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This review presents the different physical descriptions of cell assemblies. After a short presentation of discrete models, very popular in studies of epithelial tissues, we focus more on multi-cellular spheroids containing a variety of components. In particular, we highlight both an approach based on the Smoluchowski theory of aggregation that does not consider the spatial structure of the aggregates and a continuous model for cell mixtures based on the Onsager formalism combined with the Rayleigh principle for the dynamics of dissipative systems. We show how the first approach allows to obtain the physical constants of the cells by comparison with experimental aggregates comprising a single cancerous cell line, while the second one determines the fate of interacting and proliferating cell mixing as a function of the access to nutrients. For both models, the formalism is deeply revisited to be adapted to the specificity and diversity of biological multi-component tissues. Finite element numerical simulations are shown to illustrate the potential of these physical studies.

Introduction

This review is devoted to the theoretical description of the processes occurring in multi-cellular structures during their aggregation. The physics of multi-cellular aggregates (often considered as experimental realizations of solid tumors) is not new but it plays an increasing role in bio-engineering [START_REF] Qiu | Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells[END_REF][START_REF] Song | Microfluidic three-dimensional biomimetic tumor model for studying breast cancer cell migration and invasion in the presence of interstitial fl ow[END_REF][START_REF] Pavesi | Engineering a 3d microfluidic culture platform for tumor-treating field application[END_REF], pharmacology [START_REF] Roth | The application of 3d cell models to support drug safety assessment: opportunities & challenges[END_REF][START_REF] Fang | Three-dimensional cell cultures in drug discovery and development, Slas discovery[END_REF][START_REF] Fisher | Three-dimensional culture models to study drug resistance in breast cancer[END_REF], biology [START_REF] Moscona | The dissociation and aggregation of cells from organ rudiments of the early chick embryo[END_REF][START_REF] Lei | A fully defined and scalable 3d culture system for human pluripotent stem cell expansion and differentiation[END_REF][START_REF] Abu-Absi | Structural polarity and functional bile canaliculi in rat hepatocyte spheroids[END_REF] and personalized medicine [START_REF] Ruppen | Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform[END_REF][START_REF] Sontheimer-Phelps | Modelling cancer in microfluidic human organs-onchips[END_REF]. Indeed, drugs can nowadays be tested in vitro in microfluidic devices using multi-cellular aggregates or organoids [START_REF] Olive | Drug and radiation resistance in spheroids: cell contact and kinetics[END_REF][START_REF] Friedrich | Spheroid-based drug screen: considerations and practical approach[END_REF][START_REF] Yu | Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing[END_REF][START_REF] Skardal | Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling[END_REF], and in the future, it is realistic to imagine a reconstruction of damaged organs directly from the cells of patients [START_REF] Mironov | Organ printing: computer-aided jet-based 3d tissue engineering[END_REF][START_REF] Mironov | Organ printing: promises and challenges[END_REF]. But multi-cellular aggregates are also marvellous tools to apprehend fundamental biological features such as cellcell interactions or competition between cell types, especially when a good physical model is available. As opposed to in vivo situations where many actors are at stake, aggregates allow to isolate a limited number of interacting cell types such as immune or cancerous cells and then to gradually increase the inhomogeneity or complexity in a controlled manner. Aggregates may involve an important number of cells around 20 10 3 and at this mesoscopic scale, many areas of physics such as statistical physics, soft matter, elasticity and transport theory are relevant. This complexity makes the analysis of real experimental data challenging. For living species, cellular processes such as proliferation, differentiation or tissue renewal are essential but the properties of cell aggregates and tissues also depend on forces and displacements, which ultimately modify the biological properties, a process called mechano-transduction [START_REF] Humphrey | Mechanotransduction and extracellular matrix homeostasis[END_REF]. This important mechanism may be well apprehended in aggregates.

Living organisms may be uni-cellular or multi-cellular. The number of cells of multi-cellular organisms varies in a broad range: C. Elegans hatched larvae counts around 600 cells, whereas a human adult counts around 3.5 10 13 cells. In addition, in the same organism, different cell types coexist: there are around 230 different cell types in the human body. From a biophysics point of view, multi-cellular organisms such as animals and plants can be described at several levels. Groups of similar cells and their extracellular matrix can organize into a tissue and develop collectively. There are 4 different types of animal tissues: epithelial tissues (lining the surfaces of organs), connective tissues (connecting, or separating other tissues or organs), muscular tissues (active contractile tissues) and nervous tissues (in the nervous systems). In addition, some cells live in the body fluids. Tissues assemble to form organs, which carry a specific function. Around 100 organs are found in the human body. The number of cells in these organs is of order 10 9 , there are for example around 3 10 9 cells in the human liver. These different levels of description impose different constraints and the physical approach must be adapted to the time and length scales relevant to the biological phenomena under study.

Scientific studies of tissues and organs are divided into in vivo experiments, (animal models), ex vivo experiments (tissues extracted from living organisms or patient derived organoids [START_REF] Nikolaev | Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[END_REF]), and in vitro experiments (cells in culture). Although in vivo experiments allow for the direct manipulation of the living organisms, they are harder to control and to interpret. They are also more difficult to model mathematically and computationally. Hence, it is crucial to develop experiments, complex enough to mimic living organisms, but sufficiently simple to control precisely the parameters, to interpret the results, and eventually to build a quantitative model. Clearly, multi-cellular aggregates [START_REF] Nunes | 3d tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs[END_REF] appear as an intermediate level of description, useful to describe tissues and sometimes organs [START_REF] Bassi | Advanced multi-dimensional cellular models as emerging reality to reproduce in vitro the human body complexity[END_REF]. They are growing clusters of cells with a size of the order of a few hundred microns put in wells [START_REF] Vanherberghen | Ultrasound-controlled cell aggregation in a multi-well chip[END_REF], capsules [START_REF] Alessandri | Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro[END_REF] or micro-fluidics set-ups [START_REF] Sontheimer-Phelps | Modelling cancer in microfluidic human organs-onchips[END_REF] and the experimental protocols can be repeated many times with data automatically recorded by computers. This level of description, often chosen in biological and in biophysical experiments also corresponds to scales, which are today reachable with the power of numerical simulations that take into account microscopic effects at the cellular scale. Physical approaches aim to understand biological phenomena. Mechanical stresses, reaction-diffusion of chemical species, which govern cell fate, cellular sensing and motility as well as growth and interactions between cells are treated within adapted physical frameworks, with the purpose to provide quantitative predictions. The models are divided into 2 main categories: discrete cell models [START_REF] Honda | Transformation of a polygonal cellular pattern during sexual maturation of the avian oviduct epithelium: computer simulation[END_REF][START_REF] Shraiman | Mechanical feedback as a possible regulator of tissue growth[END_REF][START_REF] Farhadifar | The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing[END_REF][START_REF] Lin | A dynamic cellular vertex model of growing epithelial tissues[END_REF] consider each cell as a building entity while continuous models average spatially the relevant physical fields 2 to explain the morphology dynamics at the scale of organs or organisms. The first category is probably more relevant for epithelia in early morphogenesis as the imaginal disc of drosophila [START_REF] Farhadifar | The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing[END_REF] while the second framework has elucidated different aspects of organogenesis [START_REF] Li | Growth and surface folding of esophageal mucosa: a biomechanical model[END_REF][START_REF] Hannezo | Theory of epithelial sheet morphology in three dimensions[END_REF][START_REF] Ben Amar | Anisotropic growth shapes intestinal tissues during embryogenesis[END_REF][START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF], tumorogenesis (with the earliest models of Greenspan [START_REF] Greenspan | Models for the growth of a solid tumor by diffusion[END_REF][START_REF] Greenspan | On the growth and stability of cell cultures and solid tumors[END_REF]) and various pathologies (wound-healing, fibrosis), and also of plant morphogenesis. Among the new problems that can be studied using these approaches in the future, we can mention organoids and ex vivo tissue models [START_REF] Karolak | Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues[END_REF][START_REF] Dahl-Jensen | The physics of organoids: a biophysical approach to understanding organogenesis[END_REF].

Spatio-temporal simulations allow to incorporate in the different approaches all the diffusive quantities which insure cell maintenance, mitosis and motility. Treated via reaction-diffusion equations, they represent signaling pathways and chemical signaling, nutrients and eventually drugs [START_REF] Balois | Morphology of melanocytic lesions in situ[END_REF][START_REF] Balois | Patterns in melanocytic lesions: impact of the geometry on growth and transport inside the epidermis[END_REF]. They make precise predictions and allow for a direct visualization of the biological phenomena [START_REF] Sherratt | A new mathematical model for avascular tumour growth[END_REF].

The link between models adapted to different length scales using a coarse-graining procedure is often a difficult task. One must start from a microscopic description at the scale of the cell to obtain a macroscopic description of the collective behavior of the cells in a tissue in terms of interaction potentials between cells the language of continuum mechanics [START_REF] Murisic | From discrete to continuum models of three-dimensional deformations in epithelial sheets[END_REF].

Comparisons between discrete and continuum models have already been the object of reviews [START_REF] Ben Amar | Physics of growing biological tissues: the complex cross-talk between cell activity, growth and resistance[END_REF][START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF][START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF][START_REF] Hakim | Collective cell migration: a physics perspective[END_REF]. Nevertheless, the field is in constant evolution, and new insights and questions have appeared. In this review, we focus on theories and numerical simulations in 3 dimensions that include multiple cell types having in mind tumor modeling. The goal of many experiments in this domain is to compare experimental results on a wild-type system such as the growth of cancer cells in tumors, to similar experiments in a modified environment (the same cells under other conditions of nutrients, stresses, or in interaction with other cell types), or the same types of cells genetically modified. A very well adapted physical approach of these systems is provided by the tools and concepts of soft condensed matter physics. However the properties of living non-equilibrium systems are far more complex than those of soft matter at thermal equilibrium and the mesoscopic properties of the cells cannot be measured with the same accuracy as those of passive complex fluids.

The aim of this work is to present the state of the art of multi-cellular aggregate modeling, and to show new results obtained with different approaches in relation with recent experiments. The paper is organized as follows. We first present in section 2 a brief review of the classical discrete models which were successful in the last decade to describe epithelial tissues. Then in the two following sections, we focus on continuum models. We present in section 3 a study of nutrient partition in a multi-cellular spheroid [START_REF] Delarue | Cappello, Mechanical control of cell flow in multicellular spheroids[END_REF][START_REF] Montel | Stress clamp experiments on multicellular tumor spheroids[END_REF]. We also include in this section the extension to tissues of the Smoluchowski theory [START_REF] Smoluchowski | Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen[END_REF], which has been used to study colloid aggregation [START_REF] Weitz | Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation[END_REF], domains in heterogeneous lipid membranes [START_REF] Richardson | Toward a mathematical model of the assembly and disassembly of membrane microdomains: comparison with experimental models[END_REF], platelets [START_REF] Hellmuth | Analysis of shear-induced platelet aggregation and breakup[END_REF] and cancerous cell aggregates [START_REF] Enmon | Dynamics of spheroid self-assembly in liquid-overlay culture of du 145 human prostate cancer cells[END_REF][START_REF] Enmon | Aggregation kinetics of well and poorly differentiated human prostate cancer cells[END_REF][START_REF] Puliafito | Three-dimensional chemotaxis-driven aggregation of tumor cells[END_REF]. As an application of these approaches, we show how the coupling between nutrient partition and cellular aggregation can explain recent experimental data on the growth of multi-cellular aggregates comprising one cell type. Finally in section 4, we give a detailed presentation of continuum models focusing on the mixture model [START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF][START_REF] Macklin | Multiscale modelling and nonlinear simulation of vascular tumour growth[END_REF][START_REF] Byrne | Modelling solid tumour growth using the theory of mixtures[END_REF]56] that we relate to Onsager out-of-equilibrium theory [START_REF] Onsager | Reciprocal relations in irreversible processes. i[END_REF][START_REF] Onsager | Reciprocal relations in irreversible processes. ii[END_REF] and to the principle of extremum of dissipation of Lord Rayleigh [START_REF] Strutt | Some general theorems relating to vibrations[END_REF]. We extend the standard formalism to include gravity and chemotaxis. We also present numerical simulations based on the mixture model in 3 dimensions using the software Comsol Multiphysics 1 . Our conclusion summarizes the different approaches and puts the work in perspective for future research.

Discrete models

In this section, we review the main discrete models which successfully describe colonies and aggregates of cells in various contexts. Discrete models consider each cell separately. They are appropriate to study small aggregates down to the scale of the cell. They are adapted to numerical simulations with a limited number of cells, but they become more tedious for larger aggregates. Discrete models allow to take into account the biochemical state, the geometry of each cell, and the forces acting on each cell individually.

Therefore they are closely connected to the biological description of the cells. In principle, many physical variables can be included in the model, yet it is difficult to perform a coarse-graining that would lead to a macroscopic description of the tissues. The coupling with continuous variables such as the diffusion of molecules or morphogens in a tissue is also difficult to introduce. Most discrete models are based on the minimization of an energy functional.

Discrete models of tissues can be either off lattice models such as the vertex and particle based models or lattice models such as the cellular Potts model and cellular automata.

• Vertex model: The vertex model puts emphasis on the geometry of the cells, and on the topology of epithelia in 2D or 3D [START_REF] Nagpal | Epithelial topology[END_REF]. It has been first introduced to study the coarsening of two-dimensional foams [START_REF] Cox | The rheology of two-dimensional foams[END_REF]. Each cell is represented as a polygon (in 2 dimensions) or a polyhedron (in 3 dimensions).

These models have mostly been used in two dimensions to study epithelial tissues either in a planar geometry [START_REF] Gibson | The emergence of geometric order in proliferating metazoan epithelia[END_REF][START_REF] Chiou | Mechanical stress inference for two dimensional cell arrays[END_REF][START_REF] Puliafito | Collective and single cell behavior in epithelial contact inhibition[END_REF][START_REF] Streichan | Spatial constraints control cell proliferation in tissues[END_REF][START_REF] Bi | Motility-driven glass and jamming transitions in biological tissues[END_REF] and in a curved geometry such as cysts [START_REF] Bielmeier | Interface contractility between differently fated cells drives cell elimination and cyst formation[END_REF]. For instance it aims to investigate statistical properties such as the distribution of the number of neighbors per cell [START_REF] Aegerter-Wilmsen | Exploring the effects of mechanical feedback on epithelial topology[END_REF] or the collective cell dynamics and the spatial structure in an epithelium [START_REF] Lin | Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer[END_REF][START_REF] Lin | Collective dynamics of cancer cells confined in a confluent monolayer of normal cells[END_REF][START_REF] Lin | A dynamic cellular vertex model of growing epithelial tissues[END_REF][START_REF] Lin | Dynamic migration modes of collective cells[END_REF][START_REF] Lin | Dynamic instability and migration modes of collective cells in channels[END_REF]. A very good agreement with experimental results has been obtained for the description of the growth of the drosophila wing disk [START_REF] Sagner | Establishment of global patterns of planar polarity during growth of the drosophila wing epithelium[END_REF][START_REF] Sui | Differential lateral and basal tension drive folding of drosophila wing discs through two distinct mechanisms[END_REF] and of the wing during drosophila development [START_REF] Haisenberg | Forces in tissue morphogenesis and patterning[END_REF][START_REF] Etournay | Interplay of cell dynamics and epithelial tension during morphogenesis of the drosophila pupal wing[END_REF]. Vertex models in 3 dimensions have also been proposed more recently [START_REF] Hannezo | Theory of epithelial sheet morphology in three dimensions[END_REF][START_REF] Bielmeier | Interface contractility between differently fated cells drives cell elimination and cyst formation[END_REF]. Messal et al [START_REF] Messal | Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis[END_REF] model a cystic tubular epithelium and study the morphology of growing tumors. An important issue is the bridging of the gap between continuum and discrete models to obtain a description of epithelial tissues in terms of the continuum mechanics of thin sheets, several works have been done in this direction [START_REF] Murisic | From discrete to continuum models of three-dimensional deformations in epithelial sheets[END_REF][START_REF] Guirao | Unified quantitative characterization of epithelial tissue development[END_REF][START_REF] Merkel | Triangles bridge the scales: Quantifying cellular contributions to tissue deformation[END_REF]. In the 2 dimensional vertex model, each cell is a polygon indexed by an integer α and with an area A α .

The tissue is a graph formed by the vertices of the polygons connected by edges between cells. Each edge labelled by a number i has a length l i . The energy of the tissue depends both on the lengths of the edges and on the areas of the cells. Each cell has a preferred area A 0 α , and each edge is under a line tension Λ i , which in some models depends on the cell perimeter P α . The energy of the tissue is written [START_REF] Farhadifar | The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing[END_REF][START_REF] Staple | Mechanics and remodelling of cell packings in epithelia[END_REF][START_REF] Graner | Simulation of biological cell sorting using a two-dimensional extended potts model[END_REF] as:

E = i Λ i l i + α K α (A α -A 0 α ) 2 + 1 2 Γ α P 2 α ( 1 
)
K α is a surface elasticity, which tends to impose the preferred area A 0 α to each cell and Γ α is related to the change of the line tension with the cell perimeter.

Cell proliferation and cell death are taken into account by adding or removing edges, and by adjusting the preferred cell area, thus modifying the topology of the cell network. Another type of topological process called T 1 allows for the exchange of edges between neighboring cells. These events are wellknown in the physics of foams [START_REF] Weaire | The physics of foams[END_REF].

The vertex model takes into account in a simplified way the geometry of the cells. It is well adapted to study layers of polyhedron shaped cells. However, the vertex model is not well adapted for less regular cells, for which a more precise model, such as the Cellular Potts Model is more accurate. One important advantage of the vertex model is that it gives a very intuitive treatment of physical and mechanical concepts such as the bulk elasticity, cell-cell adhesion or cell polarization. It also provides convincing patterns of cell deformations under external loading.

• Cellular Potts Model: The Cellular Potts Model is a lattice model based on the well-known Potts model of statistical physics describing spins with several states [START_REF] Potts | Some generalized order-disorder transformations[END_REF]. Each cell is represented by an ensemble of spins in the same state. The number of spin states is the number of components in the tissue: one state for each cell, and one for each other component such as fluid or extra-cellular matrix. The Potts model had been previously used in a similar spirit to study grain growth [START_REF] Glazier | Coarsening in the two-dimensional soap froth and the large-q potts model: a detailed comparison[END_REF] in material sciences, and foam coarsening [START_REF] Weaire | The physics of foams[END_REF].

The Potts model has been used in 2 dimensions to study the organization of different cell types on a substrate [START_REF] Glazier | Simulation of the differential adhesion driven rearrangement of biological cells[END_REF]. As the vertex model, it has only been rarely used to describe 3 dimensional cellular aggregates. Representative examples of Potts model studies in 3 dimensions are the study of avascular spheroids in Ref. [START_REF] Stott | Stochastic simulation of benign avascular tumour growth using the potts model[END_REF] and of cysts in Ref. [START_REF] Cerruti | Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures[END_REF]. The reason is that the calculations become computationally very expensive as the number of cells increases. Nevertheless, for some tissues such as epithelia, 2 dimensional simulations give a qualitative insight into the 3 dimensional behaviour of the tissue even if the cell is only described by its apical area [START_REF] Hannezo | Theory of epithelial sheet morphology in three dimensions[END_REF]. An example is given in a study on the role of extracellular matrix in glioma invasion [START_REF] Rubenstein | The role of extracellular matrix in glioma invasion: a cellular potts model approach[END_REF].

The Hamiltonian of the Potts model includes the spin-spin interaction energy, and an energy cost which forces the cells to a preferred volume or a preferred area. In 3 dimensions, the energy writes:

E = i =j J(σ i , σ j ) + I a I (A I -A 0 I ) 2 + b I (V I -V 0 I ) 2 (2)
where the first sum is over the lattice sites, and the second one on the cells. The first term is the Potts interaction matrix between neighboring spins, and the two other terms impose the preferred surface or volume of the cells in 2 and 3 dimensions respectively.

The Potts model allows to describe any cell shape. For example, the cell shape obtained in cysts is polyhedral whereas simulations of other cell types lead to a much rounder shape. More refined versions of the cellular Potts model are able to quantify the contribution of the nucleus to the mechanical properties of the cell [START_REF] Scianna | Multiscale developments of the cellular potts model[END_REF][START_REF] Scianna | A cellular potts model simulating cell migration on and in matrix environments[END_REF]. However, cells also have an elasticity, with an inner structure that is not captured by the Potts model. In this model, the cell deformations are controlled by their surface, whereas in reality, they often depend on other elements, such as the mechanics of the cytoplasm.

• Particle based model: In a particle based model, each cell is represented by an elastic adhesive object that can move in space under the action of both external forces and of interaction forces with neighboring cells. In the spirit of a Langevin description, noise is introduced in the system. As the tissue is an active material, the out-of-equilibrium noise is due to spontaneous cell shape fluctuations and to the stochasticity of biological processes such as cell division, cell death or molecular signalling. For example, Ref. [START_REF] Basan | Dissipative particle dynamics simulations for biological tissues: rheology and competition[END_REF] proposes a minimal model to investigate tissue rheology and competition between different cell types. The dynamics of the tissue is governed by a generalized Langevin equation. Cells adhere to each other through short-range forces, and dissipation is dominated by viscous friction. Cells also undergo division and apoptosis, both controlled by a homeostatic pressure. Particle based models cannot be coupled easily to the transfer of information in a tissue and they are often used to study the effects of physical forces between cells. Qualitative and quantitative results for the influence of osmotic [START_REF] La Porta | Osmotic stress affects functional properties of human melanoma cell lines[END_REF] or elastic stresses on tumor growth have been studied with this approach [START_REF] Van Liedekerke | Quantitative agentbased modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines[END_REF][START_REF] Montel | Stress clamp experiments on multicellular tumor spheroids[END_REF]. Tissue evolution [START_REF] Büscher | Tissue evolution: Mechanical interplay of adhesion, pressure, and heterogeneity[END_REF] and steady state structures [START_REF] Ganai | Mechanics of tissue competition: interfaces stabilize coexistence[END_REF] of mixtures between various cell types in 3 dimensions have also been investigated. A representative and challenging example is the work of Hoehme et al [START_REF] Hoehme | Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration[END_REF].

• Cellular automaton model: In cellular automaton models, cells are represented by a very small number of pixels. Simple rules are given for the evolution of the tissue, which include stochastic noise. They allow to take into account a large range of phenomena at length scales much larger than one cell. In this regard, cellular automaton models are close to a continuum model [START_REF] Deutsch | Cellular automaton modeling of biological pattern formation[END_REF].

Cellular automaton models have been used to study the aggregation of cells on various substrates [START_REF] Adenis | Experimental and modeling study of the formation of cell aggregates with differential substrate adhesion[END_REF].

They can also be used to study mixtures with multiple cell types such as the interaction between cancer cells and tumor associated macrophages in 2 dimensions [START_REF] Mahlbacher | Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment[END_REF]. Tumors and spheroids in 3 dimensions have also been investigated, for instance in the case of brain tumors [START_REF] Kansal | Simulated brain tumor growth dynamics using a three-dimensional cellular automaton[END_REF], or regarding the response of a tumor to different treatments [START_REF] Brüningk | A cellular automaton model for spheroid response to radiation and hyperthermia treatments[END_REF].

In conclusion, each kind of discrete model focuses on a different aspect of cell behavior in a tissue. Vertex models and Potts models provide information on the change of the geometry and the mechanical properties of each individual cell whereas particle based models are more coarse-grained and aim at studying tissues at a scale larger than the cell size. Cellular automaton models are intermediate in the sense that they keep the features of individual cell description for large numbers of cells but they describe the cells in a very simplified manner, which may not be accurate enough. The main limitation of individual cell models is the difficulty to reach the scale of populations containing a large number of cells and to describe the collective behavior of cells in a tissue. They also often require the creation of a hybrid model to take into account the diffusion of chemical species.

Growth and aggregation

Continuum models initiated the first studies of growing tumors and aggregates. The main idea was based on the coupling between the cellular and nutrient densities inside the aggregate. The most primitive model only considered the nutrient density [START_REF] Burton | Rate of growth of solid tumours as a problem of diffusion[END_REF] while the more sophisticated one also included the cell density via different zones inside the spheroid [START_REF] Greenspan | Models for the growth of a solid tumor by diffusion[END_REF] such as a necrotic, a quiescent and a proliferative zone. In this section, we first present a continuum hydrodynamic description of a single cell aggregate which includes only cell division, cell death, and nutrients diffusion and consumption. We then use these results to build an aggregation-growth model, which involves either the growth of a unique aggregate or the aggregation of multiple cell clusters. The last sub-section combines these two approaches to provide a quantitative interpretation of recent experimental results.

Presentation of continuum models

Continuum description of a single aggregate

The formation of regular spheroids is a major requirement in pharmacology for drug testing. Nowadays, several techniques exist leading to 3D aggregates using or not scaffolds in micro-fluidics devices [START_REF] Sart | Multiscale cytometry and regulation of 3d cell cultures on a chip[END_REF]. In a liquid phase, on top of a non adhesive surface, according to the Liquid Overlay Technique [START_REF] Carlsson | Liquid-overlay culture of cellular spheroids[END_REF], aggregates form with rather irregular shapes when the substrate is planar. To overcome this difficulty, U-shape or concave non-adherent surfaces seem to give more regular spheroids with ultimately a quasi-uniform size: for a comparative review of these techniques performed in fluids, see [START_REF] Costa | Spheroids formation on non-adhesive surfaces by liquid overlay technique: Considerations and practical approaches[END_REF]. It must be mentioned that mechanical cues like centrifugation or horizontal stirring are necessary at least to initiate and improve the aggregation process. Not all human cells (cancerous or not cancerous) are able to form spheroids [START_REF] Carlsson | Formation and growth of multicellular spheroids of human origin[END_REF]: some cancerous cells remain isolated in the bath. The ability to form spheroids, seems to depend on the nature of the cells and not on the method employed to generate the spheroid structure. Cell aggregates containing only one type of cells embedded in a passive fluid or in a gel, grow by cell division and coalescence with other aggregates and finally reach a finite size at steady state [START_REF] Folkman | Self-regulation of growth in three dimensions[END_REF][START_REF] Sutherland | Growth of multicell spheroids in tissue culture as a model of nodular carcinomas[END_REF]. Because of the increasing surface to volume ratio, apoptosis in the bulk of the aggregate compensates the proliferation at the edge. This spatial partition between cell division and cell death is the result of two main factors. First, cell division creates internal mechanical stresses, higher at the center of the aggregate: to proliferate, cells have to exert pressure on their surroundings. The number of neighbors of each cell being smaller at the surface, proliferation is easier on the surface than in the bulk. These compressive stresses also drive apoptosis or necrosis [START_REF] Delarue | Compressive stress inhibits proliferation in tumor spheroids through a volume limitation[END_REF][START_REF] Helmlinger | Solid stress inhibits the growth of multicellular tumor spheroids[END_REF] and limit the growth rate [START_REF] Streichan | Spatial constraints control cell proliferation in tissues[END_REF] in the bulk. Second, the access to nutrients necessary for cell division is more limited, and can even be impossible, in the center compared to the outer surface of the aggregate. A typical radius of the aggregate from which a necrotic core appears is 100 -250 µm depending on the cell line and on the experimental conditions [START_REF] Li | The glucose distribution in 9l rat brain multicell tumor spheroids and its effect on cell necrosis[END_REF][START_REF] Li | The role of glucose in the growth of 9l multicell tumor spheroids[END_REF][START_REF] Barisam | Prediction of necrotic core and hypoxic zone of multicellular spheroids in a microbioreactor with a u-shaped barrier[END_REF][START_REF] Däster | Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment[END_REF]. This size is observed in the experiment described below.

We define the proliferation rate k g = k d -k a as the difference between the cell division rate k d and the cell death rate k a . The growth rate is negative in the bulk of the aggregate k g = -k b and positive in a thin boundary layer close to the surface k g = k s . The balance for the cell number N inside the aggregate is written as:

dN dt = -k b (N -N s ) + k s N s (3) 
Here, N s = αN 2/3 is the number of cells in the outer layer that divide more easily (α being a geometrical factor) [START_REF] Montel | Stress clamp experiments on multicellular tumor spheroids[END_REF]. The cell number increases with time to reach a steady state:

N = ( α(ks+k b ) k b ) 1/3 . At steady
state, the cell division in the outer layer induces a treadmilling flow of cells from the surface where they divide to the interior of the aggregate where they die [START_REF] Delarue | Cappello, Mechanical control of cell flow in multicellular spheroids[END_REF]. The velocity field of the cells v(r) can be obtained from the local cell conservation equation:

∂n(r, t) ∂t + ∇.(n(r, t)v(r)) = k g (r)n(r, t) (4) 
where n(r) is the local number of cells per unit volume and k g (r) is the local growth rate which is negative in the bulk of the aggregate and positive in the outer dividing cell layer. In practice, a good approximation [START_REF] Murray | From a discrete to a continuum model of cell dynamics in one dimension[END_REF][START_REF] Greenspan | Models for the growth of a solid tumor by diffusion[END_REF][START_REF] Ward | Mathematical modelling of avascular-tumour growth[END_REF] is to consider that the cell density is constant in the aggregate n(r, t) = n c . This approximation is justified from experimental data on spheroids in absence of external stress [START_REF] Delarue | Stress distributions and cell flows in a growing cell aggregate[END_REF][START_REF] Van Liedekerke | Quantitative agentbased modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines[END_REF]. Then, the cell conservation equation reduces to:

∇v(r) = k g (r) (5) 
Cancer cells consume various nutrients [START_REF] Vazquez | Cancer metabolism at a glance[END_REF], and their growth rate depends on the nutrient concentrations. However, since all nutrients do not have a limiting effect on proliferation rates, and in order to clarify the discussion, we focus here mainly on glucose or oxygen. Indeed, glucose is a major source of energy involved in glycolysis, and a source of carbon for biosynthesis [START_REF] Vazquez | Cancer metabolism at a glance[END_REF]. Regarding oxygen, hypoxia has been extensively studied [START_REF] Thomlinson | The histological structure of some human lung cancers and the possible implications for radiotherapy[END_REF][START_REF] Hockel | Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects[END_REF][START_REF] Keith | Hypoxia-inducible factors, stem cells, and cancer[END_REF]. In the case where the variation of the cell division rate is due to the depletion of nutrients by the outer cells of the aggregate, a more precise description can be made once the nutrient concentration field is determined. The nutrients, of concentration c, diffuse outside the aggregate of radius R with a diffusion constant D ext while inside the aggregate, their diffusion constant is D int and they are absorbed by the cells. Michaelis-Mentens kinetics [START_REF] Tang | On the rate of oxygen consumption by tissues and lower organisms as a function of oxygen tension[END_REF][START_REF] Foy | A device to measure the oxygen uptake rate of attached cells: importance in bioartificial organ design[END_REF], as well as piecewise affine functions [START_REF] Mcelwain | A model for the growth of a solid tumor with non-uniform oxygen consumption[END_REF] have been used to model cell oxygen uptake. Various models have been proposed to account for the uptake rate of glucose by cells as a function of concentration [START_REF] Pörtner | Estimation of specific glucose uptake rates in cultures of hybridoma cells[END_REF][START_REF] Pörtner | Modelling hybridoma cell growth and metabolism-a comparison of selected models and data[END_REF]. In the following, since in a mean field approach the nutrient consumption rate is proportional to the contact probability between a cell and nutrient molecules, we write the rate of consumption as d c n c .

Then, the diffusion-absorption equation for the local concentration c of nutrients reads:

∂c ∂t = D∇ 2 c -d c n c c (6) 
where

D = D ext and n c = 0 outside the aggregate (r ≥ R) while D = D int and n = n c inside (r ≤ R).
Nutrient diffusion is fast compared to the aggregate growth and rapidly reaches a steady state where the time derivative is small. Nutrients penetrate inside the aggregate over a penetration length

λ = (D int /(d c n c )) 1/2 .
We give the details of the calculation of the nutrient concentration for spherically symmetric spheroid in Appendix 1-2. If the limiting nutrient for growth is oxygen, the gas concentration dissolved in water is proportional to the oxygen partial pressure as described by Henry's law [START_REF] Chaix | Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: a review of past and current knowledge[END_REF][START_REF] Place | Limitations of oxygen delivery to cells in culture: An underappreciated problem in basic and translational research[END_REF]. Below, we use then the partial pressure and not the concentration as a variable. An estimation of the time for a significant depletion of nutrients in a typical well is 2 -3 days (see end of the Appendix 1). This is consistent with the literature that requires the culture medium to be changed every 2-5 days [START_REF] Brüningk | A cellular automaton model for spheroid response to radiation and hyperthermia treatments[END_REF].

The growth rate of the cells depends on the instantaneous nutrient concentration c. The relation between the growth rate and the nutrients depends on the nutrient type and the cell line [START_REF] Li | The glucose distribution in 9l rat brain multicell tumor spheroids and its effect on cell necrosis[END_REF]. As the growth rate vanishes at a homeostatic concentration c 0 , a simple assumption is to linearize the growth rate around this point:

k g (r) = Γ (c -c 0 ) (7) 
If the external nutrient concentration is larger than the critical concentration c 0 for growth, only cells in a region of finite thickness λ at the surface of the aggregate divide. This defines quantitatively the outer dividing cell layer. In many cases, the approximations of a steady state and of spherical symmetry are justified, and the nutrient profile can be calculated explicitly analytically. It is then possible to integrate the cell conservation Eq. ( 5) over the entire aggregate, and to write an equation for the radius of an incompressible aggregate:

dR dt = R -2 R 0 r 2 k g (r)dr (8) 
As shown in section 3. 

Aggregation of cells and clusters

As often done for colloids or aerosols, we study the aggregation process with a Smoluchowski equation [START_REF] Smoluchowski | Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen[END_REF]. Indeed, in many experiments on cells in suspension, such as the experiment that we consider in section 3.2, cell aggregates grow by cell proliferation but also by successive aggregation between smaller aggregates [START_REF] Enmon | Aggregation kinetics of well and poorly differentiated human prostate cancer cells[END_REF][START_REF] Adenis | Experimental and modeling study of the formation of cell aggregates with differential substrate adhesion[END_REF]. In addition to being a crucial step in the formation of in vitro multi-cellular spheroids, aggregation is also a driving process in many cellular phenomena and the Smoluchowski equation has been harnessed to study platelets aggregation [START_REF] Huang | Aggregation and disaggregation kinetics of human blood platelets: Part i. development and validation of a population balance method[END_REF][START_REF] Huang | Aggregation and disaggregation kinetics of human blood platelets: Part ii. shear-induced platelet aggregation[END_REF][START_REF] Huang | Aggregation and disaggregation kinetics of human blood platelets: Part iii. the disaggregation under shear stress of platelet aggregates[END_REF], and cancers that develop in fluid environments [START_REF] Jadhav | Fluid shear-and time-dependent modulation of molecular interactions between pmns and colon carcinomas[END_REF].

It could also be applied to other situations such as peritoneal metastasis in ovarian cancer [START_REF] Yin | Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer[END_REF]. Unlike our study case, in many instances, aggregation is caused by directed cell migration rather than random motion or sedimentation [START_REF] Puliafito | Three-dimensional chemotaxis-driven aggregation of tumor cells[END_REF]. The Smoluchowski equation [START_REF] Smoluchowski | Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen[END_REF] for the concentration q i of aggregates containing i cells writes:

dq i dt = 1 2 k+j=i a kj q k q j - j a ij q j q i (9)
The aggregation kernel a ij has two contributions: one coming from the relative diffusion between the aggregates, the other one from the attractive interactions between cells that drive the final fusion between the aggregates.

In the case of perikinetic aggregation, the aggregation is diffusion limited and the aggregation kernel is:

a ij = 4π(D i + D j )(R i + R j ) ( 10 
)
where D i is the diffusion constant of an aggregate containing i cells in suspension. D i depends on the size of the aggregate i. In order to include growth, the time derivative on the left hand side of Eq. ( 9) must be replaced by a convected derivative in the discrete one-dimensional space of the number i of cells in an aggregate [START_REF] Kumar | On the solution of population balance equations by discretization-iii. nucleation, growth and aggregation of particles[END_REF]:

dq i dt = ∂q i ∂t + q i-1 v i-1 -q i v i (11) 
The drift velocity v i is due to proliferation by cell division. If we ignore cell death v i = i kd,i where kd,i is the mean cell division rate in the aggregate: kd,i = 3 R 0 drr 2 k d (r) /R 3 where the local division rate k d (r) is a function of the nutrient concentration. Indeed, during an infinitesimal time interval δt, an aggregate of size i has the probability i kd,i δt to increase its cell number from i to i + 1. Cell death can be treated in a similar way.

Exact solutions of the Smoluchowski equations have been found for various forms of the aggregation kernel or of the growth velocity [START_REF] Family | Kinetics of Aggregation and Gelation[END_REF]. When aggregation is a fast process compared to the timescale of the experiment, it is not necessary to solve the full Smoluchowski equation, simplifying assumptions such as the aggregation of invidual cells on a single seed may be justified (see Appendix 2) [START_REF] Adenis | Experimental and modeling study of the formation of cell aggregates with differential substrate adhesion[END_REF]. The Smoluchowski equation can also be extended to study aggregates comprising various cell types. In the next subsection 3.2, we compare experimental results concerning 2 different cell lines and the Smoluchoski modeling. This comparison shows a striking feature: there is potentially a time delay in the experimental growth of aggregates that might be attributed to the maturation of the cell-cell adhesion.

Applications of the continuum model

Our purpose is to compare the theoretical approaches developed in sections 3.1, with experimental data on cancer cells. The experimental set-up is a well (Fig. 3-B) filled with culture medium where cells are introduced and aggregate after sedimentation. We first show applications of the nutrient consumption model to spheroids and then the aggregation growth model.

Nutrient profiles

Eq. ( 36) of Appendix 1 gives the concentration of nutrients for a grown spheroid. The boundary conditions depend on the type of nutrients which limits the growth. Oxygen can be treated by imposing a fixed concentration at the interface between the fluid and the air at a distance L from the center of the spheroid. But other nutrients such as glucose, also present in the culture medium in many experiments, are provided in a finite well-defined amount and a no-flux boundary condition at the air interface seems more appropriate. Therefore, they can be fully exhausted by cell consumption. This is not the case of oxygen which is in equilibrium with the oxygen gas and is continuously provided. The growth limiting nutrient, oxygen or glucose, depends on the cell line. In Fig. 2, we present data from Ref. [START_REF] Carlsson | Influence of the oxygen pressure in the culture medium on the oxygenation of different types of multicellular spheroids[END_REF] showing the local partial oxygen pressure P O2 which is perfectly described by Eq. ( 36). This figure shows the accuracy of the model for oxygen consumption, and allows to determine the oxygen diffusion constant inside the aggregate:

D O2 = 571 µm 2 .s -1
. More importantly, it suggests the adaptability of cancer cells in case of hypoxia, since the nutrients consumption rate depends linearly on the concentration c of oxygen. Notice that micro-fluidic chambers are more and more used to study aggregates experimentally, they have a complex geometry depending on the desired imposed fluxes of fluids and nutrients. Our calculation must then be adapted to the chamber geometry.

Growth of multi-cellular spheroids with a single cell type

Among the many experiments that study the growth of avascular tumors, cancerous cellular aggregates are more and more used as a model for the in vitro study of drugs [START_REF] Raghavan | Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity[END_REF][START_REF] Rizzuti | Mechanical-control of cell proliferation increases resistance to chemotherapeutic agents[END_REF]. However, in order to compare quantitatively the effect of a drug or of a specific mutation on a cell line, it is necessary to know precisely the specific physical and biological parameters of each cell line. Our aim here is to show how the parameters of interest can be obtained by comparing the experimental results with simulations based on Eqs. ( 8) and ( 9). We show that, even with a model where the spatial dependence of the physical properties are not considered, a quantitative modeling with a limited number of parameters (here the initial number of cells) may shed light on some non intuitive anomalies and uncover complex mechanisms such as a delay time for aggregation.

The experiments are performed by injecting individual cells of the same cell type into a semi-spherical well where they sediment and diffuse. They sense each other and eventually form a spheroid that grows at the bottom of the well [START_REF] Lin | Dynamic analysis of hepatoma spheroid formation: roles of e-cadherin and β1-integrin[END_REF][START_REF] Cui | Advances in multicellular spheroids formation[END_REF]. The number of initial injected cells may vary and the growth is observed by fluorescence. The culture medium was not changed during the whole duration of the experiments. We Those values are of the same order as the values found for oxygen in Fig. 2, although the nutrient depletion in the well is not consistent with the oxygen behavior. (Experimental data from P.Benaroch and J.Nikolic, to be published). B: Typical geometry of a well where the experiments take place.

present hereafter two sets of data corresponding to two different cell lines.

• KP cell type: KP cells are mice cancerous cell lines with the mutations KRAS and P53. For this system, we observe an immediate growth, eventually followed by a relapse, if the initial number of cells is too large. The best fit of the experimental data corresponds to a nutrient concentration with no fixed concentration at the interface between culture medium and air at the top-border of the well, as would be the case for oxygen. The nutrient limiting the growth is presumably a glucose initially contained in the culture medium. The data are consistent with a homogeneous mass fraction of cells in the aggregate and constant in time. This is an indication of a high surface tension and of a negligible wetting on the substrate so that the aggregates remain spherical.

• A549 cell type: A549 cells are adenocarcinoma human alveolar basal epithelial cells; they notably serve as a testing ground for drugs in the context of lung cancer [START_REF] Giard | In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors[END_REF][START_REF] Foster | Characterization of the a549 cell line as a type ii pulmonary epithelial cell model for drug metabolism[END_REF]. In Fig. 4, one observes an unexpected time delay for the increase of the aggregate radius depending on the initial cell number. Then, growth leads to a plateau for the radius as predicted by the continuum approach. Surprisingly, the best fit for the corresponding set of data shown in Fig. 4 leads to a mass fraction which decreases while the aggregate grows: φ ∼ R d f -3 (see Appendix 2, Eq. ( 42)), with an apparent exponent d f = 2.5. The "fractal" law for the mass fraction [START_REF] Paoluzzi | Fractal aggregation of active particles[END_REF] is difficult to justify. One can hypothesize that it could be a geometric artefact due to the wetting of the aggregate on the well bottom or/and to a rather low surface tension: in any case, the aggregate is probably not perfectly spherical.

Moreover, the best fit between theory and experiments is obtained under the assumption of fixed (Dirichlet) boundary condition for the nutrient concentration with no depletion. This points to oxygen as the nutrient limiting growth. The penetration length of the nutrient is of order 150 -200 µm corresponding to a nutrient consumption rate d c n c ∼ 0.05 -0.1 s -1 .

Comparing the results of the two experiments, the striking feature is the time delay for aggregation observed with A459 cells and not with KP cells. It can be attributed to a maturation of the adhesion between cells for the A459 cell line. Cells adhere to each other through trans-membrane proteins called cadherins, whereas they adhere to the extracellular matrix through another kind of trans-membrane proteins, integrins.

The mechanism of cell-cell adhesion mediated by cadherins [START_REF] Perez | Cadherin adhesion: mechanisms and molecular interactions[END_REF] is complex, specific to each cell type and it is not instantaneous: after the contact between two cells, adhesion is effective only after a finite delay time.

In addition, adhesion requires a sufficient number of cadherin proteins at the cell surface [START_REF] Lin | Dynamic analysis of hepatoma spheroid formation: roles of e-cadherin and β1-integrin[END_REF] which depends on signals received by each cell from its neighboring cells. This delay of the adhesion maturation is likely due to an effective potential barrier caused by steric repulsion between molecules such as glycoproteins at the cell surface [START_REF] Paszek | Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate[END_REF]. This recruitement process lasts a typical time which depends on the initial cell density as shown in Fig. 4. The increase of cadherin concentration at the surface of the cells induces an increase of the attraction between cells, that eventually leads to aggregation. We deduce that the level of cadherins is low for A549 cells [START_REF] Lin | Dynamic analysis of hepatoma spheroid formation: roles of e-cadherin and β1-integrin[END_REF].

In this entire section, we have not considered the mixing of different cell types which is an important biological question especially for tumors. Tumors always comprise multiple cell types: cancerous cells with different phenotypes but also healthy cells of different types. In addition, they attract cells of the immune system such as macrophages. To study heterogeneous complex aggregates, one must use an appropriate theoretical approach that allows for local phase separation between the cell types while also taking into account the growth of each species in the aggregate. In the next section, we present a more adapted continuum model that parallels the theory of phase transitions in equilibrium systems which have proved their efficiency. We also show new results obtained from numerical solutions of these models.

Continuum models of multi-cellular aggregates

Continuum models average locally the physical properties of a tissue over a length-scale of a few cells. They consider only a small number of macroscopic slow variables, namely the local densities or volume fractions of each component, the average velocities, the physical interactions between constituents (adhesion, friction, stresses), and cell division and death.

Various formalisms can be used to construct continuum models, which are called mechanical models, hydrodynamic models or mixture models, depending on the procedure used to derive the equations, on the physical properties on which they focus, or even on the scientific communities proposing the model (physics, mechanics, chemistry...). But the key variables and the physical quantities are often very similar. Local equations can be derived from two main approaches, either from variation principles (Onsager and Rayleigh principles) or by symmetry considerations (generalized hydrodynamics).

The mixture model

The mixture model leads to dynamical equations for the variation of the mixture composition and the flow field in a complex fluid by extremization of the dissipation in the system. This approach has been initiated

by Rayleigh [START_REF] Strutt | Some general theorems relating to vibrations[END_REF], formalized and extended by Onsager in two pioneering articles [START_REF] Onsager | Reciprocal relations in irreversible processes. i[END_REF][START_REF] Onsager | Reciprocal relations in irreversible processes. ii[END_REF] and developed by Doi and Onuki [START_REF] Doi | Dynamic coupling between stress and composition in polymer solutions and blends[END_REF] in the context of polymer physics. It was also used more recently both in the context of pattern formation in polymer physics [START_REF] Tree | A multi-fluid model for microstructure formation in polymer membranes[END_REF][START_REF] Tree | Mass-transfer driven spinodal decomposition in a ternary polymer solution[END_REF] and in oncology [START_REF] Byrne | Modelling solid tumour growth using the theory of mixtures[END_REF][START_REF] Balois | Morphology of melanocytic lesions in situ[END_REF][START_REF] Balois | Patterns in melanocytic lesions: impact of the geometry on growth and transport inside the epidermis[END_REF][START_REF] Olmeda | Clonal pattern dynamics in tumor: the concept of cancer stem cells[END_REF]. It is valid for dissipative systems where inertia is negligible (for example in the Stokes regime when the Reynolds number is small).

It leads to the same results as hydrodynamic theories constructed from symmetry arguments. We use here the Rayleighian approach in order to derive the equations for the local velocities of the different components in a tissue composed of different cell types. This approach can be extended to other biological components such as the extra-cellular matrix. In the conservation equations, the velocity of each component is defined from the flux of this component.

Effective free-energy and interfacial tension

Each cell type of with cells of mass m i in the mixture is treated as a component with a cell number concentration n i and a mass density ρ i = n i m i . The total mass density is ρ = i ρ i and the mass fractions are defined by ρ i = φ i ρ. The interstitial fluid between the cells is treated as an inert fluid phase, containing dead cells and cell wreckages; its properties are indexed by a subscript 0, (ρ 0 , φ 0 ). Since i φ i = 1, the mass fractions are not independent variables and the mass fraction of the inert fluid φ 0 = 1i =0 φ i can be expressed as a function of the mass fractions of the various cell types. Note that the mass densities of the various components are very close and therefore the mass fractions are almost identical to the volume fractions. Except in cases where gravity plays a role, we therefore consider that φ i are also the volume fractions.

In the spirit of the Cahn-Hilliard theory for the phase separation of fluids [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF], we first write an effective global free energy F as an integral over space of a local free-energy density F , and we express the free-energy density as a function of the mass density ρ and of the mass fractions φ i with i = 0. The differential of the free energy density is dF = µdρ + i =0 ρμ i dφ i where µ and μi are related to the standard chemical potentials

µ i = ∂F
∂ni by the following expressions:

µ i = µi mi -µ0 m0 and µ = i φiµi mi . The pressure is P = i n i µ i -F = ρµ -F and its differential is dP = ρdµ -i =0 ρμ i dφ i .
In the mechanics literature, the free-energy F is called the interaction potential. If the mass density and the mass fractions are not homogeneous, in the spirit of a Ginzbourg-Landau or Van der Waals free-energy, the free-energy density must be expanded in powers of the gradients of ρ and φ i . In terms of the cell concentrations n i , the free-energy density is then replaced by

f [n i ] = F [n i ] + i,j 2 ij 2 (∇n i ∇n j ) (12) 
where the coefficients ij measure the free-energy costs due to the concentration gradients.

The choice of the interaction potential is essential to determine the properties of multi-cellular aggregates. Two types of interactions must be considered : interactions between the various cell types within the aggregate and interactions with a substrate or the outer medium. The outer medium can be inert like the experimental vessel and the extracellular matrix, or active like the stroma around in vivo tumors.

Various types of interaction potentials between cells have been used in the literature, we give here some

examples. An extension of the Flory-Huggins free-energy used in polymer physics [START_REF] Flory | Thermodynamics of high polymer solutions[END_REF][START_REF] Huggins | Solutions of long chain compounds[END_REF] that can be derived from the microscopic Langevin dynamics and from Fokker-Planck equations [START_REF] Grosberg | Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats[END_REF][START_REF] Ilker | Phase separation and nucleation in mixtures of particles with different temperatures[END_REF], leads to [START_REF] Hoshino | Pattern formation of skin cancers: Effects of cancer proliferation and hydrodynamic interactions[END_REF]:

F = i kT i n i log(n i ) + i,j a ij n i n j + i n i µ 0 i (P ) = i kT i m i ρφ i log( ρφ i m i ) + i,j a ij ρ 2 m i m j φ i φ j + i ρφ i m i µ 0 i (P ) (13) 
where µ 0 i (P ) is the reference chemical potential of component i that depends only on the pressure; its derivative is dµ 0 i (P )/dP = w i where w i is the volume of a particle of species i [159]. When the total mass density ρ is constant, this expression can be simplified by defining new coefficients:

D i = ρkT i /m i
which characterize the activities of the cells, and the Flory coefficients α ij = a ij ρ 2 /(m i m j ) that measure the physical interactions between cells due to cell-cell adhesion and to cell elasticity. Cellular adhesion induces an attractive contribution whereas cell elasticity induces a repulsive contribution. Both contributions can be taken into account by doing a virial expansion. In the definition of D i , k is the Boltzmann constant and T i an effective temperature that would be related to entropic contributions for an equilibrium system:

F = i D i φ i log(φ i ) + i,j α ij φ i φ j + i ρφ i µ 0 i (P )/m i + i φ i C i (14) 
where C i = D i log(ρ/m i ) is a constant independent of the mass fractions; the term i φ i C i does not play a role in the dynamics. We choose this potential because it is well established in polymer physics that it often leads to phase separation even at low cell concentrations.

From a simulation point of view, simpler phenomenological potentials are found less computationally costly [START_REF] Lima | A hybrid ten-species phase-field model of tumor growth[END_REF] such as: [START_REF] Frieboes | Three-dimensional multispecies nonlinear tumor growth-ii: tumor invasion and angiogenesis[END_REF] but they often do not lead to phase separation at low enough concentrations.

F({φ i } i ) = i,j α ij φ 2 i φ 2 j or F({φ i } i ) = α i (φ i -φ 0 i ) n i
In the area of mathematical oncology, other interaction potentials have been used [START_REF] Byrne | Modelling solid tumour growth using the theory of mixtures[END_REF][START_REF] Olmeda | Clonal pattern dynamics in tumor: the concept of cancer stem cells[END_REF][START_REF] Balois | Morphology of melanocytic lesions in situ[END_REF][START_REF] Balois | Patterns in melanocytic lesions: impact of the geometry on growth and transport inside the epidermis[END_REF], of the type:

F(φ 1 ) = φ n 1 (φ m 1 -α) (1 -φ 1 ) l ( 15 
)
where α is a number smaller than 1 and l, m, n are exponents larger than 1. As the Flory-Huggins potential, these potentials enforce a cell mass fraction (or equivalently a volume fraction) smaller than 1. They are inspired from phase field models [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF] and lead to a phase separation between a pure fluid phase and a cell phase that also contains a small fraction of interstitial fluid [START_REF] Chatelain | Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture[END_REF]. Note however that the observation of anomalous volume fractions in a cellular monolayer in 2 dimensions on a substrate may indicate a stacking in the third dimension [START_REF] Balois | Morphology of melanocytic lesions in situ[END_REF][START_REF] Balois | Patterns in melanocytic lesions: impact of the geometry on growth and transport inside the epidermis[END_REF]. In order to model adhesion to a substrate, a short range potential of the following form can be used :

F adh (z) = ρ i β i φ i e -z/ ( 16 
)
where z is the distance to the substrate. For cell types adhering to the substrate, the adhesion strength is negative β i < 0. The length is the range of attraction to the substrate.

At equilibrium, the pressure P eq and the partial chemical potentials µ i,eq of the species indexed by i have the same values in the different phases. The surface tension can then be derived from the effective free-energy density. It is a characteristic physical quantity related to the energy associated to interfaces between two phases in liquids and tissues. Following the standard Cahn-Hilliard approach in metallurgy [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF][START_REF] Rowlinson | Molecular theory of capillarity[END_REF][START_REF] Chaikin | Principles of condensed matter physics[END_REF], at equilibrium, the surface tension is defined as the difference (per unit area) between the actual free-energy of the system and the sum of the bulk free energies of the two phases in chemical and mechanical equilibrium:

Σ = +∞ -∞ f [n i ] + P eq - i n i µ i,eq dz (17) 
where z is the coordinate normal to the interface.

For simple interaction potentials, an explicit expression of the surface tension is obtained. An example is a mixture with 2 components of mass fractions: φ 1 = φ for the cells and φ 0 = 1 -φ for the interstitial fluid. We choose an effective free-energy density f = F + 2 2 (∇φ) 2 and an interaction potential of the form F = 1 2 f 0 (φ -φ a ) 2 (φ -φ b ) 2 . The surface tension is Σ = 1 6 f

1/2 0 ∆φ 3 where ∆φ is the difference in mass fractions between the two phases; the size of the interface is ξ = 2 /(f 1/2 0 ∆φ) [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF][START_REF] Chaikin | Principles of condensed matter physics[END_REF]. The physical effects at the origin of the surface tension in tissues and cell aggregates are still a matter of discussion. The two main factors are adhesion (DAH: differential adhesion hypothesis) [START_REF] Foty | The differential adhesion hypothesis: a direct evaluation[END_REF][START_REF] Steinberg | Differential adhesion in morphogenesis: a modern view[END_REF], and cortical tension (DITH: differential interfacial tension hypothesis) [START_REF] Brodland | The differential interfacial tension hypothesis (dith): a comprehensive theory for the self-rearrangement of embryonic cells and tissues[END_REF]; models that take into account both effects also exist [START_REF] Manning | Coaction of intercellular adhesion and cortical tension specifies tissue surface tension[END_REF]. Those two effects are taken into account when deriving the surface tension from the effective free-energy density. Note that in addition to adhesion between cells and contractility, the surface tension in a tissue could also depend on growth as suggested in Ref [START_REF] Song | Dynamic self-organization of microwell-aggregated cellular mixtures[END_REF].

Definition of the Rayleighian

The mass flux of each cell type can be written as J i = ρ i V + j i where V is the center of mass velocity and j i = ρ i v i is the flux of component i in the reference frame of the center of mass. The inert fluid velocity v 0 can then be expressed in terms of the velocities of the various cell types, ρ 0 v 0 =i =0 ρ i v i . The conservation law for each cell type reads:

ρ(∂ t φ i + V • ∇φ i ) + ∇j i = k g i ρ i (18) 
where k g i is the growth rate of the cell type i due to cell division and cell death. If the mass fractions and the volume fractions are identical and the mixture is considered as incompressible, this equation is the same as Eq. ( 4) which is written in terms of the cell concentrations. In tissues, cell types transform transform into one another by differentiation that can be triggered by signaling. In this case, the right-hand-side in Eq. ( 18) transforms into j k ji ρ j -ρ i j =i k ij where the k ij are the rates of differentiation of types i into j, and k ii = k g i is the growth rate of cell type i. Cell differentiation is not considered in the following. Using integration by parts and the conservation laws, the time derivative of the effective free-energy is then:

dF dt = {V.∇P + i =0 j i ∇µ i + Ḟ0 }dr (19) 
where Ḟ0 = i =0 k g i ρ i μi is a contribution, which does not depend on the cell velocities and that does not play any role in the following. In all the following, we suppose that the tissue is incompressible and that the total mass density ρ is constant.

The dissipative forces in the tissue are taken into account by introducing the dissipative function W.

This function is such that its functional derivative with respect to the velocity v i of component i is the dissipative force per unit mass acting on component i. We introduce two types of dissipation, the relative friction between the various components W f and the viscous dissipation of the cellular component W v that we consider as a viscous fluid [START_REF] Ranft | Fluidization of tissues by cell division and apoptosis[END_REF], so that

W = W f + W v .
The dissipation due to the friction between the various components of the mixture is written as

W f = i =j ρφ i φ j M -1 ij 2 (v i -v j ) 2 dr ( 20 
)
where the sum is over all the components of the mixture and M -1 ij φ i φ j are the relative frictions between components i and j, which is proportional to the mass fractions of the two components.

The dissipation function associated to the tissue viscosity can be written as

W v = σ αβ V αβ dr ( 21 
)
where the greek indices refer to the spatial coordinates, and V αβ is the center of mass velocity gradient:

V αβ = (∂ α V β + ∂ β V α )/2.
If the tissue is isotropic, the viscous stress is given by the standard expression for an isotropic fluid In the following, we only consider situations where there is no motion of the center of mass of the mixture so that V vanishes [START_REF] Byrne | Modelling solid tumour growth using the theory of mixtures[END_REF][START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF].

σ αβ = 2ηV αβ + ζδ αβ V γγ ,
The Rayleighian is obtained by summing the rate of change of the free energy and the dissipative function:

R = W + d F dt (22)

Dynamic equations for the cell volume fractions

The dynamic equations for the cell mixture are obtained by extremization of the Rayleighian with respect to the velocities v i , (i = 0) of all the cell types, which are the independent components of the mixture:

δR δv i = 0 ( 23 
)
which leads for each cell type to an expression of the form:

j A ij v j = -φ i ∇µ i ( 24 
)
where A ij is an effective friction matrix. For the sake of simplicity, in the following we consider that the friction properties of all cell types are identical. In this case, there are only two independent friction coefficients. For two different cell types (i, j = 0), the friction is M -1 ij = 1/M ; and for all cell types, the friction with the inert fluid is M -1 0i = 1/m. The two mobilities M and m may depend on the fluid mass fraction φ 0 . We also define the two average friction coefficients: 1/ M = φ 0 /m + (1 -φ 0 )/M and

f r = (1 + φ 0 )/(mφ 0 ) -1/M . In this limit, A ij = φ i δ ij / M + f r φ i φ j .
The inversion of the effective friction matrix A ij leads to an Onsager-like relation between the fluxes j i = ρ i v i , the chemical potential gradients:

j i = j =0 -ρ M (φ j δ ij -φ i φ j φ 0 mf r ) ∇μ j ( 25 
)
The dynamical equations for the cell concentrations are obtained by inserting the constitutive equation for the flux (25) into the conservation equation [START_REF] Humphrey | Mechanotransduction and extracellular matrix homeostasis[END_REF].

At constant pressure, the expression of the partial chemical potentials μi in terms of the mass fractions φ j , Eq. ( 25), leads to a generalized Fick's law, j i = j =0 D ij ∇φ j . The cell mixture is then unstable when the determinant of diffusion matrix D ij becomes negative. This instability called spinodal decomposition is the signature of a macroscopic phase separation between the cells and the inert component, or between the different cell types [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF]. For a two component mixture (one cell type), there is one diffusion constant proportional to the second derivative of the free-energy, given by Eq. ( 12). The tissue is unstable in the range of parameters where the diffusion constant is negative; this is a so-called anti-diffusive effect [START_REF] Brauns | Phase-space geometry of reaction-diffusion dynamics[END_REF].

The cell pressure that corresponds to the osmotic pressure in the classical thermodynamics of solutions is defined by Π = j =0 ρφ j μj -F . It satisfies the Gibbs-Duhem equation dΠ = j =0 ρφ j dμ j -µ0 m0 dρ. Note that for many practical purposes, if we are not interested in specific effects of gravity, the mass density ρ of the tissue can be considered as constant. By summing over all the cell types, we obtain the force balance on the cells:

0 = - i =0 ρφ i ∂ α μi -γv α ( 26 
)
Assuming a constant mass density, the Gibbs-Duhem equation mentioned above becomes: dΠ = j =0 ρφ j dμ j which transforms Eq. ( 26) into a Darcy law:

γv α = -∂ α Π ( 27 
)
where γ represents the friction per unit volume on the cells due to the inert fluid: γ = ρ(1-φ0) φ0m . These equations generalize to several cell types the results of Ref. [START_REF] Ranft | Tissue dynamics with permeation[END_REF]. Notice that the Darcy law of porous media, which relates the cell velocity to the cell pressure gradient has been used extensively to study tissues [START_REF] Koay | A visually apparent and quantifiable ct imaging feature identifies biophysical subtypes of pancreatic ductal adenocarcinoma[END_REF][START_REF] Byrne | Modelling solid tumour growth using the theory of mixtures[END_REF][START_REF] Amar | Onset of nonlinearity in a stochastic model for auto-chemotactic advancing epithelia[END_REF]. The comparison between the viscous stress and the fluid permeation force introduces the hydrodynamic screening length λ = ( η γ ) 1/2 . If the scale of variation of the velocity is smaller than the hydrodynamic screening length, the cell viscosity dominates the dissipation. This is the limit treated in Ref. [START_REF] Delarue | Cappello, Mechanical control of cell flow in multicellular spheroids[END_REF]. If the scale of variation of the viscosity is larger than the hydrodynamic screening length, permeation of the inert fluid through the cells dominates. Most of the work on cellular aggregates considers this limit [START_REF] Wise | Three-dimensional multispecies nonlinear tumor growth-i: model and numerical method[END_REF][START_REF] Frieboes | Three-dimensional multispecies nonlinear tumor growth-ii: tumor invasion and angiogenesis[END_REF].

Notice also that the effect of an external field such as gravity can be included in the chemical potentials.

For each cell type, there is no explicit contribution of gravity to the chemical potential μi because the contributions of µ i and µ 0 cancel. However these chemical potentials must be considered as functions of the mass fractions φ i and of the pressure P . The pressure gradient is given by the hydrostatic law ∇P = -ρg where g is the gravity acceleration. For each cell type, dμ i = dP ( wi mi -w0 m0 ), w i = ∂µi ∂P being the partial volume of component i. Summing over all the cell types, the total force due to gravity in Eq. ( 26) is ρg(1 -ρw0 m0 ). This force corresponds to the direct effect of gravity plus Archimedes buoyancy force.

If the center of mass velocity does not vanish, for example when gravity is taken into account, the velocity of the center of mass is determined by writing the force balance, which is derived by extremization of the Rayleighian with respect to the velocity of the center of mass:

-∇.P + ∇σ -ρg e z = 0 [START_REF] Lin | A dynamic cellular vertex model of growing epithelial tissues[END_REF] where σ is the deviatoric stress acting on the center of mass of the local volume element. In the rest of this paper, except when we discuss the effect of gravity, we assume that the tissue is incompressible and that all the components have the same density m i /w i . In this case the mass density ρ is constant and the force balance on the cell is given by Eq. ( 27).

Nutrients and chemical signaling

As mentioned in section 3, the growth rates k g i of all cell types depend on the local nutrient concentration c. Cells divide and the growth rate is positive if the nutrient concentration is larger than a critical concentration

c 0 i .
For each cell type one can use Eq. ( 7):

k g i = Γ i (c -c 0 i ).
Note however that this is certainly an oversimplification even in the vicinity of the critical concentration c 0 i . The diffusion-absorption equation for the nutrient concentration c in a cell mixture generalizes Eq. ( 6):

∂ t c = D∇ 2 c -cρ i =0 d i φ i (29) 
where we use here the cell mass densities ρφ i and c is the local average nutrient concentration.

Ref. [START_REF] Popel | Theory of oxygen transport to tissue[END_REF] shows a large number of extensions of Eq. ( 29) describing the diffusion-reaction of nutrients in tissues. We choose here the simplest form Eq. ( 7) which takes into account both diffusion and the consumption of nutrients with the smallest possible number of parameters.

The nutrient diffusion constant depends on the local composition of the mixture. A first approximation is to consider the cell mixture as a porous medium for nutrient diffusion with a linear relation: D = D 0 φ 0 .

However, it has been reported [START_REF] Longmuir | The measurement of the diffusion of oxygen through respiring tissue[END_REF] that respiration could sometimes increase the diffusion coefficient in physiological conditions in tissues by an active mechanism. It has also been reported [START_REF] Carlsson | Influence of the oxygen pressure in the culture medium on the oxygenation of different types of multicellular spheroids[END_REF] that some cell types and most likely cancer cells adapt their nutrient consumption to the nutrient availability.

Chemotaxis is the motion of cells due to a gradient of solutes (chemo-attractants or -repellents). It can be taken into account by adding to the the free energy density a contribution

F c = a(r) i =0 χ i ρ i where a(r)
is the concentration of chemo-attractant or repellent (which depends on position and χ i is the chemotactic coefficient of the cell type i (with different signs for chemo-attractants and chemo-repellents). Chemotaxis adds a new contribution to the flux j c i = j -ρ M (φ j δ ij -φ i φ j φ 0 mf r ) χ j ∇a). In the next section we show how to connect the phenomenological parameters of the mixture model for the cellular interactions to measurable biological properties.

Determination of the parameters

Although tissues are mainly composed of similar cells, different cell types constitute the organ and can be more or less segregated. The mixture model can describe how the different cell types interact with each other and how they mix or segregate.

At steady state, the chemical potentials of all the cell types indexed by i and the pressures are equal in the different phases indexed by m, n. From the condition of vanishing fluxes, one finds that: µ i,m = µ i,n and P m = P n , where µ i,m is the partial chemical potential at equilibrium of species i in phase m and P m represents the pressure at equilibrium in the phase m. The determination of the parameters of the potential can be performed through an analysis of the cell aggregate in a steady state.

One can impose the values of the interaction potential parameters to determine the equilibrium solution.

If the equilibrium composition of each phase is measured experimentally, a linear system of equations in the parameters of the interaction potential allows to infer the potential parameters: D i and α ij .

Global measurable equilibrium quantities defined from the effective free-energy, such as the tissue surface tension can be also used to determine some of the parameters. In the case of a simple interaction potential for which the surface tension has an analytical expression, tissue surface tension measurements gives access to the value of parameters of the model. Typical values for the surface tension of tissues (for chick embryonic tissues [START_REF] Foty | Surface tensions of embryonic tissues predict their mutual envelopment behavior[END_REF][START_REF] Foty | Liquid properties of embryonic tissues: Measurement of interfacial tensions[END_REF], or tumor multi-cellular aggregates [START_REF] Butler | Measurement of aggregate cohesion by tissue surface tensiometry[END_REF]) are σ ∼ 0.1-20 mN.m -1 , the size of the interface is the size of a small number (1-3) of cells and is of order ξ ∼ 20 µm, and the mass fraction in the dense phase is around ∆φ ∼ 0.7 -0.85 [START_REF] Netti | Macro-and microscopic fluid transport in living tissues: Application to solid tumors[END_REF]. If we assume an effective free-energy density such as the one described in section 4.1.1:

f = f0 2 (φ -φ a ) 2 (φ -φ b ) 2 + 2 2 (∇φ) 2
, the previous values lead to ∼ 10 -3 -10 -4 J.m -1 and f 0 ∼ 2.10 2 -2.10 5 J.m -3 .

We now determine the mobilities m associated to cell-fluid friction and M associated to cell-cell friction.

A spherical cell of radius R moving in a fluid of viscosity η far from the aggregate and η 0 in the aggregate (since macro-molecules are present in the interstitial fluid [START_REF] Gonzalez-Molina | Extracellular fluid viscosity enhances liver cancer cell mechanosensing and migration[END_REF]) where the closest distance between the cells is h, can be compared to a sphere moving at a distance h from a wall. The energy dissipated per unit of time scales like 6πRV 2 (η + η 0 R/h) where V is the velocity (Stokes law) [START_REF] Guyon | Physical hydrodynamics[END_REF]. In the mixture model, it scales as: m -1 4πR 3 V 2 ρ/6; comparing these two results, we obtain m ∼ R 2 ρ/(9(η + η 0 R/h)) ∼ 10 -5 -10 -11 s (assuming η 0 ∼ 10 -3 -1 P a.s, h ∼ 10 -5 -10 -8 m, R ∼ 10 -5 m). The mobility M corresponding to the friction between the different types of cells is more complex to estimate as it reflects both the surface friction and the crowding. The energy dissipated per unit of time for surface friction is related to the breakage of adhesive bonds between cells and scales like: 4πR 2 ξV 2 where ξ is a friction constant per unit area. We take ξ ∼ 10 10 P a.s.m -1 [START_REF] Kruse | Contractility and retrograde flow in lamellipodium motion[END_REF] yielding M ∼ 10 -12 s. Those values are consistent with the work of Basan et al [START_REF] Basan | Dissipative particle dynamics simulations for biological tissues: rheology and competition[END_REF].

In the next section, we illustrate the Rayleighian approach, solving numerically the dynamical equations, motivated by the experiments described in section 3.2.

Applications

The mixture model has been used mostly in 2 dimensions, more sparsely in 3 dimensions to describe tissues and organs with very different geometries both in vivo and in vitro. A recurrent question in mathematical oncology is how microscopic features at the cell level cause morphological changes at a macroscopic level. Indeed, the aggressiveness of a tumor is often correlated to its morphology [START_REF] Bearer | Multiparameter computational modeling of tumor invasion[END_REF][START_REF] Cristini | Morphologic instability and cancer invasion[END_REF][START_REF] Cristini | Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching[END_REF] and this interplay can be captured by the mixture model. For melanoma, the mixture model shows that the combination of a low nutrient consumption rate and a differential adhesion between cancerous cells and healthy cells leads to a morphological instability which, does not exist for a benign naevus [START_REF] Balois | Morphology of melanocytic lesions in situ[END_REF]. For pancreatic ductal adenocarcinoma, proliferation and chemotaxis can be taken into account in the mixture model. The model predicts then the appearance of an interface between the normal pancreas and the tumor when the mitosic timescale is smaller than the chemotaxis timescale. The existence of this interface is therefore an indication of the severity of the pathology [START_REF] Koay | A visually apparent and quantifiable ct imaging feature identifies biophysical subtypes of pancreatic ductal adenocarcinoma[END_REF].

An active topic is the modeling of angiogenesis in vascularized tumors. A common strategy is to use hybrid models, coupling the mixture model with an agent-based model [START_REF] Travasso | Tumor angiogenesis and vascular patterning: a mathematical model[END_REF][START_REF] Vilanova | Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis[END_REF][START_REF] Vilanova | A mathematical model of tumour angiogenesis: growth, regression and regrowth[END_REF]. Integrating vascularization into the mixture model completes the representation of in vivo multi-component tumors [START_REF] Frieboes | Three-dimensional multispecies nonlinear tumor growth-ii: tumor invasion and angiogenesis[END_REF][START_REF] Lima | A hybrid ten-species phase-field model of tumor growth[END_REF].

We now present in more details two applications of the mixture model: cell aggregation in a well, and spatial cell distribution in a growing aggregate containing 2 cell types. The study includes all aspects described in section 4.1, for cells and nutrients. All the numerical solutions of the mixture model are obtained with the program Comsol Multiphysics.

Aggregation in a 3D well

We focus first on the formation of an aggregate at the bottom of a 3D well. This corresponds to the experiments described in section 3.2. Aggregation and compaction of the aggregate have been studied in section 3.1 using a global model, which does not take into account the spatial variations of the aggregate properties, but also with discrete models [START_REF] Adenis | Experimental and modeling study of the formation of cell aggregates with differential substrate adhesion[END_REF], and from a mechanical point of view [START_REF] Dolega | Mechanical behavior of multi-cellular spheroids under osmotic compression[END_REF], but not with the mixture model formalism.

In Fig. 5 and6, we show the formation of a multi-cellular aggregate at the bottom of a well of radius 1 mm. We start with a low uniform initial mass fraction of cells at t = 0 h at the bottom of the well.

Then cells sediment due to gravity. Typical time-scales are 1 h for the sedimentation process and 10 h for the aggregation process. In Fig. 5, the cells which are introduced in the well have a vanishing cell-cell adhesion parameter at initial time. The cell-cell adhesion increases upon contact between cells because of the maturation process, leading to the formation of one aggregate. In Fig. 6, on the contrary, the adhesion parameter is already maximal at t = 0 h. Several aggregates form quickly after sedimentation and eventually coalesce. In both cases, if no growth occurs, aggregation continues until a steady state is reached for the size of the aggregate.

In these experiments there is only one cell type, and the dynamics of the cell suspension follows the conservation equation, Eq. [START_REF] Humphrey | Mechanotransduction and extracellular matrix homeostasis[END_REF], where the velocity is given by Eq. ( 25) and Eq. [START_REF] Lin | A dynamic cellular vertex model of growing epithelial tissues[END_REF]. The center of mass velocity vanishes during this process. We pay special attention to the time delay for aggregation exhibited by the cell line A549 (section 3.2) that depends on the initial cell quantity. We attribute this time delay to the maturation of the adhesion between cells [START_REF] Lee | Modulation of huh7. 5 spheroid formation and functionality using modified peg-based hydrogels of different stiffness[END_REF][START_REF] Cui | Advances in multicellular spheroids formation[END_REF].

In order to describe the adhesion maturation process, we suppose that the cell-cell interaction parameter α 11 of the Flory-Huggins interaction potential is proportional to the cadherin concentration at the cell surface.

We use an advection-diffusion equation with a source term for the cadherin concentration and therefore for the cell-cell interaction parameter α 11 :

∂ t α 11 + v 1 .∇α 11 -D α ∇ 2 α 11 = τ -1 a (α 0 11 -α 11 )φ n 1 -τ -1 b α 11 (30) 
where v 1 is the cell velocity, τ a a characteristic time for cadherin recruitment, and τ b the characteristic time associated to the rupture of the cadherin bonds. The maximal value of the adhesion parameter corresponding to a saturation of the cadherin concentration is α 0 11 . The recruitment of cadherins and their transport to the surface is triggered by the contact between cells. It is therefore a cooperative phenomenon, that we characterize by a power law dependence on the mass fraction φ n 1 with an exponent n ≥ 2. We also include cell diffusion with a diffusion constant D α . This equation leads to a time delay for cell aggregation depending on the value of the recruitment time τ a /φ n 1 and of the initial conditions for α and φ 1 . Not surprisingly, the wetting angle of the aggregate on the well depends on the interaction energy between the substrate and the cells, as for the wetting of liquid drops [START_REF] Douezan | Spreading dynamics and wetting transition of cellular aggregates[END_REF][START_REF] Douezan | Wetting transitions of cellular aggregates induced by substrate rigidity[END_REF]. The total adhesion energy of the cells on the surface of the well is given by Eq. ( 16), where the adhesion strength is given by the cell-substrate adhesion parameters β i for the cell type i. We vary the cell-substrate adhesion parameter to induce the spreading of the aggregate in (Fig. 7).

Nutrients satisfy the diffusion-absorption equation Eq. ( 6) with a no-flux boundary condition at the boundaries (the walls of the well and the interface culture medium-air at the top). In the bulk of the aggregate, the nutrient concentration is low (Fig. 8-B,D) and may be smaller than the nutrient critical concentration c 0 for proliferation defined by Eq. [START_REF] Moscona | The dissociation and aggregation of cells from organ rudiments of the early chick embryo[END_REF]. In this case, the growth rate is negative as shown in Fig. 8-A for an aggregate at t = 3 days after sedimentation of the cells. On the contrary, near the surface of the spheroid, the nutrient concentration is high and the growth rate is positive. Another presentation (particle tracking method) of the results is displayed in Fig. 8-D where the cell density is imaged by fictive cells (single dots, colored according to the values of the concentration of nutrients normalized by the initial concentration of nutrients).

Dynamic phase separation in a multi-cellular aggregate

A second example is the numerical study of an aggregate comprising two cell types. Note that this system is a ternary mixture since the inert inter-cellular fluid phase is also present. The structure of the aggregate depends on the parameters of the Flory interaction potential (section 4.1.1). Cells, which are more aggressive or more prone to metastasis, must be accessible to the drug [START_REF] Von Ahrens | The role of stromal cancer-associated fibroblasts in pancreatic cancer[END_REF]. It is thus crucial to know their localizations inside a tumor given the difficulty of drug penetration. The cell localization in the tumor is particularly relevant to understand the results of pharmacologic tests on in vitro cancerous spheroids, which contain cancerous cells and cancer stem cells [START_REF] Quan | Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype leading the collective invasion[END_REF][START_REF] Olmeda | Clonal pattern dynamics in tumor: the concept of cancer stem cells[END_REF]. We follow here the lines of the models built from cancer stem cells, which either divide symmetrically between two identical daughter cells or asymmetrically We show here the iso-surface of φ 1 = 0.35 in the mixture. This corresponds to the interface between the compact spheroids and the outer medium (water with nutrients). In this case, the cells injected in the well are already "activated", so that the nucleation of multiple cell spheroids happens before the cells sediment totally. Cells do not adhere at all to the substrate (φ 1 = 0 on the substrate). The initial condition at the bottom of the well is φ 1 (0, r) = 0.02 + δ(r) where δ is a small noise. It corresponds to 2902 cells of radius r = 8 µm. The well has a radius of R = 1 mm as in Fig. 5. into a stem cell and a differentiated cell to build our example [START_REF] La Porta | Senescent cells in growing tumors: population dynamics and cancer stem cells[END_REF][START_REF] Olmeda | Clonal pattern dynamics in tumor: the concept of cancer stem cells[END_REF]. In Fig. 9, we study the growth of an aggregate containing two cell types: T1 of mass fraction φ 1 (in cyan in the discrete representation) and T2 of mass fraction φ 2 (in red in the discrete representation). We start at t = 0 day with mostly one cell type T1 and few cells of type T2 (Fig. B,C,D). We observe in the section of the aggregate with a discrete representation (Fig. 9-D) that the few T2 cells are located mostly on the surface of the aggregate, but they do not form a continuous phase per se as clusters. T1 cells divide asymmetrically into T1 and T2 cells, whereas T2 cells do not proliferate. At t = 10 days, we observe a complex structure with a partial phase separation: there are two interpenetrated domains, each of them corresponding to one of the phases in equilibrium with well defined values of φ 1 and φ 2 . The phase with the larger φ 1 is located in the bulk of the spheroid whereas the phase with the larger φ 2 is located in the outer part of the aggregate. At very long times, coarsening leads to full phase separation into two domains, each containing only one phase.

For this example we assume that the total density ρ is constant and we solve the conservation equations Eq. ( 18) for the mass fractions φ 1 and φ 2 where the fluxes are given by equation Eq. [START_REF] Honda | Transformation of a polygonal cellular pattern during sexual maturation of the avian oviduct epithelium: computer simulation[END_REF]. In order to focus on the phase segregation we use the Flory-Huggins interaction potential with different cell-cell adhesion parameters α 11 , α 12 , α 22 and ignoring gravity and chemotaxis.

The dynamics of the phase separation also contributes to the structure of the aggregate. For instance, consider an aggregate with a single cell type, where cells in the bulk are dying with cell debris or wreckage that do not become fluid. The reorganization time necessary to evacuate the wreckage is τ R ∼ ρR 2 /(M D c ) where D c is the activity coefficient of the living cells defined in Eq. ( 14) and M the relative mobility between wreckage and living cells defined in section 4.1.3. If the typical death time τ G ∼ 1/k g is large compared to this time τ R , the competition between growth and friction can lead to the apparition of a necrotic core. Following Steinberg et al [START_REF] Foty | Surface tensions of embryonic tissues predict their mutual envelopment behavior[END_REF], the localization of the various cell types can be predicted by comparing the different interfacial tensions. This simple macroscopic wetting criterion leads to the same results as the Figure 8: Numerical results at day 3 for the growth of an aggregate in a well. The modeling has the same initial conditions as in Fig. 5. The cell-substrate interaction energy is neglected here, yielding a wetting angle 90°with the substrate. The boundary condition for nutrients is a no-flux boundary condition on all the boundaries of the system. A: Section of the well: in blue the dilute cell phase, in red the part of the aggregate where the nutrient concentration is such that the proliferation rate is positive, and in green the part of the aggregate where the proliferation rate is negative. B: Section of the well with the concentration in nutrients normalized by the initial concentration in nutrients. C: Section of the well for the cell mass fraction. D: Discrete representation of the aggregate at the bottom of the well with fictive cells (particle tracking method). Cells are colored according to the normalized concentration in nutrients described above. E: Mesh at the bottom of the well. A Finite Element Method was used in this numerical study. We use an adaptive mesh that is refined at the interface of the aggregate and coarser elsewhere. minimization of the free-energy, of the mixture model in the limit of strong phase separation. However, it predicts neither the compositions of the phases nor the dynamics of the phase separation between the different the cell types.

Conclusion

This review focuses on the physics of self-assembly of cells belonging to different cell types, each having its own biological properties. A typical example is an aggregate formed by cancer cells and cells of the immune system such as macrophages. We consider mostly cell aggregates called multi-cellular spheroids although other modes of assembly are possible such as epithelia on substrates or cysts for which spherical cell layers surround a lumen. The physics of cell aggregates is at a turning point after two decades of biophysical studies including both experimental works in vitro and theoretical and numerical modeling. Compared to other self-assembling processes of soft objects such as drops, vesicles, or colloidal particles, the collective behavior of living objects is much richer in the sense that it is not only due to binary or ternary interactions between assembling entities: the nature and the biological function of the cells can change upon assembly and the collective behavior of cells in a tissue is in general very different from individual cell behavior.

Discrete models and simulations are useful to some extent for simple geometries if only a rather small number of cells are involved. But they become very challenging for large numbers of cells and when small diffusing molecules such as morphogens activate cellular transformations, regulate cell proliferation or change cell fate and function in the aggregate. Another difficulty of the discrete models is the coexistence of the cells with the extracellular matrix often formed of a gel of fibers as observed in connective tissues and tumors. In many cases the extracellular matrix must be considered explicitly because it plays an important role in the properties of the aggregate. In continuous models, the extra-cellular matrix is considered as a phase per se and chemical signals are easily implemented.

In this review, we have presented shortly the most popular discrete models: vertex model, cellular Potts model, cellular automaton model. We have described theoretically and numerically in more details the initial stages of growth of an aggregate made of a single type of cells by adapting the classical Smoluchowski aggregation model of colloidal particles and aerosols, taking into account the diffusion-absorption of nutrients, which regulates cell proliferation. We have shown how this theoretical analysis allows to extract from the experiments physical parameters associated to the collective behavior of the aggregating cells.

The main part of the review has been devoted to what is called the mixture model, which is a continuum model based on a generalized hydrodynamic description of the cells. The mixture model can be used for aggregates containing several cell types and allows for a study of local phase separation between the cell types. We followed the theory describing the dynamics of phase transitions to establish the mixture model on a firm basis. We revisited the non-equilibrium Onsager theory to model the fluxes of each partner in the mixture: cells, extracellular matrix, small molecules... We have given two illustrations of this model using the software Comsol Multiphysics: the initiation of the growth of aggregates in a well and the structure of 3-dimensional spheroids comprising 3 components, two different cell types and the extracellular matrix or extracellular fluid.

From a biological point of view, the study of these aggregates may help to understand the interactions between different cell types in a growing tumor in vivo. We may think of the cells of the immune system: macrophages, T or B lymphocytes which are observed in cultures of tumor cells removed from patients and grown on plates for diagnosis. Also, new experimental techniques in academic research or in industry will need cell aggregates either multi-cellular spheroids or organoids to test drug penetration or drug efficiency when coupled to ultra-sound for example. Finally, we insist in this review on the role that theory can play to make the description quantitative and to provide physical quantities associated to the collective behavior of the cells in the aggregate. These topics will open new perspectives for the study of quantitative processes in biology but also in personalized medicine.

Appendices 1. Appendix 1: Absorption-diffusion of nutrients

We start with the reaction-diffusion equation for the nutrient concentration c (Eq. 6):

∂c ∂t = D∇ 2 c -d c cn ( 31 
)
where D is the nutrient diffusion coefficient, d c the nutrient consumption rate per cell, and n the cell density which is considered as constant inside the aggregate, and which vanishes outside the aggregate.

We make this equation dimensionless to compare the relevant time-scales. Dimensionless quantities are denoted by a tilda. The considered phenomenon concerns the growth of a multi-cellular aggregate, the natural time-scale is thus the growth time T Γ and the natural length-scale the radius of the aggregate R. Since nutrient diffusion and consumption are fast compared to the time-scale for growth, Eq. ( 6) can be written in a steady state.

D∇ 2 c -d c cn = 0 (33) 
The experimental set-up has a radius r = L (see Fig. 10) and the medium that surrounds the aggregate is a liquid containing the nutrients.

At the aggregate-liquid interface, the nutrient concentration and the nutrient flux are continuous:

c(R + ) = c(R -); D ext ∇c(R + ) = D int ∇c(R -) (34) 
where c(R + ) and c(R -) are respectively the nutrient concentration at the boundary outside and inside the aggregate. D ext and D int are the diffusion coefficients respectively outside and inside the aggregate.

We obtain the following expressions for the concentrations of nutrients c int inside the aggregate (r < L) and c ext outside the aggregate (r > L): 

+ ( R L -1) tanh R λ + R λ (1 -R L ) c 1 ext = tanh R λ -R λ Dext Dint + ( R L -1) tanh R λ + R λ (1 -R L ) (35) 
where c L = c(L) is the nutrient concentration at the boundary r = L.

In the limit R << L, one can consider the nutrient reservoir L as infinite and c L = c ∞ . The concentrations inside and outside the aggregate reduce to:

c int (r) = c ∞ c 0 int sinh r λ / sinh R λ r R , c 0 int = Dext Dint tanh R λ Dext Dint -1 tanh R λ + R λ c ext (r) = c ∞ 1 - c 1 r R , c 1 = R λ -tanh R λ Dext Dint -1 tanh R λ + R λ ( 36 
)
The value of c L depends on the type of nutrient. If the nutrient is oxygen, c L is fixed if the outer medium (r > L) is air. For other nutrients such as glucose for instance, c L can be either fixed experimentally by refreshing the medium, or can decrease slowly with time if the quantity that is consumed is not replaced. In this latter case c L is determined by solving the following equation: We approximate the well by a cylinder of radius r = 3 mm and of height h = 10 mm. For an aggregate of radius R ∼ 100 µm and λ ∼ 50 µm, we obtain T d ∼ 2.5 days, which is the order of magnitude of the experimental time.

The aggregation between cells is not always instantaneous and can depend on the maturation of the adhesion. We take it into account by introducing a time delay for the aggregation that we extract from experimental data (section 3.2).

Finally, we must take into account the effect of cell proliferation, which is controlled by the nutrients.

The concentration of nutrients has been discussed in Appendix 1 and is given by Eq. [START_REF] Karolak | Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues[END_REF]. When growth is taken into account the change in the number i of cells in the aggregate is due both to aggregation and to growth. Using the growth law of Eq. ( 8), Eq. ( 40) becomes:

di dt = - dN dt + φ w c R 0 4πr 2 k g (r)dr (43) 
This leads to the dynamical equation for the radius of the aggregate:

dR(t) dt = 3 d f D 1 w c RΩφ N (t)p 1i (t) + R(t) -2 R(t) 0 r 2 Γ(c(r) -c 0 )dr ; R(0) = r c ( 44 
)
where we have supposed that the cell volume fraction in the aggregate is constant. The growth of the aggregate in the global model is calculated by solving numerically Eqs. ( 35),( 39), [START_REF] Hakim | Collective cell migration: a physics perspective[END_REF].

with

V αβ = (∂ α V β + ∂ β V α )/2
and dF dt = {V.(ρge z + ∇P ) + i =0

j i ∇µ i + Ḟ0 }dr; R = W f + W v + d F dt (46) 
We first proceed to the minimization of the Rayleighian with respect to the velocity of the mass center V of coordinates V α : δR δV α = 0 =⇒ -∇P + ∇.σ -ρge z = 0

Next we proceed to the minimization with respect to velocity component v i,α of the species i in the direction α which leads to δR δvi,α = 0. We recall that φ 0 v 0 =i =0 φ i v i and φ 0 = 1i =0 φ i .

δ W f δv i,α = v i,α ρφ i   φ i M -1 i0 + φ -1 0 φ i k =0 φ k M -1 k0 + M -1 i0 + j =i,j =0 φ j (M -1 ij -M -1 i0 )   + ρφ i j =i,j =0 v j,α φ j (M -1 j0 + φ -1 0 k =0 φ k M -1 k0 + M -1 i0 -M -1 ij ) δ W v δv i,α = 0 and δ δv i,α dF dt = ρφ i ∂ α μi
This leads to:

- k>0 A ik v k,α = ρφ i ∂ α μi (47) 
         A ii = ρφ i M -1 i0 + ρφ 2 i (M -1 i0 + φ -1 0 k =0 φ k M -1 k0 ) + ρφ i M -1 i0 + j =i,j =0
ρφ i φ j (M -1 ij -M -1 i0 )

A ij = ρφ i φ j (M -1 j0 + φ -1

0 k =0 φ k M -1 k0 ) + ρφ i φ j (M -1 i0 -M -1 ij ) If M ij = M , M i0 = m:    A ii = ρφ i M -1 + ρφ i φ 0 (m -1 -M -1 ) + ρφ 2 i φ -1 0 m -1 + ρφ 2 i (m -1 -M -1 ) A ij = ρφ i φ j φ -1 0 m -1 + ρφ i φ j (m -1 -M -1 )
This result can be rewritten:

A ij = ρφ i M -1 δ ij + ρf r φ i φ j with f r = m -1 (1 + φ -1 0 ) -M -1 and M -1 = m -1 φ 0 + M -1 (1 -φ 0 ).

Inversion of the effective friction matrix A ij

The effective friction matrix can be written as A ij = A 0 ij + Āφ i φ j where A 0 is a diagonal matrix and Ā = ρf r . Its inverse is:

A -1 ij = ρ -1 φ -1 i M (δ ij -f r mφ i φ 0 ) Thus: v i,α = - j =0
M (δ ij -f r φ j φ 0 )∂ α μj and we obtain Eq. ( 25):

j i,α = ρφ i v i,α = -ρ j =0
M (δ ij φ j -f r mφ i φ j φ 0 )∂ α μj [START_REF] Weitz | Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation[END_REF] Summing all the cell fluxes we obtain the mean cell velocity v c .

(

-φ 0 )v c,α = i =0 j i,α = - M   i =0 φ i ∂ α μi -f r m(1 -φ 0 )φ 0 i =0 φ i ∂ α μi   1 
After defining: γ = ρ(1-φ0) φ0m0 , the relation ( 27) is recovered.
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 2 various nutrients can play a role (oxygen, glucose,...) but the boundary conditions on the nutrient concentration depends on the nature of the nutrient. Since the oxygen partial pressure is constant at the air interface of the culture medium, the boundary condition for oxygen is different from the boundary condition for the other nutrients in the culture medium. Both the concentration (Dirichlet boundary condition for oxygen), and the concentration gradient (Neumann boundary condition for culture nutrients), are used in Fig. 3.1 as boundary conditions.

Figure 1 :

 1 Figure 1: Theoretical predictions for the growth of a spherical aggregate in a well of radius L = 3 mm and the concentration profile of nutrients according to Eq. (5)-(8) and the steady state version of Eq. (6). A: Time evolution (scale in hours) of the aggregate radius R in µm for different initial number of cells N 0 and for both boundary conditions for nutrients. Continuous lines: with no fixed nutrient concentration at r = L. Dashed lines: with a fixed nutrient concentration at r = L. B: Time evolution of the concentration profiles in function of the distance r from the center of the aggregate, in the case N 0 = 250 cellsfor those two cases. The radii of the aggregates are indicated by crosses (for the case when the concentration is not fixed) and circles (for the fixed concentration case). The dashed and continuous lines correspond respectively to the cases where when the concentration is fixed and not fixed.

Figure 2 :

 2 Figure 2: Oxygen partial pressure P 0 2 (mmHg) as a function of the distance d 0 2 from the surface of the spheroid. Experimental data from Ref. [139] for a medium with 20% (red dots) and 5% in O 2 (blue dots) for spheroids of HTh7 thyroid cells. The fits in blue and black are solutions to the steady-state version of Eq. (6). The diffusion coefficient D 0 2 inside the aggregate, the penetration length λ and the consumption rate dc are related by the expression: λ = (D 0 2 /(dcnc)) 1/2 . The fit yields a diffusion coefficient D 0 2 = 571 µm 2 .s -1 , which is 3.5 times lower than in the medium. The consumption rate can be estimated to be dcnc = 0.22 s -1 for a medium with 20% oxygen with a penetration length of λ = 160 µm, and dcnc = 0.09 s -1 for a medium with 5% oxygen with a penetration length of λ = 79 µm. The consumption rate varies so that the quantity of oxygen consumed by unit of time dc/dt = dcncc is maintained at a certain level.

Figure 3 :

 3 Figure 3: A: Evolution of the radius of KP cell aggregates for different initial numbers of cells N = {156, 312, 625, 1250, 2500, 5000}. The fit to the experiments provides the values of several parameters that can be then introduced into a local model. The penetration length is λ = 50 µm, the consumption rate of the nutrients is dcnc = 0.28 s -1 .

Figure 4 :

 4 Figure 4:

  where η is the global shear viscosity and ζ the global bulk viscosity[START_REF] Ranft | Fluidization of tissues by cell division and apoptosis[END_REF]. The associated dissipative force f per unit volume of fluid is f α = ∂ β σ αβ .

Figure 5 :

 5 Figure 5: Process of aggregation of a unique aggregate with no adhesion to the substrate. (φ 1 = 0 on the substrate). At t = 0 h, cells with a cell-cell adhesion parameter α 11 = 0 are injected at the bottom of the well, where they sediment and eventually aggregate. The initial condition at the bottom of the well is φ 1 (0, r) = 0.02 + δ(r) where δ is a small noise. This corresponds to a quantity of 2902 cells of radius r = 8 µm. The well has a radius of R = 1 mm.

Figure 6 :

 6 Figure 6: Numerical study of the aggregation of multiple spheroids growing at the bottom of the well using the mixture model.

Figure 7 :

 7 Figure 7: Section of the multi-cellular aggregate and mass fractions of cells for 2 values of the ratio adhesion cellsubstrate/adhesion cell-cell: β/α 0 = -0.077 (A) and β/α 0 = 0.154 (B). The multi-cellular aggregate spreads and the wetting angle cell-substrate increases when the surface tension cell-substrate decreases.

Figure 9 :

 9 Figure 9: Growth of an aggregate containing two cell types T1 and T2. We start at t = 0 day with the steady state solution for an aggregate containing 1668 T1 cells of radius 10 µm and 50 T2 cells of radius 8 µm. T1 cells divide asymmetrically into T1 and T2 cells, whereas T2 cells do not proliferate. On the left, at t = 0 day, panel A: Section of mass fraction T1, panel B: Section of mass fraction T2. Below, at t = 10 days, panel E: Section of the aggregate with the mass fraction T1, panel F: Section of the aggregate with the mass fraction T2. On the right, at time t = 0 day, panel C: Picture of the surface of the aggregate using a discrete representation. T1 cells are colored in cyan and T2 cells in red. In panel D: section of the aggregate. Below, at t = 10 days, panel G: Picture of the surface of the aggregate and in H: Section of the aggregate.

  t/T Γ ; ∇ = R∇ ; c = c/c 0 (32) where the time-scales for diffusion is T D = R 2 /D and for nutrient consumption T C = 1/(d c n) = λ 2 /D with λ the penetration length of nutrients inside the aggregate. One can estimate the values of these parameters: D ∼ 5.10 2 µm 2 .s -1 , R ∼ 10 2 µm. The reference value c 0 of the nutrient concentration plays no role in this analysis. The penetration length is nearly λ ∼ 50 µm [139], while T C and T D are of order ∼ 5 -20 s which indicates very fast processes compared to the division and apoptosis time-scales T Γ which is of order ∼ 1 day.

Figure 10 :

 10 Figure 10: Geometry of the set-up. In the spherical geometry, the aggregate of radius R is in the middle of a sphere of radius L. The aggregate is surrounded by a liquid filled with nutrients.

  c is the nutrient concentration, Ω the total volume (in the spherical geometry, Ω = 4πL 3 /3), V(t) = 4πR(t) 3 /3 the volume of the aggregate, C the total quantity of nutrients, and D the total consumption rate of nutrients. The typical time-scale for nutrient depletion T d , is obtained from Eq. (37), T d = Ωλ 4πR 2 D
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Appendix 2: Derivation of the equations for the global growth/ aggregation model

In section 3.2, we gave examples of applications of the global aggregation model for 2 cell lines. We detail here the equations used to obtain the aggregate growth curves in figures 3 and 4. The evolution equation for the main aggregate radius has two independent components, aggregation and growth. We first present the aggregation contribution, and then growth, before writing the full equation.

We write the Smoluchowski equation (Eq. ( 9)), where q i is the concentration of cell aggregates of size i and a kj is the collision kernel between the aggregates containing respectively k and j cells:

In the following, we consider a cellular solution containing N (t) isolated cells and a single growing aggregate with i(t) cells. This leads to q 1 = N/Ω and q i = 1/Ω where Ω is the well volume. For the central aggregate of radius R, the volume is V = 4πR 3 /3 while the cell volume is w c = 4πr 3 c /3. We obtain:

The kernel a 1i = 4π(D 1 + D i )(r c + R) is the perikinetic kernel (Eq. ( 10)) for diffusion limited aggregation where D 1 and D i are respectively the diffusion coefficients of isolated cells and of the aggregate made of i cells.

The volume of the aggregate is V = 4πR 3 /3 = iw c /φ where φ is the mass fraction of cells in the aggregate (equal to the volume fraction). We consider two limits, the limit where the volume fraction is constant and the limit where the volume fraction depends on the radius of the aggregate. In this last limit, we assume a fractal-like behavior φ = φ 0 (R/r c ) d f -3 . From Eq.( 40) we obtain the variation of the radius of the aggregate with time

Except for the very early times, we can consider that R >> r c and

Using the fractal scaling of the volume fraction, Eq.( 41) for the radius of the aggregate reads:

The perikinetic kernel supposes that the aggregation is dominated by diffusion and that the fusion between two aggregates is instantaneous upon contact. This is not in general true because aggregation is slowed down by the energy barrier due to the repulsive interactions between aggregates. The aggregation kernel can then be written as a 1i = 4π(D 1 + D i )(r c + R)p 1i where p 1i < 1 is the collision efficiency i.e. the probability of aggregation when a collision occurs. The calculation of the collision efficiency is a classical problem in colloid science [199,[START_REF] Elimelech | Particle deposition and aggregation: measurement, modelling and simulation[END_REF].

Appendix 3: Variational derivation of the mixture model

We begin with the differential of the total free-energy density F , function of the cell concentrations n i .

φ i is the mass fraction of the species i. The subscript 0 refers to the medium (and not to a cell type).

ρ i = φ i ρ is the partial mass density for the species i where ρ = i ρ i is the total mass density, m i is the mass of an individual of type i (which can be a water molecule or one cell). µ i = ∂F/∂n i is the partial chemical potential for the species i. We proceed to a change of variable n i = ρφ i /m i in the differential of the free-energy density:

Time derivative of the free-energy

We define the free-energy of the system F as the integral of the free-energy density

over the volume of the system.

The time derivative of this free-energy leads to Eq. ( 19) of the main text, after using the previous result for the differential of the free-energy density, and making the change of variable n i = ρφ i /m i .

The flux of each component indexed by i writes:

where V i is the velocity of the component indexed by i, V is the center of mass velocity, v i the relative velocity in the frame of the center of mass and j i = ρ i v i the relative flux. We recall the definition of the pressure: P = i ρ i ∂f ∂ρi -f . Then, the rate of change of the free-energy reads:

Since ∇F = i ∂F ∂ρi ∇ρ i + ρg, when gravity is introduced in the free-energy density this expression rewrites:

Extremization of the Rayleighian

We define the Rayleighian R as the sum of the time-derivative of the free-energy: dF dt , the viscous dissipation per unit time W f , and half of the friction dissipation function W v , [START_REF] Doi | Dynamic coupling between stress and composition in polymer solutions and blends[END_REF]: Aggregation in a well (section 4.2)

We study aggregate growth at the bottom part of a well of radius 1 mm (see Fig. 11). In this section, we need to introduce both gravity and maturation of the cell-cell adhesion. The equations are derived in section 4.1. We use the conservation equation: Eq. 18, where we introduce the flux given by Eq. 25. The chemical potential is derived from the Flory-Huggins potential according to Eq. 14 with the additional term taking gravity into account, introduced in section 4.1.3.

where ρi = m i /w i is the density of a cell of phase i.

The initial values are α(0, r) = 0 and φ 1 (0, r) ≈ 0.02 at the bottom of the well and φ 1 (0, r) = 0 otherwise. This corresponds to 2902 cells.

The Final Element Method in Comsol Multiphysics

.

In order to stabilize the numerical solutions an effective viscosity for each component [START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF] is added to the Reyleighian: 47) becomes:

The equations are implemented in Comsol Multiphysics in a Weak Form interface with linear element orders, and the solutions are derived with the Galerkin Finite Element Method. We write a system of 7 equations and thus 7 test functions for μ0

Integration by part is used to reduce the second order terms into first order terms. A simple example of the method can be found in Equation view/Weak expressions of the code: Mathematics/Moving Interface/Phase Field (pf) of the software Comsol Multiphysics.

The mesh size is chosen to be close but smaller than the value of 2 /α We study the structure of a growing aggregate containing 2 different cell types with different adhesion properties. The working space is a spherical domain where the aggregate evolves. Here, gravity and maturation are neglected. We start by stabilizing a solution to create an initial aggregate with the desired quantity of cells until it reaches an equilibrium configuration. At this step, the growth is not activated until full equilibrium.

Only 4 weak equations are necessary to determine μ1 , μ2 , φ 1 and φ 2 , and we introduce the explicit expression for the velocities into the conservation equations. The mobility coefficients m and M are supposed to be equal. Here, there is neither need of stabilizing terms nor of adapting mesh. We used a Flory-Huggins