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The hair bundle of sensory cells in the vertebrate ear provides an example of a noisy oscillator close
to a Hopf bifurcation. The analysis of the data from both spontaneous and forced oscillations shows
a strong violation of the fluctuation-dissipation theorem, revealing the presence of an underlying
active process that keeps the system out of equilibrium. Nevertheless, we show that a generalized
fluctuation-dissipation theorem, valid for non-equilibrium steady states, is fulfilled within the limits
of our experimental accuracy and computational approximations, when the adequate conjugate
degrees of freedom are chosen.

The fluctuation-dissipation theorem (FDT) is the cor-
nerstone of linear response theory for systems at thermal
equilibrium [1]: it relates the response to small pertur-
bations to the correlations of spontaneous fluctuations
and connects the microscopic dynamics of the system to
the macroscopic transport coefficients, such as diffusion
constant, conductivity, absorption rates, etc.

Many systems operate far from thermodynamic equi-
librium and therefore do not obey the fluctuation-
dissipation theorem. One illustrative example is given
by the hair-cell bundle. The hair bundle operates as a
mechanical antenna that protrudes from the apical sur-
face of each hair cell in the inner ear of vertebrates [2, 3].
Hearing starts when sound-evoked deflections of this or-
ganelle are transduced into electrical signals that then
travel to the brain. Composed of cylindrical protrusions
- the stereocilia - that are arranged in rows of increas-
ing heights, the hair bundle displays a staircase pattern.
Stereocilia are interlinked near their tips by fine oblique
filaments. Tip-link tension controls the open probabil-
ity of mechanosensitive ion channels. The hair cell can
power noisy spontaneous oscillations of its hair bundle
that display a spectacular violation of the FDT [4]. The
behavior of the hair bundle has been described by the
generic normal form of a dynamical system that operates
on the stable side of a Hopf bifurcation [5]. In this let-
ter, we focus on this particular class of out-of-equilibrium
systems.

Several generalizations of the FDT to non-equilibrium
systems have been proposed [6–9]. The generalized
fluctuation-dissipation theorem (GFDT) of Prost et

al. [10] applies to systems with Markovian dynamics in
a non-equilibrium steady state. Applying the GFDT to
experimental measurements on the hair bundle, we show
here that a proper choice of variables restores a relation
between spontaneous fluctuations and linear response.

Details of the experiment are found in Refs. [4, 11, 12].
The oscillatory movement of a hair bundle was moni-
tored with a glass fiber attached to its tip (Fig. 1A). The
fiber was used both to exert sinusoidal forces and to re-

port hair-bundle noisy oscillations. The power spectrum
C̃xx(ω) =

∫

Cxx(t) e
iωtdt of spontaneous hair-bundle po-

sition x, which is the Fourier transform of the correlation
function Cxx(t) = 〈x(t)x(0)〉, displays a broad peak cen-
tered at a characteristic frequency ν0 = ω0/2π ≃ 6Hz
(Fig. 1B). For stimulation by external sinusoidal forces
f(t), the linear response function χ̃ = χ̃′ + iχ̃′′ is defined
at each angular frequency ω by: 〈x̃(ω)〉 = χ̃(ω)f̃(ω),
where tildes denote Fourier components. Its imaginary
part χ̃′′(ω) is proportional to the work received by the
system from the external force for stimulation at a fre-
quency ω [13]. At thermal equilibrium, with our defi-
nition of the Fourier transform, χ̃′′(ω) must always be
positive (for ω ≥ 0). Remarkably, in the case of the os-
cillatory bundle, χ̃′′(ω) changes sign near ν0, as shown
in Fig. 1C. At low frequencies, the work received by the
bundle is negative, meaning that energy is transferred
from the hair bundle to the fiber. An energy consuming
or active process must thus be at work to power hair-
bundle movements.
At thermal equilibrium, the FDT relates the imaginary

part of the response function to the power spectrum of
spontaneous fluctuations for a degree of freedom x

C̃xx(ω) = 2kT
χ̃′′

xx(ω)

ω
, (1)

where T is the temperature and k the Boltzmann con-
stant. Departure from equilibrium can be characterized
by the fluctuation-response ratio

θ =
ωC̃xx(ω)

2kT χ̃′′

xx(ω)
, (2)

sometimes called the effective temperature (in units of
the actual temperature T). This ratio equals one when
the system is at equilibrium. In an out-of-equilibrium
system, θ might depend on frequency and be either pos-
itive or negative. For the hair bundle, the fluctuation-
response ratio θ shown in Fig. 1D depends on frequency
and presents a striking divergence in the vicinity of
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FIG. 1. Experimental data on a hair bundle: (A) Spon-
taneous hair-bundle oscillation. (B) Power spectral density

C̃xx(ν) averaged from 15 different trajectories as a function
of frequency ν. (C) Imaginary part of the response function
χ̃′′

xx(ν). Thin red lines (B-C) correspond to a simultaneous fit

of C̃xx(ν) and χ̃′′

xx(ν) to theoretical expressions derived from
Eq. (4). (D) Fluctuation-response ratio θ as defined in Eq.
(2) fitted to theoretical expression given in Refs. [4]

ν0 = ω0/2π, corresponding to the sign change of χ̃′′

xx(ω).
However, if the GFDT applies, a fluctuation-response re-
lation is restored with an appropriate choice of the con-
jugate variable X to the external force [14]:

χ̃XX(ω)− χ̃XX(−ω) = iωC̃XX(ω). (3)

The behavior of the hair bundle for small deflections has
been described as a two-variable dynamical system:

d

dt

(

x
y

)

=

(

−r ω0

−ω0 −r

)(

x
y

)

+

(

fx
0

)

+

(

ηx
ηy

)

. (4)

The variable x is the deflection of the hair bundle,
r = k/λ is a damping rate where λ and k are respec-
tively the effective drag coefficient and the stiffness of
the bundle, fx = fext/λ where fext is the external force
on the hair bundle. The second degree of freedom y is
related to the force exerted by the active process within
the hair bundle and couples to the displacement x. The
noises ηx and ηy describe fluctuations in the system. We
treat the two Langevin forces as white noises so that the
dynamical system is Markovian. At the low frequencies
of the experiment (∼ 10 Hz), we expect noise correla-
tion times to be sufficiently short that the noises can
be considered as delta-correlated. Non-Markovian effects
are expected at higher frequencies only, as discussed be-
low. Equation (4) is to be understood as a renormal-
ized expression, valid for providing two point correlation
functions and linear responses, of a more complex non-
linear problem [5, 12, 15]. As a result, the noises ηx

and ηy are in general correlated. However, experimen-
tally, the cross-correlation turned out to be very small
and the two noises are effectively independent. The noise
correlations are written as 〈ηx(t)ηx(t′)〉 = σηx

δ(t − t′),
〈ηy(t)ηy(t′)〉 = σηy

δ(t− t′).
The dynamical system described by Eq.(4) is the

canonical form of a system close to a Hopf bifurcation
[16]. If r > 0, it displays damped spontaneous oscil-
lations of frequency ω0. The expressions for the power
spectrum and the complex response function to an exter-
nal force fx can be readily computed from this model and
were used for a global fit of the experimental data with
a unique set of parameters r, ω0, σηx

and σηy
in Fig. 1

(the real part of the response function is not shown).
With the choice of x as conjugate variable of the ex-

ternal force fx, the fluctuation-dissipation theorem is
violated (Fig.1C). This is a strong signature of a non-
equilibrium behavior. Nevertheless, the dynamics of (4)
being Markovian, the generalized fluctuation-dissipation
theorem (GFDT) of Prost et al. [10] holds for the correct
conjugate variable X of the external force. In the case of
the two-dimensional linear system at hand, Eq. 5 in Ref.
[10] yields:

(

X
Y

)

= [A−1]TΣ−1
A

(

x
y

)

(5)

with

A = −

(

−r ω0

−ω0 −r

)

,ΣA =

(

〈x2〉ss 〈xy〉ss
〈xy〉ss 〈y2〉ss

)

, (6)

where the averages in the matrix ΣA are calculated in
the steady state. A direct test of the GFDT would thus
require a measurement of the internal degree of freedom
y, which is not experimentally accessible.
To circumvent this limitation, we propose three differ-

ent approaches. On the one hand, using the measured x
value, we estimate the hidden variable either by comput-
ing the linear combination z = yω0− rx of x and y using
a denoising procedure, or by an optimization technique.
On the other hand, we directly evaluate the correlations
involving z which are sufficient to test the validity of the
GFDT. Using the variable z, we write the dynamical sys-
tem as

d

dt

(

x
z

)

=

(

0 1
−(r2 + ω2

0) −2r

)(

x
z

)

+

(

fx + ηx
fz + ηz

)

≡ −R

(

x
z

)

+

(

fx + ηx
fz + ηz

)

, (7)

where the noise and force in the z equation are ηz =
−rηx + ω0ηy and fz = −rfx.
In the absence of external force, dx

dt = z + ηx. We
can therefore estimate the value of z by filtering the time
series of the speed data, eliminating the high frequency
noise: at each point of the trajectory, the value of the
speed is calculated by averaging over the N preceding
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points, where N is such that the averaging effectively fil-
ters signals faster than 60Hz. This frequency is several
times higher than the spontaneous oscillation frequency
of the bundle ν0 ≃ 6Hz and could be varied without much
effect on the final results as long as it is high enough
(≥ 30 Hz) to preserve the waveform of hair-bundle oscil-
lation and low enough (≤ 90 Hz) to get rid of most of
the high-frequency noise. Denoising implicitly relies on
the assumption that the velocity ẋ can be split into a
variable z with exponentially decaying correlations plus
white noise. As can be checked at very low frequencies,
it only gives an approximation ze of the actual variable
z.

Once the variables x and ze are obtained, we apply the
GFDT to the system described by equation (7), which is
also Markovian. The correlation matrix for the x and z
variables in Fourier space is then approximated by

C̃~x~x(ω) ≃

(

〈x̃(ω)x̃∗(ω)〉 〈x̃(ω)z̃∗e (ω)〉
〈z̃eω)x̃∗(ω)〉 〈z̃e(ω)z̃∗e(ω)〉

)

, (8)

where the star denotes a complex conjugate.

We compute x̃(ω) and z̃e(ω) using the FFT algorithm
on the experimental data. The matrix R is obtained
from the values of r and ω0 and then used to perform the
change of variables

~X ≡

(

X
Ze

)

= [R−1]TΣ−1

(

x
ze

)

(9)

where Σ =

(

〈x2〉ss 〈xze〉ss
〈zex〉ss 〈z2e〉ss

)

. In the new variables,

the power spectrum reads

C̃ ~X ~X
(ω) = [R−1]TΣ−1C̃~x~x(ω)[Σ

−1]TR−1 (10)

and the response function

χ̃ ~X ~X
(ω) = [R−1]TΣ−1χ̃~x~x(ω) = [R−1]TΣ−1[R+ iω]−1.

(11)

The GFDT [10] then imposes a relation between fluctu-
ations and response given by Eq.3. In particular, for the
first diagonal element, we expect the fluctuation-response
ratio:

θ =
ωC̃XX(ω)

2χ̃′′

XX(ω)
= 1. (12)

In Fig. 2 (black circles), we plot the fluctuation-
response ratio θ evaluated from the experimental data.
We find that θ wiggles about the value 1, within a range
that stretches from 0.5 to 2. This is a remarkable be-
havior considering that, when fluctuations and response
were evaluated with the hair-bundle position x as the
relevant degree of freedom, the fluctuation-response ra-
tio changed sign and diverged near the characteristic fre-
quency of spontaneous oscillations (Fig. 1D). Although
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FIG. 2. The fluctuation-response ratio θ vs. stimulation
frequency ν using the three different methods explained in the
text. (black) ◦: denoising of z, (red) �: estimation of C̃~x~z(ω),
(blue) *: y estimation by maximization of probability. Note
that the power spectra were smoothed out to eliminate some
of the noise by a moving average algorithm. Lines are just
guides for the eye.

the GFDT imposes that θ be precisely equal to 1, nu-
merical simulations shown below demonstrate that the
experimental data are compatible with the GFDT.
We then used an inference method to estimate the vari-

able y from the measured trajectories. The assumption
of Gaussian white noises for ηx and ηy in Eq.(4) implies
that the combinations ẋ+ rx−ω0y and ẏ+ω0y+ rx are
Gaussian variables for spontaneous oscillations (fx = 0).
Discretizing the evolution equation (4) in N time steps
∆t, we find

xn+1 − xn +∆t(rxn − ω0yn) ∼ N (0, σηx
∆t)

yn+1 − yn +∆t(rxn − ω0yn) ∼ N (0, σηx
∆t) (13)

where N (µ, σ2) denotes the normal distribution of av-
erage µ and variance σ2. The probability ρ({xn, yn})
of observing a discrete full trajectory {xn, yn}n=N

n=1 is
then a product of 2N Gaussian distributions. Maxi-
mizing this probability with respect to the yn variables
(∂ρ/∂yn = 0, ∀n) gives a linear system of equations for
the most likely trajectory {yn} in terms of the measured
variable {xn} and the parameters r, ω0, σηx

, σηy
. We use

this estimated trajectory to perform the change of vari-
ables (Eq. (5)) required for the GFDT. The resulting θ
is depicted in Fig. 2.
Our third approach to test the GFDT avoids any y

estimation by directly calculating the correlation matrix
from the measured data. Only the first element of the
matrix C̃xx(ω) can be directly obtained from the exper-
imental data. To estimate the elements involving z, we
proceed as follows. Fourier transforming (7) for fx = 0
we get z̃(ω) = −iωx̃(ω)−η̃x(ω), which we use to calculate
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the cross-correlation

C̃xz(ω) = iωC̃xx(ω)− 〈x̃(ω)η̃x(−ω)〉. (14)

The second term in (14) is evaluated by means of the
evolution equation (7) giving

C̃xz(ω) = iωC̃xx(ω)− σηx

r − iω

r2 + ω2
0 − ω2 − 2riω

(15)

where the only unknown parameter is the noise intensity
σηx

. However, from (7) one can show that σηx
= −2Σ12

Following the same lines both C̃zx(ω) and C̃zz(ω) are
expressed in terms of C̃xx(ω), r, ω0 and Σ12. Finally, we
estimate Σ from the data by noting that Σ11 = 〈x(0)2〉 =

Cxx(t = 0), Σ12 = 〈x(0)z(0)〉 = dCxx(t)
dt

∣

∣

∣

t=0
or alterna-

tively by fitting the power spectrum expressed as a func-
tion of Σ11 and Σ12, noting that Σ22 = (r2 + ω2

0)Σ11.
Once Σ, R and C̃~x~x(ω) are known we insert them into

equation (10) and compute the fluctuation-response ratio
θ as in Eq.(12) (Fig. 2).
In order to asses the impact of the three different es-

timation methods, we performed numerical simulations
with parameters similar to those of the experiment and
repeated the procedure using both our estimates and the
actual y value, which is available in simulations. The
simulations were performed using the Euler-Mayurama
method [17] to solve equation (4). As expected, results
in Fig. 3 show that the agreement with the theorem is
best when the actual variable y is used. However, even
then, we still observe deviations of θ by about 25% due to
a lack of averaging. In addition, both the moving-average
procedure and the inference method imply a dependence
on past history, and thus introduce some degree of non-
Markovianity that might explain further departure from
the GFDT. Because experiments and simulations show
similar deviations of the fluctuation-response ratio from
1, we consider that it is as close to 1 as possible, in view
of the inherent limitations associated with the methods
that we used to estimate this ratio.
In conclusion, we showed that the generalized

fluctuation-dissipation theorem [10] applies to oscillatory
hair-cell bundles. Although the hair bundle provides a
compelling example of a complex biological system that
operates away from thermal equilibrium, its linear me-
chanical response is related to steady-state fluctuations
with the appropriate choice of a conjugate variable to the
external force. This relation holds for frequencies close
to the frequency of spontaneous oscillation, at which the
hair bundle can be described by a two-dimensional dy-
namical system operating near a Hopf bifurcation. This
property affords a means to estimate the hidden variable
that underlies the activity of the hair bundle. Because
the hair bundle must satisfy the hypotheses of the GFDT,
our results support the description of the hair bundle as
a single noisy oscillator governed by Markovian dynam-
ics and therefore go against a viscoelasticity of the hair
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FIG. 3. θ ratio computed after the change of variables pre-
scribed by the GFDT, from simulated data. Computed using
(black) ◦: x̃ and z̃e, (blue) ∗: x̃ and ỹ estimated by proba-

bility maximization, (red) �: direct C̃~x~y(ω) estimation and
(green) △: x̃ and actual (no filtering nor estimation) ỹ. Sim-
ulations where done with r = 10.2s−1, ω0 = 36.5rad/s and
σx = 10000nm2/s and σy = 10000nm2/s. Lines are just
guides for the eye.

bundle in the range of frequencies that we studied. At
higher frequencies, however, the hair bundle could be-
come non-Markovian, due mainly to memory resulting
from visco-elasticity [18] or from colored fluctuations in
the opening and closing of the transduction channels [15].
Channel clatter is only expected at frequencies above ∼ 1
kHz [15], where a departure from the GFDT could be ob-
served.

Our work relates to the experiments of Ref. [19] which
test the same generalized fluctuation-dissipation theorem
for an experimental system consisting of a Brownian par-
ticle in a toroidal optical trap. In contrast to our study
where we have to assume a Hopf bifurcation dynamics
with noise, in the optical trap experiment the evolution
equation is known, as the potential felt by the particle is
also applied using the trap.

We have provided three methods for the estimation of
correlations involving the non-measured degree of free-
dom. Both the denoising and the inference methods can
be directly applied to other noisy systems. It would be
however desirable to perform experiments where, in ad-
dition to the displacement, the dynamics of the active
term can be controlled and measured. A good candidate
for an additional measurement is the ionic current that
flows through the bundle, which is known to influence ei-
ther the myosin motors that generate the force inside the
bundle or the transduction channel to which the motors
are attached [20].
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