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Abstract. The development of absorbing or reflecting panels is of interest for underwater
acoustic stealth. Most of the time, losses are not considered in the structures studied, specifically
in the propagation number determination, despite the fact that most materials used, such
as polymer matrices, have non negligible viscous losses. So, for a better understanding of
the acoustic properties of these structures and to allow their optimization, simulations should
consider the material properties, including losses. In order to obtain more realistic results from
simulation, two numerical tools based on the finite element method (FEM) are proposed, with
the help of the ATILA software. One is based on a differential method, the other on the transfer
matrix. The two methods are first validated in the lossless case, then when losses are taken into
account. Both methods give results in good agreement and give the propagation number where
losses are taken into account.

1. Introduction
Since the Second World War, acoustic control is a priority in naval stealth. Ships need absorbing
or reflecting panels. Periodic materials are a potential solution for this problem. These structures
behave as mechanical filters which do not allow wave propagation in certain frequency ranges.
Periodic structure characterization is done by resolving the dispersion relation where the angular
frequency ω is a function of the wave number k that is ω = f(k). This computation usually
does not consider damping terms in materials. However, acoustic panels are made of materials
with non negligible viscous losses in order to increase absorption.

There are several ways to compute the dispersion curve considering periodic structures.
Gaunaurd [1] presented a one-dimensional analysis of cylindrical cavities, Audoly [2] compared
his work with the Waterman-Truell theory about random distribution of inclusions. Wei [3]
worked on the influence of viscosity and he determined band gaps with the plane wave expansion
method. Here the finite element method (FEM) provided by the ATILA software [4, 5] is
used. Thanks to this tool, the modal analysis of a meshed structure gives real solutions for the
dispersion relation [6, 7]. This computation considers materials without losses. However, the
software is able to consider viscosity during the harmonic analysis, transmission and reflection
coefficients can be calculated for a slab with a finite thickness. In this paper, two different
methods are presented : Bianco & Parodi method, which is a differential method, and transfer
matrix method. They have been adapted to retrieve the dispersion relation considering losses in
the materials. Both methods are able to take into account damping due to the materials used.
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An example of a periodic bi-layer structure is studied. In a first step, no damping is considered
to validate the methods. Next, a small part of viscous losses is added into the material in order
to observe the damping influence on the dispersion curve.

2. Transfer matrix method
This method proposes to compute all complex solutions for the wave number at a given frequency.
It has first been developed by D. J. Mead [8, 9] and applied by M. L. Accorsi [10] in periodic
structures. Lately, it was used by M. Bavencoffe [11].

For a given frequency ω0, finite element equation defines a relation between the nodal
displacement Ũ and the nodal applied force F̃ with the help of the stiffness matrix K and the
mass matrix M . This relation connecting Ũ and F̃ can be summarised as written in equation 1,(

[K]− ω2
0[M ]

)
Ũ = [D]Ũ = F̃ . (1)

Moreover, positions can be discriminated between the left side nodes (l), right side nodes (r)
and inner nodes (i) of the elementary cell, as shown on figure 1 which is an example of a meshed
multi-layer cell. Equation 2 considers this distinction, writtenDll Dli Dlr

Dil Dii Dir

Drl Dri Drr

Ũ lŨ i
Ũ r

 =

F̃ lF̃ i
F̃ r

 . (2)

The free waves condition implies that no force is applied on inner nodes, i.e. F̃i = 0. This
condition allows to retrieve the expression for inside nodes displacement as follows :

Ũi = −[Dii]−1(DilŨ l +DirŨ r). (3)

If Ũi is replaced in equation 2, it can be written as[
Dll −Dli[Dii]−1Dil Dlr −Dli[Dii]−1Dir

Drl −Dri[Dii]−1Dil Drr −Dri[Dii]−1Dir

](
Ũ l

Ũ r

)
=

[
A B
C D

](
Ũ l

Ũ r

)
=

(
F̃ l

F̃ r

)
, (4)

where the left matrix is summarized by A, B, C and D terms for a tractable equation. As a
periodic structure, the th cell is considered. Also, th cell’s right side is ( + 1)th cell’s left side.
In other terms, if U l = U , U r = U +1. Using this notation, equation 4 is equivalent to[

A B
C D

](
Ũ 

Ũ +1

)
=

(
F̃ 

−F̃ +1

)
. (5)

Now, a relation can be defined between the quantities of interest at the right hand side of the
cell and those at the other side,(

Ũ +1

F̃ +1

)
=

[
−B−1A B−1

DB−1A− C −DB−1

](
Ũ 

F̃ 

)
= [T ]

(
Ũ 

F̃ 

)
. (6)
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Figure 1. Mesh for an elementary cell of symetric multi-layer structure - Plain : layer 1 ;
stripped lines : layer 2
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A similar relation exists in periodic medium. It is the Bloch-Floquet relation, using the wave
number k and periodic distance a, (

Ũ +1

F̃ +1

)
= ejka

(
Ũ 

F̃ 

)
. (7)

Both equations 6 and 7 are combined to get a dispersion relation :

[T − ejkaI]

(
Ũ 

F̃ 

)
= 0. (8)

3. Bianco & Parodi method
This method was firstly developed to find out electromagnetic waves in micro-strip. This task
is difficult due to interface effects and evanescent waves. B. Bianco and M. Parodi [12] came
with the idea of comparing measurements from two lines with different lengths. Both lines
are long enough to allow only the first order mode in the middle part. The aim is to retrieve
the wave number in the material core. Lately, this method was applied by C. Croenne [13] in
metamaterials.

On figure 2, two slabs made of the same medium but with some extra-material ∆l added in
the second case, between points 5 and 6, are represented.

Figure 2. Drawing of two different slabs (grey) with a variation of thickness ∆l surrounded by
fluid (white)

The matrix representation is considered for the case presented on figure 2. Mij is the propagation
matrix between points i and j. Some relations appear :

M13 = M12M23 ; M47 = M45M56M67 = M12M56M23. (9)

Now, the product of the second slab matrix with the inverse matrix of the first slab,

M47M
−1
13 = (M12M56M23)M−1

23 M
−1
12 = M12M56M

−1
12 (10)

is computed. One can readily conclude that M47M
−1
13 and M56 are similar matrices. So traces

of these matrices are identical, i.e.

tr(M47M
−1
13 ) = tr(M56). (11)

M56 can be expressed using the expression from transmission lines theory for ∆l length,

M56 =

[
cos(k∆l) jZc sin(k∆l)

jZ−1
c sin(k∆l) cos(k∆l)

]
. (12)
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The wave number k appears. Then the first part of equation 11 is expressed using D. A. Frickey’s
work on S parameters [14]. Frickey shows that the propagation matrix is expressed

M =
1

2S21

[
(1 + S11)(1− S22) + S12S21 (1 + S11)(1 + S22)− S12S21

(1− S11)(1− S22) + S12S21 (1− S11)(1 + S22) + S12S21

]
, (13)

which can be simplified. If slabs are reciprocal, the reflection coefficient is noted r = S11 = S22

and transmission t = S12 = S21. Coefficients are independent of the propagation way, e.g. with
a symetrical disposition. The propagation matrix can be expressed with these coefficients as
follows :

M13 =
1

2t1

[
1− r2

1 + t21 (1 + r1)2 − t21
(1− r1)2 − t21 1− r2

1 + t21

]
; (14a)

M47 =
1

2t2

[
1− r2

2 + t22 (1 + r2)2 − t22
(1− r2)2 − t22 1− r2

2 + t22

]
, (14b)

where subscripts indicate the thin slab (1) or the thick slab (2). Each term ri and ti is associated
to a delay term ejk0d due to propagation in the fluid distance dr or dt (figure 2) with k0 as the
wave number in the surrounding fluid. All delay terms are summarized in a unique exponential
term in equation 15, which is the pseudo dispersion relation from equation 11,

2 cos(k∆l) =
t21 + t22 − (r1 − r2)2e2jk0(dt−dr)

t1t2
. (15)

4. Results
4.1. Without losses
In order to validate the tools developed, a periodic multi-layer material is numerically studied.
The elementary cell of the structure is made of 60 % steel and 40 % epoxy with a periodic
distance a equal to 10mm. The disposition is symetrical, as shown in figure 1, to satisfy
equations 14 conditions. This case is simple enough to allow an analytical resolution in order to
compare results. Analytical solutions for longitudinal waves and transverse waves are developed
in Langlet’s work [6]. Dispersion relation is

cos(ak) = cos(
ωd1

c1
) cos(

ωd2

c2
)− (ρ1c1)2 + (ρ2c2)2

2ρ1ρ2c1c2
sin(

ωd1

c1
) sin(

ωd2

c2
) (16)

where different materials are subscripted 1 or 2, with ρ the volumic density, c the wave celerity
(longitudinal or tranverse) and d the material thickness where d1 + d2 = a. In a first step, the
quality of results need to be ensured. So computations are considered without losses. Results
are presented on figure 3. To allow easy reading, analytical solutions are represented by lines on
both figures. Longitudinal waves colored in red are distinguished from transverse waves colored
in blue. Results are represented by dots, computed by the transfer matrix method in figure 3a
and computed by the Bianco & Parodi method in figure 3b. Both methods give results in good
agreement with analytical solution. Here the wave number gets an imaginary part, contrary
to the modal analysis by FEM that only gives the real part [7]. It helps the dispersion curve
reading by following the modes branches. One can notice that there is less information with
Bianco & Parodi results. The reflection and transmission coefficients used are computed for
a normal incident wave in a fluid environment. In these conditions, only information about
longitudinal modes can be retrieved. This particularity allows to identify clearly which curve
corresponds to a longitudinal or a transverse mode.
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Figure 3. Dispersion curve of multilayer periodic structure with propagation at normal
incidence without considering viscous losses. a. Transfer matrix method b. Bianco & Parodi
method - black dots = real part of the wave number ; grey dots = imaginary part - On both
figures, the analytical solution is represented by lines : longitudinal part (red), transverse part
(blue)

0 <(k) π/a
0

50

100

150

200

Wave number k

F
re

q
u

en
cy

(k
H

z)

a.
0 |=(k)| π/a

0 <(k) π/a
0

50

100

150

200

Wave number k

b.
0 =(k) π/a

Figure 4. Dispersion curve of multilayer periodic structure with propagation at normal
incidence considering viscous losses. a. Transfer matrix method b. Bianco & Parodi method -
black dots = real part of the wave number ; grey dots = imaginary part - On both figures, the
analytical solution is represented by lines : longitudinal part (red), transverse part (blue)

4.2. With losses
The purpose of this paper is to consider viscous losses in dispersion curves when considering
dissipative materials. Both methods use the harmonic analysis. This computation in the ATILA
FEM software allows complex values for material properties. An imaginary part for the wave
number implies that these waves are evanescent. The same bi-layer structure used in the previous
part is kept, but a very small amount of losses in epoxy, i.e. an imaginary part of the elasticity
moduli equal to 2% of its real part, is considered.

13th Anglo-French Physical Acoustics Conference (AFPAC2014) IOP Publishing
Journal of Physics: Conference Series 581 (2015) 012012 doi:10.1088/1742-6596/581/1/012012

5



Both methods are presented on figures 4a and 4b. Transfer matrix solutions are sometimes
missing, due to the computing selection during resolution, but both methods give results in good
agreement. One can see that curves are smoothed and stop-band boundaries are not strictly
defined. Moreover, even in previous pass bands, an imaginary part is obtained : it means that
the waves are partially evanescent due to viscous losses in the materials.

5. Conclusion
Two methods have been presented to retrieve the dispersion curve when materials have losses.
The Bianco & Parodi method only gives information about the longitudinal propagation mode.
To use this method, the slabs studied must be thick enough to allow a periodic behaviour.
According to previous studies [15], slabs should be composed of 4 layers at least to obtain
periodic effects. The transfer matrix method gives information about all propagative modes.
However, the computation time is considerably heavier, especially in the 3D case. Moreover, the
resolution is approximate and some results are missing due to the computing selection. Both
methods give an imaginary part for the wave number, to get a readable representation. By
taking into account losses, results show that previous pass bands have an imaginary part, and
stop band boundaries are not strictly defined.

These tools can be used to optimize the dispersion of a periodic material in realistic conditions
(i.e. with losses). By providing an unusual dispersion curve, simulations describe more accurate
behaviour for periodic structures. Using both methods is also a good way to identify clearly
which curve corresponds to a longitudinal or a transverse mode. Furthermore, whereas the
transfer matrix method detects all propagative modes, Bianco & Parodi method is able to
consider oblique propagation. Together, these methods appear to be a powerful way to put
insight on physical phenomena encountered for both propagative and evanescent waves in
periodic media.

By using the tools developed, it will allow to study new absorbing acoustic panels before
experimental validation.
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