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The ultraconfined light of plasmonic modes put their effective wavelength close to the mean free
path of electrons inside the metal electron gas. The Drude model, which can not take the repulsive
interactions of electrons into account, then clearly begins to show its limits. In an intermediate length
scale where a full quantum treatment is computationally prohibitive, the semiclassical hydrodynamic
model, instrinsically non-local, has proven successful. Here we generalize the expression for the
absorption volume density and the reciprocity theorem in the framework of this hydrodynamic
model. We validate numerically these generalized theorems and show that using classical expressions
instead leads to large discrepancies.

Plasmonic mode volumes, which are several orders
of magnitude smaller than the cubic wavelength, offer
unique opportunities to produce local heating [1], to en-
hance chemical reactions at a precise location [2, 3] or
to increase the spontaneous emission rate of a quan-
tum emitter associated to a cavity [4–6]. These deeply
subwavelength volumes occur because light is noticeably
slowed down when it propagates in the vicinity of metals,
leading to slow guided modes [7]. At these ultraconfined
scales, the effective wavelength of the plasmonic guided
modes gets close to the mean free path of free carriers
inside the metal electron gas, so that the Drude model,
which can not take such interactions into account, clearly
begins to show its limits [8, 9].

A precise modeling of the light-matter interactions
in these systems requires an accurate description of
both quantum effects and far-field radiation. Time-
dependent density functional theory (TD-DFT) [10] or
single-band theory in the Random-Phase Approxima-
tion (RPA) [11] can provide full first-principles quantum
treatment. However, they become computationally pro-
hibitive for sizes that exceed a few nanometers and for
high density of carriers. At the intermediate length scale,
the semiclassical hydrodynamic Drude model (HDM) has
proven successful to describe experimental results [8, 12–
14]. In the framework of this model, the optical response
of metals cannot be described simply by a local permit-
tivity any more so that they are called spatially dispersive
or non-local.

Losses are both sought after for many applications of
plasmonics like sensing, heating or even electro-optical
modulation [15], while being often responsible for the lim-
itations of ultimately miniaturized plasmonic devices [16]
– in which case minimizing losses is crucial. It is thus of
paramount importance to be able to compute accurately
the local absorption inside nanostructures for which spa-
tial dispersion (non-local effects) has to be taken into ac-
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count. The standard expression for the local absorption
in the harmonic regime

αabs(r, ω) =
ωIm(ε(ω))|E(r, ω)|2

2
, (1)

where ω is the frequency, ε the dielectric permittivity of
the material and E the total electric field, is obviously
not valid anymore.

The lack of a correct formula has led many authors to
look for a work-around or to rely only on far-field quanti-
ties, as it hinders from computing the actual absorption
cross-section by integrating directly the absorption den-
sity [9, 13, 14, 17–23]. Furthermore, given the fact that
the electric field in the framework of the hydrodynamic
model contains a longitudinal component, the regular ex-
pression of the reciprocity theorem can not be relied on
either. While, for other descriptions of non-local effects,
the issue has been underlined and adressed [25, 26], this
has not been done for the widely used HDM model. This
is a source of concern, as many other properties or laws
are proven using this theorem (e.g. the Kirchhoff law),
and it is routinely used to check the accuracy of numeri-
cal methods [24].

In this work, we first derive a formula for the absorp-
tion volume density that is valid even in a non-local
medium. Then, we derive a generalized version of the
reciprocity theorem valid also when one of the sources
is located inside a non-local medium. The expression we
obtain corresponds to the classical expression for the the-
orem except only the transverse component of the elec-
tric field should be considered. Finally, our theoretical
results are validated numerically, using simulation meth-
ods which integrate the hydrodynamic model rigorously.
These results show that different expressions (like Eq.(1))
for the absorption volume density may lead to a large
error when computing the absorption cross-section of a
spherical nanoparticle.
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I. HARD-WALL HYDRODYNAMIC MODEL

Drude’s model is first based on the idea that the den-
sity of volume currents can be integrated as an effec-
tive polarization Pf of the medium, using the relation
j = ∂Pf

∂t . A metal can thus always be described with
such a polarization. The following assumption is that
the movement of electrons is dependent only on the lo-
cal electric field and that the repulsion between electrons
inside the metal can be neglected. Such an hypothesis
holds only if the typical scale of the field variation is
large in comparison to the mean free path of electrons.
However, in plasmonics guided modes typically tend to
present a high effective index and thus very short effec-
tive wavelength. Therefore, the local hypothesis does not
hold any more.

The hydrodynamic model [19] is the most simple pos-
sible way to take into account the repulsion between elec-
trons, by integrating a pressure term in the description
of the electron gas response, which leads to the follow-
ing relation between the electric field and the effective
polarization:

∂2Pf

∂t2
+ γ

∂Pf

∂t
− β2∇(∇.Pf ) = ε0ω

2
pE. (2)

The electron pressure term β2∇(∇.Pf ), coming from the
Thomas–Fermi theory of metals, obviously includes spa-
tial derivatives of the polarization, making the descrip-
tion non-local. Let’s underline here that still, the HDM
model falls within the continuum theory, which considers
that every mass point is composed by enough atoms and
molecules to associate to this point macroscopic proper-
ties as a temperature T(r), a pression p(r), or in our case
an absorption αabs(r). All these quantities are averages
in the sense of statistical physics. Let’s note also that,
even in the framework of the hydrodynamic model, the

quantity χf = − ω2
p

ω2+iγω , which represents the local sus-

ceptibility of the Drude model plays an important role in
the following.

The parameter β quantifies the non-local effects and
is called the hydrodynamic parameter. It can be defined

as β =
√

3/5 vF with vF = ~
m∗ (3π2)1/3n

1/3
0 , the Fermi

velocity [19].
The bound electrons contribute to the response of

the metal, however, their response can be considered as
purely local and the corresponding polarization written
Pb = ε0χbE(r). We can thus write the nullity of the
divergence of the displacement field:

∇.D = ε0∇.E +∇.Pf +∇.Pb = 0 (3)

in order to express and inject ∇.Pf in Eq.2. In the har-
monic regime, the following non-local expression for Pf

is thus obtained:

Pf =
−ε0ω2

p

ω2 + iγω

[
E− β2(1 + χb)

ω2
p

∇(∇.E)

]
. (4)

Then, Ampère’s circuital law ∇ × H = −iωD =
−iω(ε0E + Pf + Pb) yields

∇×H = −iωε0
[
(1 + χb)E +

Pf

ε0

]
= −iωε0ε [E− α∇(∇.E)]

(5)

with α =
χf (ε−χf )β

2

εω2
p

and ε=1 + χf + χb.

Let’s note here that the permittivity ε is the local bulk
permittivity of the medium (case where no repulsion be-
tween electrons is considered). This is what allows us
to make a link with the local description: when the pa-
rameter beta tends towards zero, nonlocality is supposed
to disappear gradually and we retrieve the purely local
model.

According to Helmholtz’s theorem, any sufficiently
smooth, rapidly decaying vector field in three dimensions
can be resolved into the sum of an irrotational vector field
(the longitudinal component) and a divergence-free vec-
tor field (the transverse component).

In a non-local medium, E can always be written as:

E = E0 + e

H = H0

(E0,H0) corresponding to a transverse wave and e to a
longitudinal wave. By definition ∇×H0=−iωε0εE0 and
∇.E0=0. Thus, by using the second term of Eq.5, we can
write in the non-local media:

∇× (H−H0) = 0 = −iωε0ε[(E−E0)− α∇(∇.E)]

0 = −iωε0ε[e− α∇(∇.e)]

If we now define ρ such as ρ=α∇.E, the above equation
gives

e = ∇ρ (6)

and given that ∇.E=∇.E0+∇.e, another HDM funda-
mental relation is obtained:

∆ρ =
ρ

α
(7)

nε+

ε

Non-local medium

E+=E0
+

E-=E0
-+∇ρ

Ve

S(Ve)

Figure 1. Non-local medium of permittivity ε inserted in a
local background medium of permittivity ε+ which is not nec-
essarily spatially uniform.

With these definitions, and in particular e = α∇(∇.e),
Eq. 5 leads to the following expression:

Pf
ε0

= χfE− εe = χfE0 − (ε− χf )e (8)
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In the usual implementation of the HDM, electron tun-
neling or electron density spill-out effects are neglected.
This leads to the hard-wall boundary condition, stating
that Pf .n=0 [9]. In this paper, we will limit ourselves
to this hypothesis even if few works have proposed to go
beyond [10, 20]. Within this framework, the continuity
conditions for the problem illustrated on Fig. 1 are:
1. the tangential components of E and H are continuous,
2. the normal component of εE0 is continuous,
3. the normal component of (ε− χf )E is continuous.

These hard-wall boundary conditions along with Eq.8
and Eq.6 imply one last fundamental relation of the HDM
model at the non-local/local interface:

∇ρ.n =
χf

(ε− χf )
E−0 .n (9)

This HDM model has been implemented in a home-
made code based on a T-matrix formalism and treating
multiple scattering in stratified media problems [36]. In
such code the incident and scattered fields for an indi-
vidual particle are decomposed on a complete and or-
thonormal basis of vector spherical harmonics (VSHs).
The VSHs scattered by each particle are decomposed as
incident fields on the other particles. The T-matrix con-
nect the scattered field to the total incident field (inci-
dent light and scattered light of all other particles) of
each particle. Let’s note that with such code, the surface
integral of the entering total Poynting Flux of each par-
ticle is automatically calculated. The implementation of
the HDM model in this code is similar to what is done
in Ref. [13, 27].

II. NON-LOCAL ABSORPTION VOLUME
DENSITY

In order to describe the absorption power in the non-
local medium with the hard-wall HDM model described
above, we can write the surface integral of the Poynting
vector flux around the non-local medium:

Pabs(ω) = −1

2

�
S(Ve)

Re(E∗ ×H).n. (10)

Given the continuity of the tangential components of
the electromagnetic fields (E,H), this integral can be cal-
culated indifferently on the inner or on the outer contour
of the non-local media. On the inner contour of the in-
tegral, Eq. 10 gives

Pabs(ω) = −1

2

�
S(Ve)

Re(E∗0 ×H).n

− 1

2

�
S(Ve)

Re(∇ρ∗ ×H).n (11)

The first term of this equation is straightforward to ex-
press since E0 and H satisfy the classical Maxwell equa-
tion:

−1

2

�
S(Ve)

Re(E∗0×H).n =
ωε0
2

�
Ve

Im(ε(ω))|E0(r, ω)|2d3r

(12)
Now let us consider the second term in Eq. 11.

∇. (∇ρ∗ ×H) = −∇ρ∗.(∇×H) + (∇×∇ρ∗).H (13)

By definition ∇×∇ρ∗=0. Thus Eq. 13 reduces to:

∇. (∇ρ∗ ×H) = ∇ρ∗.iωε0εE0 (14)

If we now apply the Ostrogradski theorem (also called
divergence theorem or Gauss’s theorem) to express the
second term of Eq. 11, we obtain:

−1

2

�
S(Ve)

Re(∇ρ∗ ×H).n = −1

2

�
Ve

Re (∇ρ∗.iωε0εE0)

(15)
Eq. 11 can thus be rewritten as:

Pabs(ω) =
ωε0
2

[�
Ve

Im(ε)|E0|2 −
�
Ve

Re [iε∇ρ∗.E0]

]
=
ωε0
2

Im

[�
Ve

εE∗0.E0 +

�
Ve

ε∇ρ∗.E0

]
=
ωε0
2

Im

[�
Ve

εE∗.E0

]
(16)

giving a non-local expression for the absorption volume
density:

αabs(r, ω) =
ωε0
2

Im (εE∗.E0) (17)

This generalized expression is different from the local
one given Eq. 1. But if Ve contains only local media,
no longitudinal component exists, E=E0 and the two ex-
pressions are equivalent. One important point to notice
with this generalized expression of the absorption power
is that unlike Eq. 1, it can be negative. To understand
the necessary conditions on the material properties to
maintain the integral positive, this generalized expres-
sion can be rewritten differently (see demonstration in
Appendix A).

Pabs(ω) =
ωε0
2

�
Ve

(
Im(ε− χf )|E|2 + Im(χf )

∣∣∣∣ Pf
ε0χf

∣∣∣∣2
)

(18)
This second expression highlights clearly that if
Im(ε − χf ) and Im(χf ) are positive, which is in the
overwhelming majority of cases true for metals, this
generalized expression for the absorption power remains
positive. We underline also that under this form,
the total absorption can be clearly attributed to the
dielectric background and to currents inside the electron
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gas. One has to be careful with this second formula
though. Integrands of Eq. 16 and Eq. 18 are indeed
not equivalents. The demonstration of the second one
includes the condition Pf .n=0, which is true only on the
non-local/local interface, while the demonstration of Eq.
16 can be done on any closed volume inside the non-local
media. Thus, the two integrals are equals only for the
closed volume surrounded by the contour where Pf .n=0.
For other closed volumes inside the non-local media, this
is not the case. In fact, only the integrand of Eq. 16 is
an absorption volume density: it is the unique expression
giving an integral equal to the Poynting flux surface
integral on any closed volume inside the non-local media.
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Figure 2. Absorption volume density αabs(r) maps for a
5-nm radius nanosphere embedded in a background of re-
fractive index n=1.5 at λ=2.4µm. The HDM parameters
for the nanosphere’s permittivity are: ε∞ = 1 + χb =
4, ωp=1.7.1015rad.s−1, γ= 1.52.1014rad.s−1. a) classical
Maxwell formula in the local case, i.e. β = 0; b) classical
Maxwell formula but the field E=E0+e is derived within
the HDM framework, β=1.15.106m.s−1; c) formula (17),
β=1.15.106m.s−1. The absorption volume density is normal-
ized by the norm of the Poynting vector of the incident plane
wave. The sphere is illuminated by a plane wave polarized
along the x-axis and propagating at normal incidence along
the z axis.

Now, we illustrate the difference between the classi-
cal formula (1) and the non-local expression (17) on an
example. Figure 2 compares absorption volume density
maps calculated with these two formula for a 5-nm ra-
dius nanosphere embedded in a background medium of
refractive index n = 1.5. The permittivity chosen for
the nanosphere is realistic and corresponds to a highly
doped n-ITO nanocrystal. Figure 2a is calculated using
Eq. 1 with the local Drude model. Figure 2b is cal-
culated using Eq. 1, but within the HDM framework,
i.e. |E| = |E0 + ∇ρ|. Figure 2c is calculated with Eq.
17. Figure 2 clearly shows that while, in the local frame-
work, electromagnetic field would be evaluated as quasi
constant everywhere in the sphere (Fig. 2a), in the HDM
framework on the contrary it is not the case, and if we
compare the correct expression with the classical one (for
both the field E=E0+e is derived within the HDM frame-
work), we see that absorption occurs closer to the surface
of the metal with the correct formula (Fig. 2c) than with
the classical one (Fig. 2b). In order to help understand
theses maps, we put in Appendix B the intensity en-

hancement maps of the longitudinal and transverse fields,
|e|2 and |E0|2.

Figure 3 represents the losses computed for the same
5-nm radius nanosphere by integrating different expres-
sions for the absorption volume density αabs, as a func-
tion of the wavelength. Only Eq. 16 and Eq. 18 allows
to retrieve the correct value for the absorption cross-
section computed using the flux of the Poynting vec-
tor. Assuming αabs = 1

2 Im(ε)|E|2 yields a σabs value
more than twice as low as the actual value; choosing
αabs = 1

2 Im(ε)|E0|2 gives a value almost six times too
large. For comparison, we have also plotted the absorp-
tion cross-section calculated in the classical local case
(where no repulsion between electrons is considered and
so where β=0). We see that we retrieve the typical sig-
nature of the non-local effects, i.e. a blue-shift in the ab-
sorption cross-section spectrum. The effect here is very
high because we have chosen a nanosphere with a per-
mittivity close to the one allowing ideal absorption at
λ=2.4µm [28]. Moreover, the permittivity chosen is sim-
ilar to the one of an highy-doped semicondutor (n-ITO),
and it is now well-established that the non-local effects
are expected to be more significant in highly-doped semi-
conductors than in noble metals and that they begin to
occur for larger structures [21, 40]. Indeed, the skin depth
δ where the longitudinal component e produces a spatial
variation in the induced charge density is proportional to
β
ωp

, itself proportional to n
−1/6
0 m∗−1/2. In highly-doped

semiconductors the free carrier density n0 is orders of
magnitude lower than in noble metals. The effective mass
m∗ is also slightly lower. Thus the skin depth δ can be
5 times larger or more in highly-doped semiconductors.
This optimized permittivity choice allows us to underline
the difference between the local and non-local models,
but this should not lead us to expect such a large impact
of nonlocality is the norm.

We want to insist here that, while the quantity
αabs(r, ω) is strictly positive in a local medium, whenever
bulk plasmons (the longitudinal wave), linked to nonlo-
cality, are taken into account, losses may locally be neg-
ative. Below the plasma frequency, this occurs close to
the surface, as the skin depth of bulk plasmons is much
shorter than the skin depth of transverse waves. Above
the plasma frequency, as bulk plasmons can propagate
inside the medium, such a phenomenon can occur essen-
tially anywhere. This could be particularly important for
semiconductors since, unlike noble metals, no interband
transition exists near their plasma frequency, and so the
Drude model remains valid at the plasma frequency and
above. We insist that, given our results and the link we
have established with the flux of the Poynting vector, the
global absorption would always be positive. This under-
lines how important this local absorption density may be
to fully understand how light is absorbed by metallic or
metallic-like media.

This new expression is in particular the only way to
estimate locally and accurately the losses in a non-local
media. Such information can be very useful in practice
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Figure 3. Absorption cross-section as a function of the wave-
length for the same non-local nanosphere as Fig.2, assuming
different expressions for the absorption volume density. Only
the value obtained using Eq. 16 and Eq. 18 matches the sur-
face integral of the Poynting vector flux on the inner or outer
contours surrounding the non-local medium. For compara-
ison, the classical local absorption cross-section spectrum is
plotted in green.

to investigate and predict physical effects resulting from
light absorption. In Ref. [29, 30] for example, the local
absorption is used (in the classical local Maxwell case)
to predict and compare the heating efficiency of differ-
ent plasmonic nanoparticles (small, flat, elongated, or
sharp nanoparticles). The efficiency differences between
these particles are related to the capacity of the incoming
electric field to penetrate inside the thin nanostructures
and where it is occuring locally. Fig. 2 highlights that
the estimated power density of heat generation can be
completely wrong if one uses a local version of Maxwell
equations for a nanoparticle presenting non-local effects.
Similarly, Fig. 4 illustrates a case where one searches
to use a larger nanoparticle to heat or excite a nanoab-
sorber placed in its vicinity. Such methods are used for
several applications in literature [31, 32]. Here we give an
example where a 25-nm-radius nanosphere heats a 5-nm-
radius nanosphere. The obtained power density of heat
generation is different with the present non-local formula
than in the local case. Moreover, Fig. 4 shows that ac-
cording to the nanoabsorber position with respect to the
nanoantenna (the largest nanoparticle), the power den-
sity of heat generation changes rather heavily. The total
heating efficiency of each particle obviously follows, and
we see that while it is almost constant for the nanoan-
tenna regardless of the position or the non-local charac-
ter, for the nanoabsorber it can vary of a factor 3 ac-
cording to the considered configuration (see Fig. 4). The
absorption volume density maps have been plotted here
at λ=3.1µm, which is the resonance wavelength of the
largest sphere in the non-local case, but complete spec-
tra of each particle absorption cross-section can be found

in Appendix C.
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Figure 4. Absorption volume density αabs(r) maps for a 5-
nm radius nanosphere located in the vicinity of a 25-nm ra-
dius nanosphere. The gap between the two spheres is of 5
nm. The HDM parameters for the nanospheres permittiv-
ity are the same as Fig.2 and they are also embedded in a
background of refractive index n=1.5. The wavelength is of
λ=3.1µm (resonance wavelength of the largest sphere). a)
and b) αabs(r) follows formula (17) with β=1.15.106m.s−1; c)
and d) classical Maxwell formula in the local case, i.e. β = 0.
The absorption volume density is normalized by the norm of
the Poynting vector of the incident plane wave. The total
heating efficiency σabs of each particles is indicated in ma-
genta. The sphere is illuminated by a plane wave polarized
along the x-axis and propagating at normal incidence along
the z axis.

Given the importance of understanding where losses
occur in any deeply subwavelength plasmonic structure,
we think that expression (16) could prove very useful in
the future by providing a more accurate physical picture
of phenomena like quenching, thermoplasmics, or local-
ized thermal emission [31–33].

III. RECIPROCITY THEOREM WITH
NON-LOCAL MEDIA

The reciprocity theorem allows to connect the electro-
magnetic fields generated by two different and arbitrary
point sources. By assuming time-harmonic fields in lin-
ear and local media in which the tensors ε and µ are
symmetric (reciprocal materials), the reciprocity theo-
rem between two punctual time-harmonic source currents
(j1, jm1) and (j2, jm2) located at positions r1 and r2 and
which emit respectively the fields (E1,H1) and (E2,H2)
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can be written [34]:

j1E2(r1) + jm1H2(r1) = j2E1(r2) + jm2H1(r2). (19)

PML

(j1,jm1)

pe

(E1,H1)(r2)

n

Ve

S+

n

Ve

(E2,H2)(r1)

S- S+ S-

b)

PML

r1

r2

a)

S∞ S∞

(j2,jm2)

E-1=E-01+∇ρ1 E-2=E-02+∇ρ2E+1=E+01 E+2=E+02

Figure 5. A point source current (j1,jm1) located at a position
r1 radiates, illuminating the non-local medium. It creates an
electromagnetic field (E1,H1). (b) A point source current
(j2,jm2) located at a position r2 inside the non-local medium
radiates an electromagnetic field (E2,H2).

In the case where a non-local media is introduced, the
reciprocity theorem can still be written but not under
the same form. To find the right expression for the non-
local reciprocity theorem, we consider the two problems
described in Fig. 5, where a source is located inside the
non-local medium while the other is placed in the sur-
rounding (local) medium. The Perfect Matched Layers
(PML) around the object shown Fig. 5 are here only for
numerical purposes, in order to take into account the ra-
diation boundary conditions at infinity. Two solutions of
Maxwell’s equations in the HDM framework can thus be
considered. In both case inside Ve:


∇×Ek = iωµµ0Hk + jmkδ(r− rk)

∇×Hk = −iωεε0E0k + jkδ(r− rk)

Ek = E0k +∇ρk
(20)

with k={1,2} and {jk, jmk} the electric and magnetic
point sources respectively, simulated by dirac functions.

The Lorentz reciprocity formula, which relates two
time-harmonic solutions of Maxwell’s equations can still
be written on the transverse component E0 (a general
form of Lorentz reciprocity formula and its derivation
can be found for instance in Annex 3 of Ref. [35]). Here
we use this Lorentz reciprocity formula for the two trans-
verse components E0 at the same frequency ω, (i) on the
closed surface surrounding the volume outside the non-
local medium and located in between the contour S∞

located at infinity and the contour S+ corresponding to
the outer contour of the non-local medium, and (ii) on
the closed surface S− surrounding the non-local volume
Ve (see Fig. 5). The surface integral on S∞ being null
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Figure 6. Calculations performed with a multipole method
[36]. The electromagnetic field maps are plotted in log scale
at λ=2.4µm. Non-local reciprocity theorem verification with
a complex electromagnetic environment composed of a 20-nm
radius core-shell with a core of the same non-local medium (re-
alistic permittivity of n-ITO) as in Fig. 2 and a ligands shell
of refractive index n=2 and 5-nm thickness. This core-shell
is deposited on a silicon substrate (n=3.4) and is embedded
in a background of n=1.5. In the vicinity of the core-shell is
placed another nanosphere of refractive index n=4. In this
complex environment, two point source currents (j1, jm1) and
(j2, jm2) are inserted randomly. The reciprocity theorem of
Eq.22 is verified with 16 digits of precision.

by construction, this gives:

−
�
S+

(E1 ×H2 −E2 ×H1).dSn = j1E2(r1) + jm1H2(r1)

�
S−

(E01 ×H2 −E02 ×H1).dSn = − [j2E01(r2)

+jm2H1(r2)]

We can now use the field continuity conditions to relate
these two surface equations. It is in particular possible
to show that (see Appendix D):

�
S+

(E1 ×H2 −E2 ×H1).dSn =

�
S−

(E01 ×H2 −E02 ×H1).dSn (21)

which immediately leads to the non-local reciprocity the-
orem:

j1E2(r1) + jm1H2(r1) = j2E01(r2) + jm2H1(r2) (22)

Note that in the non-local medium, unlike Eq. 19,
the reciprocity theorem is valid only for the transverse
component E0 of the field and not for the total field E.
As a consequence, the Green tensor is symmetrical for
E0 but not for the total field E.

This derivation has been done for the case where one
source is outside and one source is inside the non-local
medium but it is still valid if the two sources are in the
same medium, whether it is local or not. We underline
that placing a point source infinitely far is a straightfor-
ward way to generalize this non-local reciprocity theorem
for a plane wave and a point source. Finally, it should
be stressed that the reciprocity theorem we have derived



7

gives the same expression as the classical theorem Eq. 19
when the two points considered are located in the sur-
rounding local medium, which is not necessarily obvious
in presence of non-local media.

We have numerically checked that this non-local
reciprocity theorem is satisfied for a complex setup
including a non-local core-shell nanostructure (see Fig.
6). We place the sources randomly, one inside the
non-local medium, and the other one outside. The elec-
tromagnetic field maps created by these sources are then
computed using a multipole method [36]. The reciprocity
theorem of Eq.22 is verified with 16 digits of precision re-
gardless of the position or polarization of the two sources.

IV. CONCLUSION

We have derived here rigorous formulas which allow
to generalize the classical expressions for the absorption
volume density and the reciprocity theorem beyond the
Drude model, to the case where non-local media de-
scribed by the hydrodynamic model are present. Our
numerical simulations show that the absorption volume
density can significantly differ from classical predictions
when nonlocality is taken into account. We underline
also that our results can prove particularly useful to
check that numerical methods based on the hydrody-
namic model [18, 37] are indeed accurate, as done in the
present work.

For a long time, nonlocality has been expected to play
a role only in the tiniest metallic nanoparticles [38]. Re-
cent results point towards a larger influence of nonlo-
cality than previously expected, for much larger struc-
tures [22, 23], for propagating surface plasmon [39], and
for semiconductors even more than for metals [21, 40].
Moreover, the recent trend towards miniaturized plas-
monic devices [16, 41] means that nonlocality will have,
increasingly often, to be taken into account. Given the
large number of situations in which local absorption plays
a crucial role (photothermal therapy, local chemical reac-
tion catalysis, HAMR,... etc.) we think our work could
simply allow to better understand and finally to help de-
sign plasmonic nanostructures. Our work paves also the
way to extend this work to more elaborated models based
on the same HDM equations but going beyond the hard-
wall boundary conditions [10, 20].
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Appendix A: Absorption

In this section, we show the derivation allowing to ob-
tain Eq. 18 of the main text. By using Eq. 8, Eq. 16 of
the main text can be written as a function of Pf :

Pabs(ω) =
ωε0
2

Im

[�
Ve

ε|E|2 − εE∗e
]

=
ωε0
2

Im

[�
Ve

(ε− χf )|E|2 + E∗
Pf
ε0

]
=
ωε0
2

Im

[�
Ve

(ε− χf )|E|2 +
1

χ∗f

∣∣∣∣Pfε0
∣∣∣∣2

+
ε∗e∗

χ∗f

Pf
ε0

]
The third term of this last equation can be expressed

thanks to the Ostrogradski theorem and the hard-wall
boundary conditions:�

S(Ve)

ρ∗(
Pf
ε0
.n) =0 =

�
Ve

∇.(ρ∗Pf
ε0

) (A1)

0 =

�
Ve

e∗
Pf
ε0

+ ρ∗∇.Pf
ε0

(A2)

Then by using Eq. 8 along with Eq. 7 and by express-
ing α:

∇.Pf
ε0

= χf∇.E0 − (ε− χf )∇.e

= −(ε− χf )∆.ρ

= −(ε− χf )
ρ

α

= − ε

χf

ω2
p

β2
ρ

which leads to the final expression of the absorption
power inside Ve corresponding to Eq. 18 of the main
text:

Pabs(ω) =
ωε0
2

Im

[�
Ve

(ε− χf )|E|2 +
1

χ∗f

∣∣∣∣Pfε0
∣∣∣∣2

+

∣∣∣∣ εχf
∣∣∣∣2 ω2

p

β2
|ρ|2
]

=
ωε0
2

Im

[�
Ve

(ε− χf )|E|2 +
1

χ∗f

∣∣∣∣Pfε0
∣∣∣∣2
]

=
ωε0
2

�
Ve

(
Im(ε− χf )|E|2 + Im(χf )

∣∣∣∣ Pf
ε0χf

∣∣∣∣2
)

Appendix B: Longitudinal and transverse field
intensity enhancement

To help the reader interpreting the results of Fig. 2,
we plot here the field intensity enhancement maps for the
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longitudinal and the transverse electromagnetic fields for
the same parameters as the one used in Fig. 2.
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Figure 7. Longitudinal and transverse field intensity enhance-
ment for a sphere with the same parameters of materials and
illumination conditions as Fig. 2.

Appendix C: Absorption cross-section spectra of
Fig. 4

To complete the results presented in Fig. 4, we plot
here the absorption cross-section spectra of the two par-
ticles for the different cases treated in Fig. 4. Let’s pre-
cise here that the calculation of these spectra can be done
equivalently with Eq. 16, Eq. 18 or the surface integral of
the Poynting flux (we verified numerically that the spec-
tra obtained with these three formula matches perfectly,
similarly to what is shown on Fig. 3). We retrieve once
again the typical blue-shift of the non-local effects, that
is obviously more important for the 5-nm-radius sphere
than for the 25-nm-radius sphere.

Appendix D: Reciprocity

Eq. (21) relates two surface integrals, one outside and
one inside the non-local medium. For the sake of com-
pleteness, we give here the derivation leading to this re-
lation. In particular, thanks to the continuity of the tan-
gential components of E and H, it is possible to write
the following expression:

�
S+

(E1×H2−E2×H1).dSn =

�
S−

(E1×H2−E2×H1).dSn

(D1)
By definition of the field inside the non-local medium,
the second term of this equation can also be written as:

�
S−

(E01×H2−E02×H1).dSn+

�
S−

(∇ρ1×H2−∇ρ2×H1).dSn

(D2)
To establish (21), we demonstrate first that the second

term of Eq. (D2) is null, by noticing that

∇ρ1 ×H2 = ∇× (ρ1H2)− ρ1.∇×H2

= ∇× (ρ1H2)− ρ1. (−iωε0εE02 + j2δ(r− r2)) .
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Figure 8. Absorption cross-section spectra of the two particles
for each cases treated in Fig. 4. θ = 0◦ indicates the case
where the nanoabsorber (5-nm-radius nanosphere) and the
nanoantenna (25-nm-radius nanosphere) are aligned along the
z-axis. θ = 90◦ indicates the case where they are aligned along
the x-axis.

Symmetrically, we can write

∇ρ2 ×H1 = ∇× (ρ2H1)− ρ2. (−iωε0εE01 + j1δ(r− r1)) .

Using the Ostrogradski theorem then yields�
S−
∇× (ρiHj).dSn =

�
Ve

∇. (∇× (ρiHj)) dV = 0,

so that the second term in Eq. (D2) can be rewritten as

I =

�
S−

iωε0ε (ρ1E02 − ρ2E01) .dSn. (D3)

Then, using Eq. (9) we get

I =

�
S−

iωε0ε
(ε− χf )

χf
(ρ1∇ρ2 − ρ2∇ρ1) .dSn, (D4)

and by applying once again the Ostrogradski theorem,
we obtain

I = iωε0ε
(ε− χf )

χf

�
Ve

∇. (ρ1∇ρ2 − ρ2∇ρ1) .dV

= iωε0ε
(ε− χf )

χf

�
Ve

(ρ1∆ρ2 − ρ2∆ρ1) .dV.

Finally, using Eq. (7) we obtain

I = iωε0ε
(ε− χf )

χf

�
Ve

(
ρ1
ρ2
α
− ρ2

ρ1
α

)
.dV = 0, (D5)

which establishes the continuity of the surface integral
described by Eq. (21).
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