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ABSTRACT 
The paper deals with the elastostatic modeling of a multi-link flexible manipulator based on the 2D dual-

triangle tensegrity mechanism and its non-linear behavior under external loading. The main attention is 

paid to the static equilibriums and the manipulator stiffness behavior under the loading for the arbitrary 

initial configuration. It was proved that there is a quasi-buckling phenomenon for this manipulator while 

the external loading is increasing. In the neighborhood of these configurations, the manipulator behavior 

was analyzed using the enhanced Virtual Joint Method (VJM). A relevant simulation study confirmed the 

obtained theoretical results. 
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INTRODUCTION 
 

Compliant manipulators are used nowadays in many fields since their flexibility, 

modularized construction, and low weight. Many new mechanical structures were 

studied in this area [1-6], which showed quite good performances compared with 

traditional rigid robots. Recently, in literature, particular attention is paid to tensegrity 

mechanisms, which are made up of a series of similar segments composed of 

compressive and tensile elements (cables or springs) [7, 8]. Such structures found their 

applications in space exploration robots [9, 10], in the design of new types of aerial 

vehicle [11] and manipulators [12], fish robot design [13], in the ocean wave energy 

harvesting mechanisms [14], design of new type of actuators [15] and twisting wing 

mechanisms [16]. One of such tensegrity structures is studied in this paper.  

Tensegrity mechanisms belong to the class of highly over-constrained 

mechanisms where topological synthesis plays an important role. In order to find 

tensegrity structures that better suit the desired application different optimization 

methods were applied. For example, Chen et al. used ant colony optimization for 

tensegrity structure optimization [17]. Ehara and Kanno used mixed integer 

programming to minimize the number of cables and remove redundant self-equilibrium 

modes [18]. Koohestani used genetic algorithms for the form-finding of tensegrity 

structures based on force density optimization [19]. Wang et al. proposed a 

computational framework for the form-finding of tensegrity based on the rank 

minimization of force density matrix [20]. It should be noted that in some cases, the 

complexity of the tensegrity structures is not a barrier for analytical solutions for form-
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finding [21]. An improved symmetry method for analytical form-finding of tensegrity 

structures based on group representation theory and the force density method is 

proposed in [22]. The proposed approach can obtain all feasible stable or superstable 

tensegrity structures with expected symmetries analytically. Modeling and control of 

tensegrity structures are highly non-linear problems, which usually have multiple 

solutions. Many research groups dealing with designing an appropriate model and 

control [23, 24], using deep reinforcement learning [25, 26], model predictive control 

[27], and convex optimization [28]. Some researchers design models with negative 

stiffness components [29]; that idea is a promising approach for system property 

optimization. Another attractive property of tensegrity structures is the presence of 

multiple equilibria and the ability to switch between them in order to reach higher 

power capabilities [30]. Such an approach was efficiently applied by Melancon et. al. 

[31] to design multistable inflatable origami deployable structures at the metre scale. A 

similar approach was used to design a protective system for robotic rotorcraft based on 

the origami structures [32]. It should be mentioned that origami-based design and 

optimization of tensegrity structueres if is one of the most promessing approach widely 

used by the community [33, 34]. 

The above-presented analysis concludes that non-linear stiffness analysis plays 

an essential role for tensegrity structures and, together with multiple equilibrium 

configurations, gives the colossal potential for property enhancement and utilization in 

new areas. However, that requires the development of an appropriate mathematical 

tool, which will help us to analyze tensegrity structure behavior under different loads. 
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Some aspects of the stiffness modeling using matrix structural analysis [35, 36] and 

virtual joint modeling [37-40], as well as stability analysis [41, 42], can be used from 

classical manipulator stiffness analysis. However, they require essential advancements 

to take into account all tensegrity structures particularities.  

Stiffness properties of some tensegrity mechanisms have already been studied 

carefully. In [43], the authors considered the mechanism composed of two springs and 

two length-changeable bars. They analyzed the mechanism stiffness using the energy 

method, demonstrated that the mechanism stiffness might decrease under external 

loading with the actuators locked, which may lead to the “buckling” phenomenon. Also, 

in [44], the cable-driven X-shape tensegrity structures were considered; here, the 

authors investigated the influence of cable lengths on the mechanism equilibrium 

configurations, which may be both stable and unstable. The relevant analysis of the 

equilibrium configurations as well as the stability and singularity study can be found in 

[45]. Using these results, the authors obtained conditions under which the mechanism 

can work continuously, without the “buckling” or “jump” phenomenon. There is also 

some research studying a four-legged parallel platform [46], which is based on the 

compliant tensegrity mechanisms. The authors investigated the loaded equilibrium 

configurations and numerically computed the platform stiffness. 

For robotics, similar to classical mechanics dealing with the Euler column, the 

buckling phenomenon can be detected, which is not typical and was rarely studied 

before [37, 38]. It should be noted that in contrast to column “buckling of the element,” 

here “geometrical buckling” of structure arises, which induced by much lower external 
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loads. It is usually treated as an undesirable phenomenon because the robot may 

suddenly change its shape when the loading force exceeds some critical value. Engineers 

prefer to avoid buckling while designing a robot. However, such property can be helpful 

in some fields [47-49]. Also, sometimes the quasi-buckling phenomenon may occur, 

which changes the robot resistance in one direction suddenly while the external loading 

is increasing. It is not typical for robotics and was rarely studied before. For this reason, 

this phenomenon should be obligatory taken into account in stiffness analysis.  

This paper is an extension of our previous results [50, 51], which concentrated 

on the stiffness analysis of the multi-link flexible manipulator based on the 2D dual-

triangle tensegrity mechanism. It was assumed that each segment is a composition of 

two rigid triangle parts, which are connected by a passive joint in the center and two 

elastic edges on each side with controllable preload. In contrast to the previous results, 

here, we consider a general case with an arbitrary number of segments and its stiffness 

behavior under the loading. 

 

MECHANICS OF 2D DUAL-TRIANGLE TENSEGRITY MECHANISM 
 

Let us present first a single segment of the compliant serial manipulator under 

study. It consists of two identical rigid triangles connected by a passive joint whose 

rotation is constrained by two linear springs, as shown in Fig. 1. It is assumed that the 

mechanism geometry is described by two triangle parameters (a, b), and the mechanism 

shape is defined by the central angle q, which is adjusted through two control inputs 
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influencing the springs L1 and L2. Let us denote the spring lengths in the non-stress state 

as 0

1L and 0

2L ，and the spring stiffness coefficient as k. 

D
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Mext
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q
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Fig. 1 Geometry of a dual-triangle mechanism 

To find the mechanism configuration angle q corresponding to the given control 

inputs 0

1L and 0

2L , let us derive the static equilibrium equation of this mechanism, which 

can be easily computed using the elastic forces F1, F2 generated by the springs through 

Hook’s law as 

 

0 0

1 1 1 1 2 2 2 2( );     ( )F k L L F k L L     (1) 

 

 where the lengths 
1

L and 2L  are the spring lengths AD , BC  corresponding to the 

current value of the angle q . These values can be computed from the triangles 

AOD and BOC  using the formulas 

 

1 1 1

2 2 2

( ) 2 2cos( )

( ) 2 2cos( )

L c

L c

 

 

  

  
 (2) 
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Where 2 2c a b  , and 1 , 2  are expressed via the mechanism parameters 

1 2 q   , 2 2 q    , and atan( / )a b  . That allows us to express the spring 

lengths 1 1( )L   and 2 2( )L   by the variable q as 1( )L q  and 2 ( )L q  respectively. And the 

torques 1 1 1M F h  , 2 2 2M F h    generated by the springs in the passive joint O can be 

computed using the triangle area relations 2

1 1 1sin( )L h c  , 2

2 2 2sin( )L h c   of AOD  

and BOC , which gives us the following form. 

 

0 2

1 1 1

0 2

2 2 2

( ) (1 ( )) sin(2 )

( ) (1 ( )) sin(2 )

M q k L L q c q

M q k L L q c q





   

   
 (3) 

 

where k denotes the springs stiffness coefficient, 1( )L q  and 2 ( )L q  are the current 

spring lengths, 0

1L  and 0

2L  are control inputs, while c and   are the geometric 

parameters described above (see Fig. 1). The difference in signs is caused by the 

different directions of the torques generated by the forces 1F  2F  with respect to the 

passive joint. So, taking into account, the external torque Mext applied to the moving 

platform, the static equilibrium equation for the considered mechanism can be written 

as 

 

   1 2 0extM q Mq M    (4) 
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It is worth mentioning that both 1( )M q  and 2 ( )M q  highly depend on the spring initial 

prestress defined by the variables 0

1L  and 0

2L . Besides, the spring slackness is not 

possible here because of mechanical design particularities (i.e. springs are assumed to 

be able to generate both positive and negative efforts). It is also clear that this equation 

is highly nonlinear. Solving it numerically, we can get the rotation angle q  

corresponding to the control inputs 0

1L , 0

2L  and the external torque extM applied to the 

moving platform, and also obtain the torque-angle relation as follows 

 

  02 cos sin cos( 2)sin( 2)M q ck c q L q      (5) 

 

where M(q)= M1(q)+ M2(q), 0 0 0

1 2L L L  . 
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Fig. 2 The torque-angle curves of dual-triangle mechanism 
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It should be noted that this mechanism's static stability highly depends on the 

equilibrium configuration defined by q. As follows from the relevant analysis, the 

function M(q) can be either a monotonic or non-monotonic one (Fig. 2), so the single-

segment mechanism may have multiple stable and unstable equilibriums, which are 

studied in detail in [50]. As follows from the relevant analysis, this mechanism's stability 

condition can be expressed via the derivative sign at the zero points, i.e.   0| 0qM q 
  , 

which is easy to verify in practice. So, the relevant analytical expression for the 

derivative 

 

02 cos cos c( o)
2 2

s cosck c q L
q

M q



 

  
 

  (6) 

 

allows us to present the condition of the torque-angle curve monotonicity as follows 

 

 0 22 1 ( )L b a b    (7) 

 

This expression is extensively used below. 

 
STIFFNESS OF MULTI-LINK FLEXIBLE MANIPULATOR COMPOSED OF DUAL-TRIANGLES 

 

The serial manipulator considered in this paper is composed of n similar sections 

connected in series, as shown in Fig. 3, where the left-hand side is assumed to be fixed. 

For the initial straight configuration, this manipulator's stiffness properties were studied 
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in our previous paper, where the buckling phenomenon (similar to the Euler column) 

was discovered, and the critical force was computed. In this paper, a general case is 

considered where the manipulator's initial shape is assumed to be arbitrary, and the 

stiffness analysis is carried out for the loaded mode. 

 

    n

Straight 

configuration

Non-straight 

configuration

On-1
a

a

b b xO1 O2a

a

bbb b

 n-1

On

y

q1

q2

Fe

x
δqn-1

qn

 

Fig. 3 Geometry of a multi-segment manipulator. 

 

Let us assumed that the initial configuration of the n-link manipulator is a non-

straight one, which corresponds to the non-zero angles ( 0 0, 1, 2,...,iq i n  ) and the 

initial end-point location is 0 0( , ) (2 , 0)x y n b x    with 0x  . It is assumed that the 

corresponding control inputs 0 0

1 2( , ), 1, 2,..,i iL L i n  are computed from the equilibrium 

conditions, where 0 0

1i iL L   , 0 0

2i iL L    and 0L b . It is clear that if 3n  this 

manipulator is redundant with respect to the end-effector location control in the (x, y)-

plane. So, for given 0 0( , )x y  the configuration angles 0

iq  cannot be computed uniquely. 

For this reason, we will consider two typical initial shapes of the manipulator, which in 
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our previous paper were referred to as the U-shape and Z-shape [51]. Examples of such 

initial configurations for n=4 are presented in Table 1 ( 0.3x b  ); their elastostatic 

properties will be carefully studied below. 

 

Table 1 Two typical initial configurations of the manipulator for the end-point 

(x0, y0) = (7.7b, 0). 

 Initial shape 
Initial configuration angles 

q1 q2 q3 q4 

Case #1 U-shape:  ‒0.3093 +0.1348 +0.4246 +0.2288 

Case #2 Z-shape:  ‒0.1136 +0.3768 ‒0.6242 +0.7869 

 

For any position the end-effector located in the workspace with the end-effector 

deflection ( , )x y  , the manipulator has its own equilibrium configurations and the 

corresponding external forces, so to have a better understanding of the force-deflection 

relations ( )xF x and ( )yF x corresponding to the end-effector displacement in the (x, 

y)-plane, let us assume the single constant control variable 0y   and focus on 

varx  , i.e., from the initial location 0 0( , ) (2 , 0)x y n b x    to the current one 

( , ) (2 , 0)x y n b x x    where x is the end-effector deflection caused by the 

external forces ( , )x yF F  and x  denotes the initial displacement of the end-effector. Let 

us apply the energy method allowing us to find possible equilibrium configurations 

corresponding to the given x . It should be noted that the geometric constraint coming 

from the given end-effector location can be presented by the direct kinematic in the 

form 
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-1

1 1 1

-1

1 1 1

2 cos cos 2

2 sin sin 0

jn n

i i x

j i i

jn n

i i

j i i

b b q b q nb x

b q b q


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  

 
     

 

 
  

 

  

  

 (8) 

 

and allows us to reduce the number of variables in the energy function 1 2 2( , ,... )nE q q q   

by applying the 2-link manipulator inverse kinematics to compute the remaining angles 

1( , )n nq q . Further, by detecting the max/min and saddle points of the function 

1 2 2( , ,... )nE q q q  , it is possible to find the configuration angles for all possible 

equilibriums. As known from the static analysis, the manipulator equilibriums must 

satisfy the following matrix equation. 

 


   

T

q q n 2
M + J F 0  (9) 

 

where 
1 2[ , ,..., ,]T

q q qnM M MqM  is the matrix of the internal torques in manipulator 

joints generated by the springs forces, ( , )T

x yF FF  is the external forces acting the 

manipulator end-effector, the Jacobian matrix qJ  of the manipulator can be expressed 

as 

 

N N N

1 1 2 1 N 1

N N N

1 1 2 1 N 1 2

sin sin ... sin

cos cos ... cos

j j j

j i j i j i

j i j i j i

j j j

j i j i j i

j i j i j i n

q q q

b

q q q

  

  

     

      

      
        

       
      
      
       

     

     
qJ  (10) 
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where 2 1,2,..., 1j for j n    and 1j for j n   . To evaluate stability and 

compute the external forces ( , )x yF F  corresponding to the end-effector deflection x , 

let us apply the Moore-Penrose pseudo-inverse on the static equilibrium condition, 

which is shown as follows, 

 

1
T T



         q q q q
F J J J M  (11) 

 

It should be mentioned that here both the Jacobian qJ  and the joint torques qM  are 

computed using the configuration angles iq  corresponding to the stable equilibriums. 
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Fig. 4 The energy function  and manipulator equilibriums for initial U-shape 

configuration (end-effector deflection δx/b=0.4, δy=0;  geometric 

parameters a/b=1.0;  q4>0).. 
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Fig. 5 The energy function  and manipulator equilibriums for initial Z-shape 

configuration (end-effector deflection δx/b=0.2, δy=0;  geometric 

parameters a/b=1.0;  q4>0). 
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Fig. 6 The energy function  and manipulator equilibriums for initial U-shape 

configuration (end-effector deflection δx/b=0.8, δy=0;  geometric 

parameters a/b=1.0;  q4>0). 
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Examples of the obtain energy surfaces for n=4 are presented in Figs 4, 5 and 6, 

where the end-effector elastic deflection is  0.2 ,0.4 ,0.8x b b b  , and the initial shapes 

correspond to the end-effector displacement 0.3x b   (see Table 1). As follows from 

these figures, for the initial U-shape (see Fig. 4), there are two cases of the energy 

surfaces 1 2( , )E q q  corresponding to q4>0 and q4<0, which are symmetrical. Totally, they 

have 6 critical points; each of them contains a single maximum, a single minimum and a 

single saddle point. Also, their evolution with respect to x  is continuous; their 

topology remains the same while increasing the deflection x . In contrast, for the initial 

Z-shape (see Figs. 5, 6), the energy surfaces 1 2( , )E q q  are quite different; their evolution 

with respect to x  is discontinuous. The latter leads to sign-changing of some 

configuration angles iq  under the external loading F as shown in the figures (see angle 

q1 for instance). Besides, if the deflection x  is large enough, as in Fig. 6, the energy 

surfaces may contain a “hole,” i.e., an unfeasible area caused by the violation of the 

geometric constraints max

i iq q   inside the manipulator segments. 

 
EVOLUTION OF MANIPULATOR STIFFNESS PROPERTIES UNDER THE LOADING 

 

By applying the above-presented energy method and computing minimums of 

the energy function 1 2 2( , ,... ) minnE q q q    for different x , it is possible to obtain the 

desired force-deflection relations ( )xF x and ( )yF x describing the manipulator 
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stiffness properties. Examples of such computations for n=4 are presented in Figs 7 and 

8. 

For the initial U-configuration (see Fig. 7), the change of the manipulator shape is 

smooth, the manipulator resistance against the external loading is gradually increasing 

while the deflection x becomes larger. Also, the stiffness coefficient in the x-direction 

is decreasing continuously. This tendency is observed until the manipulator reaches its 

geometric constraints. In contrast, for the initial Z-configuration (see Fig. 8), there are 

two intervals of the manipulator deformation. In the beginning, when x  is relatively 

small， the manipulator maintains its Z-shape and the resistance against the external 

force is monotonically increasing, similar to the previous case. 
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Fig. 7 Force-deflection curves Fx(δx), Fy(δx) and manipulator shape changing 

under the loading for initial U-shape for (x0, y0) = (7.7b, 0), geometric 

parameters a/b=1.0 and δy=0. 
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Fig. 8 Force-deflection curves Fx(δx), Fy (δx) and manipulator shape changing 

under the loading for initial Z-shape for (x0, y0) = (7.7b, 0), geometric 

parameters a/b=1.0 and δy=0. 

 

Further, when the deflection x is larger than some critical value, the buckling 

phenomenon occurs, and the manipulator resistance against the external force is not 

increasing anymore. Correspondingly, the stiffness coefficient  xdF dx  becomes very 

small, the stiffness coefficient  ydF dx  changes its sign and the manipulator does not 

keep its initial Z-shape (some of the angles iq  change the signs). Finally, after the 

buckling, the manipulator moves in the direction of its internal geometric constraints. 

Some more details concerning the evolution of the manipulator shape and its stiffness 

coefficients under the loading for both x- and y-directions are presented in Table 2. 
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Table 2 Evolution of the manipulator shape under the loading for δx=var, δy=0. 

 Initial shape Stiffness coefficients and shape under the loading 

Case 

#1 

U-shape: 
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Hence, in practice, it is preferable to use the U-shape of the manipulator if the 

task space obstacles (external constraints) allow. It should also be noted that for the Z-

shape, it is necessary to avoid high loadings exceeding the critical force causing buckling. 

Further, in addition to the above presented force-deflection relations ( )xF x  

and ( )yF x  derived from the assumption of varx  , 0y  , let us analyze the 

changing of the manipulator stiffness coefficients under the loading  ,x yF F  without 

imposing any kinematic constraints of the end-effector location. To obtain the desired 

relations, it is necessary to compute the configuration angles 1( ,..., )nq q  corresponding 

to the manipulator equilibriums for different given external forces  ,x yF F . It is clear 

that these angles can be found numerically by solving a system of n independent 

equations (9) 


   
T

q q n 2
M + J F 0 , which describes the static equilibrium condition (by 

applying Newton’s method for instance). However, the initial guess of the angles 
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0 0

1( ,..., )nq q  should be evaluated correctly to ensure that they are in the minimum energy 

configuration neighborhood because only such cases can be observed in practice. Such 

an initial guess can be obtained using the above-presented energy method applied in 

the space 1( ,..., )nq q  with a rather rough grid with large step. Also, the desired angles 

corresponding to the external loading  ,x yF F  can be found using the Matlab function 

fminsearch, which minimizes the sum of the squared residuals i.e. 

 

2
T

1 2
arg min

n n 

          
q q

q
q M J F  (12) 

 

Where both the internal torques qM  and the Jacobian qJ  depend on the angles 

1( ,..., )T

nq qq . It should also be mentioned that it is possible to simplify the problem of 

the initial guess 0 0

1( ,..., )nq q  selection by gradually increasing the forces  ,x yF F  and 

using solutions from the previously loaded equilibrium as the initial guess for the next 

one corresponding to  ,x x y yF F F F  . However, when the forces  ,x yF F  

approach the buckling point, the initial guess from the previous step is not suitable 

because the configuration angles are changing essentially and only the straightforward 

energy method allows to obtain the correct initial guess. 

If the equilibrium configuration angles 1( ,..., )nq q  corresponding to the given 

force  ,x yF F  are computed, it is possible to find the desired stiffness coefficients using 

the formula for the loaded case [52], 
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   
1

1 1
T T;


     

  F q q g q F q q g qC J K K J K J K K J  (13) 

 

where FK  is the loaded stiffness matrix and FC  is the corresponding compliance 

matrix. They include two essential components, the first of which qK  corresponds to 

the unloaded case, and the second one gK  describes the external force influence on 

the stiffness. In this expression, the nn matrix of the joint elastic stiffness coefficients 

1( ,..., )q qndiag K KqK  can be computed using the derivative of the segment torque 

equation (5) as follows 

 

  2 0 012 12
12 1 22 cos sin sin sin 1,2,...,

2 2
,i i

q q
M q c k q ck L L i n

 


  
    

 
 (14) 

 

where 0 0

1 2L L . That yields the manipulator joint stiffness coefficient as 

 

 
0 0 0 0

2 2 1 2 1 22 cos cos sin , .
2

1,2, ..
2 2

,
2

i i i
i

i i
iq

iK i n
L L q L L q

k b a q k b a
  

      
 

 (15) 

 

It should be stressed that here, the control inputs 0

1iL  and 0

2iL  are constant values, which 

correspond to the initial unloaded joint angles iq that satisfying to the stable equilibrium 

for which ( ) 0M q  . The second matrix gK  containing the stiffness coefficients caused 
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by the external loading is symmetrical and can be computed from the partial derivative 

of the Jacobian matrix as T

iq gK J F@ , which gives us 

 

21 11 22 12 2 1

22 12 2 1

2 1

...

... ...

... ... ... ...

... ... ...

x y x y n x n y

x y n x n y

n x n y

J F J F J F J F J F J F

J F J F J F J F

J F J F

      
 

   
 
 
 

   

gK  (16) 

 

where ijJ  denotes the Jacobian matrix element qJ  from (10) corresponding to the ith 

row and jth column. 

It is evident that when the external forces are equal to zero, the stiffness matrix 

expression is reduced to the form, which is known from the unloaded mode 

analysis
1

1 T

0


   q q q

K J K J . It should also be mentioned that, in contrast to the classical 

n-link serial manipulators, here the diagonal matrix qK  is configuration dependent (not 

constant) because each initial configuration with the angles 1( ,..., )nq q  produces its own 

control inputs 0

1iL  and 0

2iL  included in the expression (10). Besides, here the unloaded 

compliance matrix 0C  can be expressed analytically in the following way 

 

22 2

111 12

1 2

0 22 2

221 22

1 2

... *

* ...

n

q q qn

n

q q qn

JJ J

K K K

JJ J

K K K

 
   

 
 
   
  

C  (17) 

 



The Journal of Mechanisms and Robotics 

22 
 

To illustrate the above-presented results' practical importance, they were 

applied to the case n=4, assuming that the initial (unloaded) endpoint location is 

   0 0, 7.7 , 0x y b , and the initial shape is either U- or Z- one. The configuration angles 

under the loading, corresponding to the external force  ,x yF F F , were computed 

numerically using the proposed technique. Relevant results of the initial U-shape and Z-

shape are presented in Figs. 9 and 10, respectively. 
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Fig. 9 Stiffness coefficients under the Fx- and Fy-loading for initial U-shape 

configuration with (x0, y0) = (7.7b, 0) and geometric parameters a/b=1.0 

 

As follows from these figures, the manipulator stiffness essentially changes if the 

external loading is applied. For the initial U-shape case, the absolute value of the 

manipulator stiffness coefficient |Kxx| decreases first, while the force Fx is increasing 
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(see Fig. 9a) until Fx is reaching some critical value when |Kxx| is the minimum, then it 

begins to increase slowly. In contrast, the stiffness coefficient Kxy (describing the 

manipulator reaction in the y-direction) changes its sign under the loading. These 

stiffness properties can also be interpreted from the geometrical and physical point of 

view, using the right-hand side of Fig. 9a, which shows the evolution of the manipulator 

configuration under the loading. In general, such manipulator behavior can be treated 

as “quasi-buckling” because for certain loading Fx the stiffness in both x- and y-direction 

is very small. And the manipulator rotates quickly until one of the segments goes close 

to its joint limits, where the equivalent rotational stiffness coefficient is very low. Hence, 

in practice, it is necessary to avoid applying too high loading in x-direction causing 

approaching either to the “quasi-buckling” or the joint limits and losing the manipulator 

stiffness. 

After buckling
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Fig. 10 Stiffness coefficients under the Fx-loading for initial Z-shape 

configuration with (x0, y0) = (7.7b, 0) and geometric parameters a/b=1.0 
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On the other side, while increasing the force Fy (i.e., in the orthogonal direction), 

the absolute value of the stiffness coefficient |Kyy| is monotonically increasing first, then 

it keeps the same tendency slowly (see Fig. 9b) because of the restriction of the 

geometric length of the manipulator. At the same time, the stiffness coefficient Kyx 

demonstrates non-monotonic behavior. Such performance can be seen from the 

evolution of the manipulator configuration at the right-hand side of Fig. 9b, where the 

manipulator end-point moves towards the extreme location, as far as possible from the 

initial one. Therefore, the high loading in y-direction should also be avoided to prevent 

the manipulator from changing its shape change to a pure straight line (see case IV). 

However, for the second case study dealing with the initial Z-shape, the stiffness 

properties under the loading are quite different compared to the U-shape case. In 

particular, as follows from Fig. 10, under the Fx-loading, the absolute value of the 

stiffness coefficient |Kxx| decreases gradually at the beginning, then it decreases quickly 

to zero. In contrast, the absolute value of the stiffness coefficient |Kxy| increases 

monotonically. This phenomenon can also be treated as “quasi-buckling” because for 

particular loading, the manipulator stiffness in the x-direction is equal to zero, and the 

stiffness in the y-direction is very high. These results are illustrated geometrically by the 

right-hand side of Fig. 10, showing the manipulator configuration's evolution under the 

Fx loading. It is clear that here each segment of the manipulator tends to move close to 

its geometric limits before the “quasi-buckling” is occurring. In this configuration, even a 

quite small change of the external force may lead to large manipulator deflection, so in 
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practice, it is reasonable to avoid such situations. It is worth mentioning that the case of 

Fy –loading is not presented in Fig. 10 because it is quite similar to the U-shape case. 

Hence, for the manipulator understudy, the stiffness properties are essentially 

non-linear with respect to the loading force. Moreover, if the loading exceeds a 

particular value, the stiffness coefficients may become very low or even change their 

sign. The latter may be treated as the quasi-buckling, which normally should be avoided. 

 

CONCLUSIONS 
 

The paper focuses on the elastostatic modeling of a multi-link flexible 

manipulator based on the 2D dual-triangle tensegrity mechanism and its non-linear 

behavior under external loading. It is a specific case of the tensegrity mechanisms that 

currently are widely used in soft robotics. The primary attention is paid to the initial 

non-straight configuration of the manipulator. It was proved that under the external 

loading there might be the quasi-buckling phenomenon, which suddenly changes the 

manipulator resistance in one direction of its deflection but may do not influence the 

resistance in another direction. It was also demonstrated that there are usually six 

equilibrium configurations of this manipulator (two stable ones and four unstable ones). 

But if the end-effector's deflection is large enough some of the equilibriums may be 

unfeasible due to the geometric constraints. 

To find the possible equilibriums and to analyze the manipulator shape under 

the loading, the energy method was used. Further, the stiffness analysis was based on 

the VJM approach allowing to find linearized relations between the end-effector 
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deflection and the external force. The relevant simulation confirmed the obtained 

results. In the future, this technique will be used for the development of relevant 

control algorisms and related redundancy resolution. 
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