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Regulation of a reaction-diffusion equation with bounded observation

This paper solves a regulation problem for a reactiondiffusion equation. More precisely, for a given bounded observation, we design a boundary controller so that the setpoint output of the equation converges to a prescribed reference signal. The control law is finite-dimensional and is obtained by coupling a pole-placement control law with an observer. The proofs are based on a Lyapunov function and relies on the properties of Sturm-Liouville operators.

Introduction

Regulation control of finite-dimensional systems are very classical problems that have been widely investigated [START_REF] Antsaklis | Linear systems[END_REF][START_REF] Hespanha | Linear systems theory[END_REF]. This work considers the problem of regulation of distributed parameter systems [START_REF] Barreau | Practical stability analysis of a drilling pipe under friction with a PI-controller[END_REF][START_REF] Coron | PI controllers for 1-D nonlinear transport equation[END_REF][START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF][START_REF] Paunonen | Reduced order controller design for robust output regulation[END_REF][START_REF] Phan | Finite-dimensional controllers for robust regulation of boundary control systems[END_REF]. This class of systems succeeds to model many dynamical systems, such as heat dynamics, chemical reactors, fluid mechanical systems, among many other potential applications (see [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF] for a general reference). We focus here on a reaction-diffusion system described by parabolic partial differential equations. For this kind of systems this is very natural to not only control the internal state, but also to prescribe the output to a given reference trajectory. This is the so-called regulation problem. Depending on the control input and the to-be-regulated output, the regulation problem could be more or less complex to solve. In particular, when one of these operators is unbounded, the associated regulation problem becomes challenging and requires dedicated control techniques.

The control objective of this paper is to solve the regulation problem in the case of an unbounded control operator and a bounded to-be-regulated output. Our approach combines a finite-dimensional observer [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF][START_REF]Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement[END_REF][START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reactiondiffusion equations with a either Dirichlet or Neumann boundary measurement[END_REF][START_REF]Local output feedback stabilization of a reaction-diffusion equation with saturated actuation[END_REF] and an adequate integral component [START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF]. We show that such a controller can always be designed such that the resulting closed-loop system is exponentially stable, in both L 2 and H 1 norms, and achieve setpoint regulation control. These stability properties are proven using suitable Lyapunov function candidates.

This approach could likely be generalized to other control problems, as the ones considered in [START_REF] Djebour | Feedback stabilization of parabolic systems with input delay[END_REF] where an infinite-dimensional dynamics is decomposed into two parts: one unstable operator having a finite-dimensional representation, and one stable operator. See also [START_REF] Lhachemi | Exponential input-to-state stabilization of a class of diagonal boundary control systems with delay boundary control[END_REF][START_REF]Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF] for control design methods exploiting this idea.

This paper is organized as follows. Section 2 recalls some results on Sturm-Liouville operators and states a technical result. Section 3 introduces the control problem under consideration and the proposed controller architecture. Section 4 gives the main results and associated stability analysis in L 2 and H 1 norms. Finally Section 5 collects some concluding remarks and presents further developments of this work. 

f (0) = f (1) = 0} with p ∈ C 1 ([0, 1]
), p > 0, and q ∈ C 0 ([0, 1]), q 0. The eigenvalues λ n , n 1, of A are simple and can be sorted such that λ 1 < λ 2 < . . . < λ n < . . .. Moreover, the associated unit eigenvectors φ n ∈ L 2 (0, 1) form a Hilbert basis. It can be easily checked that, for all f ∈ D(A),

n 1 λ n f, φ n 2 = Af, f = 1 0 p(f ) 2 + qf 2 dx. (2.1)
Let p * , p * , q * ∈ R be such that 0 < p * p(x) p * and 0 q(x) q * for all x ∈ [0, 1], then it holds [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF]:

(2.2) 0 π 2 (n -1) 2 p * λ n π 2 n 2 p * + q *
for all n 1.

Useful Lemma

We state a lemma which was proven in a particular case in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]. This proof also applies to the general setting described in the below lemma.

Lemma 2.1. Let n, m, N 1, M 11 ∈ R n×n , M 22 ∈ R m×m , M 12 ∈ R n×m , M N 14 ∈ R n×N , M N 24 ∈ R m×N , M N 31 ∈ R N ×n , and M N 33 , M N 44 ∈ R N ×N .
We define

F N =     M 11 M 12 0 M N 14 0 M 22 0 M N 24 M N 31 0 M N 33 0 0 0 0 M N 44     .
We assume that there exist constants C 0 , κ 0 > 0 such that e M11t C 0 e -κ0t , e M22t C 0 e -κ0t , e M N 33 t

C 0 e -κ0t , and e M N 44 t

C 0 e -κ0t for all t 0 and all N 1. Moreover, we assume that there exists a constant

C 1 > 0 such that M N 14 C 1 , M N 24 C 1 , and M N 31 C 1 for all N 1.
Then there exists a constant C 2 > 0 such that, for any N 1, there exists P N ∈ R n+m+2N with P N 0 such that

P N F N + (F N ) P N = -I and P N C 2 .
3 Control problem and deviation dynamics 3.1 Studied reaction-diffusion system We consider the reaction-diffusion system described by

z t (t, x) = (pz x ) x (t, x) + (q c -q(x))z(t, x) (3.3a) z x (t, 0) = 0, z(t, 1) = u(t) (3.3b) z(0, x) = z 0 (x) (3.3c) y(t) = 1 0 c(x)z(t, x) dx (3.3d)
where t 0 and x ∈ (0, 1) stand respectively for the time and space variables,

q c ∈ R is a constant, u(t) ∈ R is the command input, y(t) ∈ R with c ∈ L 2 (0, 1) is the measurement, z(t, •) ∈ L 2 (0, 1)
is the state, and z 0 ∈ L 2 (0, 1) is the initial condition. Our control objective is to design a state feedback and a finite dimensional observer to stabilize the plant and achieve the setpoint regulation of y(t) to some prescribed reference signal r(t) ∈ R.

Spectral reduction

We introduce the change of variable (3.4) w(t, x) = z(t, x) -x 2 u(t).

Then we have

w t (t, x) = (pw x ) x (t, x) + (q c -q(x))w(t, x) + a(x)u(t) + b(x) u(t) (3.5a) w x (t, 0) = 0, w(t, 1) = 0 (3.5b) w(0, x) = w 0 (x) (3.5c) ỹ(t) = 1 0 c(x)w(t, x) dx (3.5d)
with a, b ∈ L 2 (0, 1) defined by a(x) = 2p(x) + 2xp (x) + (q c -q(x))x 2 and b(x) = -x 2 , respectively, ỹ(t) = y(t) -γ 0 u(t) with γ 0 = 1 0 x 2 c(x) dx, and w 0 (x) = z 0 (x) -x 2 u(0). Introducing the auxiliary command input v(t) = u(t), we infer that

u(t) = v(t) (3.6a) dw dt (t, •) = {-A + q c }w(t, •) + au(t) + bv(t) (3.6b)
Introducing the coefficients of projection w n (t) = w(t, •), φ n , a n = a, φ n , b n = b, φ n , and c n = c, φ n , we obtain that

u = v (3.7a) ẇn = (-λ n + q c )w n + a n u + b n v (3.7b) ỹ = i 1 c i w i (3.7c)
for n 1.

Control design

Let N 0 1 and δ > 0 be given such that -λ n +q c < -δ < 0 for all n N 0 +1. Let N N 0 + 1 be arbitrary. We design an observer to estimate the N first modes of the plant while the state-feedback is performed on the N 0 first modes. More precisely, introducing A 0 = diag(-λ 1 +q c , . . . , -λ N0 +q c ), W N0 = w 1 , . . . , w N0 , B 0,a = a 1 , . . . , a N0 , and

B 0,b = b 1 , . . . , b N0 , we have (3.8) Ẇ N0 = A 0 W N0 + B 0,a u + B 0,b v.
Let us introduce an integral component to achieve the setpoint regulation control of the system output. To do so, consider first the case of the following classical integral component:

żi = y -r = ỹ + γ 0 u -r = n 1 c n w n + γ 0 u -r
where r : R + → R is a reference signal. Introducing

ξ p = z i -n N0+1 cn -λn+qc w n , we obtain that ξp = n 1 c n w n + γ 0 u -r - n N0+1 c n -λ n + q c ẇn = N0 n=1 c n w n + α 0 u + β 0 v -r with α 0 = γ 0 - n N0+1 a n c n -λ n + q c , (3.9a) β 0 = - n N0+1 b n c n -λ n + q c . (3.9b)
Replacing w n , which are not measured, by their estimated version ŵn , which will be described below, we obtain the following integral component that will be used for control design:

ξ = N0 n=1 c n ŵn + α 0 u + β 0 v -r. (3.10)
We now define for 1 n N the observation dynamics:

ẇn = (-λ n + q c ) ŵn + a n u + b n v (3.11) -l n 1 0 c(x) N i=1 ŵi φ i (x) dx -α 1 u -ỹ with (3.12) α 1 = n N +1 a n c n -λ n + q c
and where l n ∈ R are the observer gains. We set l n = 0 for N 0 + 1 n N and the initial condition of the observer as ŵn (0) = 0 for all 1 n N . We define for 1 n N the observation error as e n = w n -ŵn . Noting that

1 0 c(x) N i=1 ŵi φ i (x) dx -ỹ = - N i=1 c i e i -ζ with ζ = n N +1 c n w n , we infer that ẇn = (-λ n + q c ) ŵn + a n u + b n v (3.13) + l n N i=1 c i e i + l n α 1 u + l n ζ. Introducing Ŵ N0 =    ŵ1 . . . ŵN0    , E N0 =    e 1 . . . e N0    , E N -N0 =    e N0+1 . . . e N    , L =    l 1 . . . l N0    , C 0 = c 1 , . . . , c N0 , C 1 = c N0+1 , . . . , c N , we have Ẇ N0 = A 0 Ŵ N0 + B 0,a u + B 0,b v + LC 0 E N0 + LC 1 E N -N0 + α 1 Lu + Lζ. (3.14) With Ŵ N0 a =   u Ŵ N0 ξ   , L =   0 L 0  
and defining (3.15)

A 1 =   0 0 0 B 0,a A 0 0 α 0 C 0 0   , B 1 =   1 B 0,b β 0   , B r =   0 0 1   , we deduce that Ẇ N0 a = A 1 Ŵ N0 a + B 1 v -B r r + LC 0 E N0 (3.16) + LC 1 E N -N0 + α 1 Lu + Lζ.
Setting the auxiliary command input as

(3.17) v = K Ŵ N0 a ,
and defining

(3.18) A cl (α 1 ) = A 1 + B 1 K + α 1 L 1 0 0 , we obtain that Ẇ N0 a = A cl (α 1 ) Ŵ N0 a -B r r + LC 0 E N0 + LC 1 E N -N0 + Lζ (3.19) and ĖN0 = (A 0 -LC 0 )E N0 -LC 1 E N -N0 -α 1 L 1 0 0 Ŵ N0 a -Lζ. (3.20) Lemma 3.1. The pair (A 1 , B 1 ) is controllable if and only if the unique solution z ∈ H 2 (0, 1) of (pz ) + (q c -q)z = 0, (3.21a) z(0) = 1, z (0) = 0 (3.21b) is such that 1 0 c(x)z(x) dx = 0. The pair (A 0 , C 0 ) is observable if and only if c n = 0 for all 1 n N 0 .
The proof of the lemma is reported in appendix. Hence we can compute gains K and L such that A 1 + B 1 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. Defining now 

A 2 = diag(-λ N0+1 + q c , . . . , -λ N + q c ) Ŵ N -N0 =    ŵN0+1 . . . ŵN    , B 2,a =    a N0+1 . . . a N    , B 2,b =    b N0+1 . . . b N    we obtain from (3.11) with l n = 0 for N 0 + 1 n N that Ẇ N -N0 = A 2 Ŵ N -N0 + B 2,a u + B 2,b v = A 2 Ŵ N -N0 + B 2,b K + B 2,a 0 0 Ŵ N0 a ( 3 
= ( Ŵ N0 a ) (E N0 ) ( Ŵ N -N0 ) (E N -N0 ) that (3.24) Ẋ = F X + Lζ -L r r
where

F =     A cl (α 1 ) LC 0 0 LC 1 -α 1 L 1 0 0 A 0 -LC 0 0 -LC 1 B 2,b K + B 2,a 0 0 0 A 2 0 0 0 0 A 2     , L =     L -L 0 0     , L r =     B r 0 0 0     .

Equilibrium condition and dynamics of deviations

We aim at characterizing the equilibrium condition of the closed-loop system composed of the reaction-diffusion system (3.3), the auxiliary command input dynamics (3.6a), the integral action (3.10), the observer dynamics (3.11), and the state-feedback (3.17).

To do so let r(t) = r e ∈ R be arbitrary. We must solve the system of equations: Hence, for an arbitrarily given constant reference signal r(t) = r e ∈ R, the equilibirum condition of the closedloop system is unique, fully characterized by r e , and is such that y e = r e .

0 = (-λ n + q c )w n,e + a n u e + b n v e = 0, n 1, (3.25a) 0 = v e = K Ŵ N0 a,e , (3.25b 
We can now introduce the dynamics of deviation of the different quantities w.r.t the equilibrium condition characterized by r e ∈ R. In particular: ∆w(t, x) = ∆z(t, x) -x 2 ∆u(t),

∆ Ẋ = F ∆X + L∆ζ -L r ∆r, ∆ζ = n N +1 c n ∆w n , ∆ ẇn = (-λ n + q c )∆w n + a n ∆u + b n ∆v, n N + 1, ∆v = K∆ Ŵ N0 a , ∆ỹ = ∆y -γ 0 ∆u = n 1 c n ∆w n .
We also have ∆u(t) = E∆X(t) and ∆v(t) = K∆X(t) with E = 1 0 . . . 0 and K = K 0 0 0 . Finally, we define G = a 2

L 2 E E + b 2 L 2 K K.
4 Main results on stability analysis 4.1 Stability analysis in L 2 (0, 1) norm Theorem 4.1. Let p ∈ C 1 ([0, 1]) with p > 0, q ∈ C 0 ([0, 1]) with q 0, q c ∈ R, and c ∈ L 2 (0, 1). Consider the reaction-diffusion system described by (3.3). Let N 0 1 and δ > 0 be given such that -λ n + q c < -δ < 0 for all n N 0 + 1. Assume that the unique solution of (3.21) is such that 1 0 c(x)z(x) dx = 0 and c n = 0 for all 1 n N 0 . Let K ∈ R 1×(N0+2) and L ∈ R N0 be such that A 1 + B 1 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. Assume that there exist N N 0 + 1, P 0, and α, β, γ > 0 such that Θ = F P + P F + 2δP + αγG P L L P -β ≺ 0, (4.26)

Γ n = -λ n + q c + δ + 1 α + β c 2 L 2 2γ 0,
for all n N + 1. Then, for any η ∈ [0, 1), there exists M > 0 such that for all z 0 ∈ L 2 (0, 1), u(0) ∈ R, and r ∈ C 0 (R + ; R), the mild solution of the closed-loop system composed of the plant (3.3), the integral actions (3.6a) and (3.10), the observer dynamics (3.11) with null initial condition, and the output feedback (3.17) satisfies

∆u(t) 2 + ∆ξ(t) 2 + N n=1 ∆ ŵn (t) 2 + ∆z(t) 2 L 2 (4.27) M e -2δt (∆u(0) 2 + ∆ξ(0) 2 + ∆z 0 2 L 2 ) + M sup τ ∈[0,t]
e -2ηδ(t-τ ) ∆r(τ ) 2 for all t 0. Moreover, the constraints Θ ≺ 0 and Γ n 0 are always feasible for N large enough.

Proof. For P 0 and γ > 0 we define

V (t) = ∆X(t) P ∆X(t) + γ n N +1 ∆w n (t) 2 .
Considering first classical solutions, we have

V (t) + 2δV (t) = ∆X(t) F P + P F + 2δP ∆X(t) + 2∆X(t) P L∆ζ(t) -2∆X(t) P L r ∆r(t) + 2γ n N +1 (-λ n + q c + δ)∆w n (t) 2 + 2γ n N +1 (a n ∆u(t) + b n ∆v(t))∆w n (t).
We note that, for any α > 0,

2 n N +1 a n ∆w n ∆u 1 α n N +1 ∆w 2 n + α a 2 L 2 ∆u 2 and 2 n N +1 b n ∆w n ∆v 1 α n N +1 ∆w 2 n + α b 2 L 2 ∆v 2 .
Since ∆u(t) = E∆X(t) and ∆v(t) = K∆X(t), we have

V (t) + 2δV (t) ∆X(t) F P + P F + 2δP ∆X(t) + 2∆X(t) P L∆ζ(t) -2∆X(t) P L r ∆r(t) + 2γ n N +1 -λ n + q c + δ + 1 α ∆w n (t) 2 + αγ a 2 L 2 E∆X(t) 2 + b 2 L 2 K∆X(t) 2
∆X(t) ∆ζ(t)

F P + P F + 2δP + αγG P L L P 0 ∆X(t) ∆ζ(t) -2∆X(t) P L r ∆r(t) + 2γ n N +1 -λ n + q c + δ + 1 α ∆w n (t) 2 .
where

G = a 2 L 2 E E + b 2 L 2 K K. Recalling that ∆ζ(t) = n N +1 c n ∆w n (t), we obtain that ∆ζ(t) 2 c 2 L 2 n N +1 ∆w n (t) 2 .
Hence, for any β > 0,

β c 2 L 2 n N +1 ∆w n (t) 2 -β∆ζ(t) 2
0. Combining the two latter inequalities, we obtain that

V (t) + 2δV (t) ∆X(t) ∆ζ(t) Θ ∆X(t) ∆ζ(t) -2∆X(t) P L r ∆r(t) + 2γ n N +1 Γ n ∆w n (t) 2 .
Assume that we can select N N 0 + 1, P 0, and α, β, γ > 0 such that Θ ≺ 0 and Γ n 0 for all n N + 1. Then there exists > 0 such that Θ -I. We deduce that

V (t) + 2δV (t) -∆X(t) 2 -2∆X(t) P L r ∆r(t) -∆X(t) 2 + 2 ∆X(t) P L r |∆r(t)| P L r 2 ∆r(t) 2 .
After integration, we obtain for any η ∈ [0, 1) the existence of a constant M 1 > 0 such that

(4.28) V (t) e -2δt V (0) + M 1 sup τ ∈[0,t]
e -2ηδ(t-τ ) ∆r(τ ) 2 for all t 0.

On one hand we have

V (0) λ M (P ) ∆X(0) 2 + γ n N +1 ∆w n (0) 2 .
As the initial conditions of the observer are zero, we obtain that ∆X(0

) 2 = ∆u(0) 2 + ∆ξ(0) 2 + N n=1 ∆w n (0) 2 , hence V (0) max(γ, λ M (P ))(∆u(0) 2 + ∆ξ(0) 2 + ∆w 0 2 L 2 ). Since, from (3.4), ∆w 0 (x) = ∆z 0 (x) -x 2 ∆u(0), we obtain the existence of a constant M 2 > 0 such that V (0) M 2 (∆u(0) 2 + ∆ξ(0) 2 + ∆z 0 2 L 2 ).
On the other hand we have

V (t) λ m (P ) ∆X(t) 2 + γ n N +1 ∆w n (t) 2 λ m (P ){∆u(t) 2 + ∆ξ(t) 2 + N n=1 (∆ ŵn (t) 2 + ∆e n (t) 2 )} + γ n N +1 ∆w n (t) 2 .
Noting that ∆ ŵn (t

) 2 + ∆e n (t) 2 = (∆w n (t) -∆e n (t)) 2 + ∆e n (t) 2 1 2 ∆w n (t) 2 , because 1 (x -a) 2 + a 2 x 2 2 for all x, a ∈ R, we infer that V (t) λ m (P ){∆u(t) 2 + ∆ξ(t) 2 + 1 2 N n=1 ∆w n (t) 2 } + γ n N +1 ∆w n (t) 2 M 3 (∆u(t) 2 + ∆ξ(t) 2 + ∆w(t) 2
L 2 ) for some constant M 3 > 0. Moreover, we deduce from (3.4) that

V (t) M 4 (∆u(t) 2 + ∆ξ(t) 2 + ∆z(t) 2 L 2 ) for some constant M 4 > 0.
Overall, we have shown for any η ∈ [0, 1) the existence of a constant M > 0, independent of the initial condition, such that (4.27) holds for classical solutions. By a classical density argument, this result also holds for mild solutions.

We finally assess that we can always select N N 0 +1, P 0 and α, β, γ > 0 such that Θ ≺ 0 and Γ n 0 for all n N + 1. By the Schur complement, Θ ≺ 0 is equivalent to F P +P F +2δP +αγG+ 1 β P LL P ≺ 0. Introducing F = F 1 + F 2 where (4.29a)

F 1 =     A 1 + B 1 K LC 0 0 LC 1 0 A 0 -LC 0 0 -LC 1 B 2,b K + B 2,a 0 0 0 A 2 0 0 0 0 A 2     , (4.29b) 
F 2 =     α 1 L 1 0 0 0 0 0 -α 1 L 1 0 0 0 0 0 0 0 0 0 0 0 0 0    
with F 2 → 0, because α 1 → 0, when N → +∞. We apply the Lemma of Subsection 2.2 to F 1 + δI, yielding the existence of P 0 such that F 1 P +P F 1 +2δP = -I and P = O(1) as N → +∞. Therefore, we have F P + P F + 2δP + αγG + 1 β P LL P = -I + F 2 P + P F 2 + αγG + 1 β P LL P . Hence, setting α = N 1/4 , β = N , and γ = N -1/2 , and recalling that (2.2) holds, we infer the existence of N N 0 + 1 such that Θ ≺ 0 and Γ n 0 for all n N + 1. 

Stability analysis in

Γ n = -λ n + q c + δ + λ n α + β c 2 L 2 2γλ n , 1 For any x, a ∈ R, one has (x -a) 2 + a 2 = x 2 -2ax + 2a 2 = x 2 2 + ( x √ 2 ) 2 -2 x √ 2 √ 2a + ( √ 2a) 2 = x 2 2 + x √ 2 - √ 2a 2 x 2 2 .
then, for any η ∈ [0, 1), there exists M > 0 such that for all z 0 ∈ H 2 (0, 1) and u(0) ∈ R such that z 0 (0) = 0 and z 0 (1) = u(0), and all r ∈ C 2 (R + ; R), the classical solution of the closed-loop system composed of the plant (3.3), the integral actions (3.6a) and (3.10), the observer dynamics (3.11) with null initial condition, and the output feedback (3.17) satisfies

∆u(t) 2 + ∆ξ(t) 2 + N n=1 ∆ ŵn (t) 2 + ∆z(t) 2 H 1 (4.30) M e -2δt (∆u(0) 2 + ∆ξ(0) 2 + ∆z 0 2 H 1 ) + M sup τ ∈[0,t]
e -2ηδ(t-τ ) ∆r(τ ) 2 for all t 0. Moreover, the constraints Θ ≺ 0 and Γ n 0 are always feasible for N large enough.

Proof. For P 0 and γ > 0 we define

V (t) = ∆X(t) P ∆X(t) + γ n N +1 λ n ∆w n (t) 2 .
Then we have

V (t) + 2δV (t) = ∆X(t) F P + P F + 2δP ∆X(t) + 2∆X(t) P L∆ζ(t) -2∆X(t) P L r ∆r(t) + 2γ n N +1 λ n (-λ n + q c + δ)∆w n (t) 2 + 2γ n N +1
λ n (a n ∆u(t) + b n ∆v(t))∆w n (t).

We note that, for any α > 0,

2 n N +1 λ n a n ∆w n ∆u 1 α n N +1 λ 2 n ∆w 2 n + α a 2 L 2 ∆u 2 and 2 n N +1 λ n b n ∆w n ∆v 1 α n N +1 λ 2 n ∆w 2 n + α b 2 L 2 ∆v 2 .
Since ∆u(t) = E∆X(t) and ∆v(t) = K∆X(t) with E = 1 0 . . . 0 and K = K 0 0 0 , we have 

λ n Γ n ∆w n (t) 2 .
Assume that we can select N N 0 + 1, P 0 and α, β, γ > 0 such that Θ ≺ 0 and Γ n 0 for all n N + 1. Then there exists > 0 such that Θ -I. We deduce that

V (t) + 2δV (t) -∆X(t) 2 -2∆X(t) P L r ∆r(t) -∆X(t) 2 + 2 ∆X(t) P L r |∆r(t)| P L r 2 ∆r(t) 2 .
After integration, we obtain for any η ∈ [0, 1) the existence of a constant M 5 > 0 such that (4.31) V (t) e -2δt V (0) + M 5 sup τ ∈[0,t] e -2ηδ(t-τ ) ∆r(τ ) 2 for all t 0. Using (2.1), (3.4), and Poincaré inequality, we infer the existence of a constant M > 0, independent of the initial condition, such that (4.30) holds.

We now show that we can always select N N 0 +1, P 0 and α, β, γ > 0 such that Θ ≺ 0 and Γ n 0 for all n N + 1. By the Schur complement, Θ ≺ 0 is equivalent to F P +P F +2δP +αγG+ 1 β P LL P ≺ 0. Introducing F = F 1 + F 2 where F 1 , F 2 are defined by (4.29) with F 2 → 0, because α 1 → 0, when N → +∞. We apply the Lemma of Subsection 2.2 to F 1 + δI, yielding the existence of P 0 such that F 1 P + P F 1 + 2δP = -I and P = O(1) as N → +∞. Therefore, we have F P +P F +2δP +αγG+ 1 β P LL P = -I + F 2 P + P F 2 + αγG + 1 β P LL P . Hence, setting α = N 1/4 , β = N , and γ = N -1/2 , we infer the existence of N N 0 + 1 such that Θ ≺ 0 and Γ n 0 for all n N + 1. Note that a similar result holds when invoking Theorem 4.2 but when evaluating the PDE trajectory in H 1 norm.

Setpoint regulation

Discussion and concluding remarks

In this paper, the regulation problem has been solved for a reaction-diffusion problem with a bounded observation and a boundary control action. The proposed output feedback controller is designed so that the output achieves the setpoint tracking of a reference signal. The designed controller is computed by combining a proportional-integral finite-dimensional controller with a finite-dimensional observer.

This approach is constructive since the design method is based on explicit sufficient conditions that are numerically tractable and always feasible for a large enough dimension of the finite-dimensional observer. Let us emphasize that this approach can be extended to different regulation problem as reaction-diffusion system with unbounded measurement operators (instead of a bounded observation as in this paper) such as Dirichlet and Neumann traces. We refer the reader to [START_REF]Finite-dimensional observer-based PI regulation control of a reaction-diffusion equation[END_REF] for full details of these results. Defining for n N 0 +1 the quantity w n,e = -an -λn+qc u e , we have (-λ n + q c )w n,e + a n u e = 0 for all n 1. Hence (w n,e ) n 1 , (λ n w n,e ) n 1 ∈ l 2 (N) ensuring that w e n 1 w n,e φ n ∈ D(A) and Aw e = n 1 λ n w n,e φ n . This shows that -Aw e + q c w e + au e = 0. Moreover, using (3.9), we also have From the two last identities, we infer that (pw e ) + (q c -q)w e + au e = 0, w e (0) = 0, w e (1) = 0, γ 0 u e + 1 0 c(x)w e (x) dx = 0.

With z e (x) = w e (x) + x 2 u e , we infer that (pz e ) + (q c -q)z e = 0, z e (0) = 0, z e (1) = u e , 1 0 c(x)z e (x) dx = 0.

Assume by contradiction that z e = 0. Then z e (0) = 0 and z z e /z e (0) satisfies (3.21) with 1 0 c(x)z(x) dx = 0. This contradicts our assumption. Thus we obtain that z e = 0, showing that u e = z e (1) = 0. This implies that w e = z e -x 2 u e = 0, hence w n,e = 0 for all n 1. We have shown that ker(T ) = {0}. This allows to conclude that if z = 0 is the only solution of (3.21) then (A 1 , B 1 ) is controllable. The converse holds similarly.

Since A 0 is diagonal with simple eigenvalues, the application of the Hautus test shows that (A 0 , C 0 ) is observable is and only if c n = 0 for all 1 n N 0 .

  -Liouville operator Let the Sturm-Liouville operator defined by Af = -(pf ) + qf on the domain D(A) = {f ∈ H 2 (0, 1) :

  = A 2 E N -N0. Putting together (3.19-3.20) and (3.22-3.23), we obtain with X

c 1 c- 1 0 1 c

 111 n ŵn,e + α 0 u e + β 0 v e -r e , (3.25c) 0 = (-λ n + q c ) ŵn,e + a n u e + b n v e -l n N i=1 c i ŵi,e -α 1 u e -ỹe , 1 n N 0 , (3.25d) 0 = (-λ n + q c ) ŵn,e + a n u e + b n v e , N 0 + 1 n N, n w n,e . (3.25f)We first note from (3.25b) that v e = 0. Then, from (3.25a) we have w n,e = -an -λn+qc u e for all n N 0 + 1. In particular, from (3.25e), we have ŵn,e = w n,e = -an -λn+qc u e for all N 0 + 1 n N . Defining e n,e = w n,e -ŵn,e and ζ e = n N +1 c n w n,e , we obtain that e n,e = 0 for all N 0 + 1 n N . Hence, from (3.25d), we infer that 0 = (-λ n + q c ) ŵn,e + a n u e + l n N0 i=1 c i e i,e + l n α 1 u e + l n ζ e for all 1 n N 0 . Combining this latter identity with (3.25a), we obtain that (A 0 -LC 0 )E N0 e Lα 1 u e -Lζ e = 0. Invoking (3.12), we note that α 1 u e =n N +1 c n w n,e = -ζ e , implying that (A 0 -LC 0 )E N0 e = 0. Since A 0 -LC 0 is Hurwitz, we infer that e n,e = 0 for all 1 n N 0 . In particular, ŵn,e = w n,e for all 1 n N . From (3.25b-3.25d) we deduce that 0 = A cl (α 1 ) Ŵ N0 a,e -B r r e + Lζ e . Recalling that ζ e = -α 1 u e and A cl (α 1 ) is defined by (3.18), we obtain that (A1 + B 1 K) Ŵ N0a,e = B r r e . Since A 1 +B 1 K is Hurwitz, we infer that Ŵ N0 a,e = u e ŵ1,e . . . ŵN0,e ξ e = (A 1 + B 1 K) -1 B r r e . We note that (w n,e ) n 1 , (λ n w n,e ) n 1 ∈ l 2 (N) ensuring that w e n 1 w n,e φ n ∈ D(A) and Aw e = n 1 λ n w n,e φ n . Using (3.25a), we obtain that -Aw e + q c w e + au e + bv e = 0. Introducing the change of variable z e = w e + x 2 u e , z e is a static solution of (3.3a-3.3b) associated with the constant control input u(t) = u e . Denoting by y e c(x)z e (x) dx = 1 0 c(x)w e (x) dx + γ 0 u e , we infer from (3.25c) while invoking (3.9) that r e = N0 n=1 c n ŵn,e + α 0 u e = γ 0 u e + n n w n,e = γ 0 u e + ỹe = y e .

  H 1 (0, 1) norm Theorem 4.2. Under the assumptions of Theorem 4.1 but with the definition of Γ n replaced by

Theorem 4 . 3 .

 43 Under both assumptions and conclusions of Theorem 4.1, for any η ∈ [0, 1), there exists M r > 0 such that|∆y(t)| M r e -δt (|∆u(0)| + |∆ξ(0)| + ∆z 0 L 2 ) + M r sup τ ∈[0,t]e -ηδ(t-τ ) |∆r(τ )| for all t 0.Proof. Noting that ∆y(t) = ∆ỹ(t) + γ 0 ∆u(t) = n 1 c n ∆w n (t) + γ 0 ∆u(t), we have |∆y(t)| c L 2 ∆w(t) L 2 + |γ 0 ||∆u(t)|. The claimed conclusion follows from Theorem 4.1.

A Proof of Lemma 3. 1 Applying [ 14 ,

 114 Lemma 2], the pair (A 1 , B 1 ) satisfies the Kalman condition if and only if the pair0 a A 0 B 0,b α 0 C 0 β 0   is invertible.The former condition has been checked in[START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reactiondiffusion equations with a either Dirichlet or Neumann boundary measurement[END_REF]. Hence we only need to evaluate the invertiblity of T . Let u e w 1,e . . . w N0,e v e ∈ ker(T ). We obtain that v e = 0 and a n u e + (-λ n + q c )w n,e = 0, 1 n N 0 , α 0 u e + N0 n=1 c n w n,e = 0.

0 = α 0

 0 u e + N0 n=1 c n w n,e = γ 0 u e + 1 0 c(x)w e (x) dx.
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