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Abstract
To power the specific recognition and binding
of protein partners into functional complexes, a
wealth of information about the structure and
function of the partners is necessarily encoded
into the global shape of protein-protein inter-
faces and their local topological features. To
identify whether this is the case, this study
uses convolutional deep learning methods (typ-
ically leveraged for 2D image recognition) on
3D voxel representations of protein-protein in-
terfaces colored by burial depth. A novel two-
stage network, fed with voxelizations of each in-
terface at two distinct resolutions, achieves bal-
ance between performance and computational
cost. From the shape of the interfaces, the
network tries to predict the presence of sec-
ondary structure motifs at the interface and the
molecular function of the corresponding com-
plex. Secondary structure and certain classes
of function are found to be very well predicted,
validating the hypothesis of interface shape as a
conveyor of higher-level information. Interface
patterns triggering the recognition of specific
classes are also identified and described.

Introduction
Protein-protein (PP) complexes are the ubiqui-
tous effectors of biological function. Recogni-

tion and interaction between protein partners
occur along PP interfaces, which hold tremen-
dous promise as druggable targets.1 PP inter-
face modulators can for example be used to cor-
rect the misregulation of interfaces involved in
numerous diseases.2–4 Within microbes, PP in-
terface inhibitors can disrupt the formation of
PP complexes implementing vital functions in
a way that is much less prone to the outbreak of
resistance than traditional active-site targeting
drugs.5–8

Although their sizes and shapes can vary
tremendously, PP interfaces are on average
large and flat, with only a small proportion
of interface aminoacids (termed hotspots) con-
tributing significantly to the overall binding free
energy.9 Moreover, the interfaces of biologi-
cally relevant PP complexes may be hard to
distinguish from those of transient complexes
stemming from random interactions between
noncognate partners due to crowding within the
cytoplasm.10 The putative relationship between
topological and/or chemical features of PP in-
terfaces on the one hand, and molecular func-
tion or biological process on the other, is thus
very complex and has not been rationalized to
date. In fact, choosing a self-contained set of
minimally correlated features as a subspace in
which to successfully categorize PP complexes
remains an ongoing challenge.11–13 Because of
its synthetic and predictive power, deep learn-
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ing is currently gaining traction for the study
of PP interfaces based on sequence,14–16 struc-
tural data,17 or both.18,19 However, the problem
of selecting a feature space and efficiently en-
coding it for machine learning remains. A com-
monly used rationale to find trends in PP inter-
faces is to use a very large number of very di-
verse descriptors and let the learning algorithm
pick the relevant ones. For example, Qiao et al
use 82 distinct features, both local and global
(one temperature, 10 physicochemical, 36 struc-
tural, 5 evolutionary, and 30 solvation prop-
erties).20 While learning algorithms can detect
simple correlations between features, their per-
formance will strongly depend on the encoding
of the features, the renormalization of their val-
ues to a common range, and the mix of global
vs. local features, which are user-defined and
far from trivial.

In this work, I use convolutional deep learn-
ing techniques to examine how much struc-
tural and functional information can be inferred
from the global shape of a PP interface (de-
fined as the surface equidistant to the atoms
of both partners) and its accessibility to wa-
ter. This is a crucial question: PP interfaces
power PP recognition and thus probably en-
code, in a manner which is still unknown and
probably quite complex, the high-level informa-
tion required to specifically form a functioning
complex. Deep learning techniques can iden-
tify and model complex nonlinear relationships
within large datasets, but generally fail to pro-
vide an explicit representation of the latter and
are thus often termed ‘black boxes’. Convo-
lutional networks differ in this respect: the
patterns triggering recognition in the trained
neurons can be extracted and visualized, of-
ten yielding valuable information on how the
network ‘sees’ and categorizes the input data.
This, in turn, should provide insights into the
ability of interface topologies to power elabo-
rate recognition schemes by acting as carriers
for more complex structural or functional in-
formation.

Convolutional neural networks, which emu-
late the hierarchical detection of features by
cells in the visual cortex, have proved very effi-
cient in the field of 2D21 and 3D22 image recog-

nition. Matrices of neurons called filters are
arranged in consecutive connected layers; first-
layer filters detect simple patterns (edges, tex-
tures, etc), activating second-layer filters which
integrate multiple simple patterns into more
complex ones, that are in turn fed to the next
layer... This detection of patterns is robust to
displacements, small deformations and noise.
In recent years, convolutional networks have
been increasingly employed for the prediction
or classification of PP interfaces, based on 2D
contact maps18,19 or 3D images obtained by
discretizing 3D structures into voxel sets (cu-
bic volume elements akin to 2D pixels)17,23,24.
In this work, the PP interface topologies, ob-
tained as 3D polygon meshes using Voronoi di-
agrams of the partner atoms,25 are discretized
into 3D images using voxels which are colored
according to their burial depth within the in-
terface. Indeed, buried (desolvated) interface
regions are known to be enriched in conserved
hotspot residues, which are crucial to recogni-
tion and binding.25,26 By using a global topo-
logical description colored by a single important
feature relating structure to conservation, this
study hopes to avoid the normalization pitfalls
that come with using multiple features, stay-
ing close to the actual definition of a PP inter-
face and leaving to the convolutional network
the task of finding relevant local patterns from
global data.

Thus, I build a dataset of more than 50000 PP
interfaces voxelized at two distinct resolutions
(coarse and fine). The dataset is used as in-
put for a novel two-stage convolutional network
which simultaneously takes information from
both resolutions, capturing more surface detail
than previous studies17,23,24 while restraining
computational cost. This novel dataset is used
to tackle two learning problems. First, I look
at whether interface topologies can be used to
predict the presence of α-helix and/or β-sheet
motifs at the interface. This is far from triv-
ial: frequently occurring patterns of interact-
ing secondary structure motifs have been iden-
tified,27 yet the interface along which they form
contains only a fraction of the atoms of such
motifs, and their combination often results in
flat patches with few salient features.28 Is this
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sufficient to make secondary structure a driv-
ing force of specific PP recognition? Predicting
secondary structure from interface geometry is
also quite important for de novo interface de-
sign29,30 or the conception of PP interface mod-
ulators.31 Second, I explore whether interface
topology can predict the molecular function of a
PP complex. This much more indirect relation-
ship has not been explored to date; if it exists,
it has profound implications on the amount of
implicit information encoded within interfaces
and would be a large step in understanding why
random noncognate PP interactions do not give
rise to stable complexes. Finally, considering
that local secondary structure elements have
been successfully linked to function,32,33 relat-
ing both notions to interface topology appears
a promising unifying goal.

Methods
Interface meshes
The dataset of PP complexes used in this study
are the entries of the HIPPDB and SIPPDB
databases of Arora and coworkers,34 which cat-
egorize PP complexes in the protein databank
(PDB) based on the nature of secondary struc-
ture motifs at their interface. The structures of
all HIPPDB and SIPPDB entries were retrieved
from the PDB. Missing or incomplete residues
in the interface region were replaced, and their
conformation optimized, using MODELLER.35

Entries which contained only backbone atoms,
or had been invalidated or superseded since the
publication of HIPPDB and SIPPDB, were dis-
carded. Water molecules were added at steri-
cally available and energetically favorable posi-
tions within a 5 Å radius around the interface
using SOLVATE;36 this harmonizes PDB files
with respect to the presence of structural water
molecules.

The resulting structures were input into the
Intervor module of the Structural Bioinformat-
ics Library.37 Intervor computes three binary
interfaces AB, AW and BW between the two
protein chains A and B and interfacial water
molecules W, as the Voronoi power diagrams of

the corresponding atoms. The water-mediated
ternary interface ABW employed in this study
was obtained as the union of these three bi-
nary interfaces. The resulting Voronoi facets
were shelled from the rim to the core of the
interface, associating to each facet an integer
shelling order (SO).25 SO represents the num-
ber of ‘jumps’ between adjacent facets needed
to reach the interface rim from the current loca-
tion, and thus is a good representation of burial
depth; high-SO patches have been shown to cor-
relate strongly with the presence of hotspots.25

In PDB entries whith multiple interacting pro-
tein chains, the entire process was repeated for
each of the pairs of chains forming an interface.

Particular dispositions of atoms at the inter-
face rim can give rise to rim Voronoi facets
with near-parallel edges which artificially ex-
tend very far from the interface. To prevent
such unphysically large rim facets from raising
issues during the voxelization process, the ori-
ented bounding box of the un-rimmed interface
mesh was computed, expanded by 10 Å in all di-
mensions, and used to clip the interface mesh.
This 10 Å limit to rim facet lengths was chosen
upon analysis of the distributions of rim facet
lengths and areas, and resulted in 19 % of in-
terfaces requiring clipping.

Voxelization
The voxelization and labeling processes de-
scribed in the following paragraphs are summa-
rized in a flowchart on Supporting Information
figure S1.

Each interface mesh in the dataset was vox-
elized at two resolutions: 1 Å (fine) and 4 Å
(coarse). This was done by shooting rays along
the positive z direction from a regular grid of
points in the xy plane, converting the inter-
section points of these rays with the interface
mesh to voxel locations, and coloring the lat-
ter with the SO of the intersected facets (or
zero when no intersection occurs). The fine and
coarse voxel grids were cubes measuring 128
and 32 voxels to a side, respectively, spanning
1283Å3. This represents a much higher reso-
lution than previous studies using voxel repre-
sentations of proteins or interfaces.17,23,24 423
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complexes (0.7 % of the dataset) featuring in-
terface meshes too large along at least one di-
mension to fit within the grids were removed
from the dataset. The dataset thus obtained
consisted of 56864 interfaces, each associated
with a coarse and a fine voxel representation,
3D images that can directly be fed into con-
volutional layers. Figure 1 demonstrates the
voxelization of a sample interface.

Labeling the dataset
Depending on the learning task, the dataset PP
interfaces were labeled based on either their sec-
ondary structure motifs or the molecular func-
tion of the PP complexes.

For learning interfacial secondary structure
motifs, the labels α and β were attributed based
on the information in the HIPPDB and SIP-
PDB databases. The labels were one-hot en-
coded within a 2-vector (one vector component
per label, holding 1 if the label is set or 0 oth-
erwise; entries containing both α and β motifs
have both labels set simultaneously). All 56864
entries were thus labeled (35206 α, 13867 β,
7791 both).

For the optimal learning of molecular func-
tion, labeling the largest part of the dataset PP
interfaces with the smallest number of function-
related tags is required. Gene Ontology terms
(GOTs),38 which annotate biological systems in
terms of molecular function, cellular component
and biological process, appeared as a promising
source of labels. The ‘slim’ subset of GOTs, cu-
rated by the the Gene Ontology Consortium,
was employed; it provides a broad overview of
functions, locations and roles by hierarchically
grouping multiple related GOTs.39 The molecu-
lar function GOTs associated with each partner
of the dataset complexes were retrieved using
PyPDB.40 15286 dataset entries lacked GOT
annotations altogether and 8814 more had no
molecular function-related GOT. The remain-
ing 32764 entries were described by 37 unique
GOTs, with tremendously varying representa-
tivity (from 30 instances of ‘histone binding’ to
20380 instances of ‘ion binding’ PP complexes
– see Supporting Information figure S2).

This is not ideal: to facilitate machine learn-

ing, class labels should verify the following cri-
teria. First, they should be available for the
largest possible proportion of the dataset. Sec-
ond, the number of dataset entries per label
should be as balanced as possible. Third, the
labels should be as independent from each other
as possible: their pairwise semantic similarity41

should be as small as possible, and the aver-
age number of labels per entry should be as
close to one as possible. Simultaneoulsy opti-
mizing these criteria, however, proved impos-
sible. For instance, maximizing the number
of retained dataset entries led to the selection
of a few highly represented GOTs, resulting in
large discrepancies in the number of entries de-
scribed by each GOT; conversely, maximizing
the homogeneity of the number of entries la-
beled with each GOT led to selecting GOTs
that are not as highly represented, drastically
reducing the number of labeled dataset entries.
This is pictured on Supporting Information fig-
ure S3, which shows the pairwise correlation be-
tween the criteria, while tables S1-S4 present
the subsets of GOTs optimizing each criterion.

To identify the set of GOTs representing the
best tradeoff, a score function was built upon
the normalized contributions of the above crite-
ria and all possible GOT sets sufficiently small
to allow efficient multilabel deep learning42

were scored (see Supporting Information fig-
ure S4). The top-scoring set of labels, of length
10, was adopted as a descriptor of molecular
function for the PP complexes in the dataset. It
is presented in table 1. 31139 entries were suc-
cessfully labeled with it, a significant decrease
from the original dataset size but sufficient to
train a 10-label deep classifier network. Due
to the scarcity of entries having both verified
structures and function, the initial dataset is al-
ready unbalanced in terms of protein families or
function and the culling should have no major
detrimental statistical effect. Additionally, the
average pairwise RaptorX TM-score43 of struc-
tures within each class is within the range ob-
served for unrelated proteins, which shows that
the classes are not dominated by a small num-
ber of folds (see Supporting Information fig-
ure S9. As previously, one-hot encoding was
employed to represent each entry’s labels as a
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Figure 1: Multi-resolution voxelization of a sample PP interface. Left: Voronoi interface. Center: coarse voxelization
(4 Å resolution). Right: fine voxelization (1 Å resolution). Voronoi facets and voxels are colored by SO value; the
color scale will be used in all figures of the manuscript.

Table 1: Selected set of 10 GOTs used to describe molecular function. This set is a tradeoff between maximizing
the number of dataset entries, minimizing semantic similarity between GOTs, minimizing the number of GOTs per
entry, and minimizing the standard deviation of GOT populations over the dataset.

GOT id GOT Population
GO:0016491 oxidoreductase activity 11224
GO:0008233 peptidase activity 5854
GO:0016829 lyase activity 3878
GO:0003677 DNA binding 2901
GO:0022857 transmembrane transporter activity 2864
GO:0016301 kinase activity 1691
GO:0016853 isomerase activity 1622
GO:0005198 structural molecule activity 1309

GO:0016810 hydrolase activity, acting on
carbon-nitrogen (but not peptide) bonds 1228

GO:0016874 ligase activity 1084

10-vector of zeros and ones.

Network topology
The computational cost of 3D convolutional
networks increases rapidly with the resolution
of the filters. To alleviate this effort while pre-
serving the ability to learn from high-resolution
interface features, this work employs a two-
stage convolutional neural network schematized
on figure 2. The main stage (dubbed CLC) is a
label classifier which takes as input the coarse
(32 × 32 × 32) voxelization of a PP interface
and outputs an n-vector of probabilities that
the input carries each of the n labels. CLC is
composed of a succession of three convolution-
maxpooling-ReLu blocks of decreasing size and
increasing depth, a dropout layer, and a se-
ries of densely connected layers, with the final

layer’s depth equal to the number of labels. The
convolution layers have a kernel size of 3×3×3,
a stride of 1 and a padding of 1; the maxpooling
layers have a kernel size of 2×2×2, a stride of 2
and no padding; such relatively small, overlap-
ping kernels were found to give the best results,
as they also do for 2D image classification.

An auxiliary stage of similar composition (de-
noted F2C) predicts the scalar value of a coarse
voxel from the corresponding 4×4×4 fine vox-
els. F2C basically performs a dimensionality
reduction operation, choosing the most salient
high-resolution features to encode into the low-
resolution representation; it thus yields poten-
tially more relevant low-resolution voxelizations
than the simple ray-casting procedure described
above. In each forward pass of the two-stage
network, a user-defined proportion of randomly
selected coarse voxels are replaced by the cor-
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Figure 2: Architecture of the two-stage CLC/F2C convolutional network. The nature of a layer is indicated by its
prefix (conv=3D convolution, fc=fully connected). Left: 32× 32× 32 (coarse) voxelization of an example interface,
colored by shelling order (SO), and the decomposition of a coarse voxel into its 4× 4× 4 subset of fine voxels, both
of which are used as input to the neural network. The depths of the fully connected layers of the CLC subnetwork,
which depend on the number of labels to predict, are given in a table (α/β: interfacial secondary structure elements;
molFunc: molecular function).

responding predictions of the F2C stage before
the coarse voxelization is input into CLC. A
value of 40% was found to be an acceptable
tradeoff between accuracy and computational
cost.

Deep learning
The dataset was split into a training and a
test set of respective populations 75% and 25%.
CLC was pretrained to predict the correct la-
bel vector from the coarse voxelizations of the
training set PP interfaces. F2C was pretrained
on 4× 4× 4 voxel blocks randomly chosen from
the fine voxelizations of the training set inter-
faces using an autoencoder, obtained by plug-
ging a mirror image of F2C into the output of
F2C and predicting the input voxel blocks from
themselves. In such an autoencoder, the in-
put data fed into the network passes through
a bottleneck, at which point the network must
choose what information to keep and what to
discard so that the input data can best be

reconstructed.44 Once trained in this fashion,
the F2C subnetwork is thus guaranteed to pro-
vide coarse voxel values that encapsulate the
most relevant information contained in the cor-
responding fine voxels.

CLC and F2C were then combined as per fig-
ure 2, and their pretraining was refined to pre-
dict labels from the combined coarse and fine
voxelizations of the training dataset. Binary
cross-entropy with logits was used as the loss
function, and the network weights were opti-
mized using stochastic gradient descent. To re-
duce overfitting, dataset augmentation was per-
formed by applying to the training set samples,
with a probablity of 15 %, a random number
of π/2 rotations along each of the three base
axes x, y and z and a random number of flips
along the three base planes xy, xz and yz. All
deep learning tasks were implemented using the
PyTorch API.45
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Clustering of voxel motifs
The clustering of voxel motifs maximizing the
activation of individual convolution filters was
performed as follows. In each voxel set, a blob
detection algorithm46 was employed to detect
contiguous zones of high SO. A graph was then
built, using the blob diameters as node weights
and the distance between blobs as edge weights.
The set of graphs associated with all convo-
lution filters were then clustered by means of
the spectral clustering method,47 using graph
edit distance48 as a metric to compare graphs
with one another. The number of clusters
was chosen to maximize the silhouette score
and minimize the Davies-Bouldin score, both
well-documented descriptors of clustering per-
formance.47 To obtain a finer clustering, a hi-
erarchical approach was employed: the clusters
were recursively subdivided into subclusters as
long as no major degradation of the silhouette
or Davies-Bouldin criteria was observed and the
subclusters remained relatively balanced in size
(i.e., no singleton clusters). According to these
criteria, a clustering depth of 2 was found to
be optimal for both learning tasks considered.
To facilitate the viewing as 3D images of the
representative voxel motifs obtained from the
clustering, they were denoised using a wavelet
filter.46

Results
Prediction of α/β interface motifs
and PP complex molecular func-
tion
Instances of the two-stage network on figure 2
were trained (on the training set) to predict the
presence of α or β motifs at the interface and
the molecular function of the PP complex. The
learning performance was subsequently evalu-
ated (over the test set) by measuring the per-
class prediction accuracies and F1 scores. As a
benchmark of the dual-resolution methodology,
the benefit of using the F2C stage was evalu-
ated by comparing the predictive performance
of the full network with that achieved by the

CLC stage only.
Accuracy is a straightforward, easy to in-

terpret measure which is proportional to the
sum of true negative and true positive predic-
tions; however, in datasets with multiple un-
balanced classes (like molecular function in the
present study), underrepresented classes have
very high true negative scores by definition and
feature artificially high accuracies even if the
network is unable to predict them (low true pos-
itive score). Supporting Information figure S5,
which shows the prediction accuracies for the
10-class molecular function problem, illustrates
this clearly. In such cases, the F1 score, a mix-
ture of precision and recall which does not in-
volve true negatives, is considerably more infor-
mative of the prediction quality. However, the
F1 score is much less intuitive than accuracy
and is also affected by class imbalance. To alle-
viate this, the normalized score F1norm is used
here: F1norm = (F1 − F1rand)/(1 − F1rand),
where F1rand is the F1 score achieved by a ran-
dom classifier for predicting the selected class
over the considered dataset. F1norm thus ranges
from 0 (random predictor) to 1 (perfect predic-
tor).

The converged accuracies and normalized F1
scores for the prediction of secondary structure
are shown in table 2; for molecular function,
only F1norm is shown since accuracies are mis-
leading (table 3). The evolution of these statis-
tics with the number of training epochs can be
found on Supporting Information figures S6 and
S7.
Table 2: Accuracy and F1norm values for the prediction
of α and β motifs using the CLC subnetwork only or the
complete F2C+CLC network.

CLC CLC+F2C
Acc. F1norm Acc. F1norm

α 0.94 0.66 0.94 0.86
β 0.90 0.73 0.91 0.85

As can be seen, excellent accuracies and F1
scores are achieved for the prediction of α and
β motifs at the interface using the complete
CLC+F2C network. The F2C subnetwork does
not significantly improve accuracy, but has a
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Table 3: F1norm values for the prediction of molecular
function using the CLC subnetwork only or the complete
F2C+CLC network.

Function CLC CLC+F2C
oxidoreductase 0.63 0.71
peptidase 0.79 0.82
lyase 0.33 0.40
DNA binding 0.43 0.48
transporter 0.67 0.73
kinase 0.26 0.33
isomerase 0.30 0.36
structural 0.47 0.56
hydrolase 0.25 0.35
ligase 0.38 0.45

marked effect on the F1 score, which is actually
more relevant since the dataset is somewhat un-
balanced (75.6 % α vs 38.1 % β motifs). From
these results, it can unambiguously be claimed
that the overall interface shape encodes, and is
specific of, interfacial secondary structure mo-
tifs.

In the case molecular function, the network
achieves much better scores than a random clas-
sifier for the prediction of all functional classes
but overperforms for oxidoreductase, peptidase
and membrane transporter activities compared
to kinase or hydrolase. Interestingly, the scores
obtained are higher than those achieved using
other structure-based predictors, despite the
much larger number of features included in the
latter.49,50 They are similar on average to those
obtained by Amidi et al24 on voxelized repre-
sentations of protein backbones (once the F1
score provided by these authors has been nor-
malized). Both approaches perform better for
oxidoreductases (0.74 vs 0.71) and worse for lig-
ases (0.49 vs 0.45); interestingly, the Amidi ap-
proach predicts hydrolases rather well (0.74),
whereas the present method differentiates pep-
tidases which are very well predicted (0.82)
from other hydrolases for which prediction is
difficult (0.35).

The F2C subnetwork substantially improves
the prediction of all classes; as can be seen on
Supporting Information figure S7, it also pre-
vents the onset of overfitting which tends to

occur beyond 100 training epochs for the CLC
network, causing the F1 curve to plateau and
decrease whereas the CLC+F2C score contin-
ues to slightly rise. Encouragingly, the predic-
tion performances seem decorrelated from the
label populations, making it likely that the ob-
served trends are due to the interface topolo-
gies themselves and their diversity within each
functional class rather than dictated by statis-
tical artifacts. Finally, adding convolutional or
dense layers or increasing their size did not re-
sult in a significant boost to F1 scores (data not
shown), which implies that the limiting factor
is probably the quality of the dataset, the voxel
resolution, or the actual information contained
in the interfaces.

Figure 3: Density contours of the activations of the 3D
convolution filters (left column) and fully connected neu-
rons (right column) for samples tagged with a given label
(top row: secondary structure; bottom row: molecular
function), projected on the first two principal compo-
nents of the activations of the complete dataset.

Analyzing layer activations
I now examine the activations of the 224 indi-
vidual 3D convolution filters of the trained net-
works (respectively 32, 64 and 128 in layers 1, 2
and 3) when instances of interfaces bearing α or
β motifs, or belonging to each of the 10 molecu-
lar function classes, are presented to them. The
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activations of the neurons in the fully connected
(dense) layers (962 for the prediction of sec-
ondary structure and 1290 for molecular func-
tion) were similarly studied. Principal compo-
nent analyses (PCA) were performed over the
set of vectors containing the activations of all
dataset samples. These activations were then
projected onto the two first eigenvectors (which
explained more than 90 % of the total variance
over the dataset for both learning tasks and
both dense and convolutional neurons). The
density plots of these projections are depicted
on figure 3. As can be seen, the activation pat-
terns for the convolutional layers do not seem
to clearly distinguish labels from one another,
whether for the prediction of secondary struc-
ture or molecular function: the corresponding
density plots overlap each other to a large ex-
tent. Interestingly, the point cloud for inter-
faces bearing both α and β motifs extends into
a region of eigenvector space distinct from that
corresponding to α or β only, hinting at the ex-
istence of specific patterns for such interfaces.
On the contrary, the activation patterns of the
dense neurons clearly distinguish classes from
one another. This is most apparent for the
prediction of α and β motifs; once again, PP
interfaces simultaneously bearing both motifs
occupy a distinct region spanned by the sec-
ond PCA eigenvector. However, to a large
extent, the dense layer activations also man-
age to disentangle the 10 different classes of
molecular function. This means that the in-
terface patterns detected by the convolutional
filters are generally not specific to a given in-
terface class: instead, the actual prediction is
performed downstream by the fully connected
layers which aggregate and synthetize the infor-
mation about the motifs detected by the con-
volutional layers, achieving specificity.

Visualizing convolution filters
To visualize what types of interface patterns
are recognized by the network, the input voxels
that maximize the activation of a given convo-
lution filter can be generated using a technique
inspired from neural style transfer.51,52 Starting
from a random set of input voxels (e.g. Perlin

noise), a forward pass through the network is
performed; the average activation of the filter
and its gradient relative to the input are com-
puted. The gradient is then used to iteratively
update the input voxels in a way which specif-
ically maximizes the activation of the chosen
filter. The voxel motifs maximizing each of the
224 convolution filters in the three layers were
thus computed.

Figure 4: Typical examples of voxel patterns maximiz-
ing the activation of convolution filters in the network’s
first (left), second (center), and third (right) convolution
layers. Voxels are colored by SO value.

As is typically observed in neural style trans-
fer methods applied to 2D images, the obtained
voxel motifs feature complex patterns at differ-
ent resolutions. Relevant exemplars are ren-
dered on figure 4. Patterns activating first-
layer neurons look the most like actual inter-
faces, with features that are easily distinguish-
able from background noise. These can consist
of zones of high SO surrounded by layers of pro-
gressively decreasing SO, which are either sets
of localized ‘hotspots’ or axis-oriented planes or
lines; the combination of several such elemen-
tary patterns is likely to match most of the real-
life interfaces encountered in the dataset. Pat-
terns detected by filters in the second layer tend
to be larger and denser. They either consist of
high-frequency, noisy voxel distributions cover-
ing the entire filter, spanning a limited range
of SO values (whether high or low) and bearing
little resemblance to actual interfaces; or they
appear as large blobs separated by blank/rim
voxels, with a progression of SO values that are
much closer to real interfaces. Finally, third-
layer filters appear much sparser, consisting of
isolated, often parallelepipedic blocks of low-
SO voxels surrounded by rim voxels. Encour-
agingly, the motifs maximizing filters from all
three layers were found to be roughly indepen-
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Figure 5: Hierarchical clustering of voxel motifs max-
imizing the activation of the 3D convolutional filters.
Top: prediction of secondary structure motifs; bottom:
prediction of molecular function. For each cluster, the
distribution of filters within the three layers of the net-
work is shown as a pie chart. The average proportion of
small inter-blob distances (SD), the average proportion
of large blobs (LB) and the median shelling order (SO)
are also shown as dots on a horizontal scale. The popu-
lation of each cluster is proportional to the diameter of
the blue circle next to to its name.

dent of the Perlin noise pattern used to initialize
the optimization process, with most apparent
differences disappearing in less than 10 itera-
tions. Clearly, although the activation func-
tions are highly complex and nonconvex, their
local maxima all share a common nature and
the voxel motifs presented herein are represen-
tative.

To obtain a synthetic view of the different
types of voxel motifs maximimizing filter acti-
vations, the motifs were hierarchically cluster-
ized as described in the Methods section. Both
for secondary structure and molecular function
predictors, this resulted in 2 first-level clusters
(denoted 1-1 and 1-2), further subdivided into 5

second-level clusters (labeled 2-1 to 2-5). They
are presented on figure 5. The voxel motifs con-
tained within each cluster were analyzed based
on the distribution of high-SO voxel groups or
‘blobs’ (distance between blobs, typical blob
size and SO), as well as on the layer contain-
ing the convolutional filter which each voxel set
maximizes. Unsurprisingly, both for the pre-
diction of α/β elements and for that of molecu-
lar function, the first level of clustering clearly
separates second- (cluster 1-1) from third-layer
filters (cluster 1-2): the former are dense, noisy
and target high SO, while the latter are sparse
and feature low, homogeneous SO values. First-
layer motifs, very diverse in terms of density,
are distributed in both clusters.

For the prediction of α/β elements, the sec-
ond level of clustering splits the dense and noisy
motifs of cluster 1-1 into two subclusters, re-
grouping in 2-1 most of the first-layer motifs
along with the less dense and more interface-
like exemplars of second-layer motifs. Cluster
1-2 is split mainly based on typical blob size: 2-
3 and 2-4 are built from third-layer filters and
feature isolated small (2-4) or medium-sized (2-
3) blobs of low SO, surrounded by rim voxels;
2-4 also contains first-level filters which contain
axis-aligned 2D or 1D patterns. Finally, 2-5 iso-
lates a small number of sparse first-layer filters
detecting localized SO hotspots.

Molecular function filters follow a similar clus-
tering trend. At the first level, the segrega-
tion between second- and third-layer filters (in
1-1 and 1-2, respectively) is still apparent but
not as perfect as for the prediction of secondary
structure. At the second level, 2-1 and 2-2 dif-
fer mostly by SO values, with 2-2 regrouping
third-layer and lower-SO second-layer filters.
2-5 isolates sparse, low-SO third-layer motifs
from denser motifs in 2-4, including most first-
layer ones. Finally, 2-3 regroups a few first-
layer motifs targeting sparse high-SO hotspots.
On the whole, compared to the α/β case, blobs
are smaller and inter-blob distances larger, and
first-layer filters tend to react to higher SO val-
ues.

Having regrouped the patterns activating
convolutional filters into clusters, it is now
much simpler to examine how the different in-
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Figure 6: Label distributions of the 50 dataset entries
that maximize the activations of convolutional filters
inside a given cluster, for the prediction of secondary
structure (top) and molecular function (bottom). The
distributions have been corrected to account for the rel-
ative population of each label in the entire dataset.

terface types in the dataset activate the net-
work. For each second-level cluster, the 50 PP
interfaces which predominantly activate this
cluster over all other clusters were identified,
and statistics were performed over their labels
(corrected by the relative populations of labels
in the entire dataset). The results are shown
on figure 6. For the prediction of secondary
structure, they are striking: clusters 2-1, 2-2
and 2-5 (built mainly on second-layer filters) re-
spond overwhelmingly to α patterns, while 2-3
and 2-4 (favoring third-layer filters) appear spe-
cific to β patterns. This means that secondary
structure is mainly detected in the second layer
of the network, which combines together pat-
terns detected in the first layer. The third layer
effectively performs a logical NOT operation
on the second-layer results and thus appears

largely redundant: predicting secondary func-
tion seems to be a relatively simple task that
does not require very deep networks. Another
important finding is that the specific response
of clusters to α or β motifs is not only due to
the second- and third-layer motifs which make
up most of the clusters’ populations. Indeed,
although first-level filters in 2-1 and 2-2 are al-
ways more activated than that in 2-3 and 2-4,
the activation of the latter is 2.31 times superior
in the case of β instances compared to α (data
not shown). These sparse, low-SO filters thus
act as a correction to the baseline provided by
the dense, high-SO filters in 2-1 and 2-2, switch-
ing recognition from α to β.

Figure 7 shows samples from the 5 top-scoring
interfaces for the activation of each cluster.
Clusters 2-1 and 2-2 favor highly curved in-
terfaces that have large, continuous cores with
high SO; all of the top 5 activators of 2-2 are rel-
atively small, wedge-shaped hydrophobic ‘pock-
ets’ with a small rim/core ratio, while those of
2-1 are larger and have extensive rims. Top trig-
gerers of clusters 2-3 and 2-4 tend to feature
lower SO; in 2-3, interfaces consisting of sev-
eral, sometimes disconnected hotspots appear
prominently, while 2-4 mainly has small inter-
faces among its top 5. Finally, interfaces max-
imizing 2-5 are more diverse but mostly look
isotropic and relatively flat. Overall, β acti-
vation patterns are compatible with interfaces
that are smaller and more accessible to water
than their α counterparts, which could be linked
to the typically larger solvent exposure of the
β-sheet backbone.53

Conversely, the correlation between molecular
function and activated filter cluster (figure 6) is
not as marked. The activation of cluster 2-4 was
not found to be dominant in any PP interface.
Cluster 2-5, which contains most third-layer
filters, reacts strongly to peptidase activity,
which it distinguishes from oxidoreductase ac-
tivity. Since these two are the most represented
classes in the dataset, it makes sense that the
network would allocate a large number of filters
to classify them, but it is interesting that these
belong to the third layer, which synthesizes out-
puts from both previous layers into large-scale
patterns. On the contrary, clusters 2-1 to 2-
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Figure 7: Examples of Voronoi interfaces maximizing
cluster activations for the prediction of interface sec-
ondary structure. Top row, left to right: cluster 2-1
(PDB Id. 1P5R), 2-2 (2VLL), 2-3 (1EZV). Bottom
row, left to right: 2-4 (1AVO), 2-5 (4GBI).

3 which react to most functional classes except
peptidase mainly encompass second-layer filters
which operate on a more local scope. Pepti-
dase thus appears to be an outlier, whose de-
tection requires a more global view of the inter-
face topology than any other functional class.
Other examples of relative specificity in the ac-
tivation of filter clusters include ligases and iso-
merases, which predominantly trigger cluster 2-
1. The filters detecting non-enzymatic classes
(structural molecules, transporters, DNA bind-
ing) tend to be distributed between clusters
2-1, 2-2 and 2-3. On the whole, like for the
prediction of secondary structure, classification
seems to be mostly performed in the two last
layers from common elements detected by the
first layer; however, for this more complex pre-
diction task, the last layer neurons are used to
their full extent.

Discussion
Interfaces power the intricate mechanisms of
PP recognition; therefore, they necessarily con-
vey a wealth of information which it is essen-
tial for a successful machine learning encoding
to preserve. However, maximizing the num-
ber of descriptors in an attempt to capture this
information as completely as possible can be
counterproductive: the bias introduced by the
relative weight of each descriptor, whether ex-

plicitly set or inherent to the encoding, is dif-
ficult to evaluate and control. The aim of this
study is to use a simple yet robust representa-
tion of global interface shape, implicitly taking
sequence effects into account via the correlation
between residue hydrophilicity/hydrophobicity
and water accessibility/burial depth. Convolu-
tional networks are then leveraged to extract
salient local features from this global represen-
tation, something they have proven to excel at
doing in the field of image recognition. This
approach solves in an elegant way, and with
minimal human intervention, the difficult prob-
lem of achieving a balanced mix of local and
global features to use in a successful predictor
of structure and/or function. Popular measures
of structural similarity (Dali,54 TM-align...55)
tend to prioritize global shape (fold), which is
often successful at predicting function; yet the
functions of structurally similar proteins can be
very diverse and variations upon a conserved
functional core can lead to different folds,33

making the consideration of local features indis-
pensable.32 The PRISM method,56 for instance,
is quite successful at predicting function from
small sets of secondary structure motifs. This
work follows this logic and takes it one step fur-
ther by hypothesizing that if local secondary
structure motifs can be predicted from a global
representation of the interface, so can function.
On the whole, the hypothesis appears verified.
In fact, the main caveat probably does not lie
with the method itself but with finding func-
tional labels of balanced populations for opti-
mal deep learning (since only a minute fraction
of entries in sequence databases have both a
structure and a verified function,57 this issue
is likely to endure). The method should prove
a valuable addition to existing de novo inter-
face design tools,58 which are used to suggest
partners that bind to a target protein along an
interface of known shape.

Prediction of α and β interface motifs from
interface topology is excellent; the near-
redundancy of the third convolutional layer
shows that the network is well-dimensioned to
deal with the problem. The correlation between
secondary structure and interface shape thus
appears relatively straightforward, which is far
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from trivial considering that in 60 % of interface
helices, only one residue out of three actually
has atoms at the interface.28 The slightly bet-
ter prediction of α over β motifs could be due
to the fact that the former tend to be better
conserved59 and conservation is strongly corre-
lated with SO25,26 which is used to color the
voxels. Helical motifs are also known to allow
the binding of different partners to a single
site: helices are robust to changes in side-chain
identities and variations in local packing, allow-
ing alternate ways to achieve binding.60 This
variability in helical patterns probably adds
noise to the interface topology dataset, which
is known to facilitate deep learning by prevent-
ing overfitting and facilitating generalization.
The fact that PP interfaces combining α and
β motifs activate specific recognition patterns
distinct from those of either motifs is quite
intriguing, and suggests the existence of collec-
tive effects due to specific arrangements of local
motifs. Mixed α-β patterns have indeed shown
remarkable properties in chimeric oligomers,
for instance as rigidified α helix mimics.61

Protein domains are known to act as func-
tional units. The ProtCID database,27 which
clusters structurally similar interacting motifs
within PP complexes featuring identical Pfam
domains,62 hints at the existence of a link be-
tween structure and function at the domain
level. Indeed, although Pfams tend to be de-
fined based on sequence and structure, their
correlation with GOTs is now established.63

The present study confirms this: more than
90 % of the members of the ProtCID clusters
containing the top activators of the convolu-
tional filter clusters (figure 6) were found to
share at least one molecular function GOT
(see Supporting Information figure S8 for de-
tails). The correlation with Pfams also rein-
forces the relevance of GOTs as descriptors of
function in this study; compared to Pfam clans,
the more detailed hierarchical relationship be-
tween GOTs facilitates the selection of func-
tional label subsets for the generation of bal-
anced datasets.

Despite this, the prediction of molecular func-
tion from interface topology does not appear
as staightforward and heavily depends upon

the functional class. This is not entirely sur-
prising considering that only a fraction of the
aminoacids of interacting Pfam domains actu-
ally contribute to the interface topology. A
similar trend has been observed by other re-
searchers: by clustering graphs of residues,
Saha et al showed that while larger domains
are rather specific of a given enzyme class (with
the size and diversity of such specific domains
depending on the class), frequently occurring
small structural motifs at the interface are com-
mon to all six classes (oxidoreductase, trans-
ferase, hydrolase, lyase, isomerase, ligase).64

The link between interface topology and func-
tion is thus understandably indirect. Interest-
ingly, however, the prediction of function from
interface topology studied herein performs no
worse than structural methods based on en-
tire protein structures.24 This fortifies the idea
of conserved functional cores33 of intermediate
sizes indirectly impacting interface topology as
well as overall structure.

Also noteworthy is the fact that the predic-
tion of function by the network goes beyond
the simple recognition of proteins sharing a sim-
ilar fold. As shown in Supporting information
figure S9, the average pairwise RaptorX TM-
score43 among the main contributors to the ac-
tivation of convolution filter clusters is lower
than 0.4, which corresponds to a 90% chance
of having different folds. Understandably, the
relationship to the fold is more marked for the
prediction of secondary structure elements, but
the corresponding TM-scores are still remark-
ably low. This shows the ability of convolu-
tional deep learning to detect finer trends at
different scales.

Saha et al64 show that motifs found in hy-
drolases have the lowest overlap to motifs of
other classes; my results hint that this is mostly
due to peptidases (which are detected by the
network with excellent specificity) rather than
to other hydrolases. Interestingy, Saha et al
find no overlap between oxidoreductase and
hydrolase motifs (even smaller ones), yet in
the present work these two classes tend to
activate the same convolutional filters which
mostly belong to the third layer. This means
that the overall disposition of motifs on a
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global scale (detected by the third layer) is
as important as the motifs themselves, a tes-
timony to the importance of mixing global
and local effects which the F2C+CLC network
strives to achieve. Results on the prediction of
nonenzymatic complexes are also quite inter-
esting. While it is not surprising that struc-
tural molecules, which can be quite diverse,
are difficult to predict, the good score achieved
by the network on membrane transporters is
intriguing. Indeed, sequence similarities be-
tween transporters, whether within the same
substrate transport subclass or for transporters
of different substrates, is usually very low.65

However, it has been shown that weakly sta-
ble regions in the transmembrane domain of
transporters are often implicated as PP inter-
faces, with relatively little conformational en-
tropy variation upon binding;66 such conforma-
tional freedom could introduce noise in the cor-
responding interface topologies, boosting the
learning process.

Both the prediction of secondary structure
and molecular function clearly benefit from the
F2C subnetwork. While it is easy to conceptu-
alize that incorporating information from fine
voxelizations into coarse models of the PP in-
terfaces is beneficial, another more subtle con-
sequence exists: by modifying the value of ran-
dom coarse voxels, the F2C subnetwork also
helps to regularize the dataset, preventing over-
fitting (akin to the effect of data augmentation
or a dropout operation). Interestingly, consid-
ering that regularization is often performed by
adding random noise to the dataset, this added
benefit of F2C is expected to be quite indepen-
dent of the actual performance of the subnet-
work, facilitating the learning process even for
interfaces that are not well dscribed by F2C’s
dimensionality reduction scheme. In addition,
the independence of the F2C and CLC sub-
networks enables them to be trained indepen-
dently from one another on the same dataset,
and the weights transfered to the complete net-
work whose training then only needs to be re-
fined. This type of transfer learning has been
proved to provide excellent results at a low com-
putational cost.67

Finally, the activation patterns of the con-

volution filters are not as easy to interpret as
those observed on 2D image sets. As for the
latter, first-layer filters consist of a variety of
simple, localized features. The occurrence of
axis-oriented lines and planes is quite interest-
ing: it could represent the network’s response
to the fact that the input data is inherently 2-
dimensional, composed of 2D facets separated
by 1D edges, and is reminiscent of Bau et al’s
finding that the directions of the basis vectors
are more meaningful than random directions in
2D convolutional network activations.68 Also
interesting is the prevalence of high SO val-
ues among patterns activating first-layer fil-
ters; this is in line with the long-standing the-
ory that deeply buried, hydrophobic aminoacid
hotspots dictate PP recognition and binding.69

Downstream convolutional layers aggregate the
information of upstream layers via maxpool-
ing; in 2D images, this generally translates into
larger and more complex activation patterns
when moving toward deeper convolutional lay-
ers. Here, on the other hand, many second-
layer motifs appear quite noisy. Although high-
frequency noise patterns are inherent to strided
convolution and pooling operations,70,71 in this
case they can be particularly difficult to sepa-
rate from the signal. Nevertheless, large pat-
terns looking like actual interfaces do occur for
many filters of the second layer and the major-
ity of the third. In these, rim voxels (SO= 1)
play an important role: unlike hotspots which
are localized, solvation effects require a more
global view of the PP interface. This is yet an-
other manifestation of the combination of local
and global features inherent to the method.

Despite its successes, the method has room for
improvement. For starters, encoding a 2D sur-
face using 3D voxels is rather inefficient. Typ-
ical datasets of 2D or 3D images used for con-
volutional deep learning usually do not have
lower effective dimensionalities. Scaling is also
much less favorable in three dimensions than
in two: the size of the convolutional layers and
the associated computational cost quickly be-
come limiting factors when increasing the vox-
elization resolution. In this work, the use of
a dual-resolution network alleviates the prob-
lem, and the predictive power appears more
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limited by the unbalanced dataset than by the
voxelization resolution employed. Neverthe-
less, directly encoding and learning interfaces
as cloud points72,73 or meshes74,75 appears more
natural. However, such nonuniform representa-
tions cannot directly leverage the convolutional
paradigm, unless its basic operations (convolu-
tion, pooling...) are completely redefined. For
instance, Hanocka et al use a transformation-
invariant encoding of adjacent edges, which can
be collapsed to emulate pooling.74 These tech-
niques are still experimental and their pros and
cons not as well mastered as traditional con-
volutional networks. Another possibility for
improvement would be to encode coevolution
data76 inside interface voxels. Enhancing struc-
tural data with coevolution information has al-
ready proven successful,19 and could yield even
better results with this work’s simple yet pow-
erful representation of PP interfaces for the pre-
diction of molecular function.

Conclusion
By using convolutional deep learning, this
study demonstrates how a simple discretized
representation can preserve a meaningful pro-
portion of the wealth of information contained
within the global shape of PP interfaces. The
use of convolutional techniques also naturally
solves the problem of mixing local and global
structural descriptors within the dataset. It
is my hope that this study provides additional
incentive to research novel interface topology
encodings amenable to deep learning and to
implement them within de novo design and/or
function prediction pipelines.
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Graphical TOC Entry

Voxelized representations of protein-protein inter-
faces can leverage powerful convolutional deep learn-
ing techniques to predict elements of protein struc-

ture and function.
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