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Abstract

One of the major goals of tomorrow’s agriculture is to increase agricultural pro-

ductivity but above all the quality of production while significantly reducing the

use of inputs. Meeting this goal is a real scientific and technological challenge.

Smart farming is among the promising approaches that can lead to interest-

ing solutions for vineyard management and reduce the environmental impact.

Automatic vine disease detection can increase efficiency and flexibility in man-

aging vineyard crops, while reducing the chemical inputs. This is needed today

more than ever, as the use of pesticides is coming under increasing scrutiny and

control. The goal is to map diseased areas in the vineyard for fast and pre-

cise treatment, thus guaranteeing the maintenance of a healthy state of the vine

which is very important for yield management. To tackle this problem, a method

is proposed here for Mildew disease detection in vine field using a deep learn-

ing segmentation approach on Unmanned Aerial Vehicle (UAV) images. The

method is based on the combination of the visible and infrared images obtained

from two different sensors. A new image registration method was developed to

align visible and infrared images, enabling fusion of the information from the two

sensors. A fully convolutional neural network approach uses this information

to classify each pixel according to different instances, namely, shadow, ground,

healthy and symptom. The proposed method achieved more than 92% of de-

tection at grapevine-level and 87% at leaf level, showing promising perspectives
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for computer aided disease detection in vineyards.

Keywords: Unmanned aerial vehicle (UAV); image registration;

convolutional neural network; precision agriculture; disease mapping.

1. Introduction

Several studies have been carried out on the overuse of crop pesticides and

their negative effects on human health [1, 2, 3]. Like other crops, vines are very

vulnerable to viruses, bacteria and fungi. This vulnerability favours their con-

tamination by several types of disease that are harmful and destructive [4], such5

as Esca [5], Flavescence dore [6] and Mildew [7]. Vine contamination gener-

ally reduces productivity [8], which implies economic losses for the winegrower.

To deal with this situation, winegrowers have to frequently check the state of

the vine leaves. However, this traditional procedure is laborious and expensive,

since it involves several experts for many days [9]. To reduce economic loss and10

the environmental impact, remote sensing methods are a promising approach

for effective vineyard monitoring.

Remote sensing of agricultural crops [10] has evolved considerably over the

past decade. Applications such as calculating fertilizer rates [11], monitoring

biomass production [12], weed detection [13], detecting defective crops [14] or15

disease detection [15, 16, 17] have been proposed. These applications are con-

stantly progressing as technology advances, especially with the evolution of Un-

manned Aerial Vehicles (UAV) which have opened up further research oppor-

tunities thanks to their low manufacturing costs.

UAVs are increasingly used in many fields, such as urban remote sensing,20

but also in a wide range of agricultural applications [18]. Previous studies have

shown the importance of both the visible and the infrared spectrum for disease

detection [19]. Combining these two imaging modalities would therefore ensure

better detection. In UAV imaging systems, usually two separate sensors are

used, one for each modality. However, an acquisition by two sensors generates25

a spatial shift between the visible and infrared image which makes it difficult
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to process the information from the two sensors simultaneously. Therefore,

multimodal alignment or registration [20, 21, 22, 23] is required to merge the

information from the two sensors with deep learning.

Deep learning techniques have enabled great progress in the computer vision30

field thanks to the convolutional neural networks (CNNs) approach [24, 25, 26,

27, 28, 29]. As in several fields of application, these technologies are increasingly

used in the remote sensing domain for agriculture [30, 31, 32, 33, 34, 35, 36, 37,

38]. Most research on agricultural applications uses CNNs with the sliding win-

dow technique, which generally leads to fuzzy boundaries of the image regions.35

On the other hand, crop disease detection can be seen as an image segmentation

problem. Therefore, one can benefit from the deep learning segmentation ap-

proach to detect crop disease with a better boundary precision compared to the

sliding window technique. Several segmentation architectures have been devel-

oped, such as SegNet [39], DeconvNet [40] and U-Net [41]. SegNet is the most40

popular architecture for semantic segmentation [42, 43, 44, 45]. It has shown

a very good performance in solving problems related to semantic segmentation

for several applications [46, 47, 48]. So far, very little attention has been paid

to the role of deep learning segmentation for vine disease detection.

This paper presents a new methodology for Mildew disease detection in45

vineyards from aerial images, using multispectral information. The aim was

to develop algorithms and methods in order to investigate the possibility of

detecting vine diseases, using the potential of a deep learning segmentation ar-

chitecture. The problem was addressed by the semantic segmentation approach

in order to identify classes such as shadow, ground, healthy and symptomatic50

vines. The method consists in two main steps. The first one deals with the

problem of multispectral image registration, and proposes a new method to ef-

fectively align images from the visible and infrared spectra. The second one

uses the SegNet architecture to delineate semantic areas in each image type

separately, then a fusion procedure was applied to the segmentation outputs.55

Data were collected under real conditions on two vineyard plots. Several exper-

imental schemes were set up to show the contribution of different elements of
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the proposed method. The study provides important insight into the potential

of recent machine learning approaches for disease mapping using UAV remote

sensing technology.60

The main contributions of this work are: optimization of the image registra-

tion algorithm, introduction of a semi-automatic method for pixel-wise image

labelling and SegNet for vine disease detection in the visible and infrared ranges.

The article is organized as follows: related work is presented in section 2,

the study areas and materials are described in section 3, the proposed methods65

are detailed in section 4, the experiments and results are presented in section 5,

the proposed system is discussed in section 6 and section 7 concludes the paper.

2. Related work

This section summarizes the main studies carried out on image registration,70

and disease detection in vineyards, plants or crops.

2.1. Image registration

In the literature, the problem of image registration dates back to the 1980s.

Since then, several methods have been implemented. The work accomplished in

various fields has been surveyed in: medicine [49], computer vision [50], remote75

sensing [51] and various applications [52]. In all areas studied, it is concluded

that image registration is based on two main methods: the area-based method,

and the feature-based method.

The area-based method: This method is not widely used in the remote sensing

field, because most of the algorithms are highly sensitive to several uncontrol-80

lable parameters, such as variations in brightness, image noise, etc. The method

is therefore generally applicable only to non-rigid problems. However, Wang et

al. [53] implemented an algorithm (An automatic cross-correlation (ACC)) in-

sensitive to the lighting conditions and applied it to multimodal images (visible

and infrared). The authors concluded that this algorithm performs better than85
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other area-based algorithms and is suitable for multimodal images. Another

registration method applied to precision agriculture was proposed by Erives

et al. [54]. This method that processes multispectral images is based on the

phase correlation algorithm (PC). The results obtained indicate that this algo-

rithm is robust to modality change, brightness difference, noise, rotation and90

translation. Zhuang et al. [55] performed a multimodal registration based on

mutual information with a combination of Particle Swarm Optimization (PSO)

and Powell search algorithms. The proposed method was found to be faster in

terms of runtime and more accurate in terms of results compared to traditional

methods.95

The feature-based method: Lakshmi et al. [56] and Javadi et al. [57] worked

on natural terrain and city video frames, acquired by a UAV for the creation

of an orthorectified image. In these studies, the standard registration method

based on the SURF algorithm was used. In [56], this method was compared with

the Cross-Correlation algorithm (Area-based method) which failed to register100

the aerial images, whereas the feature-based method using the variants of the

SIFT algorithm outperformed the other methods in terms of results and in terms

of runtime. Tsai et al. [22] conducted a similar study to compare the SIFT al-

gorithm with ABRISK, and concluded that ABRISK was up to 312 times faster

than SIFT, and had a lower mean error. In another study, Onyango et al. [58]105

used the AKAZE algorithm to match oblique building images with images of

cities taken by a UAV. The study concluded that the AKAZE algorithm out-

performed other algorithms of the same type. More recently, image matching

algorithms based on deep learning have appeared [59, 21]. The deep learning

architecture is used as a feature extractor to create a correspondence between110

the two images. Wang et al. [21] worked on remote sensing images using a su-

pervised architecture, while Yang et al. [59] used an unsupervised architecture

to recalibrate multi-temporal images. The latter showed better accuracy than

the SIFT type algorithms, but these results only correspond to multi-temporal

images, of the same modality and on low resolution images.115
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2.2. Disease detection

A comprehensive review of the literature was conducted by Mahlein [60].

The survey lists several studies on disease detection by multispectral imaging.

Among others, Oerke et al. [61] showed by using a thermal camera that the leaves

of plants in the early stages of a disease have a more heterogeneous temperature120

than when the disease progresses over time. The potential of multispectral

information in the early detection of plant disease is attracting more and more

interest in the remote sensing field. Two studies on the hyperspectral reflectance

of vine leaves diseased by the Esca complex have been carried out. The first

one [62] was performed at the leaf level and the second one [63] at the vineyard125

level (UAV images). Both showed a difference between the reflectance of a

healthy and a diseased leaf.

In a first study, Albetis et al. [64] investigated the detection of Flavescence

dore in UAV images. The study was carried out on plots of white and red

cultivars. The results obtained indicate the feasibility of disease detection using130

aerial images. In a second study, Albetis et al. [65] examined the potential of

multispectral imaging by UAV for the detection of symptomatic and asymp-

tomatic vines. In addition to the first study, a larger dataset was acquired and

used to test 24 variables calculated from this new dataset. The best results

were obtained by the red-green index (RGI) and the red-green vegetation index135

(GRVI).

In Al-Saddik et al. [66], a first study on hyperspectral images at the vine

leaf scale was carried out. The aim of the study was to develop spectral disease

indices capable of detecting and identifying Flavescence dore disease in vines,

and achieved 90% classification accuracy. A second study by Al-Saddik et al. [67]140

on disease identification at the vine leaf level was carried out to differentiate

between yellowing leaves, and leaves infected with Esca disease through a neural

network classifier. The best results were obtained when textural and spectral

data were combined. A third study by the same authors [68] consisted in defining

the most significant spectral channels for Flavescence dore disease detection.145

Ranon et al. [69] carried out a similar study on Esca disease detection in
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vineyards. The imaging system was mounted on a small vehicle that passed

between the vinerows for image acquisition. Two methods for detecting Esca

disease were used: Scale Invariant Feature Transform (SIFT) encoding, and the

deep learning MobileNet network. The authors concluded that the deep learning150

method was better than the SIFT encoded method.

In our previous study [38], a new method for detecting Esca disease in UAV

RGB images was proposed. The method used LeNet5 CNN architecture and

good results were obtained achieving 95% disease detection accuracy in the

visible range.155

To the best of our knowledge, no research has been conducted so far on the

combination of visible and infrared UAV images for vine disease detection by a

deep learning segmentation approach.

3. Study areas and materials160

3.1. Study areas

This study was carried out on two parcels of vines located in the Center Val

de Loire region in France. The first plot (P1) can be seen in Figure 1a and

the second one (P2) in Figure 1b. P1 and P2 are at an altitude of 110 and

114 meters respectively, with a surface of 1.8 hectares for P1 and 1.5 hectares165

for P2, and are positioned on a silty sand soil for P1 and sandy loam soil for

P2. The ground of P1 is slightly inclined (7% of slope) (Figure 2) and flat for

P2. The Centre Val de Loire region is characterized by a moderate temperature

variation between 1 to 26◦C, and the average annual rainfall reaches 700 mm.

Table 1 gives more details about the plots.170

In order to carry out this study and obtain healthy and diseased samples,

part of the P1 plot was treated with phytosanitary products (to protect the

vine against diseases), and the other part remained untreated in order to allow

the development of the disease. During this time, Mildew disease spread to all
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untreated areas of the plot. The P2 plot was treated globally against disease and175

remained totally healthy. It was used in this study for qualitative validation.

Table 1: Description of the study vineyard.

Types of information Description (P1) Description (P2)

Surface 1.8 hectares 1.5 hectares

Altitude 110 meter 114 meter

Planting year 1976 1991

Variety Malbec Sauvignon

Vine plant spacing 1 meter 1 meter

Interline distance 1.5 meter 1.5 meter

Slope 7% 0%

Exposure North-South Northwest-Southeast

Coarse fraction 25% 17%

Soil Organic Carbon 4.46% 3.94%

Soil type Silty-Sand Sandy-Loam

3.2. Materials

The UAV used in the data acquisition process was a Quadcopter drone

(Figure 3a) manufactured by Scanopy. This drone embeds two camera sen-

sors MAPIR Survey2 (Figure 3b). The first is a visible light sensor (RGB)180

set to automatic lighting, and the second is an infrared light sensor (Near In-

frared (NIR), Red and Normalized Difference Vegetation Index (NDVI)). For

the latter, the near infrared wavelength is 850 nm. Both image sensors have a

high-resolution of 16 megapixels (a size of 4608 × 3456).

Data acquisition was carried out by the UAV, which flew over the plot at an185

altitude of 25 meters and with an average speed of 10 km/h. At this altitude,

the ground resolution is 1cm2/pixel. An image was taken every 2 seconds

without stopping the UAV. Each image taken overlaps the previous image by
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Figure 1: The study vineyard seen by satellite. Plot (P1) in picture (a) and plot (P2) in

picture (b).

Figure 2: The plot (P1) seen from the ground.

over 70%. The drone has an average energy autonomy of 20 minutes. The

climatic conditions of the acquisition were moderate, i.e. low winds and optimal190

lighting (acquisition times were between 11:30 and 13:30 to avoid the shadow
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of the vinerow). The acquisition was carried out in summer 2018.

Figure 3: The acquisition equipment used in this study. The quadcopter UAV drone (a) and

the high-resolution Survey2 sensor (b).

4. Methods

Using the multispectral and standard RGB images, automatic processing and

analysis methods were developed to extract relevant information and correlate195

it with the ground truth results. Deep learning segmentation was applied on

the two types of images to automatically delineate different regions (healthy,

symptomatic, etc.). This generated a disease map of the vineyard comprising

different segmented regions, which was used to monitor the vineyards.

The method comprised three main steps (see Figure 4). The first one con-200

sisted in image registration between the images acquired in the visible and in-

frared range. This step is essential for the third step, as it enables the pixel-wise

superposition of the two images and thus allows segmentation fusion. Once the

registration of the two images had been performed, the next stage consisted in

segmenting the plot in the visible and infrared range using the SegNet architec-205

ture. The two segmented images were merged in the third step, to generate a

disease map.
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Segmentation 
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Figure 4: Overview of disease detection system in grapevine fields.

4.1. Image registration

The objective of the registration algorithm is to realign and geometrically

correct the shift [70] between the visible and infrared images at the pixel-wise210

level. Generally, the UAV image is partially distorted due to the UAV vibra-

tions, read in rolling shutter mode of the sensors and optics. Therefore, the

rigid alignment model (translation and rotation) is not appropriate in our case.

Hence, the proposed algorithm used the non-rigid model. However, even if the

registration model is correct it is not sufficient to align the two types of images215

perfectly. Moreover, matching image points between the visible and infrared

bands is difficult, since the key points do not necessarily have the same visual

properties in the two spectral bands. In order to improve the accuracy of the

image alignment, an iterative process based on minimization of the registration

error was implemented.220

The registration algorithm proposed in this study is based on the Accelerated-

KAZE (AKAZE) algorithm [71]. AKAZE is an algorithm used in computer

vision for detecting objects or similarities in two images. Its principle is compa-

rable to that of the Scale Invariant Feature Transform (SIFT) [72], Speeded Up

Robust Features (SURF) [73], Features from Accelerated Segment Test (FAST),225

Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and

Rotated BRIEF (ORB) [74], and KAZE [75] algorithms. However, AKAZE is

much more efficient in detection robustness, description and in the speed of

calculation as it was created with high-performance algorithms in a pyramidal

framework comparable to other algorithms of the same type. Even if AKAZE230
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follows the same pyramidal steps as the other algorithms, the method used is

very different. AKAZE integrates Fast Explicit Diffusion (FED) [76] systems

for accelerated feature detection in a non-linear scale space. Moreover, a mod-

ified version of Local Difference Binary (M-LDB) [71] has been integrated into

AKAZE. Unlike the old version, this modified version of LDB [77] is a rotation-235

ally invariant, scaled descriptor and can exploit gradient information from the

non-linear scale space.

The proposed registration method is shown in Figure 5. The first step is

to extract the green channel (G) from the visible image, and the near infrared

channel (NIR) from the infrared image (these channels were selected for their240

vegetation texture information). By using the normalization equation (1), the

second phase normalizes the two spectral channels to improve their contrast.

INormalized = 255 × I−min(I)
max(I)−min(I)

(1)

where INormalized is a normalized source image I (visible or infrared), min(I)

and max(I) are respectively the minimum and maximum grey level value of the

image I.245

The third step is to extract the points of interest and calculate their features

from the two channels (by the AKAZE algorithm). Based on the features of

the interest points, the fourth stage is to map each point of interest extracted

in the G channel to the corresponding point in the NIR channel. In the fifth250

step, to eliminate some outliers, a first thresholding algorithm performs a pre-

selection of inlier matching points, then a final selection is performed by the

RANdom SAmple Consensus (RANSAC) algorithm [78]. To obtain the best

setting for algorithms that contribute to removing the outliers, a dynamic set-

ting (by threshold variation) method based on homographic matrix analysis is255

integrated into the registration system. This dynamic method (dynamic thresh-

old) very significantly reduces the number of registration failures. Note that X

is the coordinates of the source infrared image (x, y), X’ is the coordinates of the
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registered infrared image (x’, y’) and H is the homographic matrix 2. In order

to avoid the problems that lead to misregistration, a dynamic threshold regu-260

lation of the RANSAC algorithm was used, and the distance-based algorithm.

For each given value, a homographic matrix is estimated. The viability of this

matrix is then tested by equation 3. This test is performed by projecting the

end coordinates of the source image into the new space of the registered image.

If the result found is coherent (the distance between the old coordinates and the265

new coordinates does not exceed a certain threshold), this implies the end of

the dynamic adjustment procedure, and the matrix tested is used to register the

image. Otherwise, a new setting is made to repeat the same procedure. Once

this step is finished, the pre-registered infrared image can be obtained by the

homographic matrix validated by the dynamic adjustment procedure.270

H =


1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

 (2)

X ′ = HX (3)

where (1 + h00) and (1 + h11) are stable scale factors respectively in the X

and Y direction only. h01 and h10 are scale factors respectively in the X direc-

tion relative to the Y distance from the origin and Y direction relative to the

X distance from the origin. h02 and h12 are respectively translation in the X

and Y direction.h20 and h21 are relative scale factors X and Y respectively as a275

function of X and Y.

In order to reduce the registration error, an iterative method was imple-

mented. After the pre-registration has been completed, an iterative phase starts

from the result obtained, calculates the error by the Root Mean Squared Error280

(RMSE) [79] between matched points which are calculated on the X coordinates

with equation (4), and on the Y coordinates with equation (5), and then calcu-

lates their module by equation (6). If the error decreases, another iteration is
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performed, if not, the iterative process stops and the best result, which is the

result with the minimum RMSE, is kept.285

RMSEx =

√∑N
i=0(xV ISi−xIRi)2

N
(4)

RMSEy =

√∑N
i=0(yV ISi−yIRi)2

N
(5)

RMSE =
√

RMSE2
x + RMSE2

y (6)

where (xV ISi, yV ISi) and (xIRi, yIRi) are respectively the ”i” th coordinates

of matching points between the visible and infrared images. N is the number of

matches found between the visible and infrared images.

Visible image

Infrared image 
preregistered

Extraction of interest 
points and their features

Extraction of interest 
points and their features

Matching between the 
two interest points

AKAZE Algorithm

Removing outliers by distance 
thresholding and RANSAC 

(Dynamic setting)

Homographic 
matrix 

computation

Registration error 
computation 

If
(new error < old error)

Infrared image 
registered

No

Visible 
image

Infrared 
image

Image 
normalization

Green channel 
extraction

Image 
normalization

Infrared channel 
extraction

Image pre-processing

Yes

Repeat the algorithm with last infrared image preregistered 

Figure 5: Proposed method for non-rigid registration of multimodal (visible and infrared)

image.
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4.2. Dataset

This subsection presents the description of different classes, the labelling290

method, and the data generation using data augmentation.

4.2.1. Classes description

The dataset was composed of visible and infrared range images. In our case,

the visible sensor was used to detect the presence or absence of chlorophyll in the

crop, i.e. to detect any anomalies in the vegetation related to its discoloration295

during flowering and fruit set period. The infrared sensor used operates in the

range of 850 nm. This wavelength was chosen for its sensitivity to changes in

the different states of vegetation. The high reflectance generated by vegetation

in the near infrared spectrum also makes it relevant for plant analysis.

The visible and infrared datasets were labelled based on four dominant300

classes in the visible and infrared ranges, fusion by intersection, and fusion

by union. The first class represents the shaded areas in the vine and on the

ground (all the dark areas). This class does not reflect light, which means that

no relevant information can be drawn from it. The second class represents the

ground; it can be an area of weeds, grass or any type of soil. The third class305

represents the healthy vegetation of the vine. This class has a green color in the

visible range and has a high reflectance level compared to the previous classes

in the infrared range. Finally, the fourth class represents the symptomatic vine.

This class is generally characterized by yellow or brown color of the foliage in the

visible range (in the case of an advanced symptom). This discoloration results310

from a problem with chlorophyll production. In the infrared range, the symp-

tomatic class is characterized by a variation in reflectance between a diseased

leaf and its neighbors. Visually it appears as specific texture, with which this

class can be distinguished from the others. After merging the segmented visi-

ble and infrared images, two classes were created a ”symptomatic intersection”315

class when symptoms were detected in the same location of visible and infrared

areas (AND operator), and a ”symptomatic union” class when two symptoms

were detected either in the visible or in the infrared spectra (OR operator).
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4.2.2. Semi-automatic data labelling

Due to the large amount of data and the difficulty of achieving accurate320

labelling, the data labelling process was performed by a semi-automatic method

(see Figure 6). First, a sort of weak learning procedure was used to roughly

detect the potential diseased areas using a sliding window over the image. Each

block was then classified by LeNet5 network for pre-labelling. Then, manual

labelling was performed on the basis of the ground truth provided by technicians325

in the field.

Visible UAV 
image

Visible image 
prelabeled

Visible image 
labeled

Infrared 
UAV image

Infrared image 
prelabeled

Infrared image 
labeled

LeNet5 visible 
model

LeNet5 infrared 
model

+

+

Visible and infrared images + models

Manual correction 
using Paint.Net

Manual correction 
using Paint.Net

Segmentation steps by LeNet5 Model:
1. Moving the sliding window.
2. Patch window estimating by using
LeNet5.
3. Writing the estimated label on the center
of the sliding window.
4. Moving the pointer and return to (1).

Pre-labelling process by segmentation using LeNet5 Model Manual labelisation

Overview of semi-automatic ground truth for visible and infrared images

Figure 6: Overview of semi-automatic pixel-wise labelling for visible and infrared images.

To achieve the automatic labelling step, two LeNet5 datasets were created

for visible and infrared images (from 480 samples of each range) using the trans-

lation and rotation data augmentation method (see Figure 7). Each dataset was

organized into 4 classes (shadow, ground, healthy and symptomatic class), and330

contained 70, 560 patches of size 32 × 32 pixels (17, 640 samples for each class,

among these samples, there were 14, 994 samples for training and 2, 646 samples

for validation). Visible and infrared LeNet5 models were generated from these

two datasets (see Figure 8).

Once LeNet5 models had been generated, the sliding window method was335

used to perform automatic labelling on UAV images with a size of 4608 × 3456

pixels. To obtain the best possible accuracy, the sliding window was set with a

displacement step of 2 × 2. The automatic labelling operation required more

than an hour and a half of runtime to label only a single UAV image.

Finally, manual correction was performed by the free software ”Paint.Net”,340

which consists in correcting possible misclassification generated by automatic

labelling. Technicians observed vines at the ground and reported all the dis-
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Figure 7: Making datasets for LeNet5 network. VIS and IR mean visible and infrared

respectively.
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Figure 8: LeNet5 training scheme using visible and infrared image datasets.

eased ones. By referring to the ground truth, each vine was referenced with

its coordinates in the field. Then, this information was used to label the areal

images. Figure 9 shows an example of the semi-automatic labelling steps.345

Automatic     
pre-labelisation

Manually 
correction

Automatic     
pre-labelling

Manually 
correction

Shadow Ground Healthy Symptomatic

Shadow Ground Healthy Symptomatic

Figure 9: Example of semi-automatic labelling. The pre-labeling was carried out by the

LeNet5 model using the sliding window method for segmentation. Manual correction was

performed using Paint.Net software.
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4.2.3. Data augmentation

Due to the huge amount of data required to train a deep learning network, the

lack of data (specially the symptomatic sample), and the difficulty of labelling

images, several methods of data augmentation [80] were used (see Figure 10).

First, two registered images acquired by UAV with a size of 4608 × 3456350

pixels were labelled by a semi-automatic method. Then each of these images

underwent automatic data augmentation to generate patches of 360 × 480

pixels labelled, used in SegNet network training.

Translation

Rotation

Decrease and increase brightness

Save in 360 × 480 size  Visible dataset 
for SegNet

Data augmentation methods

Under and over sampling

Save in 360 × 480 size  Infrared dataset 
for SegNet

Patches dataset for SegNet (image + ground truth)

+

+

Visible and infrared images + ground truth

Visible 
UAV image

Visible image 
labeled

Infrared 
UAV image

Infrared image 
labeled

Figure 10: Data augmentation process of the visible and infrared datasets for training the

SegNet architecture.

In this process, several data augmentation techniques were combined. The

first transformation consisted in horizontal shift by an overlap of 50% to enable355

the network to learn the transition areas. Rotation was also used, since it enables

the network to learn the different orientations of the vinerows. Several rotation

values ranging between 0◦ and 180◦ with a step of 30◦ were used. The third

transformation consisted in under and over sampling (scale change) in order to

enable the network to learn that the thickness of the vinerows could change,360

to reduce misclassification in the case of a scale change, such as a change in

altitude of the UAV. For that purpose, a sub-sampling between 0.5 to 1 of the

real scale, and an oversampling between 1 to 1.5 was performed with a step of

0.25. The fourth technique of data augmentation consisted in modifying the

brightness, to make the network less sensitive to light changes. As the image365

acquisition was done outdoors, the brightness parameters were uncontrollable
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because of changes in the weather. Thus, coefficients between 0.8 to 1.2 with

a step of 0.1 were multiplied by the grey levels of the images to generate dark,

normal, and bright effects.

4.2.4. Training and testing data370

By using data augmentation methods, a dataset of 105, 515 and 98, 895

patches (360 × 480 pixels for each patch) was generated for the visible and

infrared range respectively. This dataset was used to train and validate the

SegNet models. Among the dataset patches, 85% (89, 688 for the visible range,

and 84, 061 for the infrared range) was randomly selected for training and the375

remaining ones (15%) were used for validation. To evaluate and test the SegNet

models, 200 patches for each range (without undergoing data augmentation),

taken from another area at two different periods of time were used to test the

visible and infrared models, and the fusion between them.

4.3. Segmentation and fusion380

This subsection presents the visible and infrared image segmentation system,

the deep learning architecture used in this process, the labelling and training

method, and finally, the overall operation.

4.3.1. Deep learning segmentation

The CNN architecture has been very successful in the pattern recognition385

and computer vision fields. Since then, there has been a continuous evolution

of CNN architectures. The new architectures have become deeper, but also new

types of architectures have emerged that directly segment an image, such as the

SegNet [39] architecture, used in the present study. To segment an image, the

SegNet architecture (Figure 11) operates through two opposite phases, an infor-390

mation encoding phase and a decoding and classification phase (Table 2). The

encoding phase is in fact a classic CNN architecture, usually with a VGG-16 [27]

architecture. The coding phase consists of three types of processing, namely con-

volution layers, ReLU layers (ReLU is an activation function for removing the

negative values that result from convolution and deconvolution. It is commonly395
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used in deep learning networks, because it performs better than other activation

functions) and MaxPooling layers (non linear sub-sampling function). Decod-

ing consists of the same types of processing except for the convolution layers

which are replaced by deconvolution layers, and the MaxPooling layers which

are replaced by Upsampling layers. It is in the decoding part of the network400

that the segmented image is formed, until the final decoding layer is reached.

At this level, a pixel-wise segmentation is performed by the Softmax function.

In the present study, generation of the disease map of a vineyard field was

considered as a four-class segmentation problem in the visible and infrared range.

The objective was to build a SegNet model capable of differentiating between405

shadow, ground, healthy and symptomatic (visible and infrared) classes in the

two spectral bands. The distinction between each class is mainly based on

variations in color, texture, spectral information and spatial relative position

of each class. This important information must be extracted by the SegNet

network during the encoding phase, also called the feature extraction phase,410

then rebuilt and segmented by the decoding phase.

Conv + ReLU

Max Pooling (Undersampling) Upsampling

Softmax

Encoder Decoder
Pooling indices

SegNet Architecture

Visible dataset for 
SegNet

Visible dataset for 
SegNet

Visible UAV 
image + Model

Infrared UAV 
image + Model

Input data

Visible 
SegNet Model 

Infrared 
SegNet Model 

Output data

Visible image 
segmented

Infrared image 
segmented

U li

Deconv + ReLU

Figure 11: Visible and infrared image modeling and SegNet segmentation system.

20



Table 2: SegNet setting.

Phase Number Layer type Filter size Number of feature maps

Encoder

1
Conv1-1 3 × 3 64

Conv1-2 3 × 3 64

2
Conv2-1 3 × 3 128

Conv2-2 3 × 3 128

3

Conv3-1 3 × 3 256

Conv3-2 3 × 3 256

Conv3-3 3 × 3 256

4

Conv4-1 3 × 3 512

Conv4-2 3 × 3 512

Conv4-3 3 × 3 512

5

Conv5-1 3 × 3 512

Conv5-2 3 × 3 512

Conv5-3 3 × 3 512

Decoder

5

Deconv5-3 3 × 3 512

Deconv5-2 3 × 3 512

Deconv5-1 3 × 3 512

4

Deconv4-3 3 × 3 512

Deconv4-2 3 × 3 512

Deconv4-1 3 × 3 512

3

Deconv3-3 3 × 3 256

Deconv3-2 3 × 3 256

Deconv3-1 3 × 3 256

2
Deconv2-2 3 × 3 128

Deconv2-1 3 × 3 128

1
Deconv1-2 3 × 3 64

Deconv1-1 3 × 3 64

21



4.3.2. Fusion of multimodal image segmentation

The fusion of segmentations was performed in order to obtain a disease map

with more robust results. To generate a disease map, each pixel of the image

segmented in the visible range was compared with the pixel of the same position415

in the infrared range. Here, three main cases are considered. The first one is

that the two pixels represent the symptomatic class. In this case, the result is

a symptom intersection class. The second case is when the pixel is classified

as symptomatic in the infrared range, and healthy in the visible range. In this

case, the resulting class is symptomatic infrared (This may be a case where the420

disease has not yet affected the visible range by discoloration of the leaves). The

third case is when the pixel is classified as healthy in the infrared range, and

symptomatic in the visible range. The resulting class is visible symptomatic.

To evaluate the disease map, two cases were assessed. The first one is the

case described in the previous paragraph. It is named fusion by intersection425

and symbolized ”Fusion AND”; the AND operator means that the symptom is

considered to be detected if it is present in both visible and infrared images.

The second case is named fusion by union and is symbolized ”Fusion OR”. As

the name indicates, this case unites visible and infrared range detections with

the OR operator.430

5. Experimentation

This section details the experiments, testing, validation and interpretation

of the results. The algorithms were developed under the Python 2.7 develop-

ment environment using the Tensorflow 1.8.0, NumPy 1.16.2 and OpenCV 3.0.0

libraries. To run and evaluate the runtime of our algorithms, we used the follow-435

ing hardware; an Intel Xeon (R) W-2123 (a) 3.60 GHz×8 processor (CPU) with

32 GB of RAM, and a graphics processing unit (GPU) NVidia GTX 1080Ti

with an internal RAM of 11 GB under the Linux operating system Ubuntu

16.04 LTS (64 bits).

The experimental section is divided into two subsections. The first one440
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concerns the visible and infrared image registration, and the second one details

the segmentation and fusion steps.

5.1. Evaluations of image registration algorithm

Performance measurement was carried out by computing the RMSE Eq. 4, 5

and 6 between the points of interest matched, in pixel units. RMSE provides445

information on the geometric correction and the shift between the visible and

infrared images.

Table 3: Statistical performance results for standard and optimized registration for a dataset

of 150 images. Mean, Min and Max are the average, minimum and maximum number of the

statistical results, respectively.

Measure

Methods Standard registration Optimized registration

Mean Min Max Mean Min Max

RMSE ”Pixels” 3.29± 1.57 1.13 9.75 2.43± 1.26 0.87 9.02

Runtime ”Seconds” 92± 19 49 129 139± 40 67 238

Number of iterations - - - 3.12± 1.48 1 7

Visible image Infrared image Infrared image registered to visible 
image

+ Image registration 
algorithm

Figure 12: Result on image registration.

5.2. Experiment on image segmentation and fusion

5.2.1. Training and testing procedure

Training of the SegNet model was carried out using data from the first area of450

P1. During this phase, the network uses patches of size 360 × 480 pixels. Each
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After seven iterations

Standard registration Optimized registration

Figure 13: Correction of the shift by seven iterations.

batch was composed of 5 patches and with a number of iterations of 100, 000.

Lastly, two SegNet models were generated, the first one for the visible and the

second one for the infrared. These models were evaluated by quantitative and

qualitative methods.455

The quantitative evaluation was carried out on two different times from the

second area of P1 (not used for training). The results were compared to the

ground truth, to evaluate the method.

In order to show the segmentation quality, a qualitative evaluation was car-

ried out on some images from the second area of P1 (Figure 14), and some460

images from P2 (Figure 15). To realize this step, the UAV image was cut into

patches of size 360 × 480 pixels. These patches were segmented by the Seg-

Net network, then stitched together to find the original size of the UAV image

(4608 × 3456 pixels).

5.2.2. Performance measurement465

The segmentation performance was measured by two methods. The first

one (presented in Table.4) is based on the leaf-level (pixel-wise) computation of
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the Recall (eq.7), precision (eq.8), F1-Score (eq.9)/Dice coefficient (eq.10) and

Accuracy (eq.11) for each class (shadow, ground, healthy and symptomatic).

The second evaluation is based on the grapevine-level (presented in Table.5).470

The pixel-wise segmentation measurement does not provide information about

detection at the grapevine level; it merely indicates whether a given grapevine

is infected or not. This measurement uses a sliding window with a size of 64×64

pixels (corresponding to the average size of a grapevine in the studied plots).

Inside this window, only the dominant class in the ground truth is evaluated.475

If there is a match between the ground truth and the SegNet estimation, it is

considered as true positive, otherwise it is false positive. At the end of this

process, the same measurement is computed.

Recall = TP
TP+FN

(7)

Precision = TP
TP+FP

(8)

F1 − Score = 2Recall×Precision
Recall+Precision = 2TP

FP+2TP+FN
(9)

Dice = 2|X∩Y |
|X|+|Y | = 2(TP )

(FP+TP )+(TP+FN) = 2TP
FP+2TP+FN

(10)

Accuracy = TP+TN
TP+TN+FP+FN

(11)

where TP, TN, FP and FN are the number of samples for ”True Positive”,

”True Negative”, ”False Positive” and ”False Negative”. For the Dice equation,480

X is the set of ground truth pixels and Y is the set of pixels classified by the

SegNet classifier.

6. Discussion

The first question of this study was to determine the ability of multispec-

tral drone imaging to map grapevine Mildew symptoms using machine learning485
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UAV images        SegNet estimation 

    

    

    

Figure 14: Qualitative segmentation results by the SegNet method for the P1 vineyard. On

the left, images from UAV on the right, the segmentation result of these images. The color

code of the segmentation is: Black: Shadow, Brown: Ground, Green: Healthy, Yellow: Visible

symptom, Orange: Infrared symptom, Red: Symptom intersection.
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Figure 15: Qualitative segmentation results by the SegNet method for the P2 vineyard. On

the left, images from UAV on the right, the segmentation result of these images. The color

code of the segmentation is: Black: Shadow, Brown: Ground, Green: Healthy, Yellow: Visible

symptom, Orange: Infrared symptom, Red: Symptom intersection.
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Figure 16: Example of segmentation and fusion of a healthy area. (a): Visible image, (b):

Infrared image, (c): Visible ground truth, (d): Infrared ground truth, (e): Fusion ground truth,

(f): Visible SegNet estimation, (g): Infrared SegNet estimation, (h): Fusion of segmentation

results.
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Figure 17: Example of segmentation and fusion of an area contaminated by Mildew. (a):

Visible image, (b): Infrared image, (c): Visible ground truth, (d): Infrared ground truth, (e):

Fusion ground truth, (f): Visible SegNet estimation, (g): Infrared SegNet estimation, (h):

Fusion of segmentation results.
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Table 4: The leaf-level (pixel-wise) average result on two temporal tests by measuring Recall

(Rec.), Precision (Pre.), F1-Score/Dice (F1/D.) and Accuracy (Acc.) on the performance

of visible, infrared image segmentation and fusion (values presented in percent). Note that:

”Fusion AND” and ”Fusion OR” are the cases where their symptomatic classes are respectively

the intersection and the union of the symptomatic visible and infrared classes.

Class name Shadow Ground Healthy Symptomatic Total

Measure Rec. Pre. F1/D. Rec. Pre. F1/D. Rec. Pre. F1/D. Rec. Pre. F1/D. Acc.

Visible 76.31 87.25 81.05 91.37 95.95 93.51 86.86 66.89 75.31 80.22 77.99 78.72 85.13

Infrared 84.25 72.25 77.69 87.74 91.33 89.42 73.81 50.18 58.58 59.02 85.06 69.55 78.72

Fusion AND 87.84 86.78 87.30 95.73 95.95 95.84 83.73 69.09 75.60 53.70 94.02 67.93 82.20

Fusion OR 87.84 86.78 87.30 95.73 95.95 95.84 82.12 72.30 76.55 84.07 90.47 87.12 90.23

Table 5: The grapevine-level average result on two temporal tests by measuring Recall

(Rec.), Precision (Pre.), F1-Score/Dice (F1/D.) and Accuracy (Acc.) on the performance

of visible, infrared image segmentation and fusion (values presented in percent). Note that:

”Fusion AND” and ”Fusion OR” are the cases where their symptomatic classes are respectively

the intersection and the union of the symptomatic visible and infrared classes.

Class name Shadow Ground Healthy Symptomatic Total

Measure Rec. Pre. F1/D. Rec. Pre. F1/D. Rec. Pre. F1/D. Rec. Pre. F1/D. Acc.

Visible 94.00 93.42 93.63 97.39 97.94 97.66 95.16 85.20 89.91 90.15 92.97 91.50 94.41

Infrared 97.53 79.97 87.55 97.30 95.41 96.32 93.72 69.19 79.19 70.49 96.92 81.66 89.16

Fusion AND 94.01 86.62 89.96 97.41 97.89 97.65 93.81 87.55 90.56 66.92 73.12 68.03 88.14

Fusion OR 94.00 94.03 93.95 97.39 97.94 97.66 93.81 89.65 91.68 92.91 92.78 92.81 95.02

Table 6: Results on runtime performance (expressed in seconds) for the entire system as a

function of the average runtime of standard and optimized registration.

Step Registration SegNet seg. Fusion Total

Standard registration 92 140× 2 2 374

Optimized registration 139 140× 2 2 421

approaches. This led to studying imaging modalities in the visible and infrared

spectral domains, since several studies have shown the interest of these do-

mains for symptom detection. As our system consisted of two cameras for each

modality, image alignment was required. We were, therefore, led to develop an
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algorithm for image registration and then to use deep learning segmentation to490

detect the affected surfaces in the vineyard. Another question of this research

was how, through the deep learning approach, we can combine the two types of

images to delineate symptomatic areas as precisely as possible. Thus, the rate

of affected areas can be obtained at the leaf scale or at the vine plant scale. The

following sections first discuss the results of the registration and then those of495

the image segmentation.

6.1. Image registration

Figure 12 shows the qualitative result of the registration. On the left and

in the middle are the visible and infrared images respectively. The images were

taken at a very short time interval (less than one second) and in the same field500

of view. After registration, two black areas can be observed on the left and at

the bottom of the image of the right. The two areas were captured only by the

visible sensor, which explains why there are no equivalents in the infrared image

registered at the moment of superposition. There are also areas captured only

by the infrared sensor, but due to the fact that the infrared image is registered505

to the visible image, these areas are not displayed on the result.

An example of how the proposed registration method operates is shown

in Figure 13. In the image on the left (image registered with the standard

method) there is a certain shift between the vinerows present in the visible

and infrared images. This is due to a lack of matched points between the two510

images. However, after each iteration, some new correspondence points are

detected thanks to the dynamic threshold, and gradually, seven iterations later,

a good alignment of the vinerows is achieved as shown in the image on the right.

The quantitative results obtained during the registration experiments are

presented in Table 3. This table reports a statistical study on a dataset of515

150 images, for a comparison between the standard registration method used

in [56, 57] and the proposed optimized registration method. The values obtained

are expressed in ”pixels” for the RMSE error measurement, in ”seconds” for the

runtime and in ”times” for the iteration. For each line, the figures in bold show
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the best results obtained. For standard registration, an average error of 3.29 pix-520

els was obtained (this result corresponds to the range of results obtained in [58]

by the same algorithm), compared to 2.43 pixels for the optimized method, i.e.

an average error reduction of 0.86 pixels over the entire dataset. This error

reduction can be explained by the appearance of new correspondence points, in

subsequent iterations, between the two images. These points are used to cal-525

culate a new homographic matrix, which corrects the registration slightly, and

reduces the RMSE error. However, there are special cases where the optimized

method does not reduce the error, in which the result of the optimized method

is cancelled and the output of the standard registration is kept. The best score

obtained by the standard method yields an error of 1.13 pixels, whereas with530

the optimized method the minimum error is 0.87 pixels. However, both meth-

ods can produce larger errors, as we can find errors up to 9.75 pixels with the

standard method and 9.02 pixels with the optimized method. Note that our dis-

ease detection system performs better with an RMSE value ≤ 5; RMSE values

between 5 and 10 may in some cases reduce the accuracy of disease localization.535

The runtime measurement is shown in Table 3. For the standard registration,

an average runtime of 92 seconds was obtained, versus 139 seconds with the

optimized method. This increase in runtime is due to the additional processing

performed by the optimized method (3.12 iterations on average). This is not

the only reason, however: with the standard method, there is a very significant540

difference (80 seconds) between the minimum and the maximum values. The

difference is due to the number of interest points detected in an image by the

AKAZE algorithm: the larger the number of interest points detected, the longer

the processing time. In other words, there is a direct relation between these two

parameters.545

The proposed algorithm based on the AKAZE detector was tested by other

feature extraction algorithms such as SIFT, SURF, ORB and KAZE. The results

obtained by SIFT showed a slightly higher error than those obtained by AKAZE,

and the runtime was between 2 to 10 times longer than AKAZE, confirming

the study by Tareen et al. [81]. For the other algorithms, several cases of550

31



failure were identified. They are mainly due to the lack of correspondence

between the two images, which implies a sensitivity of these algorithms to the

differences of modality between the two images. Another algorithm developed

by Yang et al. [59], which is based on feature extraction through a deep learning

architecture was tested, and several problems were observed. Not only did the555

deep learning method use a large amount of RAM memory, making it very

difficult to register high resolution images, but even with a decrease in the

resolution of the images, the algorithm cannot find good matches, which leads

to the failure of the registration process. This is due to the difference in image

modalities.560

Some other Area-based registration algorithms were also tested, such as:

Normalized Cross-Correlation (NCC) [53] and Phase-Correlation (PC) [54]. But

due mainly to the presence of some deformations on the image dataset used,

these algorithms did not manage to correctly register most of the images. An-

other disadvantage of these algorithms is that they are very time consuming,565

and were therefore discarded.

6.2. Image segmentation and fusion

The qualitative results given in figures 14 and 15 represent the results on the

vineyards of P1 and P2 respectively. For the P1 plot (Figure 14), a large part of

the untreated plot was contaminated by Mildew. This presence of disease is well570

detected by segmentation. As can be observed, in most cases, the symptoms

are better detected in the visible range (coded in yellow) than in the infrared

range (coded in orange). This hypothesis was confirmed by the quantitative

results in Table 4. Of course, there are in some cases false detections in both

areas. However, when symptoms are detected in both ranges it is likely to be575

true detection.

For the P2 plot (Figure 15), the vineyard is healthy, and the SegNet es-

timation generally matches the ground truth. However, in this example of 3

images, some misclassification of symptomatic areas in the visible range can be

observed. This generally occurs when there is a gap in the vegetation (a plant580
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missing in a row, for example) and the color of the soil is similar to that of

a symptomatic plant (brown or golden). Also, it is usually explained by the

edge effects of the sliding window, because the information is not complete on

some borders (these effects are not always present in the outputs). In other

cases, the symptom class may be assigned when yellow is mixed with green, as585

this case is usually comparable to that of symptomatic leaves. To counter this

problem, it is necessary to check the neighboring images that cover this area.

If the symptom is detected in all or most of the images, there may be a real

symptom, otherwise, it is a false detection. Misclassification of the other classes

can also occur. Indeed, in these examples, some misclassification of the grass590

can be observed which is detected as healthy vine or symptom class (in the 1st

example of Figure 15). Some confusion between the ground and the shadow

class can also occur because of the low ground brightness (in the 2nd and 3rd

examples of Figure 15).

Figures 16 and 17 show an example of SegNet segmentation and the fusion595

compared with the ground truth. In Figure 16 the area is healthy, so there are

no samples of the symptom class. In this case, it can be observed that the fusion

is identical to the visible and infrared estimation (idem for the ground truth).

In Figure 17, in contrast, which is an area almost completely contaminated

by Mildew, it can be seen that the ground truth is identical in both spectra,600

apart from the color code which is different. But for the SegNet output, the

result for the symptomatic class detection is not identical in the two ranges,

and consequently the symptomatic visible and infrared classes are merged. In

addition, fusion by intersection is generated by the AND operator between the

two segmentation outputs.605

The quantitative results obtained for the visible, infrared, fusion by inter-

section and union segmentation experiments are presented in Table 4 and 5,

respectively for leaf-level and grapevine-level. They show the results obtained

in terms of the Recall, Precision, F1-Score/Dice coefficient and Accuracy mea-

sures, expressed in percentages.610

As shown in the ”Accuracy” column of Table 4, the different classes were
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generally better detected from the visible image (accuracy of 85.13%) than from

the infrared image (accuracy of 78.72%). This difference in result is due to the

fact that the visible image provides a better colorimetric description than the

infrared image for the different classes studied. The fusion by union gave a result615

of 90.23%. This result is better than the visible image, because the method takes

the best of visible and infrared information. It can be noticed that symptoms

appear at different locations in the visible and infrared spectral ranges. One

interesting finding is that detection in the two ranges is complementary, since

fusion by union increases the detection performance. The fusion by intersection620

yielded a score of 82.20%. This result is less than that of the visible range,

because the method is conditioned by the intersection of the visible and infrared,

and in this case, it is the infrared result that decreases the result. The fusion

by intersection provides important information about the position of the joint

symptom detection in the visible and infrared images. This finding can be625

used to strengthen the robustness of Mildew detection, where detection can be

considered reliable if it is observed in both types of images. Besides, the fusion

by union gives an idea about the quantitative detection.

In addition to measuring the affected areas at leaf level, the second type

of assessment consists in testing the detection at vine plant level, as this helps630

to better manage certain operations in the vineyard. The results presented in

Table 5 give better insight into the detection of symptoms at the grapevine-level.

The results show that the detection of symptoms in fusion by union is much

better (detection exceeds 92.81%) compared to the fine scale detection (leaf

level), followed by the visible range (91.50%), then the infrared range (81.66%).635

As can be seen, the results of infrared and fusion by intersection are less than

the pixel-wise evaluation (Table 4). On the other hand, an increase in precision

for the cases of fusion by union and the visible range can be observed.

Results obtained by the proposed method are likely to be consistent with

several studies in the field of remote sensing [47, 82, 83, 84, 44, 85] using the640

SegNet network. Indeed, the overall accuracy range obtained by these studies is

between 70% and 90%. In addition, it has been observed that when the surface
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area is large, the detection result is better. Conversely, the smaller the surface

area, the more difficulty the SegNet network has in correctly detecting the dis-

eased area. A possible explanation for this might be the loss of the resolution645

information of small areas during the downsampling and upsampling operations

in the SegNet network. Another reason why the results are limited is the diffi-

culty of realizing an accurate ground truth for training and testing the network,

but also the difficulty identifying an area in a low resolution (1cm/pixel) (in the

case of images taken by a UAV at high altitude). Other remote sensing applica-650

tions with large database studies that have tested and compared several types

of deep learning architecture [86, 84] such as FCN, U-Net, DeepLab, PSPNet,

etc., obtained the best semantic segmentation results with the SegNet network.

In the proposed system, the fusion by intersection of the two modalities in-

dicates the locations where symptoms were located at the same position in the655

visible and infrared images. In other words, fusion provides important infor-

mation about areas where the system confidence is higher for disease detection.

Moreover, it also provides information about areas where the disease has been

detected only in one range (visible or infrared). Therefore, even after the es-

tablishment of the method for disease detection, fusion by intersection remains660

a more reliable class than the symptomatic classes detected in the visible or

infrared range.

RGB and multispectral images were combined as one input then fed to the

SegNet. The results obtained were poorer. This is due to the registration of

the visible and infrared images. In fact, there is always a small random shift665

between the multispectral images, which implies that the same pixels are never

aligned exactly in the same position.

6.3. Runtime system

Table 6 presents the runtime results of all stages of the disease detection

system. For the image registration step, the average runtime value was used to670

evaluate the overall system, because the image registration runtime is variable

from one pair of images to another. For the SegNet segmentation step, the
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runtime was multiplied by two (× 2) because the process must segment both

images (visible and infrared) and the GPU can only handle one process at a

time, unlike registration and fusion operations, where the processing is joint for675

the two images (visible and infrared). Unlike image registration, the runtime of

the SegNet on a UAV image is constant, at 140 seconds. This value is the same

for both visible and infrared images. The fusion between the two segmented

images takes less than 2 seconds; this runtime value includes the computation

and saving the fusion file. The runtime of the disease detection system varies680

according to the image registration method chosen. This implies that to im-

prove the accuracy of the results, an additional average processing of 47 seconds

per image is necessary.

7. Conclusion685

In this study, a new method based on optimized image registration and a

deep learning segmentation method has been proposed for detecting vine dis-

ease using multimodal UAV images (visible and infrared ranges). The method

comprises three steps. The first one is the image alignment, where an iterative

algorithm based on an interest points detector has been developed. The second690

step is the segmentation of visible and infrared images based on the SegNet

architecture to identify four classes: shadow, ground, healthy and symptomatic

vine. Lastly, the third step consists in generating a disease map by fusion of

the segmentations obtained from the visible and infrared images. This study

showed that the proposed method enables the detection of vine symptoms using695

information from images of visible and infrared spectra. It provides a framework

for the exploration of earlier detection and mapping of vine diseases. One of

the limitations of this research is the small size of the training sample which

reduced the performance of the deep learning segmentation. In future work, the

following improvements could be made. The segmentation method can be im-700

proved by enriching the dataset (diversification of disease samples), and also by
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testing other deep learning architectures for segmentation. Another possibility

is the use of 3D information from the vine canopy, thus reducing false detection

and improving the accuracy of image registration.
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