban, 59046 Lille Cedex, France

~Received 30 September 1994; revised 19 May 1995; accepted 29 May 1995!

The finite element approach has been previously used, with the help of theATILA code, to model the
scattering of acoustic waves by single or doubly periodic passive structures@A. C. Hladky-Hennion
et al., J. Acoust. Soc. Am.90, 3356–3367~1991!#. This paper presents a new extension of this
technique to the analysis of the propagation of plane acoustic waves in passive periodic materials
without losses and describes with particular emphasis its application to doubly periodic materials
containing different types of inclusions. In the proposed approach, only the unit cell of the periodic
material has to be meshed, thanks to Bloch–Floquet relations. The modeling of these materials
provides dispersion curves from which results of physical interest can be easily extracted:
identification of propagation modes, cutoff frequencies, passbands, stopbands, as well as effective
homogeneous properties. In this paper, the general method is first described, and particularly the
aspects related to the periodicity. Then a test example is given for which analytical results exist. This
example is followed by detailed presentations of finite element results, in the case of periodic
materials containing inclusions or cylindrical pores. The homogenized properties of porous
materials are determined with the help of an anisotropic model, in the large wavelength limit. A
validation has been carried out with periodically perforated plates, the resonance frequencies of
which have been measured. The efficiency and the versatility of the method is thus clearly
demonstrated. ©1995 Acoustical Society of America.

PACS numbers: 43.20.Bi, 43.20.Gp, 43.20.Jr, 43.35.Cg

INTRODUCTION

Periodic materials, such as porous or fibrous materials
and composites, have araisen a great deal of interest and are
now widely used in underwater acoustics, signal processing,
as well as for medical imaging applications. Particularly, in
order to explain their physical behavior, the propagation of
harmonic elastic waves through periodic materials can be
studied. From the dispersion curves, many results of physical
interest can be easily extracted: propagation modes, cutoff
frequencies, passbands, stopbands, as well as effective ho-
mogeneous properties of these structures and their validity
limits.

Many authors have built accurate mathematical models
for the propagation of harmonic elastic waves through peri-
odic materials, based on the Bloch–Floquet theory.1 Thus
Audoly and Dume´ry have studied periodic materials contain-
ing cylindrical inclusions, using a multiple-scattering
approach.2 Tao and Sheng used a method based on the itera-
tive solution of the inhomogeneous elastic wave equation in
the case of porous materials,3 whereas Auldet al. developed
an elastodynamic theory for periodic composite materials.4

Braga and Herrmann5 have studied acoustic propagation
through periodically layered composites. Nemat-Nasser and
Yamada6 and Baste and Ge´rard7 have analyzed the propaga-
tion of harmonic elastic waves through one-directional or
three-directional composites. Though efficient, all these
methods require in many cases a lot of algebraic develop-
ments, which restrict their use to a small number of given
geometries or to given propagation directions.

To avoid model restriction, several authors have also
used a numerical approach. Using the boundary integral
equation method, Achenbach and Kitahara8 have provided
dispersion curves for a periodic material containing spherical
cavities. Bennet9 has used a transfer-matrix approach
coupled to the finite element method to describe the disper-
sion curves in a periodic material: this method has provided
good results but is restricted to propagation directions paral-
lel to the periodicity. Ruffa10 has used a three-dimensional
finite element analysis to determine the acoustic behavior of
plane waves propagating through bubbly liquids having pe-
riodic bubble distributions. Also, Maet al.11 have developed
a finite element method in the case of infinitely long, cylin-
drical pores when the waves propagate perpendicularly to the
pores axis. This method uses the symmetry of the elementary
periodic cell. The finite element approach has been previ-
ously used by Hladky-Hennionet al.,12–14 with the help of
the ATILA code,15–19 to model the scattering of acoustic
waves by single periodic passive structures, such as compli-
ant tube gratings,12 by doubly periodic passive structures,
such as Alberich anechoic coatings,13 or to study the free-
field voltage sensitivity and the transmitting voltage response
of active periodic structures, such as 1–3 piezocomposites.14

The efficiency and the versatility of the finite element
method to describe the acoustical behavior of periodic struc-
tures have been demonstrated, particularly because this ap-
proach allows the modeling of any geometrical shapes, made
up with any elastic or piezoelectric, isotropic or anisotropic
media, by simply building the specific mesh. The aim of this
paper is to extend the finite element approach previously
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described12–14 to the study of the propagation of harmonic
elastic waves in passive periodic materials.20

In the method proposed here, the periodic material is
supposed to be periodic in one, two, or three space direc-
tions, finite or infinite in the others. Because of Bloch–
Floquet relations between displacement values at points
which are separated by the geometrical period, only one unit
cell is meshed with finite elements.12–14Within this cell, a
phase relation is applied on nodes separated by one period,
defining boundary conditions between adjacent cells. The
phase relation is related to the wave number of the incident
wave in the periodic material. The dispersion curves present
the variations of the eigenfrequencies versus the wave num-
ber. They provide phase velocity and group velocity for each
propagation mode, stopbands, passbands, etc.

In the first part of this paper, the theoretical formulation
is given, with emphasis on the aspects related to the period-
icity. For the sake of simplicity, only the two-dimensional
mathematical model is described. In the second part, the
comparison between numerical and analytical results ob-
tained for an homogeneous and isotropic material is first pre-
sented and displays a nice agreement validating the method.
Then the results obtained for a periodic array of square in-
clusions embedded in a matrix are presented. Finally, mate-
rials containing a periodic array of cylindrical pores are stud-
ied. The dispersion curves obtained by calculation provide
phase velocity, in the large wavelength limit. So, the homog-
enized properties are determined with the help of an aniso-
tropic model. Using these effective properties, the resonance
frequencies of perforated plates are determined with the help
of the finite element method and are compared to the mea-
sured resonance frequencies. Then, the homogenization pro-
cess is validated.

I. THEORETICAL FORMULATION

A. General mathematical model

To present the model, although a lot of other cases can
also be dealt with, the doubly periodic material of reference
is an infinite elastic medium with a periodic array of cylin-
drical pores which is described in Fig. 1. The material is
without losses. In this model, the pores are infinite and are
set parallel to thez axis. Thus the problem is bidimensional
and only depends on thex and y coordinates, using plane
strain conditions.

The material is theoretically assumed to be infinite in the
x and y directions, and to be doubly periodic. The whole
domain is split into successive unit cells. Each unit cell con-
tains one cylindrical pore and a small part of the surrounding
material. This cell is detailed in Fig. 2. Due to the periodicity
of the material, theA1 andA2 lines, parallel to they axis,
and theB1 andB2 lines, parallel to thex axis, limit the unit
cell, which is 2da wide in thex direction and 2db wide in the
y direction. In Fig. 2, corners are marked by the letter C.

Then the material is excited by a plane, monochromatic
wave, the direction of incidence of which is marked by an
angleu with respect to the positivey axis. The incident wave
is characterized by a real wave vectork, the modulus of

which is called the wave number and is denotedk. The time
dependence is written ase2 jvt.

Because the material is assumed to be periodic and in-
finite in the x and y directions, any space functionF ~dis-
placement, ...! has to verify the classical Bloch relation

F~x12da ,y12db!5ej2dak sin uej2dbk cosuF~x,y!

5ejwaejwbF~x,y!. ~1!

B. Finite element modeling of the unit cell

Using relation~1! allows us to reduce the model to only
one unit cell, which can be meshed using finite elements.21

Writing relation ~1! between the displacement values for
nodes that are separated by one period provides the boundary
conditions between adjacent cells. Using the finite element
method with the help of theATILA code,12–19 the unit cell is
meshed and divided into elements connected by nodes. Fig-

FIG. 1. Schematic description of a doubly periodic material.

FIG. 2. Schematic description of a doubly periodic material, used to define
theA1 , A2 , B1 , B2 lines, theC1 , C2 , C3 , C4 points, and the incident
wave.
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ure 3 presents the unit cell, containing the solid structure
Vs , the boundary linesA1 , A2 , B1, andB2, and the cor-
nersC1, C2 , C3, andC4.

If a modal analysis is considered, the whole system of
equations is, classically

~@Kuu#2v2@M # !U5F, ~2!

where the unknown is the vector of nodal values of the dis-
placementU. @Kuu# and @M # are, respectively, the structure
stiffness and coherent mass matrices.v is the angular fre-
quency.F contains the nodal values of the applied forces.
@Kuu#, @M #, andF result, respectively, from the merging of
elementary matrices and vector@Kuu

e #, @Me#, andFe, where
e stands for the element number. In all the following ex-
amples, isoparametric elements are used, with a quadratic
interpolation along element sides.

C. Application of the periodic boundary conditions

The application of the periodic boundary conditions im-
plies that the phase relation~1! between nodal values belong-
ing to theA1 andA2 lines, on the one hand, to theB1 and
B2 lines, on the other hand, has to be incorporated in the
matrix equation~2!. The unit cell is divided into nine parts:
the four lines A1 , A2 , B1, and B2, the four corners
C1, C2, , C3, andC4, and the inner domainI . Displace-
ment vectorU and force vectorF are then split into the
corresponding nine parts. Due to relation~1!, their compo-
nents have to verify

UA25UA1e
jwa, UB25UB1e

jwb, UC25UC1e
jwa,

~3!
UC35UC1e

jwb, UC45UC1e
j ~wa1wb!.

Then, owing to the equilibrium of interconnecting forces
between two adjacent cells, relation~1! leads to analogous
relations for the force vector.FI , which corresponds to
forces applied to inner nodes, is equal to zero. Defining the
reduced vectorUR as a vector containing the nodal values of
the displacement on theA1 andB1 lines, on theC1 corner

and in the inner domainI , relations~3! imply a simple matrix
relation betweenU andUR which can be written

U5@PU#UR5@PU#F UA1

UB1

UC1

UI

G . ~4!

In the same way, a matrix relation can be defined be-
tween the vectorF and the reduced vectorFR:

F5@PF#FR5@PF#F FA1FB1
FC1
0
G . ~5!

Thus the equation to be solved can be reduced to

@PU#* T~@Kuu#2v2@M # !@PU#UR5~@KR#2v2@MR# !UR

5@PU#* T@PF#FR . ~6!

Finally, the matrices@KR# and@MR# are divided follow-
ing four parts,A1, B1, C1 and I , and the resulting equation
is

~@KR#2v2@MR# !UR50, ~7!

where

@KR#5@PU#* T@Kuu#@PU#,
~8!

@MR#5@PU#* T@M #@PU#.

The detailed expressions of@KR# and @MR# are pre-
sented in Appendix A of Ref. 13. In terms of finite elements,
this operation is the static condensation of degrees of free-
dom belonging toA2 , B2 , C2 , C3, andC4. The reduced
matrices@KR# and@MR# are Hermitian, becausev eigenval-
ues andk wave numbers are real. The computation ofv
eigenvalues when the wave vector is complex necessitates
the development of new algorithms, which are not yet avail-
able.

The angular frequencyv is a periodical function of the
wave vectork. Thus the problem can be reduced to the first
Brillouin zone.1 The dispersion curves are built varyingk on
the first Brillouin zone, for a given propagation direction.
The whole diagram is deduced using symmetries. In the case
of Fig. 2, the wave numberk varies as

u05atan~db /da!,

0<uuu<u0⇒0<k<
p

2db cosu
, ~9!

u0<uuu<
p

2
⇒0<k<

p

2da sin u
.

II. RESULTS

A. Homogeneous and isotropic material

In this section, the propagation of plane harmonic waves
in an infinite, homogeneous, and isotropic elastic medium is
studied as a classical test example. The material is alumi-
num, whose physical properties areE57.3131010 Pa, n
50.325, andr52770 kg m23. Using plane strain conditions,

FIG. 3. Finite element mesh of the unit cell.
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the material is supposed to be infinite in thez direction and is
set in thexy plane. Using the finite element method to solve
this problem, an arbitrary square unit cell is meshed, whose
side 2d is equal to 4 cm. It is partitioned into 16 finite ele-
ments. The wave vectork is selected in the first Brillouin
zone in thexy plane.

The calculation is performed whenk is chosen parallel
to they axis, which corresponds to a normal incident wave
vector ~u50°!. Figure 4 presents the variations of the re-
duced eigenangular frequencies@v̄5v2dAE/3(122n)# as
a function of the reduced wave number (k̄5k2d/p). The

finite element results are compared to the analytical results,
following the relation

v5cA~np/d!21~ky1mp/d!2 , ~10!

where n andm are integers, andc is either equal to the
longitudinal wave velocitycL or to the transverse wave ve-
locity cT . Whenn is not equal to zero, the corresponding
branches are hyperbolic curves and are due to the wave vec-
tor whose components are determined as modulus 2p and
could be set in any Brillouin zone.1

The agreement between the curves is quite good, when
the reduced angular frequencyv̄ is lower than 4. It corre-
sponds to the validity limit of thel/4 criterion,22 which
states that the largest length of each element in a given mesh
has to be smaller than a quarter of the transverse wavelength
in the material. This section is a strong validation for the
method.

Using a nonsymmetrical mesh instead of a symmetrical
mesh gives identical results.20 Whenk is not parallel to the
x or y axis, the agreement between the finite element results
and the analytical results is perfect. In this case the analytical
relation is similar to relation~10!, but kx is not equal to 0. A
few examples are detailed in Ref. 20.

B. Periodic array of square inclusions

In this case, the periodic material is a periodic array of
square inclusions, supposed to be infinite in one direction.
Then the problem is bidimensional. The square inclusions,
the side of which is equal to 2a, are made of brass (E
59.231010 Pa,n50.33,r58270 kg m23!, denoted material
1, characterized by its longitudinal velocitycL1 and trans-
verse velocitycT1. They are embedded in aluminum, denoted
material 2, characterized by its longitudinal velocitycL2 and
transverse velocitycT2. They are arranged as a doubly peri-
odic material. The grating spacing is denoted 2d ~Fig. 5!. For

FIG. 4. Dispersion curves for a homogeneous, isotropic material: Variations
of the reduced angular frequenciesv̄ as a function of the reduced wave
numberk̄. Full lines: analytical results. Markers: FEM results.

FIG. 5. Dispersion curves for a periodic array of square inclusions for different ratiosa/d: Variations of the reduced angular frequenciesv̄ as a function of
the reduced wave numberk̄. ~a! First longitudinal mode.~b! First two transverse modes.
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this analysis, the wave vectork is set parallel to they axis.
Figure 5~a! presents the dispersion curves for the first

longitudinal mode when the ratioa/d is varying from 0 to 1.
Clearly, the quasilongitudinal velocity, in the large wave-
length limit, varies fromcL2 to cL1 . In the same way, Fig.
5~b! presents the dispersion curves for the first and second
transverse modes. The quasitransverse velocity varies from
cT2 to cT1. Moreover, the introduction of inhomogeneities in
the unit cell implies the opening of a gap at the Brillouin
zone boundary. The passbands are related to real wave num-
bers and stopbands are related to complex wave numbers
~evanescent waves!, which are not calculated and do not ap-
pear in Fig. 5. The largest stopband is whena/d50.5. This
fact can be easily explained using a view of displacement
fields at a given instant for the first transverse mode at the
boundary of the Brillouin zone~Fig. 6!. In the heterogeneous
medium, these displacement fields are different, due to the
inclusion. Thus the corresponding eigenvalues are different.
However, in an homogeneous medium, these displacement
fields become identical, considering a translation of length
d along the wave vectork.

C. Periodic array of cylindrical pores

A periodic material containing infinite cylindrical pores
with circular cross section is considered. The pores are peri-
odically spaced in thex andy directions. Air cavities are not
meshed. The material is PVC (E53.783109 Pa, n50.4,
r51430 kg m23! in which longitudinal and transverse ve-
locities are denotedcL and cT . The radius of the pore is
denoteda. The porosity is defined asP5pa2/4d2, where
2d is the pore spacing. The maximum value forP is p/4,
which corresponds to a contact between the pores. The wave
vectork is set perpendicular to the pore axis, and parallel to
the y axis. Figure 7 presents the dispersion curves forP
50.503a/d50.8). Because the unit cell is symmetric with
respect to they axis and because the wave vector is parallel
to this axis, the curves can be split into symmetrical or anti-
symmetrical branches, which are identified with the help of
the computed displacement field. The full lines correspond to
symmetrical modes with respect to they axis. The first one is
a quasilongitudinal propagative mode. The dashed lines cor-

respond to antisymmetrical modes. The first one is a quasi-
transverse propagative mode. There is no crossing between
the branches of one family~symmetrical or antisymmetrical!,
whereas symmetrical branches can cross antisymmetrical
branches. The introduction of pores in the material induces
the opening of a gap at the Brillouin zone boundary.

The low-frequency branches of the curves can be ap-
proximated to two straight lines whose slopes are
p c̃L/5000 andp c̃T/5000. They can be compared to the dis-
persion curves for PVC without inclusions, which are
straight lines of slopepcL/5000 andpcT/5000. In that case,
the sound propagates slower in the heterogeneous medium
than in the homogeneous medium, and the effect increases
with porosity.

For different porosities, the dispersion curves have been
drawn and the phase velocities in the large wavelength limit
have been calculated, using the slope of the low-frequency
branches. Figure 8 presents the variations of the normalized
longitudinal and transverse velocitiesc̃L /cL and c̃T/cT as a

FIG. 6. Periodic array of square inclusions: Views of the displacement field
at given instant, fora/d50.25 withk5p/2d. ~a! First mode~pointA1). ~b!
Second mode~point A2).

FIG. 7. Dispersion curves for a periodic array of cylindrical pores withP
50.503: Variations of the reduced angular frequenciesv̄ as a function of the
reduced wave numberk̄. Full lines: symmetrical modes with respect to the
y axis. Dashed lines: antisymmetrical modes with respect to they axis.
Dotted lines: lines which slopes correspond to the longitudinal or transverse
velocities in the homogeneous material (cL ,cT) and in the homogenized
material in the large wavelength limit (c̃L ,c̃T).
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function of the porosityP and of the incident angleu. As the
porosity increases, the wave velocities decrease.

For a given porosity, the quasitransverse velocityc̃T and
the quasilongitudinal velocityc̃L vary as a function of the
incident angle. So, the porous material must be considered as
an homogeneous anisotropic medium, in the large wave-
length limit. The effective densityr̃ verifies the relation

r̃5~12P!r. ~11!

The effective stiffness tensor@ c̃# is chosen as

@ c̃#5F c̃11 c̃12 0

c̃12 c̃11 0

0 0 c̃66
G . ~12!

Using the finite element method, the computation of veloci-
ties in the large wavelength limit has been performed for
only two incident anglesu. Thanks to Christoffel’s equations,

the three effective stiffness constants are then deduced:

c̃665 r̃ c̃T
2~0°!,

c̃115 r̃ c̃L
2~0°!, ~13!

c̃125 r̃„c̃L
2~0°!22c̃T

2~45°!….

With the help of Christoffel’s equation, the longitudinal and
transverse velocities can be calculated using effective prop-
erties, for any incident angle.

WhenP50.503, Fig. 9 presents in polar coordinates the
slowness curves for quasilongitudinal and quasitransverse
waves, i.e., the variations of the inverse velocities as a func-
tion of the incident angle. The full lines correspond to the
analytical results, using effective properties. The points cor-
respond to the finite element method results. The stars cor-
respond to the points chosen for the computation of the ef-
fective properties. The agreement is very good between the
curves, validating the homogenization process.

Figure 10 presents the porosity variations of the normal-
ized homogenized stiffness constantsc̃11/c11, c̃12/c12, and
c̃66/c66 wherec11, c12, andc66 are the PVC stiffness con-
stants, and the anisotropic coefficientA is defined as

A52c̃66/~ c̃112 c̃12!. ~14!

These curves show that the material is more anisotropic
when the porosity increases.

D. Tridimensional model of the periodic array of
cylindrical pores

The aim of this section is to evaluate the accuracy of the
homogenization process with the help of experimental re-
sults. Three plates made of PVC are studied. They are all 20
mm thick, 309 mm long, and 206 mm wide. The first plate is
full. The two other plates are periodically perforated with,
respectively, 300 and 600 holes~Fig. 11!. The hole’s diam-
eter is

FIG. 8. Variations of the normalized longitudinal velocityc̃L /cL and of the
normalized transverse velocityc̃T /cT as a function of the porosityP and of
the incident angleu, in the case of a periodic array of cylindrical pores.

FIG. 9. Slowness curves forP50.503: Variations of the inverse of veloci-
ties as a function of the incident angleu. Full lines: semianalytical results.
Points: FEM results. Stars: points for the calculation of the effective stiff-
ness constants.
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equal to 7 mm. Thus the porosities are, respectively, 0.192
and 0.385 for the second and the third plates.

First, the dispersion curves are calculated considering
the three plates as infinite in the three space directions. For
the full plate, a tridimensional unit cell is meshed, with arbi-
trary dimensions. For the two perforated plates, a tridimen-
sional unit cell is meshed containing one pore of arbitrary
thickness 2h along thez axis ~Fig. 12!. The wave vector is
characterized by the two anglesu andw defined in Fig. 12.

The dispersion curves provide three low-frequency branches
which can be approximated to three straight lines. Then, the
two quasitransverse and the quasilongitudinal velocities are
determined in the large wavelength limit.

In the same way, the material can be homogenized with
the help of an anisotropic model, in which the stiffness ten-
sor is

@ c̃#53
c̃11 c̃12 c̃13 0 0 0

c̃12 c̃11 c̃13 0 0 0

c̃13 c̃13 c̃33 0 0 0

0 0 0 c̃44 0 0

0 0 0 0 c̃44 0

0 0 0 0 0 c̃66

4 . ~15!

In view of determining the six effective stiffness constants of
the porous material in the large wavelength limit, the two
quasitransverse and the quasilongitudinal velocities have to
be computed for two different propagation directions~u
590°,w545°! and~u545°,w50°!. Then, using the classical
Christoffel equation, the six effective stiffness constants are
deduced.

Using the effective properties, the second and the third
plates are meshed as an homogeneous and anisotropic plate.
By this way, we avoid meshing the 300 or the 600 holes.
Then, a modal analysis is performed which provides the
resonance frequencies and the corresponding displacement
field. The resonance modes are classified into four catego-
ries, according to the type of symmetry of their displacement

TABLE I. Resonance frequencies for the full plate made of PVC.

No.
f FEM
~Hz! Type

f exp
~Hz!

Error
% No.

f FEM
~Hz! Type

f exp
~Hz!

Error
%

1 305.6 AA 307 10.5 6 1078.1 SA 107520.3
2 346.3 SS 355 12.6 7 1290.4 AA 1257 22.6
3 702.8 AS 701 20.3 8 1463.7 SS 146220.1
4 815.0 SS 815 10.0 9 1873.1 SS 186720.3
5 886.8 SA 902 11.7

FIG. 10. Porosity variations of the normalized homogenized stiffness con-
stantsc̃11 /c11 , c̃12 /c12 , and c̃66 /c66 and porosity variations of the aniso-
tropic coefficientA.

FIG. 11. Schematic description of the three plates made of PVC, without
holes, containing 300 holes, and containing 600 holes.

FIG. 12. Schematic description of a doubly periodic material, considered as
a triply periodic material and finite element mesh of the unit cell.
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field with respect to thex and y axes: antisymmetric–
antisymmetric ~AA !, antisymmetric–symmetric ~AS!,
symmetric–antisymmetric~SA!, and symmetric–symmetric
~SS!. The experimental resonance frequencies are measured
using an accelerometer applied on the plates excited by a
harmonic sound.

Tables I–III present the first nine resonance frequencies
for, respectively, the full plate, the 300-hole plate (P
50.192), and the 600-hole plate (P50.385). The tables
give the resonance frequencies calculated with the help of
the finite element method, the types of the mode, the experi-
mental frequencies, and the relative errors. The agreement is
good between the experimental resonance frequencies and
the calculated resonance frequencies, considering the plates
as homogenous and anisotropic. When the porosity in-
creases, the resonance frequencies decrease, particularly for
the first and the third modes, for which the decrease is about
30%. These tables give close results, validating the homog-
enization process. A better agreement could be obtained if
the homogenization process took into account the effect of
the air cavities, by meshing the pore as a fluid domain.

III. CONCLUSION

Amodel for predicting the propagation of plane acoustic
waves in passive periodic materials has been presented and
applied to the analysis of periodic materials containing dif-
ferent types of inclusions. It relies upon the finite element
method, with the help of theATILA code. It has allowed an
easy identification of the propagation modes, with the help of
the computed displacement fields. In the case of periodic
array of pores, the porosity variations of the homogenized
longitudinal and transverse velocities are presented, using
the low-frequency branches of the curves. In the large wave-
length limit, the homogenized properties of periodic porous
material have been determined with the help of an aniso-

tropic model. A careful validation has been carried out with
periodically perforated plates, the resonance frequencies of
which have been measured.

This technique can now be used for the analysis of the
propagation of plane acoustic waves in single periodic mate-
rials, such as a waveguide,23,24or in triply periodic materials,
such as composite or periodic arrays of spherical
inclusions.10 Moreover, an extension of the technique can be
performed in a view to model coupled fluid–solid periodic
materials2 and active periodic materials.14 In that case, the
dispersion curves provide results of physical interest, par-
ticularly for piezocomposites:25–27 homogenized wave ve-
locities, electromechanical coupling factors, depending on
the poling axis of the ceramics. The homogenization process
could be extended to these active periodic materials.

1L. Brillouin, Wave Propagation in Periodic Structures~Dover, New York,
1953!.
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