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Abstract

In non-convex settings, it is established that the behavior of gradient-based algorithms is different in the vicinity
of local structures of the objective function such as strict and non-strict saddle points, local and global minima and
maxima. It is therefore crucial to describe the landscape of non-convex problems. That is, to describe as well as
possible the set of points of each of the above categories.

In this work, we study the landscape of the empirical risk associated with deep linear neural networks and the
square loss. It is known that, under weak assumptions, this objective function has no spurious local minima and no
local maxima. We go a step further and characterize, among all critical points, which are global minimizers, strict
saddle points, and non-strict saddle points. We enumerate all the associated critical values. The characterization
is simple, involves conditions on the ranks of partial matrix products, and sheds some light on global convergence
or implicit regularization that have been proved or observed when optimizing a linear neural network. In passing,
we also provide an explicit parameterization of the set of all global minimizers and exhibit large sets of strict and
non-strict saddle points.

1 Introduction

Deep learning has been widely used recently due to its good empirical performances in image recognition, natural
language processing, speech recognition, among other fields (see, e.g., [27]). However, there is still a gap between
theory and practice as we still do not fully understand how these artificial neural networks work and why they yield
such good performances. One of the aspects that are partially missing in the picture is why gradient-based algorithms
can achieve low training error despite a highly non-convex function. Another partially open question is why they
generalize well to unseen data despite many more parameters than the number of points in the training set, and how
implicit regularization can help with that.

Several research directions have been recently explored to tentatively answer these questions, especially in the
overparameterized regime. These include gradient flow dynamics in Wasserstein space (e.g., [[11,132]), double-descent
and benign overfitting in linear regression or other simple models (e.g., [7, 21} |6]), just to name a few. A related
research direction is the study of the landscape of the empirical risk and the characterization of the local structures
around critical points (e.g., [12, 25} 20, [19]). This is the problem addressed in this paper, in the case of deep linear
neural networks.

Before summarizing the related literature and our main contributions, we first recall definitions that will be key
throughout the paper.



Figure 1: Example of a landscape with a plateau Figure 2: Example of a landscape with a strict saddle
(non-strict saddle point) and a global minimizer. point at (0,0).

1.1 Reminder : minimizers, critical points of order 1 or 2, strict and non-strict saddle points

Let us recall the definitions of local structures of the landscape of the empirical risk, which are important from the
statistical and optimization points of view.

For w € R™, denote by w — L(w) the function we want to minimize. Assume that w — L(w) is C?, and
denote by VL and V2L its gradient and its Hessianﬂ We also write A = 0 to say that a matrix A € R™*" is positive
semi-definite. Recall the following four definitions, which are nested:

e w* is a global minimizer if and only if Vw € R", L(w*) < L(w).

e w* is a local minimizer if and only if there exists a neighbourhood O C R™ of w* such that Vw € O, L(w™*) <
L(w).

e w* is a second-order critical point if and only if VL(w*) = 0 and V2L(w*) = 0. If, on the contrary, the
Hessian has a negative eigenvalue, we say that the point has a negative curvature.

e w* is a first-order critical point if and only if VL(w*) = 0.

We can also distinguish a specific type of first-order critical point: saddle points. As discussed below, they can
be second-order critical points or not.

e w* is a saddle point if and only if it is a first-order critical point which is neither a local minimizer, nor a local
maximizer.

— A saddle point w* is strict if and only if it is not a second-order critical point (i.e., the Hessian V2L (w*)
has a negative eigenvalue).

— A saddle point w* is non-strict if and only if it is a second-order critical point. In that case, the Hessian
V2L (w*) is positive semi-definite and has at least an eigenvalue equal to zero. Typically, in the direction
of the corresponding eigenvectors a higher-order term makes it a saddle point (e.g., L(w) = Z?Zl w3 at

w* =0). Figure gives an example.

1.2 On the importance of a landscape analysis at order 2

When the function we are trying to minimize is smooth, convex, and has a global minimizer, the gradient descent
algorithm with a well-chosen learning rate converges to a first-order critical point, and this critical point is a global
minimizer [34].

When optimizing non-convex functions, in the neural network community, current practice is still to use gradient-
based algorithms to locally optimize the function at hand. It has been known for decades now that under some mild

'When the input parameter is not a vector, but, e.g., a sequence of matrices, the same definitions hold, where the gradient and the Hessian are
computed with respect to the vectorized version of the input parameter.



conditions it converges to a first-order critical point, in the sense that the iterates produced by the algorithm can reach
an arbitrary small gradient after a finite (polynomial) number of iterations [34]. Adding smoothness conditions, recent
works have shown that first-order converge to a second-order critical poinﬂ [23L 1241 29, [13]], therefore escaping strict
saddle points. However, these algorithms can converge to a non-strict saddle point since it does not have a negative
curvature. Characterizing which saddle points are strict and which are non-strict can thus be key to understand gradient
descent dynamics.

In general, searching for a global optimum of a non-convex function is an NP-complete problem [33]]; this is in
particular the case for a simple 3-node neural network [8]. However, the study of the loss landscape has revealed
that some non-convex optimization problems (beyond neural networks) are tractable: phase retrieval [45], dictionary
learning [44], tensor decomposition [[16] and others [51]. In fact, the common landscape property of these problems
is that every critical point is either a global minimizer or has a negative curvature. In other words, every second-order
critical point is a global minimizer. For such problems, there are first-order algorithms which provably converge to
global minimizers.

The general understanding of the landscape is not as good for neural networks. A regime which has been widely
studied is the overparameterized regime (see [47] and [46] for a review), where it has been proved under some as-
sumptions that for a wide non-linear fully connected neural network almost all local minima are global minima [36]],
or that there are no spurious valleys [35]].

Many recent works have focused on linear neural networks, despite the fact that they are rarely used to solve real-
world applications. They indeed compute a linear map between the input and output spaces. However, the empirical
risk of linear networks is highly non-convex and shares similar training properties to that of practical non-linear neural
networks. In fact, as shown by [41], they exhibit nonlinear learning phenomena similar to those seen in simulations
of nonlinear networks, including long plateaus followed by rapid transitions to lower error solutions. Several works
followed (e.g., [17,18]) with formal proofs in several special cases.

For linear networks with arbitrary depth, it has been proved under mild conditions on the data that every local
minimizer is a global minimizer and that there exists no local maximizer [25}49]. For 1-hidden layer linear networks,
an additional proved fact is that every saddle point is strict, therefore leading to the property that every second-order
critical point is a global minimizer [53, 25]]. Unfortunately, this is not the case for deep linear networks with two
hidden layers or more. For these neural networks, it has been noted by [25] that there exist non-strict saddle points
(e.g., when all the weight matrices are equal to 0). Therefore, first-order algorithms may converge to second-order
critical points that are not global minimizers—even if this provably does not happen for wide linear networks under
some assumptions on the initialization (see, e.g., [22] and other references mentioned in Section @]) A tighter
analysis of the empirical risk landscape at order 2 could help better understand convergence properties of first-order
algorithms, and also give some hints on their finite-time dynamics.

In this paper, we make a further step in the landscape analysis by completely characterizing the square loss land-
scape of deep linear networks at order 2. That is, we derive a simple necessary and sufficient condition for a first-order
critical point of the empirical risk to be either a global minimizer, a strict saddle point or a non-strict saddle point. In
Sections [[.4] and [3.4] we will detail our contributions and how they generalize earlier results and shed some light on
global convergence or implicit regularization phenomena. We start below by describing related works in more details.

1.3 Related Works

The study of linear neural networks can be divided into two categories. The first line of research is about the geometric
landscape of the empirical risk for linear neural networks, while the second line is about the trajectory of gradient
descent dynamics in linear networks. Our work lies within the first category.

Geometric landscape for linear networks: This first started with [4]. They proved that for a 1-hidden layer linear
network, under some conditions on the data matrices, and for the square loss, every local minimizer is a global
minimizer. [25] later generalized and extended this result to deep linear neural networks under mild conditions and
again proved that every local minimizer is a global minimizer (this part has been proved later by [30] with weaker

2More precisely, it is typically shown that such algorithms can be stopped in polynomial time and output a point with arbitrarily small gradient
and nearly-positive semi-definite Hessian.



assumptions on the data and simpler proofs). This author also proved that every other critical point is a saddle point,
that for a 1-hidden layer linear network all saddle points are strict, while for deeper networks, there exist non-strict
saddle points ([25] exhibits a space of non-strict saddle points where all but one weight matrix are equal to zero). [49]]
gave a condition for a critical point to be either a global minimizer or a saddle point. [52] removed all assumptions
on the data and gave analytical forms for the critical points of the empirical risk. In the characterization, the weight
matrices are defined recursively and can be found by solving some equations; in particular they gave a characterization
of global minimizers. [37]] showed using assumptions only on the width of the layers that every local minimizer is a
global minimizer. They prove that this assumption on the architecture is sharp in the sense that without it, and if we do
not make assumptions on the data matrices as in previous works, then there exists a poor local minimizer. [53|] used
assumptions only on the input data matrix, to prove that for a 1-hidden layer linear network, every local minimizer is
a global minimizer and every other critical point has a negative curvature. [26] proved for different general convex
losses that, under assumptions on the architecture, all local minima are global. Finally, [48] and [31] used results from
algebraic geometry to give other properties about critical points of linear networks.

Most of the previous works focus on local minimizers. To the best of our knowledge, none of these works
provide simple necessary and sufficient conditions for a saddle point to be strict or not In particular, in
the case of more than two hidden layers, only very specific examples of non-strict saddle points were described.
Furthermore, global minimizers were characterized but not explicitely parameterized. See Section[3.4]for more details.

Gradient dynamics and implicit regularization for linear networks: In this line of research, authors study the
dynamics of first-order algorithms for linear networks, which they sometimes combine with results about the loss
landscape. [1]] proved that gradient descent converges to a global minimum at a linear rate, under assumptions on
the width of the layers, the initialization weights, and the loss at initialization. Other works also proved similar
results with different assumptions [15} 5. However, as noted by [43]], these works consider strong assumptions on
the loss at initialization. Indeed, [43] gave a negative result on a deep linear network of width 1, by proving that for
standard initializations, gradient descent can take exponential time to converge to the global minimizer. The author
also provided empirical examples of the same phenomenon happening for larger widths. On the other hand, [14]
proved that if the layers are wide enough, convergence to a global minimizer can be achieved in polynomial time using
a classical data-independent random Gaussian initialization (known as Xavier initialization). The required minimum
width of the network depends on the norm of a global minimum of the linear regression problem. As we will see in
Section [3.4]this global convergence result can be re-interpreted in terms of the loss landscape at order 2.

On a similar line of research, [10] proved using assumptions on the architecture of the network and the data
matrices that gradient flow almost surely converges to a global minimizer for a 1-hidden layer linear network. Later,
[3] proved the same result under weaker assumptions on the data matrices. They also proved that, in deep linear
networks, the gradient flow almost surely converges to global minimizers of the rank-constrained linear regression
problem.

Another aspect studied in linear networks is implicit regularization. [2]] showed that, for matrix recovery, deep
linear networks converge to low-rank solutions even when all the hidden layers are of size larger than or equal to the
input and output sizes. [40] proved that, in deep matrix factorization, implicit regularization may not be explainable
by norms, as all norms may go to infinity. They rather suggest seeing implicit regularization as a minimization of
the rank. [42] and [17] proved with different assumptions on the data and a vanishing initialization that both gradient
flow and discrete gradient dynamics sequentially learn solutions of a rank-constrained linear regression problem with
a gradually increasing rank. Finally, [[18] proved for a toy model that this incremental learning happens more often
(with larger initialization), when the depth of the network increases. As we will see in Section [3.4] these results make
sense in the light of the landscape at order 2.

1.4 Summary of our contributions

Our contributions on the landscape for deep linear networks (square loss) can be summarized as follows. These results
are compared in details with previous works in Section [3.4]

3By “simple”, we mean an easier-to-exploit condition than just looking at the smallest eigenvalue of the Hessian.



e We characterize the square loss landscape of deep linear networks at order 2. That is, under some classical and
weak assumptions on the data, we characterize, among all first-order critical points, which are global minimizers,
strict saddle points, and non-strict saddle points. The characterization is simple and involves conditions on the
ranks of partial matrix products. To the best of our knowledge, this is the first work that gives a simple necessary
and sufficient condition for a saddle point to be strict or non-strict.

e In particular, under the same assumptions, we immediately recover the fact that all saddle points are strict for
one-hidden layer linear networks. More importantly, for deeper networks, after enumerating all the associated
critical values, we exhibit large sets of strict and non-strict saddle points. We show that the non-strict saddle
points are associated with r;,, ... plateau values for the empirical risk (where r,,,,, is the size of the thinnest layer
of the network). Typically these values are values of the empirical risk that first-order algorithms can take in the
long run or for some time before attaining a global minimizer.

e We prove that every second-order critical point of the empirical risk which is not a global minimizer leads to a
global minimizer of a rank-constrained linear regression problemE] The converse is not true: there exist strict
saddle points that lead to a global minimizer of a rank-constrained linear regression problem. These properties
shed some light on the (long or short-term) implicit regularization that may be induced by algorithms which
converge to or at least spend some time around second-order critical points.

e As a by-product of our analysis, we give a necessary condition for being a first-order critical point under the
form of an explicit parameterization of the weight matrices.

e We also provide an explicit parameterization of all critical points with maximum rank. In particular, we derive
a simple and explicit parameterization of the set of all global minimizers.

1.5 Outline of the paper

The paper is organized as follows: Section 2 contains the setting of the problem, Section 3 the main results, Section
4 details the structure of the proof of the main theorem, and Section 5 a conclusion. The detailed proofs are deferred
to the appendix, which is organized as follows: Section [A] contains additional notation and general useful lemmas
and properties, Section [B] contains proofs of propositions and lemmas related to first-order critical points, Section [C]
contains proofs of the parameterization of first-order critical point and global minimizers. Sections[D}[E] and[F]contain
proofs corresponding to each subsection of Section 4]

2 Setting

In this section we formally define our setting (deep linear networks with square loss), set some notation, and describe
our assumptions on the data.

Model and notation: We consider a fully-connected linear neural network of depth H > 2. The neu-
ral network consists of H layers and maps any input z € R% to an output Wy --- Wiz € R%, where

Wy € Rbvxda—1 1y, € R¥nxdn-1 T/} € R4*% are the matrices associated with the H layers (dJ, is the
width of layer h). We set dg = dy and dy = d,. The input layer is of size d, and the output layer is of size d,,. We
also define the smallest width of the layers as 7,4, = min(dgy, ..., dO)E] We denote the parameters of the model by

W= (Wg,...,W).

4While preparing our work, we became aware that this implication has also been proved in the recent work [3| Proposition 35]. Our analysis
additionally shows that the converse is not true.
5The notation r'y,qq comes from the fact that it is the maximum possible rank of the product Wy - - - Wy.



Let (i,9i);—; ,, With 2; € R% and y; € R%, be the training set that we gather column-wise in matrices

X € R%=*m and Y € R%*™_ We consider the empirical risk L defined by:

LOW) =Y [WyWyy - WaWaa; — yill = [Wi - WiX = Y2,

i=1

where ||.||2 is the Euclidean norm and ||.|| denotes the Frobenius norm of a matrix.
We set:

m

m
ZxxizmiI?:XXTERdIXdI R Eyyizyiy?:YYTGRddey,
=1 =1

m m
ZXY:inyiT:XYTERd”Xdy , Eszzyi$?:YXT€Rddem7
=1 i=1
where, AT denotes the transpose of A.

Assumption (H). Throughout the article, we assume that d,, < d, < m, that ¥ x x is invertible, and that X xy is of
full rank d,,. We define »i/2 — ZYXE)_(lxX € RWX™ gnd ¥ = El/Q(ZI/Z)T = EYXE;(leXy € R%wxdy  We
assume that the singular values of ©'/? are all distinct (i.e., that ¥ has d, distinct eigenvalues).

These assumptions are exactly the ones considered in [25]. Note that we do not make any assumption on the width
of the hidden layers. As noted by [4], full rank matrices are dense, and deficient-rank matrices are of measure 0. In
general, m > d, > d,, which is the classical learning regime, is essentially sufficient to have the other assumptions
verified, due to the randomness of the data.

Let

12 = pyAvT (1)

be a singular value decomposition of ¥1/2, where U € R%*% and V' € R™*™ are orthogonal, and the diagonal
elements of A € R%*™ are in decreasing order.

Since ¥ = XV2(EY2)T| % can be diagonalized as ¥ = UAU” where A = diag(\1,...,Aq,), with
A1 > -+ > Ag, = 0. Moreover, a consequence of Assumption (H) is that 3 is positive definite (see Lemma
Eq); therefore, we have Ay, > 0.

Further notation: For any integers a < b, we denote by [a, b] the set of integers between a and b (including a and b).
If a > b, [a, b] is the empty set (e.g. [1,0] = 0).
IfS=0,then) ¢\ = 0.
Given a matrix A € RP*9, col(A), Ker(A) and rk(A), denote respectively the column space, the null space and the
rank of A.
For a matrix A € RP*9, we write A; € R? for the i-th column of A and A; € RP*I7| for the sub-matrix obtained by
concatenating the column vectors A;, for i € J. The identity matrix of size p will be denoted by I,,.
When we write W, - -- Wy, for h > k', the expression denotes the product of all W, from j = h to j = h'. For
notational compactness, we allow two additional cases: when h = b/, the expression simply denotes W},, and when
h' = h + 1, it stands for the identity matrix I, € R *dn,

Considering submatrices of compatible sizes, we define a block matrix by one of the three following ways:

* [A, B] is the horizontal concatenation of the matrices A and B;

. [[CH is the vertical concatenation of G and H;

C D |. .
[E F]lsaZXZblockmatrlx.



By convention, in block matrices, some blocks can have 0 lines or O columns; this means that such blocks do not
exist. However if we have a product between two matrices that have 0 as the common size (the number of columns
for the first matrix, of the lines for the second matrix), then their product equals a zero matrix, of the right size. More
formally, if A € R™*? and B € R"*P, then, by convention, AB = 0,, p»- Note that the product of block matrices is
g = AC + BD is still true if B € R**% and D € RO*P),

Further notation that are used in the appendix can be found at the beginning of Appendix

compatible with this convention (e.g., [A, B]

3 Main contributions

In this section, we summarize the main results of this paper. We start by stating a necessary condition for being a
first-order critical point (Proposition [I)), to which we give a light reciprocal (Proposition [2). The second result is a
classification of all the critical points of L (Theorem|[I)), which distinguishes between global minimizers, strict saddle
points and non-strict saddle points. The third main result, also stated in Theorem [I] is about implicit regularization
induced at non-strict saddle points and some strict saddle points. Finally, the fourth result is a necessary parameteri-
zation for critical points (Proposition[5) and an explicit parameterization of all global minimizers (Proposition[7). All
the proofs are in Section ] or in the appendix.

3.1 First-order critical points: preliminary results

We present a proposition which restates in our framework a necessary condition for being a first-order critical point
already present in [4] and most of the papers in this line of research. This proposition will serve later to distinguish
between different types of critical points.

Proposition 1 (Global map and critical values). Assume that Assumption H in Section@]hold. LetW= (Wg,...,W1)
be a first-order critical point of L and set v = rk(Wpg - - W1) € [0, rmaz]-
There exists a unique subset S C [1, d,] of size r such that:

Wy - Wy =UsUL Sy x5y,

where U was defined in (I). We say that the critical point W is associated with S. The associated critical value is

L(W) = tr(Syy) = Y Aie

€S

The proof can be found in Appendix The result is true even for » = 0, using the conventions from Section
(in this case, S = ().
Note that >y x E)_(lx corresponds to the solution of the classical linear regression problem. Therefore, we can see
that for every critical point W of L, the product Wy - - - W is the projection of this least-squares estimator onto a
subspace generated by a subset of the eigenvectors of ¥. Note that tr(Xyy) = ||Y]|2.

The following proposition is a light reciprocal to Proposition[T] by showing that all subsets S and the corresponding
critical values tr(Xyy) — ) ;o A; are associated to an existing critical point. In particular the largest critical value is
reached for S = () and the smallest critical value for S = [1, 7z ]-

Proposition 2. Assume that Assumption H in Section 2| hold. For any S C [1,d,] of size r € [0, 7maz], there exists
a first-order critical point W associated with S.

The proof of Proposition [2]is deferred to Appendix



3.2 Classification of the critical points of L

The main result of this section is Theorem 1 below, where we classify all first-order critical points into global mini-
mizers, strict saddle points and non-strict saddle points. To state Theorem [I]we first need to introduce some definitions.

Let W = (Wy, ..., W) be a first-order critical point of L. Below, we introduce the notions of complementary
block, tightened pivot and tightened critical point that are key to the main results. Consider the sequence of H
matrices Wy, ..., Ws, W and connect them by plugging ¥ xy between W; and Wy so as to form a cycle as on
Figure |3| Note that the dimensions of these matrices allow us to consider any product of consecutive matrices on this
cycle, e.g., WygWg_1Wi_o or WoW1X xy Wy (the matrix X xy between W; and Wy is key here). Such products
of consecutive matrices in the cycle are what we call ”blocks”. In the sequel, we call ”pivot” any pair of indices
(i,7) € [1, H], with ¢ > j, and we consider blocks around a pivot (4, j), as defined formally below.

Definition 1 (Complementary blocks). Let W = (Wy, ..., W) be a first-order critical point of L.
For any pivot (i, j) € [1, H], (i > j), we define the two complementary blocks to (i, j) as:

Wj—l"'leXYWH"'Wi+1 and Wi—l"'Wj+1-

The general case is represented on Figure
Note that, when i = j + 1, the second complementary block is W;W;_ 1, which using the convention in Section E]is
Iy,. Similarly, if i = H and j = 1, the first complementary block is ¥ xy . First we state a proposition about the ranks
of the complementary blocks which is key to our analysis.

Proposition 3. Assume that Assumption H in Section|2|hold. Let W = (Wy, ..., W1) be a first-order critical point
of L andr = tk(Wy - - - Wh). For any pivot (i, j), the rank of each of the two complementary blocks is larger than or
equal to .

The proof is in Appendix The boundary case when at least one of the two ranks is equal to r plays a special
role in the loss landscape at order 2.

Definition 2 (Tightened pivot). Let W = (Wg,...,W1) be a first-order critical point of L and let v =
We say that a pivot (i, j) is tightened if and only if at least one of the two complementary blocks to (i, j) is of rank r.

Definition 3 (Tightened critical point). Let W = (W, ..., W) be a first-order critical point of L. We say that W is
tightened if and only if every pivot (i, j) is tightened.

Note that a sufficient condition for a first-order critical point W to be tightened is the existence of three weight
matrices W, , Wp,, and Wy, of rank r = tk(Wy - - - W7).
Note that when H = 2, there is no tightened critical point with r < 7,4, because the pivot (2, 1) is not tightened
(both complementary blocks ¥ xy and I, are of full rank, which is larger than or equal to 7,4, = min{d,, di1, d;}).

We can now state our main theorem, which characterizes the nature of any first-order critical point W in terms
of the associated index set S and of tightening conditions. The corresponding classification, which is illustrated on
Figure ] complements the result of [25] stating that every critical point is a global minimizer or a saddle point. We
recall that 7,4, = min(dp, ..., do) is the width of the thinnest layer, and that U corresponds to the eigenvectors of

Y (see (I)).

Theorem 1 (Classification of the critical points of L). Assume that Assumption H in Section[2|hold.
Let W = (Wy,...,Wi) be a first-order critical point of L and set r = tk(Wg -+ W1) < Typaq- Following
Proposition[I] we consider the index set S associated with W.

e Whenr = rpaz-”

- if S = [1,"maz], then W is a global minimizer.

— if § # [1,"maz], then W is not a second-order critical point (W is a strict saddle point).



First complementary block: W;_1--- W1 XxyWg -+ Wity

Second complementary block: W;_1 - -- W4

Figure 3: Complementary blocks to the pivot (,5) .

e Whenr < rpmaz: Wis a saddle point.

- if S # [1,7], then W is not a second-order critical point (W is a strict saddle point).

— ifS = [1,7]: we have Wy --- Wy = UsUE Sy x5 € arg min pegay xde e py<y |[BX — Y%
* If W is not tightened, then W is not a second-order critical point (W is a strict saddle point).
« if Wis tightened, then W is a second-order critical point (W is a non-strict saddle point).

The proof of Theoremis given in Section Note that the saddle points corresponding to S = [[1, r] might be a
source of implicit regularization since the global map Wy - - - W is a global minimizer of a rank-constrained linear
regression problem. See also the discussion in Section [3.4]

The next proposition shows the existence of both tightened and non-tightened critical points for H > 3 (there are
no tightened critical points when H = 2 and r < 7,,4,). Combining this result with Proposition [2] indicates that all
conclusions of Theorem [l can be observed.

Proposition 4. Assume that Assumption H in Section@hold. For H > 3, forevery S = [L,r] with0 < r < "maa,
there exist both a tightened critical point and a non-tightened critical point associated with S.

The proof is postponed to Appendix [B.8] The proof is constructive and exhibits large sets of tightened and non-
tightened critical points.
We can draw additional consequences from Theorem ] and Propositions [2] and 4

e For H = 2, for any r < 7p4z, there exist strict saddle points satisfying Wy ---W; €
; 2
arg Min pepa, xde i py<r |[BX — Y|

e For H > 3, for any » < 7,44, there exist both strict and non-strict saddle points satisfying Wy --- W, €
. 2
arg Min pepay xde i gy<r |IRX — Y|

e In the special case 7 = 0, we have S = () and ) = [1,7] by convention (see Section2), so that S = [1,7]. In
this case, Theorem [I]and Proposition ] together imply that their exist both strict and non-strict saddle points W
such that Wy --- W7 = 0 when H > 3.

3.3 Parameterization of first-order critical points and global minimizers

‘We now turn back to first-order critical points, and state all new related results. In our analysis, these results precede
the proof of Theorem [I| The presentation has been reversed in Section [3| to highlight the main contribution of the
article.

The next proposition provides an explicit parameterization of first-order critical points. Note that this is only a neces-
sary condition.



'S C [1, dy] of size r such that Wz - - - Wy = USUEZYX Z;lx Also, L(W) = tr(Zyy) — D ics N

r = Tmax T < Tmazx

We look at S W is a saddle point

S = [[l "’man:ﬂ

" I —_ : s
W is a global minimizer Wi - W1 = argming _pd, xds Fk(R)<r IRX — Y|

W is a non-strict saddle point

W is a strict saddle point

Figure 4: Classification of the critical points of L.

Proposition 5. Assume that Assumption H in Section El hold. Let W = (Wy,...,W1) be a first-order critical
point of L associated with S (cf Proposition , and let Q@ = [1,d,] \ S. Then, there exist invertible matrices
Dy_q € Réu—ixdu—1 D e RUXd gnd matrices Zy € R—)>(du-1-1) 7 ¢ Rl=r)xde gpnq 7, €
R =m)x(dn-1=7) for h € [2, H — 1] such that if we denote Wy = WyDy_, Wy = D;{*W, and W), =
D,:1WhDh,1,f0r all h € [2, H — 1], then we have

Wy = [Us, Ug Zu) )
W = {Ug EYZXzXﬂ 3)
1
—~ I, O
Wh:|:0 Zh:l Vhe[2,H —1] @)
Wy - Wa = [Us,0]. )

The proposition is proved in Appendix [C.1} and will be key to prove the last statement of Theorem ]
Next, we give a sufficient condition for any W satisfying (Z), (3) and (@), to be a first-order critical point of L.

Proposition 6. Assume that Assumption H in Section[2|hold. Let S C [1,dy] of size r € [0, "maz] and Q = [1,d,] \
S. Let Dy_q € Rén—1xdu—1 D e RUXd1 pe invertible matrices and let Zy € R(Av—m)x(dm-1=7) 7 ¢
R =% qnd 7, € RE@=")x(dn1=7) for b € [2, H — 1]. Let the parameter of the network W = (W, ..., W)
be defined as follows:

Wy = [Us,UgZu| Dy,

_ UsSyxTxx
W, = D, [ 7,
_ I, 0 1
Wy = Dy, 0z, Dh—l Vh € IIQ,H — 1]] .

If 1 = Tpag or if there exist hw # ho such that Zyp, = 0 and Zp, = 0, then, W is a first-order critical point of L
associated with S.
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The proof of Proposition[6]is in Appendix [B.3]
Note that, combining Propositions [5] and [6] we obtain an explicit parameterization of all critical points W with a
global map Wy - - - W of maximum rank r;,,,. In particular, it yields the next corollary, which provides an explicit
parameterization of all the global minimizers of L.

Proposition 7 (Parameterization of all global minimizers). Assume that Assumption H in Section [2| hold. Set
Smaz - H]-a 7?max]] and Qmax = [[]-7 dyﬂ \Sm.am = [[T'mam + ]-7 dy]]

Then, W = (Wy,...,W1) is a global minimizer of L if and only if there exist invertible matrices Dy _1 €
RéH -1 XdH—l,. ...D; € R ><dly and matrices Zy € R(dy—T‘mam)X(dH—1—7‘maz)’ Zn € R(@rh—Tmaz) X (dh—1—Tmaz)
forh € [2,H — 1], and Z, € R1—"maz)Xde sych that:

Wy = [Us,...,Uo,... Zu) D5,

o [T
1
I7'7naz' 0 -1
Wu=Di| g o |Dit Vhe[2H -1,

The proof is in Appendix[C.2} See in particular a remark in the same Appendix for a comment on how to interpret
the above formulas precisely (some blocks Z}, have 0 lines or columns).

3.4 Comparison with previous works

Next we further detail our contributions in light of earlier works.

Parameterization of global minimizers. To the best of our knowledge, Proposition [/|is the first explicit parame-
terization of the set of all global minimizers for deep linear networks and the square loss. For H > 2, it had been
previously noted by [49] that a critical point W is a global minimizer if and only if tk(Wg --- W1) = 1. and
col(Wg ---Wq,,,) = col(Us,,,. ), where Spaz = [1, "maz] and where p is any layer with the smallest width 7,4
This is an implicit characterization.

Another previous work which characterized global minimizers is also [52f, but their characterization is not
explicit: the weight matrices are defined recursively and should satisfy some equations, while in Proposition [/| the
weight matrices are given explicitly. The same holds for their characterization of first-order critical points.

Saddle points. Among saddle points, we give a characterization of those that are strict and those that are not.
Previously, for H > 3, it had been noted by [25] that (0,...,0) is a non-strict saddle point. This result also
follows from Theorem 1 since any critical point is tightened whenever at least 3 weight matrices are of rank
r = rk(Wp - -- W1) (which is the case for (0, ...,0) with r = 0).

Also, Theorem E] generalizes two results from [25] and [10] about sufficient conditions for strict saddle points.
Indeed, [25] proved that, if W is a saddle point such that tk(Wg_1 - - - Wa) = rpae, then W is a strict saddle point.
[10] proved under further assumptions on the data and the architecture that a sufficient condition for a saddle point
to be strict is that tk(Wg_q --- W3) > r = rtk(Wpg - - - W7). Note that both results are special cases of Theorem
with the pivot (H, 1). More precisely, assume that W is a saddle point such that either tk(Wg_1 - W) = rpae =
r=rk(Wg---Wi)orrtk(Wgy_q---Ws) > r = rk(Wg --- W7) (which includes both conditions above). Then, if
S # [1,7] (whether r = 7,4, or not), by Theorem |1} W is a strict saddle point without any condition on W. But
if § = [1,r] with r < 7,42, our assumption above implies that the pivot (H, 1), and therefore W, is not tightened
(recall that rk(X xy) = dy > Tmaq > 7). In any case, W is a strict saddle point.

Finally, Theorem [I| generalizes another result of [25] stating that all saddle points are strict for one-hidden layer
linear networks. Indeed, let H = 2 and assume that we have a saddle point associated with S = [1,7] for r < rpqs
(the only case where we can expect to see non-strict saddle points, by Theorem [I)). Since H = 2, there is only one
pivot which is (2, 1); this pivot is not tightened because the complementary blocks are I;, and ¥ xy and both are
of rank larger than or equal to r,,,,. Therefore, by Theorem |l when H = 2 (and under Assumption ), all saddle
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points are strict.

Convergence to global minimum: an example where gradient descent meets no non-strict saddle points. Some
recent works on deep linear networks proved under assumptions on the data, the initialization, or the minimum width
of the network, that gradient descent or variants converge to a global minimum in polynomial time (e.g., [[1} 5,115} [14]).
Since for general non-convex functions, gradient descent may get stuck at a non-strict saddle point, and since non-strict
saddle points exist for any linear neural network of depth H > 3, it seemed impossible to deduce convergence to a
global minimum using landscape results only. Instead, papers such as [14] chose to “directly analyze the trajectory
generated by [...] gradient descent”.

It turns out that our characterization of strict saddle points can help re-interpret such global convergence results.
Consider for instance the work of [[14], who proved that with high probability gradient descent with Xavier initializa-
tion converges to a global minimum for any deep linear network which is wide enough. They analyse a network where
all hidden layers are of width ¢, with c at least proportional to the number H of layers and to other quantities depend-
ing on the data X,Y’, the output dimension d,, and the desired probability level. In their analysis, [14}, Section 7]
prove that with high probability, a condition B(t) holds at every iteration ¢. Importantly, this condition implies that the
point W output by gradient descent at iteration t cannot be a non-strict saddle point. Indeed, using our notation, the
condition B(t) yields the lower-bound i (W - - - Wa) > 2 =1/2 > 0, which in particular entails that the matrix
product Wy - - - Wy is of full rank min{c, d, } > 7y,45. Let us check that if W is a saddle point, then it is necessarily
strict. By Theorem either r = rk(Wpg - - - W) is equal to 7,4, in which case the saddle point W is indeed strict,
or 1 < T'maz, in which case the pivot (H, 1) is not tightened (since the two blocks ¥ xy and Wy _1 - - - W are of rank
at least ;42 ), s that the saddle point W is strict, as previously claimed.

As a consequence, our characterization of strict saddle points in Theorem [I] helps re-interpret the analysis of
[14] Section 7]: under Assumption H, and for wide enough deep linear networks, gradient descent with Xavier
initialization meets no non-strict saddle points on its trajectory.

Implicit regularization As previously explained, [28} 23] [24] and others proved that gradient-based algorithms can
escape strict saddle points and be stopped at approximate second-order critical points after a number of iterations
which is at most polynomial in the desired accuracy. The works [11 15,15 [14] mentioned above show that convergence
to a global minimum can even be guaranteed under assumptions on the data, the initialization, or the minimum width
of the network. Though global convergence outside these assumptions has been conjectured (e.g., [10] for gradient
flow), when H > 3, we cannot yet rule out the possibility that gradient-based algorithms get stuck at a plateau around
one of the 7,4, non-strict saddle points that we identified in Theoremﬂ] and Proposition [Z_f} Since non-strict saddle
points are global minimizers of a rank-constrained linear regression problem, this could be seen as a form of long-term
implicit regularization. Furthermore, even under assumptions when convergence to a global minimum is guaranteed,
gradient-based algorithms could spend some time around non-strict saddle points before convergence, which would
correspond to a form of short-term implicit regularization. Though these challenging questions are outside the scope
of the paper, we hope our characterization in Theorem [T| will help determine if and when exactly these two phenomena
can happen.

We now outline some relationships between our characterization and several earlier results on implicit regulariza-
tion. [3] proved that gradient flow converges to global minimizers of the rank-constrained linear regression problem. In
fact, what they proved can be understood as follows: the only critical points the gradient flow almost surely converge
to are the global minimizer or non-strict saddle points. The latter lead to global minimizers of the rank-constrained
linear regression problem”. In Theorem [T] and Proposition i} we prove the existence and characterize such points,
and in addition to non-strict saddle points we prove that some W leading to a solution of the rank-constrained linear
regression problem are strict saddle points. Doing so, we characterize and reduce the possibilities for the implicitly
regularized solutions.

[2] found empirically that for matrix recovery, deep matrix factorization converges towards solutions of low rank,
and [40] stated that empirically, implicit regularization in deep linear networks should be seen as a minimization of
rank rather than norms. Again, Theorem|[I]and Propositiond|helps specify the implicit regularization happening there.

[L7] proved that for H = 2, for a vanishing initialization and a small enough step size, the discrete gradient
dynamics sequentially learns solutions of a rank-constrained linear regression problem with a gradually increasing
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rank. More precisely, the algorithm avoids all critical points associated with S # [1, ], but comes close to a critical
point associated with S = [1, r], spends some time around it and decreases again. In the light of our work, we know
that for H = 2 all saddle points are strict, but for H > 3, we know that there exist non-strict saddle points associated
with § = [1,7]. What may happen in this case, if we could extend [L7] to H > 3, is that the gradient dynamics
converges to a non-strict saddle point or spends much more time than for H = 2 around non-strict saddle points
associated with § = [1, r]. In both cases these facts would show that the implicit regularization outlined by [17] for
H = 2 intensifies with depth. In fact, this is the result presented in [18]] for a toy linear network, as they proved that,
for H = 2, the algorithms need an exponentially vanishing initialization for this incremental learning to occur, while
for H > 3, a polynomially vanishing initilization is enough. This indicates that this incremental learning arises more
naturally in deep networks.

Perspectives. As suggested above, an interesting future research direction is to determine the basin of attraction of the
non-strict saddle points for gradient-based algorithms, for various initializations and various dimensions of the deep
linear networks considered. Do they have zero Lebesgue measure in general, so that gradient dynamics would almost
surely converge to a global minimizer, as conjectured by [10] for gradient flow? or do they have positive measure for
some networks and some data, hence implying a long-term implicit low-rank regularization? Even if gradient-based
algorithms, and in particular SGD, could escape non-strict saddle points in infinite time with probability one in all
cases, could the vicinity of these saddle points be finite-time stable? This way, early stopping would provably be a
source of short-term implicit regularization and might explain good generalization guarantees as in [9} 50, |38} 139].

4 Proof of Theorem 1]

The proof of Theorem [T] proceeds in several steps. In the end (see page[I7)), it will directly follow from Propositions 8]
[ [10 below and from Lemma [5|in Appendix [A] In this section, we outline the overall proof structure and state the
main intermediate results. We also provide proof sketches for these intermediate results, but defer many technical
details to the appendix.

In our proofs, we will not compute the Hessian V2L (W) explicitly since this might be quite tedious. To show
that a point W is (or is not) a second-order critical point of L, we will instead Taylor-expand L(W + tW’) along any
direction W’ and use the following lemma. Its proof follows directly from Taylor’s theorem.

Lemma 1 (Characterization of first-order and second-order critical points). Let W = (W, ..., W1). Assume that,
forall W = (Wi, ..., W), the loss L(W + tW') admits the following asymptotic expansion when t — 0:

LW 4 tW') = L(W) + ¢ (W, W)t + co(W, W)t? + o(t?). (6)
Then:
o Wis a first-order critical point of L iff c1(W, W) = 0 for all W'

* W is a second-order critical point of L iff c1 (W, W') = 0 and co(W, W') > 0 for all W'.
Therefore if for a first-order critical point W, we can exhibit a direction W' such that co(W,W') < 0, then W is
not a second-order critical point.

We divide the proof of Theorem [I]into three parts. Recall that from [25]], we know that all first-order critical points
are either global minimizers or saddle points (that is, there is no local extrema apart from global minimizers). We
refine this classification.

4.1 Global minimizers and ’simple’ strict saddle points

In this section, we start by identifying simple sufficient conditions on the support S associated to a first-order critical
point W which guarantee that W is either a global minimizer or a strict saddle point. More subtle strict saddle points
and non-strict saddle points will be addressed in Sections [#.2]and [4.3]
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Proposition 8. Assume that Assumption H in Section[2|hold. Let W = (W, ... , W) be a first-order critical point
of L associated with S and set r = tk(Wg -+~ W1) < rimag-

e Whenr = rpge”

- if § = [1, "maz], then W is a global minimizer.

— if S # [1,"maz], then W is not a second-order critical point (W is a strict saddle point).
e Whenr < rimmaz: Wis a saddle point.
— if S # [1,r], then W is not a second-order critical point (W is a strict saddle point).

The proof is postponed to Appendix @ To prove that W associated with S # [1,7] , r < 7440 18 NOt a second-

order critical point, we explicitly exhibit a direction W’ such that the second-order coefficient co(W, W') in the Taylor
expansion of L(W+¢W’) around ¢ = 0, in (@), is negative. Using Lemma we conclude that W is not a second-order
critical point.
Recall from Proposition that the loss at any first-order critical point is given by tr(Xyy) — > ;s Ai. The spirit of
the proof is that critical points associated with S # [1,r] capture a smaller singular value \; instead of a larger one
A; with ¢ < j. Thus, to see that the loss can be further decreased at order 2 (and is therefore not a second-order critical
point by Lemma , a natural proof strategy is to perturb the singular vector corresponding to A; along the direction
of the singular vector corresponding to A;. This part of the proof is an adaption of the proof of [4].

4.2 Strict saddle points associated with S = [1, 7], r < 740
We now address situations that to our knowledge, have never been addressed, in the literature. We prove the following.

Proposition 9. Assume that Assumption H in Section|2|hold. Let W = (W, ..., W1) be a first-order critical point
of L associated with S = [1,r], with0 <1 < Tyaz-
If W is not tightened, then W is not a second-order critical point (W is a strict saddle point).

We sketch the main arguments below. We will again construct a direction W’ such that the second-order coefficient
c2(W, W’) in the asymptotic expansion of L(W + tW’) around ¢ = 0, in (@), is negative.
More precisely, for a first-order critical point W, for any 8 € R, we will consider a well-chosen W}; such that
co (W, W/B) = af3% + ¢f3 for some constants a, ¢ (possibly depending on W) such that a > 0 and ¢ # 0. Taking

—c if a=0
= 7
o {2& it a>0 @
we obtain

- if a=0

co(W, W) =
2( 5) { it a>0

T 4a
and therefore
Co (W, W%) < 0.

Using Lemmal[I} we can conclude that W is not a second-order critical point.

We now provide intuitions on how to choose W’. Since W is not tightened, there exists a pivot (i, j), with i > j,
which is not tightened. Depending on the values of i and j we will construct W’ differently. However, the strategy for
constructing W’ is the same in all cases.

Recall again that from Proposition |1} at any first-order critical point W, the value of the loss is given by tr(Xyy) —
> ics i~ Contrary to the previous section, since S = [1, 7] there is no immediate way to decrease the loss (at order 2)
without increasing the rank of the product of the weight matrices. Indeed, we have Wy --- W, = Us Ug Yvx E;(lx €
arg min,y (g <, IRX Y.

Therefore, to be able to decrease the value of the loss, we need to perturb W in a way that the product of the perturbed
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parameter weight matrices becomes of rank strictly larger than r. Also, to prove that W is not a second-order critical
point, we need to decrease the loss at order 2. This is possible when W is not tightened. For the non-tightened pivot
(i, 7), we choose a perturbation W’ with all W] = 0 except for W/ and W. Furthermore, our construction of W} and
Wj’ depends on whether ¢ and/or j are on the boundary {1, H}. This is due to the fact that H and 1 play a special
role in the product of the perturbed weights (Wy + tW7,) - - - (W7 + tW7). This is why we distinguish the four cases
below:

e Istcase: i € [2, H — 1] and j = 1. This case is treated in Appendix [E.1]

* 2nd case: i = H and j = 1. This case is treated in Appendix [E.2}

* 3rdcase: i = H and j € [2, H — 1]. This case is treated in Appendix [E.3]
o 4th case: 4,j € [2, H — 1] with ¢ > j. This case is treated in Appendix

4.3 Non-strict saddle points

We now provide a sketch of the proof for the converse of Proposition [0} as stated in Proposition [I0] below. All the
proofs related to this section are deferred to Appendix [F

Proposition 10. Assume that Assumption H in Sectionhold. Let W= (Wy,...,Wh) be a first-order critical point
of L associated with S = [1,7], 0 <1 < Tmaa-
If W is tightened, then W is a second-order critical point (W is a non-strict saddle point).

To prove Proposition[I0] we first state a proposition which indicates that multiplications by invertible matrices do
not change the nature of the critical point.

Lemma 2. For all h € [1,H — 1], let D;, € R¥** pe an invertible matrix. We define WH = WyDy_1,
W1 Dy YWy and Wh =D, "W,Dy_1, forall h € [2, H — 1]. Then

= (Wx, ..., W) is afirst-order critical point of L if and only U‘W = (WH, ceey W1) is a first-order critical
point of L.

W= (Wy,...,W1) is a second-order critical point of L if and only ifW= (WH, cee Wl) is a second-order
critical point of L.

The lemma is proved in Appendix

Proposition |1 n is then obtained using Proposition |5 I (note that when W is tightened, W is also tlghtened since the
rank of a matrix does not change when multiplied by invertible matrices), by showing that W= (I/VH7 .. Wl)
given by Proposition [3]is a second-order critical point of L and using Lemma [2|to conclude that W is a second order
critical point. This is easier since W has a simpler form.

More precisely, we have the following result, from which Proposition [T0|follows (see Appendix [F.2]for details).

Proposition 11. Assume that Assumption H in Section 2| hold. Let W = (Wy,...,W1) be a first-order critical
point of L associated with S = [1,r] with 0 < r < ryq. such that there exist matrices Zy € R(dy—r)x(dr—1-7)
Zy € RU=xde gnq 7, € RUn=)x(dn-1=7) for h € [2, H — 1] with

Wy = [Us,UqgZH] ®)
W, = {Ug EYXE;X} ©)
Al
I, 0
th{ ; Zh:| Vhe [2,H — 1] (10)
WH"'WQZ[USaO]7 (11)

where Q = [1,d,] \ S.
If W is tightened, then W is a second-order critical point of L.
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Proposition[TT]is proved in details in Section [FI} We provide a proof sketch below.
We denote, for ¢ in the neighborhood of 0, and k € [1, H], Wj,(t) = W}, + tW] where W] € Rén*dn-1 is arbitrary.
We define W(t) := (Wg(t),...,Wi(t)) and W (t) := Wg(t) - - Wi(t). As in the previous two sections, we use
Lemma However, this time, we show that the second-order coefficient co(W, W') is non-negative for all directions
w.
To compute the loss |W ()X — Y|?, we expand

W(t) = W) Wi (t)
= (WH + tW}I) e (W1 + tW{)

H
:WH"-W1+tZWH--'Wi+1W{WF1---W1

=1
H12 Y W Wia W/ Wiy W WiW, g Wy + o(t?) .
H>i>j>1
Therefore,
H
L(W(t) = ‘ Wi WX =Y+t Wy Wiy W/Wi g - Wi X
=1
2
+2 Y Wy Wi W Wiy - Wy WWy - Wi X+ o(t?)
H>i>j>1

We can now easily calculate the second-order coefficient co (W, W') in the Taylor expansion of L(W(t)) around ¢ = 0
(in (8)).
Recalling that co (W, W') is such that L(W(t)) = L(W)+co(W, W')t2 +0(t?) (since W is a first-order critical point),
we have

H 2

> Wy Wiy WiWi g - Wi X

=1

C2 (Wa Wl) =

+2< > WH---WMW{Wi_l---Wj+1WJ4Wj_1---WIX,WH---WIX—Y>,
H>i>j>1

where (A, B) = tr(ABT). In order to simplify the notation and equations, we define, for all i € [1, H],

T =Wy Wi WW;_y - W1 X, (12)
and for all 4,5 € [1, H] with¢ > j:
TiJ‘ = <WH s Wi+1Wi/Wi—1 s Wj+1Wj{Wj_1 WX, Wy W X — Y> . (13)
Then we set
i 2
FT=|>"T| , (14)
i=1
and
ST=2 > T. (15)
H>i>j>1
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The coefficient becomes

H

2T

=1

2
+2 > T,;=FT+ST.

H>i>j>1

Co (W, W/) =

Using the fact that W is tightened, some weight products become simple (see Lemma [[4) and we can simplify 7; and
T; ; (see Lemmas[2T]and 22]in Appendix [F).

This allows us to establish that, for any W, there exist matrices Ay, As, A4 and a non-negative scalar a; such that
FT = ay + || Ao||> + || A3|? + || A4||? (see Appendix[F.1.2) and ST = —2 (A3, A4) (see Appendix [F.1.3). Therefore

CQ(W,W/) =FT + ST = ay + ||A2||2 + HAg — A4H2 Z 0 s
and using Lemma [I] we conclude that W is a second-order critical point.

We are now in a position to prove Theorem I] as a direct corollary from the above results.

Proof of Theorem([l] The classification into global minimizers, strict saddle points, and non-strict saddle points follows
directly from Propositions 8] [0 and[I0]above. As for the fact that

Wg - Wy =UsULSy x5 € argmin  ||RX —Y|?
ReR% X de yk(R)<r

when S = [1, r], it follows from Proposition [I]above and from Lemma [5]in Appendix O

5 Conclusion

In this paper, we studied the landscape of the empirical square loss function for a linear neural network with arbitrary
depth in a supervised learning setting. We first gave a necessary condition for being a first-order critical point by
associating it to a set of eigenvectors of a data-dependent matrix. Then we gave a complete characterization of the
landscape at order 2 by distinguishing between global minimizers, strict saddle points and non-strict saddle points. We
also parameterized explicitly the global minimizers of the loss function. Finally we shed some light on the implicit
regularization by proving that non-strict saddle points and some strict saddle points are among the solutions leading to
global minimizers of the rank-constrained linear regression problem.
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A Notation and general useful lemmas and properties

Note that most of the proofs rely on linear algebra, and we recommend to check classical textbooks for the novice
reader. We just recall some properties about the Moore-Penrose inverse in Section [A.3] Note also that a sequential
reading of the proofs in the appendix guarantees that every proof relies only on those proved before.

In this section, in addition to notation, we state and prove simple properties that we use several times in the paper.

Further notation: If a matrix A has already a subscript like Wy for example, we denote by (W) ; the i-th
column and by (Wp). s the sub-matrix obtained by concatenating the column vectors (Wp) 4, for all i € J. Also
(Wir)s,. denotes the i-th row of Wy and (Wp)z . the sub-matrix obtained by concatenating the line vectors (W), ,

Shttps://www.deel.ai/
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for all i € Z. More generally (Wy)z,7 denotes the matrix Wy restricted to the index set Z x J. For instance,
(WH) 1 r+1:dy 1 € R7*(dr-1=7) 5 the matrix formed from W by keeping the rows from 1 to 7 and the columns
from 7 + 1 to d—1. The symbol d; ; denotes the Kronecker index which equal to 0 if ¢ # j and 1 if ¢ = j.

Also, we define the partial gradients with respect to each weight matrix as follows.

A.1 Partial gradients

Definition 4 (gradient and partial gradients of L). Since the input W = (W, ..., W1) of L(W) is not a vector but a
sequence of matrices, we define the gradient V L(W) of L at W with a similar format :

VL(W) = (Vw, L(W),...,Vw, LW)) ,

where each partial gradient Vyy, L(W) € R >dr—1 js the matrix whose entries are the partial derivatives
fori=1, . dyandj=1,.,dp_1

oL
O(Wh)i,j

The next lemma provides explicit formulas for the partial gradients of L. A proof can be found at the end of [49].

Lemma 3. Let h € [2, H — 1]. The partial gradient of L with respect to Wy, is:
Vi, LW) =2(Wg - - Wi )T Wy - WiSxx — Sy x)(Who1---W)T .
We also have the partial gradient with respect to Wy :
Vg LW) =2Wy --- W1 Exx — By x)(Wy_1--- W)L .
Finally, the partial gradient with respect to W7 is:

Vi, L(W) =2(Wy - Wo)T (Wp -+ W1iZxx — Zyx) .

A.2 Simple linear algebra facts

Recall that 21/2 = EYXE;XX and X = 21/2(21/2)T = EYXE;QXsz. Recall also from () that »/2 = yAvT
is a Singular Value Decomposition, where U € R%*9 and V'€ R™*™ are orthogonal matrices.

Lemma 4. Assume that Assumption H in Section 2| hold. Then ¥ is invertible.

Proof. Given the definition of ¥/2 | it is a standard fact of linear algebra that rk(X!/2) = rk(Zyx I X) <
rk(Xyx). On the other hand, 1k(2!/2) = 1k(Zyx Y X) > th(Zyx X35 X XT) = tk(XZyx) since Exx =
X XT. Therefore rk(2'/2) = rk(Xy x) = d,, by Assumption . Finally, using another fact of linear algebra we have

k(X)) = rk(SV2(SY2)T) = 1k(X1/2), and therefore k(X)) = d,,. Hence, . is invertible. O
The next lemma is about global minimizers of the rank-constrained linear regression problem.
Lemma 5. Assume that Assumption H in Section2|hold. Let S = [1,r]. We have
UsUISyxE5Y € argmin  ||[RX — Y|
ReRy X de rk(R)<r
Proof. A proof of can be found in [49]. O

We now present a lemma with elementary properties that we will use frequently and that are related to the orthog-
onality of U. The proof is straightforward.

Lemma 6. We have the following properties related to the orthogonality of the matrix U :

* We have 14, = vuT =UTU.
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e Foranyi,j € [1,d,], we have UTU; = 6; ;.

 ForanyI,J C [1,d,] suchthat I N J = 0, we have U] U; = 0i7/x |-

* Foranyl,J C [1,d,] suchthat INJ =0 and I U J = [1,d,], we have 1, = U;U} + U;U].
* Forany J C [1,d,], we have UTU; = I} 7 and vk(U,; U7 ) = |J|.

Note that the same applies also to the other orthogonal matrix V' € R™*"™ appearing in the Singular Value
Decomposition of $1/2 (we only replace d,, by m).
Another useful lemma is the following:

Lemma 7. Forany I,J C [1,d,] such that I N J = (), we have
UfSU; = 071x1]-
In particular, for any S C [1,d,] and Q = [1,d,] \ S, we have UL SUqg =0 .

Proof. We have, for any k € [1,d,], ZUy = A\ Uy. Hence for j # k we have UjTZUk = )\kUjTUk = O since U is
orthogonal. Therefore, if we take two disjoint sets J = {j1,...,jp}, K = {k1,...,kn} C [1,d,], the coefficient in
the position (I, m) of the matrix U}FZU K is equal to Uj, XUy, which is zero, since j; # ky,. Therefore, U}FZU x =0.
In particular, U SUq = 0. O
A.3 The Moore-Penrose inverse and its properties

The Moore-Penrose inverse is the most known and used generalized inverseﬂ It is defined as follows:
For A € R™*", the pseudo-inverse of A is defined as the matrix AT € R™*™ which satisfies the 4 following criteria
known as the Moore-Penrose conditions:

1. AATA= A
2. ATAAT = AT,
3. (AAT)" = A4+
4. (AT A" = At A,
AT exists for any matrix A and is unique. We also have the following properties:

(i) AT = (ATA)" AT,

(i) rk(A) =1k(AT) = rk(AAT) =1k(ATA).

(iii) If the linear system Az = b has any solutions, they are all given by

r=ATb+ (I - AT Aw

for arbitrary vector w. This is equivalent to
r=A"b+u
for arbitrary u € Ker(A).

(iv) Py := AAT is the orthogonal projection onto the range of A, and is therefore symmetric (P} = P,) (follows
from 3) and idempotent (Pj = P,) (follows from 1).

(v) I, — AT A is the orthogonal projector onto the kernel of A.
=

en.wikipedia.org/wiki/Moore-Penrose_inverse
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B Propositions and lemmas for first-order critical points

In this section, we prove all lemmas about first-order critical points. We start by stating some preliminary results.

B.1 Preliminaries

The following lemma gives a necessary condition for W to be a first-order critical point. It also provides the global
map of the network, defined by Wy - -- Wj. Finally, it states that the projection matrix Py and ¥ commute, where
K = Wy --- Ws. This is key in the rest of the analysis.

Lemma 8. Assume that Assumption H in Sectionhold. Let W= (Wy,...,Wh1) be a first-order critical point of L.
We define K = Wy ---Woand W = WgWg_q--- W1 = KWy. Then, we have

Wi =K SyxY + M,

where M € R%*% js such that KM = 0 and K is the Moore-Penrose inverse of K (see Appendix . As a
consequence,

W = PxSyx Iy
rk(W) = rk(Pg) = rk(K)

where we recall that P = KK+ € R% >4 s the matrix of the orthogonal projection onto the range of K. Finally,
Y Py = PgX .

Note that Yy x E;X is the global minimizer of the problem with one layer (i.e the classical linear regression
problem). Therefore, the global map Wy - - - Wi of any first-order critical point of L is equal to the global minimizer
of the linear regression projected onto the column space of K.

Proof. LetW = (W, ..., W) be a first-order critical point of L. In particular, the partial gradients of L with respect
to Wy and Wy are equal to zero at W. Using Lemma[3] this implies

Wy - WiSxx(Wg_1--- W) =Sy x(Wy_y--- W) .

We substitute in these equations K = WygWg_q---Woand W = WgWg_q--- W1 = KW;. Using that X x x is
invertible, and multiplying the second equation on the right by W}, we obtain that any critical point of L satisfies

{ (WH"'W2>TWH"'WIZXX:(WH"'WQ)TZYX

16
WExxWT =Sy xWT . (16)

{KTle — KTSyx S5k
The first equation implies W, = (K7 K)*KTYy xSy + M, where M € R%* 4= is such that KT KM = 0 (see
Property (iii) in the reminder on Moore-Penrose inverse in Appendix [A.3).
We have (KTK)*KT = K*(see Property (i) in Appendix and a standard fact of linear algebra is that
Ker(KTK) = Ker(K).
Therefore, using these properties, we obtain W; = K3y x E;(IX + M, where KM = 0. This proves the first
statement of the lemma. We then have,

W =KW, =KK'SyxE¢x + KM = PkSyx X5y - (17)

where Py = K K™ is the orthogonal projection matrix onto the column space of K (see Appendix . Using
Assumption #, we have that Xy x E)_(lx is of full row rank, hence

k(W) = 1k(Pr Xy x 2y ) = tk(Px) = tk(K) , (18)
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where the last equality comes from the property (ii) in Section[A.3] Therefore, (16) and (I8) prove the second statement
of the lemma.

To prove that X P = Px X, we remark that, using the second equation in @, Sy xWT = WExxW7T and since
WExxWT is symmetric and (Xy x)? = Y xy, we have

SyxWh =WExy .
Substituting the expression of W from (I7), and since Py and Z}lx are symmetric, we have
YyxExxExyPr = Pkly xSk Sxy -
Using the definition of X, this can be rewritten as
Y Py = Pg¥,
which concludes the proof. O

Lemma 9. Assume that Assumption H in Sectionhold. Let W= (Wy,...,W1) be a first-order critical point of L.
Weset K = Wy - Waandr = tk(Wg -+ - Wh).
There exists a unique subset S C [1,d,] of size r such that:

Py =UZSUT = UsUYT,

where TS € R4y js the diagonal matrix such that, for all i € [1,d,], (Z°):; = 1 ifi € S and 0 otherwise.

Proof. Let W = (Wg,...,W7) be a first-order critical point of L. Using Lemma [8] we have X Py = PgX.
Substituting the diagonalization of ¥ from Section [2} this becomes UAUT P = PxUAUT. Since U is orthogonal,
multiplying by U on the left and by U on the right we obtain AUT PxU = UTPrUA. Hence, UT PxU
commutes with a diagonal matrix whose diagonal elements are all distinct. Therefore, I' := UT Pk U is diagonal,
and P = UTUT is a diagonalization of Px. From Lemma [8, we also have r = rk(Pg). But, we know that
P = KK+ € R%>*d is the matrix of an orthogonal projection. Therefore, its eigenvalues are 1 with multiplicity
and 0 with multiplicity d,, — 7.

Therefore, there exists an index set S C [1,d,] of size r such that I' = 7S where Z € R%*4v s the diagonal
matrix such that, for all i € [1,d,], (Z8);; = 1ifi € S and 0 otherwise.
Therefore,
Py =UTUT =UT515U" = UsUYL.
If there exist S’ such that T’ = ZS', we get P = UZSUT = UZS'UT which implies Z = 75" hence S = S'.
Therefore, S is unique. O

B.2 Proof of Proposition

In this proof, we use Lemmas 8 and 0] stated and proved in the previous section.

Recall that Ay > --- > A4, are the eigenvalues of 3 = EYXE;XEXY € Ryxdy,

Let W = (Wgy,...,Wj) be a first-order critical point of L. We set K = Wy -+ Wa, r = tk(Wg --- W7). Using
Lemmal9} there exists a unique subset S C [1,d, ] of size r such that:

Py = UsUYL.

Therefore, using Lemma 8]
Wy - Wi = PkSyx X5y = UsUS Sy x S5
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This proves the first statement of Proposition [I]
To prove the second statement, notice that we have
L(W) = WX -Y]|?
= [WX|P? -2(WX, Y)+ Y]
=tr(WExxWT) = 2tr(WExy) + tr(Zyy)
= tr(UsUE Sy x 25 Exx X x Exy UsUL) — 2tr(UsUE Sy x5 Sxy ) + tr(Syy)
= tr(UsUZUsULY) — 2tr(UsULY) + tr(Zyy)

Since UgUg = I,. (see Lemma EI), using Lemma|§| and the fact that U diagonalizes X, this becomes

L(W) = tr(Syy) — tr(UsULY)
=tr(Zyy) — tr(UZSUTUAUT)
= tr(Syy) — tr(Z°UTUAUTU)
= tr(Zyy) — tr(ZSA)
=tr(Zyy) — A .

€S

This proves the second and last statement of Proposition T}

B.3 Lemma

In this section we state and prove a lemma about first-order critical points which will be useful in various proofs. This
lemma gives a simpler form for K = Wy --- Ws and W7.

Lemma 10. Assume that Assumption H in Section@hold. Let W= (Wpy,...,Wi) be a first-order critical point of L
associated with S. We set r = rk(Wyy - - - W7y).
Then there exists an invertible matrix D € R4*4 g matrix M € R % d= satisfying Wy - - - Wo M = 0, such that:

K=Wg---Wy= [Us Odyx(dl—r):|D

and
UlSyxE3

Wy =D~ 1
! [ 0(d; —r)xd,

[+

Note that the result is still true when r = 0, provided that U € Ry <0,
To prove Lemma [T0] we use Lemmas [§ and [J] stated and proved in the preliminaries of Appendix [B-I} We will
also need the following lemma

Lemma 11. Let n be a positive integer and ) # S C [1,d,] such that n > r := |S|. Let A € R%*™ such that
AAT =Us UE. Then there exists an invertible matrix D € R"™*"™ such that

A= [US Odyx(n—r)]D
and

AT = D—l |: Ug :| .
0(71,—7“)><dy

22



Proof of Lemmal(I1] The matrix I,, — A™ A is the orthogonal projection onto Ker(A) (see Appendix , hence
k(I — AT A) = dim Ker(A) = n — rk(A)

But we have (see Property (ii) in Appendix [A.3) rk(A*A) = rk(A4) = rk(AA") and, using Lemmal6] rk(A+A) =
tk(UsUZ) = r. Therefore, rk(A) = r and

tk(I, — ATA)=n—r.

Let B € R"*("=") and C' € R(™")*" be such that I, — ATA = BC (such matrices can be obtained by
considering the Singular Value Decomposition of I,, — AT A).

T
Denoting D = [ U‘E,A ] € R™*" we have

UL A

[AtUs , B]D = [ATUs , B] { Vol

] = ATUsULA+BC = ATAATA+ 1, — ATA.

Using Criteria 1 in Appendix [A23] we obtain
[ATUs, BID=ATA+ 1, - ATA=1, .
Therefore, D is invertible and D~! = [ATUs , B]. We have

UfA T N
[Us , 0a,x(n-n)]D =[Us , Oa,x(n-n] | "¢ | =UsUsA=AATA=A,

where the last equality follows from Criteria 1 in Appendix [A3] This proves the first equality of Lemma|[TT]Finally,
vt vt
Dt S =[ATUs, B] S = ATUSUE = ATAAT = AT,
O(nfr)xdy O(”*")Xdy
where the last equality follows again from Criteria 2 in Appendix [A.3] This concludes the proof of Lemma[IT] O
Now we prove Lemma[I0]

Proof of Lemmal[l0} Let W = (Wy,...,W;) be a first-order critical point of L associated with S and r =
Using Lemma|8] we have r = rk(Wpg - - Wa).

If 7 = 0, the conclusion of Lemma|10|is trivial because of the convention Uy € R% >0,

When r > 1, using Lemmaand Proposition we have Wy --- W7 = PKZYXE)_(lx = USUTEYXE;QX. Since
Yy x is of full row rank this implies P = KK+ = Us Ug. Therefore, we can apply Lemma [11{ with n = d; and
A = K to conclude that there exists an invertible matrix D € R% ¥4 guch that

K =[Us, 0q,x(d,-r)|D

which is the form of K in Lemma[I0] Moreover, Lemma[IT]also guarantees that
Kt =D [ Us } :
O(dy—r)xd,
. . 1 . [ UFSyxS5y
Using Lemma(8} we have Wy = K™Yy x X + M with KM = 0. Therefore, W; = D 0 : + M,
d1 —-r de
with KM = 0. This concludes the proof of Lemma[I0} O
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B.4 Proof of Lemma/[2

For any h € [[1 H — 1]] let Dh € R4 *dn be an invertible matrix. We define W = (WH, .. .,Wl) by WH =
WHDH 1, W1 Dl W1 and Wh = D WhDh 1 forall h € [[2 H — 1]]
Assume that W = (W, ..., Wi)isa ﬁrst order critical point. Then using Lemmathis is equivalent to

Vi, LOW) =2Wg -+ Wy )T Wy -+ WiExx — Sy x)Who1--- W) T =0 Vhe[2,H —1]
Vwy L(W) =2Wg---W1Exx — Sy x)(Wg_1--- Wl)T =0 (19)
Vw, L(W) =2(Wg - W) (Wy -+ W1Exx — Zyx) =0.

Using the definition of W above, we have

Wi Wy =Wy - W
WH~-~Wh+1 =Wg-- Wh+1D Vh € [[1,H— 1ﬂ
Wh_1--- Wy =Dy_ 1Wh 1- W1 Vh € [[Q,Hﬂ .

Therefore is equivalent to

(N‘l)T(WH W) T (W -+ WiBxx — Syx)Waot -+ W)TDE, =0 Vhe [2.H 1]
Wy ---W1Exx — EYX)(VVH L W)TDL_ =0
(DT (Wi - Wo) T (Wy - WiExx — Syx) =0.

This is equivalent to

Vi L(W) = 2(Wy - Wy )T (W - Wi Exx — EA;/»X)(W;L_l - W)T =0 Vhe[2,H-1]
Vw, L (W) = 2(WH lexx - ZYX)(WH 1wt
Vi, L(W) = 2(Wg - Wo) (W - Wi Exx — Syx) =0.

which is equivalent to Vyy, L(W) = 0, for all i € [1, H] . Therefore, W is a first-order critical point if and only if W
is a first-order critical point. This proves the first part of the proposition.

Now assume that W = (Wy, ..., W7) is a first-order critical point such that it is not a second-order critical point.
Note that from the first part of the proof W= (WH, .. Wl) is also a first-order critical point. Let us prove that

W is not a second-order critical point. Using Lemma |1 I since W is not a second-order critical point, there exist
W' = (W, ..., W) such that, if we denote W(t) = W -+ ¢W’, the second-order term of L(W (¢)) is strictly negative

i.e co(W,W') < 0. We will prove that there exist W such that ) (VNV, V~V/) < 0 and, using again Lemma , we
conclude.
As already said, we set W}, (t) = W}, + tW), forall h € [1, H]. We denote

Wi (t) = Wi + Wi = Wy + tWj Dy -y

Wi(t) = 1+th Wi + tDy W]

Wi (t) = W, + tWh Wiy +tD;*W/ Dy Vhe[2,H—1]
W= (W,....Wi).

Hence, we have (where HZ:H—l Ay shouldread as Ag_q--- As)

. . 2

Wy (t) - Wi(t) = (WgDg_1 +tWy Dy, ( II o, WiDn + tD,;lw,gDh_l)> (DWW, + DWW
h=H—1

= (WH + tW}I) e (W1 + th)

=Wgy(t) - Wi(t) .
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Therefore, L(W(t)) = L(W(t)) and
CQ(W,W,) = 02(W7W/) .

Since by hypothesis co(W, W') < 0, we conclude that ¢y (W, VNV/) < 0. Hence (W, ..., Wy) is not a second-order
critical point.

We prove that if W is not a second-order critical point then W is not a second-order critical point in the same way, by
changing D}, with D;l for all h € [1, H]. This proves the second part of the proposition and concludes the proof.

B.5 Proof of Proposition [0]

Let S C [1,d,] of size 7 € [0,7maz] and Q = [1,d,] \ S. Let Zy € Ridv=)x(dn-1=) 7, ¢ R(d-r)xdz gpg
Z), € Rn=)x(dn1=7) for b € [2, H — 1]. Let the parameter of the network W = (Wy,..., W) be defined as
follows:

Wy = [US»UQZH]I
_ [UFsyxE3k
Wi = 7 (20)

I, 0
Wh=|:0 Zh] Vhe[2,H-1].

Note that the above definition of W does not involve the matrices Dj, € R4 >4 n fact, using Lemma it suffices to
prove that, when r = 7,4, or there exist Ay # hs such that Z;,, = 0 and Z,, = 0, the W defined above is a first-order
critical point to conclude that Proposition [] holds .

We have

I, 0 I, 0 Uy xT3s
WH"'WIZ[USHUQZH}[O ZHl]..[O Z2:||:S YZ)lf XXil

=UsUSSy xS + U ZuZu—1 -+ Z2 24

If there exists hy # ho such that Z,, = 0 and Z,, = 0, it immediately follows that Wy --- W7 = UgUgEy X E)_(IX.
If 7 = 704, then there exists h € [0, H] such that r = dj,.

e Ifr=dyg =d,, thenUg € R%*0 and Z € RO*(dr-1-7) which, using conventions in Section gives
UgZu =04, x(dy_,—r)- (21)
Therefore, Wy --- W1 = UsUL Sy x X3
* If r = dy = d,, then, since d, > d,;, we have r = d,,, which we have already treated in the previous item.

o If r = dj, for some h € [2,H — 1], then Z;,; € R(@+1=7)%0 apnd 7, € RO*(drn-1-7) which, using the
conventions on Section 2] gives

Zh+1Zn = O(dyy 41 —r)x (dp—1—1)- (22)
Therefore, Wy --- Wy = UsUL Sy x ¢
o If r = dj, then Zy € R(42=7)%0 anq 7, € RO%4= which, using the conventions on Section gives
Z2Z1 = 0(dy—r)xd,- (23)

Therefore, Wy --- Wi = UsUL Sy x X3
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Note that these results still hold if there is more than one layer with the minimum width.
Therefore, in all cases, when r = 7,44 Or there exist h; # ho such that Z;, = 0 and Z, = 0 we have,

Wy Wy =UsUI Sy xS - (24)

Let us prove that the gradient of L at W is equal to zero.
Recall that from Lemma 3] we have

Vi, LW) =2(Wy - - Wi )T Wy - - WiSxx — Zyx)(Who1 - W)T Vhe[2,H—1]
Vi, LIW) =2Wy - W1 Exx — Zyx)(Wy_q--- W)
Vi, LW) =2(Wg - W) T (W - W1 EZxx — Syx) .

Using (24) and Lemmal6] we have

Wy WiSxx — Syx = UsUS Sy xSk Sxx — Syx
= (UsU§ — I4,)Sy x
=-UgU{Syx -

Also, using (20), for all h € [1, H — 1],

I, 0 I, 0
WH---WhH:[U&UQZH]{ 0 Zy_1 }{ 0 Zpu ]

=[Us,UgZuZp—1- Zh1]

and, for all h € [2, H],

T -1
S R

_ {ngyxz;(lx]
Zn1-ZoZy| "

We have, forall h € [2, H — 1],

1
3 (Vi LOW) " = (Wyoy - W) (W -+ WiSxx — Syx)” (We -+ W1)

- _ _UEEYXE}lx] (UoULYyx) ' Us,UgZuZs 1 -+ Zhy1)
_Zh—l"‘ZQZl QYQ yUQ - "
_UEZsz)_(lx] T

= SxvUoUlUs, UgZyZy—1---Z
| Z1 - ZaZy| TXYER SUs,UgZyZi—1 -+ Zpa]
_ngyxz)_(lXEXYUQ} . .

- UlUs, USUoZuZi—1 -+ Zns1] -
_thl"'ZQZ1znyQ [ QYS,YQYQ4#H4H-1 h+1]

Using the definition of 3, Lemmal[6]and Lemma([7} we have

1 r_ | ULsUq
3 (VW LW == g, | 22y U Ve B ZH1 - D]

_ Orx(dyf'r‘)
|21 22208 xyUq O, —ryxrs Za 211+~ Zna]
[ Orxr Orx(dh,fr)

10dn_1—r)yxr Zn—1"+Z2Z18xyUQZuZu—1- Zpt1
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Proceeding similarly, we obtain

1 T O?"Xd
1 LW)T = - 3
5 (Vi L(W)) Zy—1- 2321 ZxyUqUQ

and
1
3 (Y, LOW)N" = (04, xr » SxyUgZuZp—1--Za] .

If there exists h1 # ho such that Z,, = 0 and Z;,, = 0, we can easily see that the gradient is equal to zero, i.e., W is
a first-order critical point.
If r = 744, then there exists A’ € [1, H] such that r = dj,. Using the same arguments as above that yielded 1),

(22) and (23), we have,
e Forh =1,
— if r = dy, we have Z, € R(4277)%0 and therefore X xyUgZy Zs—1 - -+ Zo € R%=X0,
— if r = dg, then UQZH = Odyx(dH,l—T) and therefore EnyQZHZH_l Loy = Odzx(dl—r)-
- if 7 = dp for some h' € [2,H — 1], then Zy 112 = Oq,,,,—r)x(d,, ,—r) and therefore
YxvUgZuZu—1-+Zo = 0q,x(dy—r)-
Hence, in all cases, Vy, L(W) = 0.
e Forh = H,
- ifr= dH = dy, then UQUg = Odyxdy and therefore ZH_1 s ZzlenyQUg = O(dH,lfr)xdy .
— ifr = dg_q, then Zy_, € RO*(dr—2-7) and therefore Zp_; - - - ZQZlEXYUQUg € ROxdy,
- if 7 = dp for some h' € [2,H — 2], then Zy 112 = Oq,,,,—r)x(d,, _,—r) and therefore
g1+ Z2Z12XYUQU5 = 0(dg_1—r)xdy-
- ifr= dl, then Z2Z1 = O(dg—r)xdm and therefore ZH,1 s ZQZlZXYUQUg = O(dH_1—T’)><dy'
Hence, in all cases, Vyy,, L(W) = 0.
e Forh e [2,H —1],

- if r = dp_1, then Zj,_; € RO*(@n—2=7) and therefore Zy_1 -+ Z2Z1XxyUoZuZp—1+++ Znhy1 €
ROX(d;L—’I‘)'

—if r = dp, then Zy1y € RE@n+177x0 and therefore Zj,_1 -+ ZoZ1SxyUgZuZy—1- Zny1 €
R(dh_lfT)XO.

— if » = dpy, then UQZH = Odyx(dH71fr) and therefore Z;_1 - "ZQZIEXYUQZHZH_l . ~-Z}L+1 =
Odn_1—r)x (dn—r)-

-ifr = dl, then ZQZl = O(dgfr)xdz and therefore Zh,1-~-Z2Z12X}/UQZHZH,1 ---Zh+1 =
Odn_1—r)x (dn—r)-

— if r = dj, for some W e H27 H— ].]] \ {h, h — ].}, then Zh’Jrth’ = 0(
Zp-1- 22213 xyUQZuZu—1-+ Zn+1 = Oay_, —r)x(dn—r)-

sy =) X (dpr_1 —7) and therefore

Hence, in all cases, Vyy, L(W) = 0.

Therefore, when r = 7,4, W is also a first-order critical point of L.
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B.6 Proof of Proposition 2]

Let S C [1,d,] such that |S| =7 < rpyaq, and Q = [1,d,] \ S.
We define W = (W, ..., W;) by:

WH = [U57 OdyX(dH,1—T‘)]

W, = |: I, Orx(dh—lf’r) VYh € HQ,H - 1]]
O(dhfr)xr O(dh,*r)x(dh—lf’“)

Wy = {U‘? EYXE)?lx]
O(dl_r)xdm

By Proposition @, W is a first-order critical point of L. Moreover, we have Wy --- W, = UsUE %y x 57
Therefore, W is a first-order critical point associated with S.

B.7 Proof of Proposition 3]

Let W = (Wg,...,W7) be a first-order critical point and » = k(W - -- W7), using Proposition [I| there exists a
unique S C [1,d,] of size r such that

Wy Wi = UsUS Sy x S5y,

which implies
Wy - -WiExy = UsULY.

Leti,j € [1, H] suchthat¢ > j. The complementary blocks are W, _1 - - W1 Xxy Wy -+ - Wi and Wi - - Wi,
Using Lemma 4| and Ug Us = I,., we have, for the second complementary block,

tk(Wiq - Wjg1) > tk(Wy - Wi Sxy) = tk(UsUEY) > 1k(UE (UsUEE)E " Us) = k(1) =71 .
For the first complementary block, using the same arguments, we have
tk(Wi_q -+ - WiZxy Wy - Wigq) > tk(Wy -+ - WiExy Wy - - WiXxy)
= rk(UsULSUsULY)
> 1k (UE(UsUESUSUEE)E1Us)
=1k(UIXUs) .
Recall that, from the diagonalization of 3, we have XU = UA, hence, XUs = Usdiag((As)ses)

I"k(Wj_l Wi Exy Wy - Wi+1) > rk(UgUSdiag(()\s)seS))
= rk(diag((As)ses))

=r.
This concludes the proof.

B.8 Proof of Proposition 4
Let H> 3,8 =[1,r] with 0 < r < rp,4,. We define W as follows:

Wy = [Us, 0]

I, 0
Wy, = 0z, for he[2,H—-1]
Wy — ngy(;(zggx
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Using Proposition [6] W is a first-order critical point associated with S. Let us show that depending on the choice of
(Zp)h=2..H—1, W can be tightened or non-tightened.

Since H > 3, there exists h € [2, H — 1]. If we choose Zp_1,...,Z5 such that Zp_1---Za # 0 (e.g. when
only the top left entry of each Zj, is nonzero, which is possible since r < 74, = min(dgy,...,dp)) then W is
non-tightened. Indeed, the pivot (H, 1) is non-tightened because rk(Xxy) = d, > 7 and tk(Wg_1--- W) =

k L 0 >
T 0 Zy_1- 7o r.

If we choose Zy—1,...,Z3 suchthat Zy_q---Zy = 0 (e.g. Z2 = 0), then W is tightened. Indeed, the pivot (H, 1)

I. 0
0 0
Hence, all the other pivots are tightened because at least one of their complementary blocks includes Wy or Wy, and
therefore, using Proposition [3] is of rank . Therefore, W is tightened.

is tightened because Wy _; --- Wy = is of rank 7, and by construction we have tk(Wx) = rk(W7) = r.

C Parameterization of first-order critical points and global minimizers

In this section, we prove Propositions [5]and[7] that were stated in Section

C.1 Proof of Proposition
Before proving Proposition [5] we introduce and prove two lemmas.

Lemma 12. Let r be a nonnegative integer, and let n and p be two positive integers larger than or equal to r. Let
S C [1,d,] of size r and let Q = [1,d,] \ S. Let A € R%*™ and B € R"*P be two matrices such that

AB = [Us,0] .

Then, there exist an invertible matrix D € R™ "™ and two matrices N € R(&v=7)*x(=7") gnd Bpp € R=m)x(p=7)
such that

AD = [Us, UgN] (25)
. [0
D B_[O BDR} (26)

In the proof below, we can easily see that the result still holds for » = 0 and r = min(d,, n, p) with the conventions
adopted in Section

Proof. Let n and p be non-negative integers such that n,p > r and A € R%*" and B € R"™*? such that

AB = [Us, 0]. 27)
Recall that for any matrix C' with n columns we write C' = [C}, Cy, . .., C,] where C; represents the i-th column
of C.
We have from 27),
A[BlvBQa"'aBT]:US' (28)

Since the columns of U are linearly independent, we have
rk(A[By, B, ..., B,]) =tk(Us) = r
and {B,...,B,} are necessarily also linearly independent. Using the incomplete basis theorem, we complement

(B1,...,B;) to form a basis (B1,...,Br Ery1,...,Ey). Weset E = [By,...,B.,Ery1,...,E,] € R"*"™. By
construction, the matrix F is invertible.
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We now set A’ = AF and B’ = E~'B. In particular A’'B’ = AB.
Also, note that

Em:[Bh...,Br],

so that

Therefore, we can write

' m-1p_ | Ir DBur
B—E B_[O por | (29)

with Byg € R™*®=") and Bpgr € R(=7)%(®=7) guch that

|:BUR

_ 1
BDR:| =FE [Br+17~'~7Bp}'

We define L € R"™*(»~") and N € R(4v—")*x(n=7) py L{‘]] = [Us,Ug) }AE,11,...,AE,]. We have

L
[AE,.1,...,AE,] = [Us,Uq) {N] = UsL+UgN . (30)

I, L

We also define the invertible matrix F' =
0 I,

] € R™*". Using (28) and (30) we have

A = AE
= A[Bla'~-aBraET+la"'7En]
= [Us,U5L+ UQN]

I, L}

= [Us,UgN]F .
Therefore, defining the invertible matrix D = EF~! € R™"*", we finally have
AD = AEF~! = [Us,UgN] . 31)

This proves (23).
We also have, using (29) and the definition of F

D 'B=FE'B
= FB

_ Ir L Ir BUR
N 0 In—r 0 BDR

_ |: I, Byr+ LBpgr :|

0 Bon (32)

However, noticing that, since (27) holds,

(AD)(D™'B) = AB = [Us;, 0],
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and using (31) and (32) we obtain

I, Byr+ LBpgr -
[US,UQN] [ 0 Bpr :| = [U570] .

Therefore Us(Byr + LBpr) + UgNBpr = 0. Since [Us,Ug] is invertible we get Byr + LBpr = 0 and
NBpr=0.
Finally, (32) becomes
0 Bbpr
This proves and concludes the proof. O

DlB:{b 0 y

The second lemma states that if the product of two factors takes the format of (26)), then up to the product by an
invertible matrix, the two factors have the same format. In the proof of Proposition[5] we will use this property several
times to establish (@).

Lemma 13. Let r, g, n and p be positive integers such that r < min(q,n,p). Let B € R?*™ C € R"*P and
P e Rla=7xX®=") gych that

I, 0
ro=[t o]

Then, there exist an invertible matrix D € R™*™ and two matrices Bpg € RU4=)*(=7) gnd Cpp € R—)x(p—r)
such that

BD — [{) BgR} (33)
D= H CgR]. (34)

In the proof below, we can easily see that the result still holds for » = 0 and r = min(g, n, p) with the conventions
adopted in Section 2]

Proof. Let r, g, n and p be positive integers such that » < min(g,n,p). Let B € R?*", C € R"*? and P €
R(a=7)*(P=7) guch that

I. 0
Bc_[ : P} . (35)
We have

Bpmhuqap{ﬂ. (36)

Since the columns of ﬁ;’] are linearly independent,

tk(B[Cy,Cy,...,Cp]) =1

and the vectors C1, ..., C, are necessarily also linearly independent. Using the incomplete basis theorem, we com-
plement (C1,...,C,) to form a basis (C1,...,Cr, Erq1,...,E,). Wedenote E = [C4,...,C,Epiq,...,E,] €
R™*"_ By construction, the matrix E is invertible.

We now set B’ = BE and ¢’ = E~'C. In particular

B'C' = BC. (37)
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Also notice that
so that

Therefore, we can write

' -1~ | Ir Cur
C—F c_[o CDR}, (38)

where Cyp € R™*(®~") and Cpr € R(™=")*(P=7) are such that {gUR} =ECri1,...,Cp).
DR

Now notice that, using (36)),

B'= BE
— B[Cy,...,C0,Eypsr, ..., En]
| I» Byur
= [ 0 Bpn } ) (39)
where Byr € R"™("=7) and Bpp € R@=7)%("=7) gre such that [gUR} =B[E.11,...,E,] .
DR
Plugging (39), (38) and (33) in the equality (37), we obtain
I, Bur I, Cyr | _| Ir O
0 Bpr 0 Cpr o 0 P ’
which yields
I, Cuyr+ByrCpr | _| I, 0O
0 BprCpr - 0 P ’
Therefore, Cyr + BurCpr = 0 or, equivalently ,
Cur = —BurCbr - (40)
I, —Byr . .. . .
Define F'= | "'/ . The matrix F' is invertible. Moreover, using (38) and @0) we have
c' — | Ir —BurCbr
0 Cpr
| I, —Byr 1, 0
10 I, 0 Cbpr
I, 0
-r| 5 o]

Therefore, if we define D = E'F, D is invertible and

B S D S I S
D"C=F"E 'C=F C—{O CDR:|.
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This proves (34).
In order to prove (33), we remark that, using (39) and the definition of F', we also have

BD = BEF
=B'F
| I» Bur I, —Byr
N 0 BDR 0 Infr
(L o
| 0 Bpr
This proves (33) and concludes the proof. O

Now we prove Proposition 5]

Proof of Propositiond] Let W = (Wy, ..., W) be a first-order critical point of L. Then using Lemmathere exist
D € R4 *d1 jpvertible and a matrix M € R% > 4= which satisfies Wy - - - Wo M = 0 such that

Wy - Wy =[Us, 0|D 41)
T -1
Wy =D"! {US ZYngXX} + M. (42)
Denoting D1 = D~! and using (@), we have Wy - - - W D1 = [Us, 0]. Then applying Lemmawith A=Wy and
B =Wpg_q---WaDy , there exist an invertible matrix Dy, € R4 -1%da-1_and matrices Zy € R(dy—r)x(dr-1-7)
and Bpg € R(dn-1=7)x(d1=7) gych that
Wy == WgDpy_1 = [Us, UqgZu|

— I. 0
DHLWH_l---WQDlz[ 0 BDR] : (43)

The first equality proves (2).
Then applying Lemma to @) with B = D1}£1WH,1 and C = Wy_o---WoD; we get the existence of an

invertible matrix Dy_o € Réu-2%drn—2 C'p o e Rdu—2-m)x(d1—7) gng 7, | € R@r-1=7)x(dr-2=7) gych that

e _ I, 0
Wpg_1:=Dg" \Wy_1Dg_o = [ 0 Zyy }
and
_ I, 0
Dyt Wy o WoDy = [ 0 Cpn ] .

Reiterating the process by using Lemma multiple times with B = D;1Wh and C = Wjy_1---WsD; for h
decreasing from H — 2 to 3, we can conclude that there exist invertible matrices D;, € R > and matrices Z;, €
R =m)x(dn-1=7) ‘for h € [2, H — 1], such that

Wi := Dy 'Wi,Dy_y = IOT Zoh ] Vhe[2,H—1].

This entails (d).

T ~1 17
We also have from @2) that W7 = D, {Us YyxYxx

+ M with Wy - - - WoM = 0. Therefore,

T -1
Dy'Wy = {Us EYOXEXX} +D7IM .
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Using @), D1 = D~ and Wy - -- WaM = 0, we obtain

[Us, 0)D;'M =0.

Writing DflM = {go} , where Zy, € R™*% and Z; € R(4—m)%dz we have
1

0=[Us, 0O)D;'M

Multiplying on the left by U we obtain
1 0 . .
Therefore D; "M = { 7 ] which yields
1

Wy = Dy, = [ngyxleX] .

A

This proves (3).
Finally we have

Wi Wy = (WHDH—l)(D;_lWH—lDH—Q) - (Dy*WaDy)

=Wy - -WyDy
= [US 9 0] )
where the last equality is due to (1)) and D; = D~. This entails (5) and concludes the proof. O

C.2 Proof of Proposition [7|

We first make a comment about notational subtleties to help understand the statement of Proposition[7] and then prove
the proposition.

Recall that 7,4, = min(dg,...,do), and d, = dy > d, = dy by assumption. Therefore, in the statement of
Proposition[7} some blocks Z;, have 0 lines or 0 columns, and thus do not exist. For example, depending on the value
of 7,42, We have

WH = USmax D]jll_l if Tmax = dH—l
Wi =DUL  SyxSy if rnes = dy

and for h € [2, H — 1]

Dy | I

Tmaz

0 } Dity i roae = dp < dp_s

I, _ .
Wh =14 Dy, o 1 D, if "ae = dpo1 < dp,

Dul,,..Dyty if maz = dp = dn 1

Tmax

Also, if 7z = dy’ then Qmaz = 0, hence UQmaz c Rdy X0 and Zg € ROX (dHfliT"’“”'). Then, using the convention
. . -1
mn SeCtIOH UQmaw Zyg = Ody><(dH—1frmam)’ so that Wy = [Us'm.a:): ) Ody X(dH—l*"”mam)]DHfl € Rivxdn-1,

We are now ready to prove the proposition.
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Proof of Proposition[]] Let Spaz = [1, "maz]. Let us first prove that W is a global minimizer of L if and only if W
is a first-order critical point of L associated with S,,,,. From LemmaE], we have

UspanUs,  SyxEyy € argmin [|[RX —Y|?.
RER™y X dw

rk(R)S"'mam

max

Let W be a first-order critical point associated with S, (note that from Proposition [2} such W exist). We have
Wyg--- Wy =Us UgmeyxE;(lX, hence, for all W' = (W, ..., W), since tk(Wp; - - - W) < rpnaqz, we have

max

LW)> min |[RX -Y|?=||Wg--- W1 X —-Y|?=LW).
ReRdyxdm
rk(R)<7rmaqx

As a consequence, W is a global minimizer of L.

Conversely, if W is a global minimizer of L, then W is a first-order critical point of L. From Proposition [I] there
exist S C [1,d,] of size r € [0, rmqz] such that Wy --- Wy = USUEEYXE;X, and we have L(W) = tr(Xyy) —
ZiGS A;. But we have from Assumption H, A\; > ... > )\dy, and, since X is invertible (see Lemma, then )\dy > 0.
Therefore, using Proposition [2) W is a global minimizer of L implies that S = [1, 7naz] = Smaz. Hence, W is a
global minimizer of L if and only if W is a first-order critical point of L associated with S;,4-

Let us now prove Proposition

Let W = (Wg, ..., W) be a first-order critical point associated with Sp,az = [1, Tmaz]. Using Proposition there
exist invertible matrices Dy_q € Ré#-1xdu—1 D, e RAxdi and matrices Zy € R(dv—"maz)X(dn-1="Tmaz)
Zy, € Rln=rmaz)x(dn—1=Tmaz) for b € [2, H — 1], and Z; € R(41~"maz)xds guch that:

WH = [U‘Smul ? UQmaa. ZH]thfl—l

o, [ B
1
Irmam 0 —1
Wa=Di| "5 5| Dy Vhe[2,H—1].

Conversely, consider matrices Dy, for h € [1, H — 1] and Z,,, for h € [1, H] as in Proposition and

Wi = [Uspues Uguas Zu1 Dy

A

I, 0
v T

W, = D, {Ugnln,mEYXzXIX}
] D', Vhe[2,H-1].

Since |Smaz| = Tmaz, using Proposition@ we have that W is a first-order critical point associated with S,,4,. This
concludes the proof. O

D Global minimizers and simple strict saddle points (Proof of Proposition
3)
Recall that 7,4, = min(dy, ..., dp).

Let W = (Wy, ..., W) be a first-order critical point of L associated with S of size = tk(Wx -+ - W1) < gz

Case 1: S = [1,7maz] = Smaz- In this case, using Lemma
Wy Wi =Us,.. Us SyxSyyx € argmin |[RX —Y|?.
o RER%y *de
tk(R)<rmax

max
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Moreover, for all W = (W}, ..., W/), since tk(W}; - - - W{) < "oz, we have

LW)> min |RX-Y|?=|Wg- - WiX —Y]|%= L(W).
ReRdyxdm
rk(R)<7rmaqx

As a consequence, W is a global minimizer of L.

Case 2: In order to prove the two remaining statements, we assume that S # [1,7] with 0 < r < ry,4,, and show
that W is not a second-order critical point.

To do this we will find W = (W}, ..., W/) such that co(W, W’) < 0 (see Lemma ). More precisely, we find a

linear trajectory of the form W, (t) = W}, + tW}, such that the second-order coefficient of the asymptotic expansion
of L((Wh(t)),—, g) around t = 0 is negative. This proves that W is not a second-order critical point.

Since § # [1, 7], and the eigenvalues (Ax )¢y 4,7 are distinct and in decreasing order (see Section , there exist
j € Sandi ¢ S such that

A > )\j . (44)
We denote by S = {41, ..., }, hence there exists g € [1, r] such that j = i,,.
Note that,
Us=UY_ Eix
k=1

where E;j, € R%*" is the matrix whose entries are all 0 except the one in position (I, k) which is equal to 1.
Denote by U; the matrix formed by replacing in Us the column corresponding to u; by u; + tu;. More precisely, set

U =Us+tUE;, .

SetV =UE; , € R%*" and

Vi=> Eix+tE;y € R, (45)
k=1
Hence we have
U =Us+tV=UV;. (46)

Considering D € R% >4 as provided by Lemmal|[10} we set

Wi=Dp-1 VISyx S5

O¢dy —r)xds
W/ =0 Vhel[2,H-1]
Wi, =VUEWy .

and for all h € [1, H], Wy, (t) = W}, + tW] . Note that
Wy (t) =Wy +tWy = (I, + tVUS )Wy ,

and therefore
K(t) :==Wg(t) - Wa(t) = (I, +tVUL)K ,

where K = Wy - - - Wa. Using Lemmal10} there exists M € R% %% satisfying K M = 0 such that

Ul'Sy x5y

Wy, =D"1
! [ 0(dy —r)xd,

[+
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Hence,

Wi(t) = D! [ Us Ty x By ] +M+tW]=D"" [ (Us + V1) By x By } +M
O(dy—r)xd, O¢dy—ryxd, '
where M € R%*d= is guch that KM = 0. Therefore
Wt L= WH<t) L Wl(t>
= K()Wi()
T T —1
= (I, +tVUL) (KD—l [ (Us +0tV )2y X ] +KM) .
(dlf’l“)de

From Lemma|10} using that KM = 0 and K = [Us 04, x (4, —r)] D, this becomes

T T -1
Wt - (Idy +tVU§)[US OdyX(dl—r)]D.D_l |: (US +tV )EYXEXX :|

0(d1 —r)Xdg
= (Iy, +tVUHUs(UE + V1) Sy x S5 -

Using that UgUS = I, (see Lemma |§|}, we obtain
Wi = (Us +tV) (UL +tVT)Syx 25 = UBU Sy x S5 - (47)

Recall that our goal is to show that the asymptotic expansion of (48)) around ¢ = 0 has a negative second-order
coefficient. We calculate

L(Wi()por. i) = WX = Y2
=tr (W, ZxxW,) = 2tr(W;Exy) + tr(Syy) - (48)

Let us simplify tr(W; X x x W/I') first. Using (@7)), we have
WiSxx W = DU Sy xS Sxx iy Sxy U UL = U, UFSUUE .
Using @6), UTU = Iy,, > =UANU 7" and the cyclic property of the trace, we obtain
tr (WiSxx W) = b (UViVUTUAUTOVVIUT) =t (ViVEAVYT) = o (W) *A)

We define (Ek,l)kzl..dy,l=l..dy the canonical basis of R% > More precisely, Ek,l € R% >4y has all its entries equal
to 0, except a 1 at position (k, [). Note that for all a, ¢ € [1,d,] and b,d € [1,7]

T _
Ea,bEc,d = 6b,dEa,c )

where 4, ¢ equals 1 if b = d and 0 otherwise. Using the definition of V; in @3) and j = 4,4, for g € [1,r], we have

Vv = (Z Ei 1+ tEi,g> (Z El, o+ tE;-fg>

k=1 k'=1

= < Ekk> +tEj; +tE;j +t°E;; . (49)
keS

37



We also have for all a,b, ¢, d € [1,d,]
Ea,bEC,d = 6b,cEa,d .
Recalling that j € S and ¢ ¢ S, we obtain

(V)2 = ((Z Ek,k) +tE;; +tE;i; + tQEm) ((Z Ekk) +tE;; +tE;j + tZEm)

keS k'eS

— ((Z Ekk> +tE;; + 0+ 0) +(0+0+*FE;; +t°E;,)

keS
+ (tEij +t°Eii + 0+ 0) + 0+ 0+ t°E, j + t'E;.)

= (Z Ek,k) F 21+ 2B + 2 + t(1+ 2B, +t(1 +2)E;, .
keS

Finally, since for all a,b € [1,d,]

EopAh=XNEqp (50)
we have
T T\2 2 2 2
tr (W Sxx W) = tr ((VtVt ) A) =S N AN N (51)
kes

Coming back to (#8)), we calculate the other term tr(W;X xy ). Using (7), and ¥ = UAUT, we obtain
tr(W:Sxy) = tr(UUL'E) = tr(UV,VEUTUAUT) = tr(V,VTA) .
Combining with #9) and (50), we get
tr(WiSxy) = tr(ViVTA) = > A + 20 . (52)
keS
Finally, substituting (51)) and (52)) in (@8), we have
LIWi(t) 1. ) = 1(Syy) + > M+ 21+ )N+ 124 =2 A — 22N
keS keS
= tr(ZYy) — Z Ak + t2(/\j — )\,) + )\it4 .
keS

Using Proposition [T]and recalling (#4), we finally get as ¢ — 0,
LWr(#)—1 g) = LIW) +ct® +o(t?) with c=)\;—); <0.

Therefore, we conclude from Lemma that W = (Wg, ..., W) is not a second-order critical point.

E Strict saddle points with S = [1,7], r < r,,,,, (Proof of Proposition[9)

We refer the reader to Section which introduces the 4 cases proved below. Recall that S = [1,7] and we set
Q=[Ld\S=1[r+1,d,].

In this section, for each vector space R4, we will denote by e,, the m-th element of the canonical basis of R4, That
is, the entries of e,,, € R% are all equal to 0 except for the m-th coordinate which is equal to 1. The size of e,, will
not be ambiguous, once in context, so we do not include it in the notation.

Remark about r» = 0: Using the conventions of Section in this case we have S = () and Q = [1,d,]. Hence Us is
the matrix with no column, Uy = U, and UgUg = Og4,xa,- For example, we still have Iy, = Us Ug + UQUg. We
can easily follow the proofs below with these conventions and see that the result still holds.

38



E.l1 1stcase:ic [2,H —1]andj =1

In this case, the two complementary blocks are X xy Wiy ---W;y1 and W;_q --- Wa. Recall that S = [1,r] and
7 < mae = min(dgy, . ..,dp). Note that tk(Xxy Wy - - - W;q) = tk(Wg - - - W;1) because X xy is of full column
rank (see Assumption 7, in Section2)) .

Since the pivot (¢, ) is not tightened, using Proposition we have

I“k(WH~"Wi+1) >r (53)
I‘k(Wi_l s WQ) >,
Let us first show that there exists k € [r + 1,d,] and ! € [1, d;] such that
Ur(Wg - Wig1) 1 #£0. (54

Indeed, assume by contradiction that for all k € [r +1,d,] and [ € [1,d;] we have
Uf (W -+ Wiga). =0.

Recalling that Q = [1,d,] \ S = [r + 1,d,], we obtain U, Wy --- W41 = 0. Using from Lemma|§|that Iy, =
UsUZ + UqU{,, we have

Wh - Wigr = (UsUE + UQUL) Wi - - Wigq
=UsUSWpg -+ Wigy.

Therefore,
k(W -+ Wig1) = tk(UsUE Wy - - Wiyq).

The latter is impossible since tk(UsUL Wy - - - W;11) < |S| = r, which is not compatible with (53). Therefore (54)
holds.
Since W is a first-order critical point, using Lemma there exists an invertible matrix D € R% *% such that

Wy -+ Wa = [Us, 04, x (d, —r)| D (55)
and since W is associated with S, we have
Wg Wy =UsUS Sy xSy - (56)

Using (53) and D invertible, we have rk(W;_y --- WoD™1) = rk(W;_1 ---Wa) > r. Hence there exists g € [r +
1,d;] such that

(Wi_y---WoD™) , #0.
Therefore, there exists a € R%-1 such that
T -1y _
a (Wi—l - WoD )~,g =1. 67
Recall that k, [ satisfy (54). We define W = W .. WP by

Wi/ﬁ = W] = Bea” € R%xdi-1 where ¢; € R%
W{B =W = DflegUkTnyE;(lx € R¥1*dz  where ey € R%
W/ =0 Vhel2 H]\{i}

39



We set W (t) = (WE(t),..., W/ (t)) such that W/ (t) = Wy, + tW,” for h € [1, H]. We have

WA(t) =Wy (t)- W)
=Wg--- Wi-{-l(Wi + tﬂW{)Wi_l s WQ(Wl + tW{)
:WH"'Wl+t(,6WH'"Wi+1Wz‘/Wi71"'WI+WH"'W2W1,)
+ BtEW - Wi A WIWiy - W W .

Using (33) and (56)), we obtain
Wh(t) = UsUL Sy xSy + t(BWa - WiaW/W,_y - Wy + [Us,0]DD e, UL Sy x 25 )
+ ,Bt2(WH cee Wi+1)_,laT(Wi_1 cee WgDil)nglzzyxz)_(lX .

Using and g € [r + 1,d;], we have
Wh(t) = UsUL Sy x 25 +tBWg - WiaWIWi_y - Wy + BEE(Wg - Wi1) UL Sy x 25 -
Denoting N = Wy -+« Wi s W/W,_y - - - Wy, we have

LWP(1) = WP ()X - Y|?
= |UsUE Sy x 25 5% X =Y +tBNX + B2 (Wi -+ Wig1) UL Sy x D55 X%

Expanding the square, the second-order term co (W, W%)t2 has a coefficient equal to

(W, Wj) = B2[NX|? + 2B tr(Wg - - Wig1) 2Uf SyxExx XX TS Sxy UsUS)
—2Btr(Wir -+ Wi 1) U Sy x D55 XYT)
= B2|NX||> + 28tr(Wg - Wig1) UL SUSUL) — 28t (W -+ Wig1) JULS)
= BINX|]? = 28M\Uf (Wp -+ Wiga).

where the last equality follows from Lemmaand k¢ S,and UTS = AUT and the cyclic property of the trace.
Using Lemma and (34), we have A\ U (Wp - Wit1).; # 0, hence we can choose 3 according to (7), such that
ca(W, W’B) < 0. Therefore, W is not a second-order critical point.

E.2 2ndcase:i= Handj=1

In this case, the two complementary blocks are X xy and Wy_1 - - - Wy, We follow again the same lines as above.
Since the pivot (4, ) is not tightened, using Proposition we have

tk(Wy—q - Wa) >r. (58)
Again, since W is a first-order critical point, using Lemma there exists an invertible matrix D € R%*% such that
Wy -+ Wa = [Us, 04, x (4, —r)| D (59)

and since W is associated with S, we have
Wy - Wy =UsUI Sy x 23 (60)

Using (38) and D invertible, we have rk(Wg_1---WaD™ 1) = rk(Wg_1---Wa) > r. Hence there exists g €
[r + 1, d;] such that

(Wi_y--WoD™) ,#0.
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Therefore, there exists a € R?#-1 such that
a'(Wyg_y---WaD™) ,=1. (61)
We define W)y = W2 . W) by
Wy = Wi = U417 € Rivxdn—1
W” =W = D le,UL Sy x S5 € R*% where ¢, € RH
W, =0 Vhe[2,H-1].
We set W2 (t) = (Wh(t),..., W (t)) such that W/ (t) = Wy, + tW,”, for all h € [1, H]. We have
WA(t) - =Wy (t)--- Wi (1)
=Wy +tBWi )Wy _1 - Wo(Wy + tW))
=Wg---Wi+ t(,BWII_IWH_l Wi+ Wy WQW{) + ﬁtQW;{WH_l cee WQW{ .

Using (59) and (60), then (61) and g € [r + 1,d;], we obtain
WE(t) = UsUL Sy x5 + t(BW)Wr_1 -+ Wi + [Us,0)DD e, UL Sy x 1Y)
+ Bt Upyra” (Wr—1 - WoD™) UL Sy xEYY
= UsUESy xS3 + tBWL W1 -+ Wi + Bt2U, 1 UL Sy xExy -
Denoting by N = W}, Wy _; - -- W1, we have
LW(t)) = [WF()X — Y|
= ||UsUSSy x 23 % X = Y + BN X + Bt2U, 1 UL Sy x S X 12

As previously, expanding the square, we can see that the second-order coefficient co(W, W/B) of the polynomial
L(W?(t)) is given by

c2(W,Wj) = B2|NX|? + 2B tr(Ur 1 UL Sy x Sxx XX TS Sxy UsUS) — 28tr(Up 11U Sy x S XYT)
= B|NX|? + 28 tx(Up 1 UL SUSUE) — 2B8tr(Up UL )
Using the cyclic property of the trace, UL U,.+1 = 0 (see Lemma |§I) and XU, 41 = Ar11U,41, we obtain
es(W, W}) = BINX |2 = 28X, 107, Uy ia
= BINX|* = 28Ar 11 -
Using Lemma@ we have A\, 11 # 0, hence we can choose (3 according to such that co (W, W’ﬂ) < 0. Therefore W
is not a second-order critical point.
E.3 3rdcase:i=Handj€ [2,H—1]

In this case, the two complementary blocks are W;_; --- WX xy and Wg_q---W;1. We follow again the same
lines as above. Since the pivot (i, ) is not tightened, using Proposition 3| we have

I‘k(WH_1 s Wj+1) >7r (62)
rk(Wj,1 s lexy) >r.

Let us first show that there exist k € [r +1,d,] and [ € [1,d;_1] such that
(Wi W), BxyUp #0. (63)
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Indeed, assume by contradiction that for all k € [r +1,d,] and [ € [1,d;_1] we have
(Wi—1--- W), Exy U, = 0.

Recalling that Q = [1,d,] \ S = [r + 1,d,], we obtain W;_; - -- W1 X xyUq = 0, and using, from Lemma|6] that
Ia, = UsUE + UqUJ, we have

W1+ WiSxy = W_1 - WiSxy (UsUS + UgUp)
=W,_1- W1 SxyUsUZ .

Therefore,
rk(W;_1 - W1Exy) = tk(W;_1 -+ W1 ExyUsUZL).

The latter is impossible since rk(W;_q --- WX XyUSUéF) < |S| = r is not compatible with (62). Therefore (63)
holds.

We know that tk(Wy - - - Wj4q) > rk(Wpg - - - Wh) = r. Therefore, depending on the value of k(W - - - W,41), we
distinguish two situations: either rk(Wy - - Wj4q) > rorrk(Wy -+ Wjgq) = 1.

When rk(Wg---Wji1) > 1, since Yxy is of full column rank, we have rk(ExyWg---Wjy1) =
tk(Wy -+ Wjg1) > r. Also, using (62), we have rk(W,;_q---Ws) > rk(W;_1---W1Xxy) > r. Hence, in
this case, the pivot (4, 1) is not tightened either. We have already proved in Section (beware that the pivot is de-
noted (4, 1), not (4, 1), in Section that, when such a pivot is not tightened, W is not a second-order critical point.
This concludes the proof in the case tk(Wg - -- W,11) > 7.

In the rest of the section we assume that tk(Wg - - - W,yq) = 7.

Using (62), we have tk(Wy_1 -+ Wy1) > 7 =1k(Wg - - - W,41). Applying the rank-nullity theorem we obtain

KCI’(WH_l e Wj+1) g_ KCI’(WH cee Wj+1).

Therefore there exists b € R% such that

be Ker(WH-~-Wj+1) (64)
b Ker(Wpy—1---Wjy1) .

Hence, there also exists a € R%#-1 such that
T Wy - Wipb=1. (65)

Recall that k, [ satisfy (63). We define W}y = w2, ... W) by
Wy = Wi = BUkaT € Rlvxdn—

Wi =W/ =bel € RE*di=1 where ¢, € R%—1
w,” =0 vhel[L,H]\ {ij}

We set W (t) = (Wg(t)7 ..., WP(t)) such that W,?(t) =Wy, + tW,’f for h € [1, H]. We have
W(t) s = Wi(t)--- Wi ()
=Wy + tﬁW;{)WH_l s Wj+1(Wj + tWJ{)Wj_l - W
=Wy Wi +t(BWWh_1 - Wi+ Wy - Wy WiW, g - W)
+PBWy - Wi WiW, g - W
Using Proposition|l|and the definition of Wlﬁ above, we obtain
WO(t) = UsUE Sy xSy +t(BWy W1+ Wi+ Wi -+ Wipabel Wiy -+ Wh)
+ BPUa Wi —y -+ Wjp1b(Wi—y -+ W1y,
= UsUg Sy xSy +tBWy W1+ Wi+ B2U (W1 - W),
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where the last equality follows from (64) and (63) .
Denoting N = W, Wy _1 - -- W7, we have

LWP(t)) = (WP ()X - Y]
= |UsULSy x 255 X =Y +tBNX + Bt2U(W,_y--- W), X ||

Using the cyclic property of the trace, and, since k ¢ S, UgUk = 0, we get in this case a second-order coefficient
equal to

(W, W) = B2|[NX|? + 2B tr (Up(Wj—1 -+ W), XX TS Sxy UsUS ) — 2B8tr(Up(Wj—1 - W1)i, Exv)
= B2INX|? = 28(Wj—1--- W), Bxy Uy .

Since from (63), (W;_1 -+ - W1);, X xy Ui # 0, we can choose 3 according to (7)), such that c, (W,W/'B) < 0. There-

fore W is not a second-order critical point.

E.4 4thcase:i,j € [2,H— 1], withi > j

In this case, the two complementary blocks are W;_1 --- W1 XxyWg - -- Wi and W;_y - - - W;11. We follow again
the same lines as above. Since the pivot (4, j) is not tightened, using Proposition we have

rk(Wifl--'qu,l) >r (66)
I‘k(Wj_l Wiy Wy - Wi+1) >Tr.
Let us first show that there exist k € [1,d;] and ! € [1,d;_1] such that
Wiy W), SxyUgUG (Wi -+ Wig1) x # 0. (67)

Indeed, assume by contradiction that, for all k € [1,d;] and ! € [1,d;_1], we have
(W1 Wl)l,AZXYUQUg(WH o Wig1) k= 0.
Then W,_y - - - WlEXyUQUCgWH -+ Wiy1 = 0, and so, using Iy, = UsUZ + UQUg, we would have

Wi WikxyWpy - - Wiy = W1 - Wikixyla Wh -+ Wi
=Wj_1-- WiSxy (UsUE + UQUE) Wi -+ Wiy
=W 1+ WiSxyUsUEWe - Wiy .

Therefore,
rk(Wj,1 tee lexyw[-] ce Wi+1) = l"k(Wj,1 ce lenySUng te Wi+1).

The latter is impossible since tk(W;_1 -+ W1 ExyUsUE Wy --- W;y1) < |S| = r is not compatible with (66).
Therefore holds.

We know that tk(Wg - -- W11) > tk(Wg - - - Wh) = r. Therefore, depending on the value of k(W - - - Wjy1),
we distinguish two situations: either tk(Wg --- Wji1) > rortk(Wg -+ - W) = 7.
When rtk(Wg---Wji1) > r, since Yxy is of full column rank, we have rk(ExyWg--- W) =
I‘k(WH s Wj+1) > r. Also, using @, we have I‘k(Wj,1 s Wg) > I‘k(Wj,1 W Exy Wy - Wi+1) > r.
Hence, in this case, the pivot (j, 1) is not tightened either. We have already proved in Section (beware that the
pivot is denoted (7,1), not (j,1), in Section that, when such a pivot is not tightened, W is not a second-order
critical point. This concludes the proof when rk(Wg - - - Wjt1) > 1.
In the rest of the section we assume that tk(Wg - - - W) =7
Using (66), we have tk(W;_1 - - - W, 41) > r =1k(Wpy - - - Wj41). Applying the rank-nullity theorem, we obtain

Ker(Wi,l s Wj+1) g Ker(WH s Wj+1).
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Therefore there exists b € R% such that

be Ker(WH cee Wj+1) (68)
b ¢ Ker(Wi_l ce Wj+1) .
Hence, there also exists a € R%-1 such that
a"Wi—q - Wigb=1. (69)

Recall that k, [ satisfy (67). We define W}, = (W;f, W) by

W{B = W] = Bera® € R4*di-1 where e, € R%
Wi’ =W/ = bel € RL*%-1 where e; € R%-
Wi’ =0 vhe[1,H]\{i,j} .

We set W2 () = (Wh(t),..., W] (t)) with W/ (t) = W), + tW,” forall h € [1, H]. We have,
W) s = W) W)
= W Wipa (Wi + tBW) Wiy - Wy 1 (W + tWHW, - W,
=Wy Wi+ t(BWr - Wi a W Wiy Wi+ Wi - Wi WIW,_g - W)
+ BEWh - Wi W Wiy - Wi aWiW,_q - W
Using Proposition|l|and the definition of sz above, we obtain
WP (t) = UsUS Sy xSy + t(BWy - Wia WIW;_y -+ Wi + Wy - Wygabel W_y -+ Wh)
+ B (W - - Wi+1).,kaTWi—1 s Wi bW - - W)y,
=UsUESy xS +t8Wg - WiaWiWiqy - Wy + BEWg - Wiga) x(Wi—1 - Wi,

where the last equality follows from (68) and (69) .
Denoting N = Wy - - W1 W/W;_1 - - - W7, we have

LW (1)) = [[W? ()X - Y|?
= [|UsUESy x5 x X — Y +tBNX + B2(Wyr -+ Wigr) e (Wi—y -+ W) X%
The second-order coefficient of L(W”(t)) is equal to

c2(W,Wj) = B*|[NX|]> + 28tr (Wg -+ Wig1) (Wit -+ W), XX S Sxy UsUS)
—2Btr (Wa - Wig1) x(Wj—1--- W), Exy)
= 52“]\7)(”2 + 28 tr ((WH s Wi+1).)k<Wj,1 s Wl)l7,zxy(USUg — Idy>) .

Using, from Lemma@ that UsUZ — 1, 4, = —Uq Ug , and then the cyclic property of the trace, we obtain

c2(W,Wp) = B|INX|* = 28tr (Wg -+ Wig1) ko (Wj—1 -+ Wl)l,.EXYUQUc:g)
= B*INX|* = 28(Wj_y - Wl)l,.EXYUQUg(WH o Wig) k-

©

Since from (©7), (W;_1 - -- Wl)lvEXyUQUg(WH <+ Wit1) .k # 0, we can choose 3 according to (7) such that
co(W, Wj) < 0. Therefore, W is not a second-order critical point.
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F Non-strict saddle points

In this section, we prove the results related to non-strict saddle points (see Section [4.3).

F.1 Proof of Proposition [I1]

To prove Proposition we show that for any W', co(W, W) > 0, which is equivalent to say (see Lemrna that W
is a second-order critical point. We follow the proof strategy sketched in Section[d.3]after the statement of Proposition
and use the same notation introduced therein. Note that a first-order critical point can only be tightened if H > 3.
Therefore, in all of this section we make the assumption H > 3. Recall that m is the number of examples in our
sample, S = [1, 7], with 7 < ryq,. Weset Q@ = [r+1,d,].

Recall also that

22 = 5y x5 X € R X,
and
s2=vav”

is a Singular Value Decomposition of X.!/2, where A € R%*™ is such that A;; = /\; for all i € [1,d,], and
(Ai)i—1.q, are the eigenvalues of X.
We denote

A = diag(v/ A1, ...,/ A) e RTXT (70)

and

A@Q = diag(\/Art1,. ..,/ Aa,) € RE=I*(dy=r) (71)

Recall that, from Section[4.3] co(W,W') = FT + ST .

In what follows, we are going to present a key lemma, then various quick technical lemmas, then we simplify the
expressions of F'T" and ST and conclude the proof of Proposition[TT] Then, we prove all the lemmas of Appendix [FI]
We present a lemma which uses that W is tightened to simplify some products of weight matrices and lighten further
calculations. This is a key lemma as it introduces indices p and ¢ which will be used multiple times in the proof.

Lemma 14. Assume that Assumption H in Section E]hold. Let W = (Wy,...,W1) be a first-order critical point of
L verifying the hypotheses of Proposition andr, S, Q, (Zy)n=1..g as in Proposition If W is tightened, then,
there exist p € [3, H] and q € [1,min(p — 1, H — 2)] such that:

Vie[l,p—1], Wy Wi = [Us, 0] (72)
Vielp H), Wi Ws = [ " ] 73)
Vielg+ 1L, H], Zi1ZoZSxyUp =0 (74)
Vie[Lgl, Wit Wi = H 8] . (75)

The proof of Lemma|[T4]is in Appendix [F.1.5]

F.1.1 Useful technical lemmas

We now present technical lemmas which will be useful in Sections [F.1.2} [F.1.3|and[F.1.4] In all of these Lemmas, we
have S = [1,r] and Q = [r + 1,d,], and Assumption H hold.
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Lemma 15. We have
SxyUg = XVpA@)

The proof of Lemma|[I3]is in Appendix [F.1.6

Lemma 16. Let n be a positive integer. For any matrices A € R%*™ and B € R™ " we have
|A+UsB|* = [|lUS A+ BII* + [[UGAI* -

The proof of Lemma|[I6]is in Appendix [F.1.7]

Lemma 17. Let n be any positive integer. For any matrices A € R"*" and B € R"*(@=") we have:
T —1 T
(AULSy x5 X, BVEY =0,
The proof of Lemma|[I7]is in Appendix [F.1.8]

Lemma 18. Ler n be any positive integer. Let W = (W, ..., W1) be a first-order critical point of L verifying the
hypotheses of Proposition andr, S, Q, (Zn)h=1..m asin Proposition If W is tightened, then, for q as in Lemma
for any matrices A € R"*(4a=") and B € R™"*(4v=") e have:

(AZy--- 222, X, BVS) =0.
The proof of Lemma [T8§]is in Appendix [F.1.9]

Lemma 19. For any matrix A € R4 =")%" ype haye

roody
JAUS Sy x S5 X2 =30 Y (ha = M) (Apra) + [[AQ A
a=1b=r+1

The proof of Lemma|[T9]is in Appendix [F.1.10}

Lemma 20. Let W = (W, ..., W) be a first-order critical point associated with S. For any matrix A € R4z,
we have
(AX , Wy W1 X -Y)=(A, -UqUb%Syx) .

The proof of Lemma[20]is in Appendix [F.1.11}

F.1.2 Simplifying F'T

In this section and the next one, we simplify the expressions of F'T" and ST as defined in (I4) and (I3). In order to
decompose FT = a; + || Az||? + || A3]|? + || A4]|?, with a; > 0, we first simplify the terms T3, for i € [[1, H], defined
in (I2). Let us first consider W tightened satisfying the hypotheses of Proposition[T1] and p and ¢ defined as in Lemma
The simplification of 7; depends on the position of ¢ with regard to 1, ¢, p and H. We define J; = [p, H — 1],
Jo=1[g+1,p—1] and J5 = [2,4].

Note that, according to the convention in Section [2] these sets could be empty.

cifp=H,J; =0
cifg=p—1,J0=10
L4 ifq:LJg:@ .

Note also that {1}, Js3, Jo, J1, { H} are disjoint and {1} U J3 U Jo U J; U{H} = [1, H].
Depending on the position of ¢, we need to distinguish four cases, in order to simplify 7;.
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Lemma 21. Assume that Assumption H in Section 2| hold. Let W = (Wy,...,W1) be a first-order critical point
satisfying the hypotheses of Proposition and r, S, Q, (Zp)r=1..x as in Proposition Let i € [1,H]. For any

W = Wy, ...,W{), recall that , as defined in (12),
T,=Wg - WA W/W,_1--- W1 X .
If W is tightened, then, for p and q as defined in Lemma[I4|and J1,J2, J3 as defined above, we have
e Fori=H:

T = (Wi). 12U Sy xSy x X

e fori e Jy:

T, = UsW)110US Sy x 255 X + U ZuZr -1 Zica(W)r 1.4, 10U Sy x B X

e Fori € JoU J3:

Ti = US(W;)I:T,LTUgZYXZ;(lxX + US(WZ‘/)I:T,T+1:di,1 Zifl T ZQZlX
e Fori=1:
Ty =Us(W{)1.p. X

The proof of Lemma [2T]is in Appendix [F.1.12]
We now simplify F'T'. Substituting the formulas of Lemma21]in (T4) we have

2
FT =

H
> T
i=1
= H(Wllr{),lrngyxz;(g(X

+ Z (UsW w10 Us Sy xExx X + U0 ZuZp—1+ Zisa(W])rs1:0010US Sy x B 5 X)
i€Jy

+ Y (UsW)1r1US Sy x S5 X + UsW )1 irca, Zior -+ ZaZ1 X) + Us(W])1r X

1€JaUJ3

FT can be identified with a term as || A + Us B||? if we take

A= Wi) 12UESy xS X + Y U ZuZu 1+ Zisa(W))ri1:a, 1 UE Sy x S5 X
ey

and

B = Z(W{)l:r,l:rngyxz;(lxX
i€Jy

+ Y (WD UESy x B35 X + W) trirgria, s Zicr -+ Z2Z1 X) + (W1, X

i€ JoUJ3

Applying Lemma|[l6] F'T" becomes:

FT =||U§A+ B|* + |USA|?
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USWi) 12Uy xS 5% X + Z UlUoZuZu—1 Zisai(W])ri1.4,10US Sy xS X

i€y
+ ) (W11 UE By x B X
i€Jy
2
+ Z N1 Us Sy xS X + W trri v 1 Zie1 - ZoZ7 X)) + (W1, X
i€ JoUJ3

UG Win) 10U Sy xS X + Y UbUoZuZu -1+ Zigr(W])ri1:a,1:-US By x B X
i€Jr

Using Lemma@ we have UgUQ =0 and UQT)UQ = I4,-r, hence we can write

FT =FT\ + FT»,

where
FTy = U W) a0 US Sy x B35 X + > (W)1r1:UE Sy x S5 X
i€Jy
2
+ Y (WD UESy xS X + Wity Zica -+ Z2Z1X) + (W1 X ||

1€JaUJ3

and
2
FTy = |\US(Wi) 12U Sy xS X + Y ZuZu1 - Zia(W)ry1:a,12US Sy xSk X
i€y

Let us first simplify F'77.

Recall that m is the number of examples in our sample, V' € R™*™ is the orthogonal matrix defined in (I) and
Q=1[r+1,d,]. WesetS' =SU[dy, +1,m] = [1,r]U[dy, + 1, m] such that S’ U Q = [1,m].
Reordering the terms and, since V' is orthogonal, using I,, = VVT = Vs, VT + ngg , we have

FT1:H<U§<W;I).,1;T+ > (W;)L,«,ln) USTyxExx X

1€J1UJaUJ3

+Z Nirrttidiy Zio1 - ZoZh X

i€J2
2

+ (Z(W{)lzr,rﬂ:di_lzi—l o ZaZn X + (W{)lzr,»X> (Vs V + Vo)

i€J3

Since for ¢ € J,, we have ¢ — 1 > ¢, we denote

N = (W)iwritd 1 Zi1 -+ Zgsr s
€2

Recall that, using the convention in SectionEI, fori —1=gq,wehave Z;_1---Zy1 = Iy, ;.
We also denote

M= W)iwrird Zio1 - ZaZ1 XV + (W) X Ve
i€Js3
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T =Y Wtrritdi Zio1 - Z2aZ1 XV + (W1 XV
i€J3

L= Ug(WI/{).,l:r + Z (Wi/)lzr,l:r .

i€ J1UJ2UJ3

Therefore, we obtain
FT) = |LULSy x S35 X + NZ - 2o 20X + JVE + MVE|

— ||[LUESy x S35 X + NZy - 220X + JVE | + | MVE |
+2(LUESyx SN X + N2y 2o 20X + JVE, , MV]) .

Using Lemmaand Lemma and VQT Vs, = 0 (since V is orthogonal), the cross-product is equal to zero.
Noting also that since V' is orthogonal | MV [|? = tr(MVJ VoM™) = tr(MM7™) = || M||*> = || M||?, we have

FT) = |[LULSyx S35 X + NZ, - 2,2, X + JVE|* + | M7
= || A2]|* + || Aal?
where
Ay = LUESyxX3x X + NZ, - 227, X + JVE,
=US(Wi) 12 US Sy xS X + > (W12 US Sy x Bk X
i€Jy
+ 3 (W11 USSy xS X + W) 1irpsrar, Zic1 -+ 2221 X)
i€Ja
+ Z (W10 US Sy xEx % X + W) trri1:di 1 Zio1 -+ Z2Z1 XV V) + (W) 1., X VsV, (80)
i€J3 .
Ay:=MT = (Z(W;)l:r,rﬂ;duzi_l - Z2 21 X Vg + (W{)I:T},XVQ> : (81)
i€J3
Let us now simplify F'T5.
We have F'Ty = HAUEZYXZ)_(lxX 2, with

A= US(WII'-I).,LT" + Z ZaZg_1--- Zi+1(Wi/)T+1:di,1:r c R(dyfr)xr
i€Jy

Hence, using Lemma|[T9] we have

T dy
Ty = Z Z (/\a - /\b)(Ab—na)z + HA(Q)AH2

a=1b=r+1
T dy 2
=> ) (e <UbT Wi)oa+ > (Z8)or. Zr1 - ZZ»H(W;»HW)
a=1b=r+1 i€Jy

2
+

A(Q) <UC€(W}I),17 + Z ZHZH—I e Zi-i-l(Wi/)T‘-‘rl:di,l:'r')
i€y

= a1+ || 43,
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where
T dy 2
ap = Z Z (Aa = Ap) <U1;T(W;—I)a + Z(ZH)bfr,.ZHfl ok Zi+1(Wi/)r+1:di,a>
= i€Jy

As = A@ (Ug(W{q).,m + Z ZuaZg—1--- Zi+1(W7;/)r+1:di,1:r>
i€y

Finally,

FT = FT, + FT,
= a1 + [|[A2]? + [|4s]” + || A4l?,

where a1, Az, Az, Ay are defined in (82)), (80), (83), (8T). Notice that, since \; > --- > g, , we have

0120.

F.1.3 Simplifying ST

(82)

(83)

(84)

(85)

In this section, we prove that ST = —2 (A3, A4), where ST, A3 and Ay are defined in (I3)), (83) and (8T). In order to
do so, we first state a lemma that simplifies the terms 7; ; defined in (I3). We remind that the sets .J, J, and .J5 are

defined at the beginning of Section

Lemma 22. Assume that Assumption H in Section @ hold. Let W = (W, --- ,W1) be a first-order critical point
satisfying the hypotheses ofProposition andr, S, Q, (Zp)n=1..5 defined as in Proposition Let (i,7) € [1, H]?

with i > j. Forany W = (Wp,, ..., W), recall that , as defined in (13),
Ti; = <WH WA WIWiq - Wj+1WJ{Wj_1 WX, Wy WX — Y> .

If W is tightened, then, for p and q as defined in Lemma[I4|and J1,J2, J3 as defined above, we have

e Fori=H:
- Forj € Js:
T
Thaj;=~— <A(Q)U5(W}1).,1:r s (W tirrgr:ay 1 Zj1 -+ Z2Z1 X Vq) > .
- Forj=1:

Tia = — (AQUEWh) e, (Wi X))
- Forj e J1 U Jy:
Ty =0.
e Fori € Jy:

— Forj € Js:

J

T
Ty == (ADZuZu s Zia Wit s (Wtrwstia, o Zim1 -+ 22 20XVg) )

- Forj=1:

Ti1=— <A(Q)ZHZH—1 o Zit W) st 1r ((W{)1:T,AXVQ)T> .
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- Forj e J1 U Jy:
T;;=0. 91)
e Fori € Jy U Js, forall j < i, we have
T;;=0. (92)

The proof of Lemma[22]is in Appendix [F.1.13]
Let us now prove that ST = —2 (A3, A4). We remind that [1, H] = {H} U J; U Jo U J3 U {1} and separate the sum
appearing in (I3) accordingly.
We then substitute the formulas of Lemma[22]in (T3) and obtain

ST=2 Y T

H>i>j>1

i-1
=2 Z TH,j+ZTH,j+TH,1+Z Z Ti,jJrZZTi,jJrZTi,lJr Z ZT”

JjE€J1UJ2 JEJ3 i€Jy jEJ1LI!J2, i€Jy jEJ3 i€Jy 1€JaUJs j=1
1<t

=2 Z <A(Q)UC€(W}{).,1!T ) ((Wj{)l:r,rJrl:djlej*l T Z2ZlXVQ)T>
J€J3

2 (AQUEWH) v, (W]rer, XV)T)

-2 Z Z <A(Q)ZHZH71 o Zign (W)t 1o ((W;)1:r,r+1:dj,lzjf1 e ZQZIXVQ)T>

i€Jy jeEJ3
—2 Z <A(Q)ZHZH—1 e Zi+1(Wi/)r+1:di,1:r ) ((Wll)lir,AXVQ)T>
i€y
T
= -2 <A(Q)U5(W;{),lr ) Z (WJ/‘)I:T,rJrl:dj,l ijl o Z2Z1XVQ + (W{)lzr,.XVQ >
JEJ3
T
-2 <A(Q) Z ZHZH 1 Zi+1(Wi/)T+1:di,1:T7 Z (Wj{)l:r,'f-‘rl:djflzj_l T Z2Z1XVQ + (W{)17XVQ >
i€y JjEJ3
-2 <A(Q) (UQ Wi) o1+ Z Iyl - Zi+1(Wi/)r+1:di,1:r> )
i€Jy
T
Ve, rt1: dj_1 -1 2221 X Vg + (Wi, X Vo >
JEJ3
-2 <A37A4 ) (93)

where we remind that A3 and A4 are defined in (83) and (§T).

F.1.4 Concluding the proof of Proposition 1]

Using the simplifications (84) and (93] above, for any W satisfying the hypotheses of Proposition[TT} if W is tightened,
then for any W',

c2(W,W') = FT + ST
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= a1 + || A2|? + [ As]1” + [ Aal* — 2 (45, Ag)
= a1 + || A2|* + [[ A5 — Ay .

Using (83), we find co(W, W) > 0.
Therefore, W = (Wpy, ..., Wj) is a second-order critical point.

F.1.5 Proof of Lemmali4]

First note that, for » = 0, we can easily follow the same proof and see that the result still holds with the conventions
adopted in Section 2}

Let us prove (72).

Consider the pivot (4,7) = (2,1). Its complementary blocks are X xy Wy --- W3 and Iz, . Since W is tightened
and tk(Iy,) = d1 > Tmaa > 7, We have tk(Exy Wy - W3) = r. Since X xy is full-column rank, we obtain
I‘k(WH"~W3) =T.

Let p € [3, H] be the largest index such that

A (Wi - W) =7 (94)

Using (8) and (I0), we have Wy --- W), = [Us , UgZuZy—1- -+ Z,).
Since rk(Wg - - Wp) = r and since the columns of UgZyZy_1---Z, are in the vector space spanned by the
columns of U (which are orthogonal to the columns of Us), (94) implies

ZaZg—1-Zp,=0.
Therefore,
Wy -W,=[Us, 0] .
Using (10), foralli € [1,p — 1],

Wi Wisr = Wy - W) (Wy_y - Wig)

1 0

=1[Us, 0] |7
[Us ]0 Zp_1- Zig1

:[U570]

This proves (72).

Let us prove (73).

We consider the pivot (p,1). Its complementary blocks are Xxy Wiy -+ Wyy1 and Wy_q --- Wa. We have, by
definition of p, tk(Wy - - - Wp41) > r. Therefore, since X xy is full-column rank, we have rk(Xxy Wy - - Wpy1) =
rk(Wg - - Wpy1) > r. Note that this holds both for p = H and for p < H. Hence, since W is tightened, the second
complementary block is of rank r, i.e.

rk(Wy_y--- W) =7, ©5)
Using (T0), we also have W,,_; - -- Wy = I, 0
5 p— 0 Zp—l . Z2 .

Then, since rk(W,_1 - -- Ws) = r, we have Z,,_; - -- Z = 0 and

I, 0
Woowa=[ 4 0.

Using (10) again, for all ¢ € [p, H],

Wi Wo= (W1 W) (Wy_y---Wa)
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This proves (73).
Let us now prove (74).
Using Proposition [[] Lemma[]and Lemmal[6} we have

tk(Wy_1 - WiExy) > tk(Wy - - W1 Exy) = tk(UsUL %) > tk(UZ (UsULI L)Y Us) = 1k(I,) = 7.

Using (73) for i = p, we also have rk(W,_1 - -- W1 Xxy ) < rtk(W,_1 - -- W) = r. Hence, tk(W,,_1 - -- W1 Exy) =
T
Notice that, considering the tightened pivot (H, H — 1), since rk(l4, ,) = dg—1 > Tmaez > 7, We obtain
I‘k(WH,Q cee lexy) =T.

We consider g € [1, min(p — 1, H — 2)] the smallest index such that rk(W, --- W1 Xxy) = r.

Using (T0) and (@), we have

pr— [ ng
Wq..-leXY_ I Zq..-ZQZlEXY
r MUE
- AU
i Zq...ZgzlzXY

Since tk(W, - -- W1Xxy) = r, every row of Z,, - - - Zo Z1 Z xy lies in Vec(U{,...,UL), hence we have
Zy ZaZiSxyUg =0
Finally, we conclude that, for all i € [q + 1, H],
Ziae TaZaSxyUq = Zir -+ Zgs1Zg - ZoZaSxyUq

=Zi 1 Zgi10
=0.

This proves (74).

Let us now prove (75).

Consider the pivot (H, ¢). Its complementary blocks are W,_1 --- W1 X xy and Wy _1 - - - W,41. We have, by defi-
nition of g, tk(W,_1 - - - W1X xy) > r. Hence, since W is tightened, the other complementary block is of rank r, i.e.

tk(Wy_1 -+ Wyy1) = r. Using (10), we have

I, 0

WH—l"'Wq+1|: 0 ZH1~"Zq+1:|'

Therefore, Zg_1 -+ Zg41 = 0 and

I, 0
W= 50

Finally, using (I0), for all i € [1, ¢,

Wh 1 Wi =Wy_1-- Wy Wy - Wiy
_[1, 0] [L 0
“lo o||0 Z,Zin
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—

This proves (73)) and concludes the proof.

F.1.6 Proof of Lemmal[I3
Recall that 21/2 = EYXE;(lxX. We have
Yxy = XYT
= xxT(xxT)-1xyT
= X(zH)T.

Using (1), we obtain
Yxy = XVATUT,

and, since U is orthogonal, we have
YxyU = XVAT.

Restricting the equality to the columns in (), we obtain
YxyUg = XVoA@ |
where A(@) is defined in (7T). This concludes the proof.

F.1.7 Proof of Lemmal[l6
Let A € R%>" and B € R"*". We have
|A+UsB|* = | Al + [UsBII* +2(A, UsB)
=tr(ATA) +tr(B"ULUsB) + 2 (U A, B) .
Using Lemmal6} this becomes
A+ UsB|?* = tr (AT(UsU§ + UqU})A) + tr (B"B) +2(US A, B)

=tr(ATUQUSHA) + tr(A"UsUS A) + tr(B"B) + 2(U{ A, B)

= |USAI? + |USA|I* + | BI* +2(Us A, B)

= [UGAIP + lUSA + BJ* .

F.1.8 Proof of Lemma[l7

Recall that ©1/2 = Yy y %L X has a Singular Value Decomposition X'/ = UAVT (see (I)). Hence, we have
Y12V = UA and therefore ¥1/2Vy = UgA(@), where A(Q) is defined in (7).
As a consequence,

ULy x 235 XV = ULRY21,
=UiUoA@
= 0 5
where the last equality follows from Lemmal6} Finally, we obtain for any A € R"*", B € R"*(dy=r)
(AUGSy xS\ X, BV ) = tr(AUS Sy xSy XV BT)
=0.
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F.1.9 Proof of Lemma 1§
Using Lemma we have X xy Ug = XVoA(@), then replacing this formula in (74) with i = ¢ + 1, we have

Zy ZoZh XVA@D = 0.
Since A(@) is diagonal and its diagonal elements are non-zero, it is invertible, hence
Zg- 2221 XVgo=0.
Finally, for any matrices A € R"*(da=7) and B € R"*(dv=7) we have
(AZy- 2220 X , BVS ) =tr(AZy - 222, XVoB")
=0.
F.1.10 Proof of Lemma[19]

Recall that A(S) is defined in (70) and ¥ = UAU”. Let A € R(%~")%" we have

|AUESy xSk X||* = tr(AUESUs AT)
= tr(A diag(\i, ..., \)AT)

= [as ]
rdy
== Z Z )\a(Ab—r,a)2
a=1b=r+1
roody v d,
= Z Z ()\a - )\b)(Ab—r,a)2 + Z Z Ab(14b—r,a)2
a=1b=r+1 a=1b=r+1
rdy
=D > Ca = X)(Ap—ra)® + [[AQ AP
a=1b=r+1

F.1.11 Proof of Lemma20]

Let W = (W, ..., W) be a first-order critical point associated with S verifying the hypotheses of Proposition
and let A € R% 4=, Using (1), (9), and Lemma@ we have
(AX , Wy WX -Y)=(A, Wg--- W XX -YXT)
= (A, UsULSy xS XXT — Sy x)
= (A, UsUsZyx — Zyx)
=(A, —UqUlSyx) .

F.1.12 Proof of Lemma21]

Let W = (Wy,---, W) be a tightened first-order critical point satisfying the hypotheses of Proposition and r,
S, Q, (Zp)h=1..n defined as in Proposition Since W satisfies the hypotheses of Proposition we are going to
use all the equations (8), (9), (I0) and (I1) defined by these hypotheses and (72)), (73), and of Lemma|[I4]
Let W = (W},,...,W/) and i € [1, H]. Recall that 7} is defined in (I2) and J; = [p, H — 1], Jo = [¢ + 1,p — 1],
Js = [2, q]], where p and q are defined as in Lemma
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Consider the case : = H.

Substituting and (9) in (12), we have
Ty = Wl (Wi_1 - Wo)W1 X

oo [ L 0] ULy x25
Wil o || R ] x

:IVA{ ngﬁfz§& }X

= (W) 12 UESy x 25 X .
This proves (76).

Consider now the case i € J;.

Substituting (8), (T0), (73) and (9), in (12), we have, for i € J;
Ti = Wur(Wpg—1- Wip) W] (Wiy - Wo)W1 X
o Ir O Ir 0 /
—[Us, Ung][ . ZHl}.'.[ . }ﬂ@ [

ngszxk]X

o &~
o O
o
Se!
b<
P
!
N
><)—'
b

0
=[Us, UgZuZpg—1-+-Zit1] (W{).,l;rUgnyZ}lxX
=Us(W)1r12 U Sy xS X +U0Za 21 Zisa (W) ri1:a:1-US Sy xS X -

=Us, UgZuZy—1--Zis1)| W} {

Note that the above calculations are still valid in the case i = H — 1. In this case using the convention in Section 2]
W1 Wipn =14, ,and Zg_y - Zip1 = Iq, .
This proves (77).

Consider now the case i € Jo U J; = [2,p — 1].
Substituting (72), (I0) and (), in (I2), we have, for i € J, U J3,

Ti = Wy - Wi )W/ (Wiey - W)W X
_ L0 I, 0 UfSyx Ty
N R AN IR b
Ursy x234
=Us(W))1.r SEVXSXX | X
(W), [ Zi 1+ Laln
= UsW))1r10US Sy xSk X + UsW)trrsriaiy Zior -+ ZoZ1 X
Note that the above calculations are still valid in the case ¢ = 2. In this case, using the conventions of Section |ZL
Wi—l s W2 = Id1 and Zi—l tee Z2 = Idz—r~
This proves (73).

Consider finally the case i = 1.
Substituting (72) in (12), we have
Ty = Wg - W2)WiX
=[Us, 0] WX
=Us(W{)1.. X .
This proves (79).

Note that, using the conventions of Section the proof still holds for » = 0. In this case, T; = 0, V4.
This concludes the proof.
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F.1.13 Proof of Lemma22]

Let W = (W, --- , W) be a tightened first-order critical point satisfying the hypotheses of Proposition and r,
S, Q, (Zn)h=1..u defined as in Proposition[L1] Since W satisfies the hypotheses of Proposition[L1] we are going to

use all the equations (8), (@), (I0) and (TT)) defined by these hypotheses and (72), (73), (74) and (73) of Lemma[T4]
Let W = (Wy,,...,W/) and (i, ) € [1, H]? with i > j. Recall that T ; is defined in (I3) and J; = [p, H — 1],
Jo =g+ 1,p—1], J3 = [2,q], where p and q are defined as in Lemma [14}

Consider the case i € {H} U J; and j € J; U J, with i > j.
Applying Lemma 20]to (T3 and using (I0) and (9), we obtain

Ti,j = <WH o Wi+1Wi’Wi71 .. 'Wj+1WJ/‘Wj71 WX , Wg--- W1 X — Y>
= (Wi WisaWiWi_y -+ W WW,_ - Wi, —UgUdSyx)
= —t{r (WH ce Wi+1W1‘/Wi71 te Wj+1Wj{Wj,1 te lenyQUg)

, , ULisU, T
= —tr{ Wi WordWilWorr - W Wi 7 205U | Y9 )

Using Lemma([7]and since j > ¢ + 1, using (74}, we obtain
Ti; = 0.

This proves (88) and (@T).

Consider now the case i = H and j € Js.
Applying Lemma (20) to (T3) and using (73), (I0) and (@), we obtain
Trj=WuWpg_y-- Wi WiW; - W X, Wy - Wi X — Y)
= (WyuWh_1-+ Wi aWjW,_1--- W1, —UgU) Sy x)

T —1
- <W1’q { L0 } W/ [ Us 2y x¥xx ] , UQU£EYX>

0 0 Zy 2oy
_ , | I, 0 , UEEUQUg
= (WH [ 0 0 ]Wi [ Zi1e ZoZaSxy UQUG | )

Using Lemma([T3] Lemma [7]and the cyclic property of the trace, we have

0
THJ' = —tr ((W]/{).,l:r(Wj{)lzr,. |: Zj—l . Z221XVQA(Q)UC€ :|>

— ((Wl’q),,m(Wf;)m,m:d].flZj,1 S ZQZIXVQA(@UC?;)

= —tr (A(Q)Ug(W,’{)_J:T(WJ{)1:m+1:d]._1Zj_l S Z2leVQ)

=- <A(Q)U5(Wﬁ).,1:rv ((Wg{)1:r,r+1:dj,1zj—1"'ZzleVQ)T> :
This proves (86).

Consider now the case i = H and j = 1.
Applying Lemma 20| to (T3) and using (73)) and Lemma T3] we obtain

Ty = WyuWy_1- - WaW( X, Wg--- WX —Y)
= (WyWy_1--- WoW] , —UqU) Sy x)
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= - <W,’, [ 18“ 8 } Wi, UQ(XVQA<Q>)T>
< )1:7‘,. ) UQA(Q)V(;XT>
T
= —(AQUE W), VEXT (W)
T
( Ve s (W1 XVQ))
This proves (87).

Consider now the case i € J; and j € Js.
Applying Lemma 20]to (T3 and using (8), (I0) and (9) , we obtain
Toj = (Wi Wi s WWi_y -+ Wya WIW; g - WX, Wy WX — )
= (Wi Wi\ W Wiy Wy WIW - Wi, —UUE Sy )

Ul Sy xSy
=— <[U5, UgZuZu—1 ZigA| WiWi_y -+ Wi W] [ Zf,f-)?zfz)i ] , UQU52XY>

= — U U . WW:_y- Wi W/ [’SZ U,UZx

= —tr ([ S QZHZH—I T Zl-i-l] i Vi—-1 J+1VVj |: Zj_1 YD QYQ

= — T DR . ! . ... . ! g

- ([LQLS’ UoUaZuZu-y- Zipa ] WiWia - Wi W) [ Zi- TSy Uq | )

Using Lemmal6]and Lemma([7} we have

s s = — ... . I . ... . I O
= —tr (ZHZH—l o Zia (W) pg1:a,, Wi -+ Wj—&—l(W]{).,r—&-l:dj,le—l e Z2Z12XYUQ) . (96)

Here, since W is tightened, taking the tightened pivot (7, j) we have two possible cases: either tk(W;_1 -+ - W;41) =r
or tk(Wj_q-- - W1XxyWg --- Wit1) = r . We treat the two cases separately.
In the first case, using (I0) we have

I, 0 I, 0
W W= [ 5 2 [6 ]

L 0
0 Zia-Zjpa |
Hence, tk(W;_1 - - - Wj41) = r implies Z;_1 - - - Zj+1 = 0 and we conclude that
I, 0
Wiy Wy = [ 0 o ] .
Then, using this last equality, (96) becomes
/ I, 0 /
Tij=—tr\ ZuZu—1- Zixa(W])r+1.4,.. 0 0 (W3) . r1:d; 1 Zj—1++ Z2aZ1 8 xyUq
=—tr (ZuZu-1 ZisaOW))riv:ds 1o W) 1imrg1:a, 1 Zj—1 -+ Z2Z15xyUq) - 7

In the second case, we have tk(W;_; --- W1 ExyWg - - Wi41) = r. Let us prove that (|§_7[) also holds in this case.
Using (10), @), (8), Lemma[7jand S = [1, 7], we have

Wi - WilixyWy - Wip
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_| Us® Us, UgZuZi—r - Zis]
| Z1 - TeZiSxy s, UgZuZp_ i1
N UlSUs USUoZuZy—1- Zita
| Zjr D2 NxyUs  Zj1--ZoZiNxyUQZuZy 1 Ziga ]
_ [ diag(A,-- 0\ 0
| Zj—1 221 XxyUs Zj1--Z2Z1Y¥xyUqgZuZpy 1 Zip1 ] '

Therefore since tk(W;_1 -- - W1 XxyWg --- Wit1) = rand forall ¢ € [1,r], A\; # 0, we must have
Zi 1221 YxyUqgZuZy 1+ Ziy1=0. (98)
Using the above equation, and the cyclic property of the trace, (96) becomes

T;; = —tr (ZHZH—1 o Zia W) pg1:a;, Wia -+ Wj—&-l(W]{).,r—&-l:dj,le—l e Z2Z12XYUQ)
=—tr(Zj—1- Z2Z1SxvU@ZuZi—-1 -+ Ziga(W])ri1:a, Wit - Wj+1(W;).,r+1;d_7-_1)
=0.

We can use (98)) again to write the equation 7; ; = 0 in the format of equation (97). Indeed, we have

—tr (ZHZH—1 e Z¢+1(W{)r+1:di,1;r(W]{)lzr,rﬂ:dj,lZj—l EE ZQleXYUQ)
= —tr (Zj,1 cee ZQlenyQZHZH—l T Zi+1(Wil)r+1:di,1:T(W]{)1:r,r+l:d_j_1)

Therefore, in both cases we have
Ty =—tr (ZuZpg—1--- Zia(W])rveds 1r W) tirr v, Zjo1 -+ Z2Z:1SxyUq) .

Using Lemma|[T3] it becomes

T;; = —tr (ZHZH—l o Zia W) rgveds 1r Wit vy, Zj—1 -+ - ZzleVQA(Q))
= —tr (A(Q)ZHZH—l K Zi+1(Wi/)r-‘,-l:di,I:T(W]{)l:r,r—&-l:dj,lZj—l e Z2Z1XVQ)
=— <A(Q)ZHZH71 e Zit W) 10, 1r ((W;)lzr,r+1:dj,1ijl e ZQZlXVQ)T> .
This proves (89).

Consider now the casei € J; and j = 1.
Using Lemma[20]to simplify (I3), we have

Tin= Wy WipaW/W;_y - - WoaW( X, Wg--- W1 X -Y)
= (Wi Wia WIW,y - WoW , —UgUESyx) .
Using Lemma|[T3|and substituting (8), (I0), and since ¢ > p, using , this becomes

I, 0
0 0

,<A<Q> [U3Us , USUZuZ 1+ Zisa] (WD) 1 (W) (XVQ)T> .

Ty1=— <[Us L UQZu Zr—r -+ Ziga| W { } Wi, Ug(X VQA<Q>>T>

Using Lemmal6] it becomes

Ty = — <A(Q) 0, ZuZu—1- Ziza] (W]) 1.0 (W1, (XVQ)T>
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~(ADZuZu s Zea Vv s (W1 XVR)T)
This proves (90).

Consider now the case i € Jo U J; = [2,p— 1] and j < i.
Applying Lemma [20to (I3)) and , since i < p, using (72), we obtain
Tij=Wpg- Wi W W,;_y - Wi WiW - Wi X, Wy - Wi X — Y)

=Wy WiaWWi_y - W WW,_y - Wi, —UqUSSyx)

= —tr([Us , )W/ Wiy W aWW,_1 - WiExyUgUQ)
The cyclic property of the trace and Lemma6|lead to

Tij = —tr([UUs , OOW/ Wiy W aWiW,_y - WiExy Ug)
=0.

This proves (92) and concludes the proof.
Note that, with the convention of Section the proof still holds for r = 0. In this case, T; ; = 0,Vi > j.

F.2 Proof of Proposition

Let W = (Wy, ..., W) be a tightened first-order critical point associated with & = [1, 7] with 7 < 7,4,. Then,
using Propositionthere exist invertible matrices Dy € Ré#-1Xdu-1 D, € R¥%* and matrices Zy €
R(dy=r)x(da—1=7) Zy € R(G1=m)xds and 7, € R@n=)x(dn-1=7) for h € [2,H — 1]] such that if we denote
WH =WyDy_1, W1 Dy W, and Wh =D, "W, Dy,_, forall h € [2,H — 1], and W = (WH, .. Wl) then

Wy = [Us,UgZ)

W - {U‘? EYZTE?x}

— I, 0
Wh [0 Zh:| Vhe[2,H —1]

Wi Wy = [Us, 0] .

Then, due to Lemmal 2}, and since W is a first-order critical point, we have that W is a first-order critical point. We also
have WH - Wy = Wy - - - Wi, Hence, according to ProposmonIW is also associated with S.

Since W is tightened and multiplication by invertible matrices does not change the rank, W is also tightened. Hence
W satisfies the hypotheses of Proposmon and therefore is a second-order critical point. Finally, using Lemma
we conclude that W is a second-order critical point. Since r < 7,4, and X is invertible (Lemmafd)), using Proposition
we have

Tmazx

L(W) = tI‘(Zyy) — Z >\i > tr(zyy) — Z )\l .
i=1 ;
Therefore, W is not a global minimizer, hence W is a non-strict saddle point.
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