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A detailed study of the three interacting low-lying electronic states 2∆, 2Σ+ and 2Π of NiH –the
so called “supermultiplet” – is presented. A coupled-channels model reproduces the experimental
term values of 58NiH, 60NiH and 62NiH with accuracy very close to the estimated uncertainty of
0.01 cm−1. The model is based on a set of Hund’s case (a) potential curves and R-dependent
coupling functions. In addition to the expected spin-orbit and various rotational couplings between
the zero-order states, second-order effects are found to be important. The spin-orbit interaction
is large compared to the separations between these electronic states, so that most of the observed
rovibrational levels are strong mixtures of the Ω components of the multiplet. The fitting procedure
proved difficult because there were no perturbation-free data to determine the starting values for
the model functions. For the potential curves we were guided by previous effective Hamiltonian
models; ab initio predictions supplied starting values for the spin-orbit and the rotational coupling
functions. We believe that this model may be reliably extrapolated to higher rotational levels, with
potential applications in the simulation of high temperature spectra, for example in the context of
stellar atmospheres.

I. INTRODUCTION

We propose a quantum-mechanical coupled-channels model to describe the three lowest electronic states of NiH
with potential energy curves, R-dependent coupling functions and Born-Oppenheimer breakdown terms. It is well-
established that the rovibrational levels of the close-lying 2∆5/2, 3/2, 2Σ+ and 2Π3/2, 1/2 states are so strongly mixed
through spin-orbit coupling (References [1–5]) that rovibrational energies cannot be reproduced by single state ex-
pressions. These studies [1, 5] already found that whilst the unpaired electron on the Ni centre is mainly responsible
for this spin-orbit coupling, simple Ni+ (3d9) atomic parameters cannot successfully reproduce observed spin-orbit
or L-uncoupling effects. The model represents term values covered by all available experimental data [4, 6–9] sup-
plemented by new data from resolved fluorescence experiments which located rotational levels in v=1 of the 2Π1/2

and v=2 of the 2Σ+ states for 58NiH and 60NiH. These term values complete gaps in the energy-level distribution
up to 6500 cm−1 above the lowest rovibrational level of the 2∆5/2 state (see Figure 1) and were crucial in our direct
potential fit.

One advantage of using radial functions rather than spectroscopic constants to generate molecular energy levels
is that (assuming the use of plausible functional forms) reliable extrapolations can be made beyond the regions
covered by the data. This is invaluable in predicting spectral features of high-temperature spectra. Absorption
bands of metal-containing diatomics, including MH species, are seen in “cool” stellar environments, with T≈ 3000
K. Although laboratory work can provide direct measurements for only some parts of stellar spectra, analysis and
reasoned extrapolation can produce useful compilations of molecular line lists; MoLList [10] and ExoMol [11], for
example, include several monohydride entries. The ExoMol team [12] has addressed several complex spectroscopic
problems, optimising ab initio potential curves and coupling functions to reproduce spectral data for multiple electronic
states of metal oxides to produce linelists; MgO [13] and TiO [14] give just two examples of their recent work on spin-
orbit coupled states. NiH, with its three low-lying doublet states (correlating with Ni+(3d9 2D) and H− at equilibrium
internuclear distance), well-removed in energy from higher-lying doublet and quartet states, provides an interesting
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test case. It introduces complications due to strong spin-orbit interaction, sparse observations associated with widely-
spaced vibrational and rotational levels, and to contributions from Born-Oppenheimer breakdown effects. Within the
presented model we can reproduce observed energy levels up to about 7800 cm−1 above the lowest rovibronic level
(v′′ = 0, J ′′ = 2.5 in X1

2∆5/2 ) with a standard deviation of 0.014 cm−1, very close to the estimated experimental
uncertainty. This represents a significant improvement over the accuracy achieved by the most recent models [5] on
these electronic states.

Direct fitting of diatomic molecular energy levels to vibration-rotation eigenvalues determined directly from in-
ternuclear potential energy functions is a well-established practice, offering quantum-mechanical consistency and
experimental accuracy. Starting with the pioneering works by Kozman, Hinze [15] and Vidal [16], it has been partic-
ularly successful on isolated singlet states. Coxon and Hajigeorgiou [17, 18] introduced the use of analytical potential
forms in their study of Born-Oppenheimer breakdown on H/D subsitution in hydrogen halides.

Four low-lying 2Σ+ states (including the double-minimum B/B’ state) of CaH and CaD, formed as attractive ionic
potentials cross diabatic repulsive states, were amongst the first MH diatomics to be described by a coupled-channel
fit to empirical potentials [19]. Most vibrational energies in CaH and CaD were reproduced to within 5 cm−1 in that
work. The model was refined in 2002 [20], and recent observations of excited vibrational levels in the double minimum
state [21] have confirmed its validity and predictive powers.

As computational resources improved, coupled-channel models have been increasingly successful in matching ex-
perimental accuracy for rovibronic term values in pairs of interacting states, for example 1Σ ∼ 1Π mixing in excited
states of the alkali or alkaline earth dimers [22–25], and in representing energy levels of spin-orbit coupled states.
Alkali-metal diatomics have been extensively studied in this context, because experimental work has been able to
determine thousands of rovibronic level energies in many instances, showing numerous avoided crossings between
states. A few (far from exhaustive) examples of such work include the deperturbation of the A/b complex associated
with increasingly strong spin-orbit coupling from nP alkali atom asymptotes, in NaK [26], KRb [27] Rb2 [28], and
Cs2 [29]. Spin-orbit interactions can achieve 50-50 mixing between states in these, making the usual v, S, Λ and Σ
quantum numbers meaningless. When higher-lying electronic states are considered [21, 24, 30, 31], new difficulties
arise as dominant state configurations change, and coupling functions can vary quickly with internuclear distance. In
this situation cubic-spline pointwise representation (as in [22, 24, 30, 31]) may become more convenient than analytical
functional forms. This was found to be the case for the coupled states problem in NiH, discussed in the following
pages.

In extending the coupled-potentials approach to represent the 2∆5/2, 3/2, 2Σ+ and 2Π3/2, 1/2 states of NiH, we
face the complication of parameter correlation between strongly interacting channels. In such a situation, theoretical
predictions for the potential energy curves and the coupling functions become especially valuable. Open-shell diatomic
systems in general are a challenge for theoretical work, as discussed in Ref. [12] for example; the particular problems
associated with 3d metal hydrides MH, and notably with their excited electronic states, are also described in the
literature, for example in Refs. [32–34]. Ab initio studies of nickel hydride, e.g. [35], give a much broader view of the
electronic structure of NiH than experiment has yet been able to generate. Marian’s multi-reference double-excitation
CI calculations [2, 3] are particularly pertinent, as they give spin-orbit coupling functions that by construction include
contributions from electronic configurations other than Ni+ (3d9 2D). They provided a criterion for ‘well-behaved’
R-dependent functions throughout this work, and imposed asymptotic behaviour.

In the next section, II, we give an overview of the data available, giving details only for previously unreported
transitions. The Hamiltonian used to model the experimental energy levels of the ground state supermultiplet is
discussed in detail in section III. The fitting procedure and its outcome are summarised in sections IV and V
respectivly. Discussions and conclusions are presented in section VI.

II. TERM ENERGIES: INPUT DATA FOR THE COUPLED-STATES MODEL

The rovibrational term energy data for the three lowest-lying electronic states of NiH extend 7800 cm−1 above
the first rovibrational level of the electronic ground state. Most data come from electronic transitions, recorded as
laser-induced fluorescence in Lyon [4, 6], but some far- and mid-infrared transitions seen in laser resonance in the
1990’s [7, 8], and pure rotational transitions, measured by microwave spectroscopy [9], give a sharper definition of the
lowest levels of the 2∆ state.

Resolved laser-induced fluorescence experiments had pumped excited 2Φ7/2, 2∆5/2, 2Π3/2 electronic states from

v=0 in the electronic ground state (X1
2∆5/2), giving strong fluorescence for ∆Λ = ∆Ω transitions, and weaker

signals for ∆Λ = ∆Ω ± 1. But spectra were much richer than expected, because collisional energy transfer in NiH
was found to be unusually successful in populating numerous rotational levels of close-lying excited electronic states
without strict selection rules. Ω′ = 1/2 states are populated only through collisions (being electric-dipole forbidden
from the 2∆5/2 ground state), and many of the Ω′ = 3/2 states are more effectively populated through collisions than
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by direct excitation.
Since all information on the 2Π1/2 and 2Σ+ states comes exclusively through fluorescence from Ω′ = 1/2 and 3/2

states that are better populated through collisions than via direct laser excitation, we re-recorded Fourier-transform
resolved fluorescence spectra (nominal resolution 0.05 cm−1) following excitation via strong transitions (Q(2.5) 1-0
B-X1 and R(2.5) 0-0 F-X1), in 58NiH and 60NiH. We averaged up to 200 scans for 60NiH to reduce baseline noise. NiH
was formed in a dc sputter source (described in detail in ref. [36]), with a 10 % H2/Ar gas mixture flowing through
a drilled solid nickel cathode (natural abundances 58Ni 68.1%, 60Ni 26.2%; 61Ni 1.1%, 62Ni 3.6%, 64Ni 0.9%), then
through a copper loop anode. The current was typically 250 mA, and the pressure around 1 Torr. The discharge
plasma was probed about 1 cm beyond the electrodes with output from a tuneable single mode cw dye laser (typical
power 300 mW using rhodamine 6G dye), producing bright-by-eye orange fluorescence. Backwards fluorescence was
focused on to the entrance aperture of the Fourier transform spectrometer using a flat pierced mirror and a pair of
focusing lenses to respect the f/4 aperture of the instrument. Rotationally relaxed bands could be followed to higher
J than before. Of particular interest were transitions from an Ω′ =0.5 state lying 16650 cm−1 above the ground state
(first identified in NiD[5], now observed for the first time in NiH), as they finally located f -parity levels of v=1, 2Π1/2

in 58NiH. The 58NiH wavenumbers are listed in Table 1. Equally important for the subsequent fits were some lines
around 11600 cm−1 assigned as the 0-2 band of the I[Ω′ = 3/2] - 2Σ+ system. These gave the first observation of
v=2 in the 2Σ+ state.

Wherever possible, lower-state energy levels have now been determined from transitions measured in the new spectra,
because we found significant shifts (sometimes as large as 0.02 cm−1) between current wavenumbers and those derived
from ‘direct’ fluorescence, notably from the Ω′ = 3/2 states in older spectra from Lyon. Well-resolved peaks in the
Fourier transform spectra are usually determined to one-tenth of the full-width-at-half-maximum linewidth, which
in this case should have been 0.005 cm−1. Measured line positions are usually reproducible within this limit, but
emission spectra are susceptible to show systematic frquency-dependent drifts in absolute line positions, if light is
injected slightly off the instrumental optical axis. This problem becomes more obvious if the spectrum covers a wide
wavenumber range, in this instance 7000 cm−1. In this particular instance, the calibration discrepancy could arise
from a real difference in the reference wavelength of the instrument, as the single-mode HeNe laser calibrating the
spectrometer had been changed in the interim. The wavenumber scales of the recent spectra are considered to be the
more reliable because they have been validated against argon lines [37], produced when sputtering nickel in an Ar/H2

mixture to form NiH.
The level energies for 58,60,62NiH were determined from separate term-value fits. The term energies are referenced

to the lowest rotational level of each isotopologue, (T[X1
2∆5/2, v=0, J=2.5, e and f ] = 0.0 cm−1). The spread of

observed energy terms in the low-lying states of 58NiH is illustrated in Fig. 1. Markers indicate predictions for the
still-unobserved vibrational states 2Π1/2 v= 2 and 2Π3/2 v=3 above 6500 cm−1. Fig. 1 represents 358 energy terms for
58NiH determined from 2862 spectral lines. There is less information on the low-Ω′′ states for the minor isotopologues.
We have 275 terms for 60NiH (determined from 834 spectral lines) and 120 terms for 62NiH (determined from 348
spectral lines). All transition wavenumbers and the corresponding term values are provided as a supplementary
material. Lower state term energies (input for the coupled channels fit) were uniformly assigned an uncertainty of
0.01 cm−1.

III. THE HAMILTONIAN, COUPLING OPERATORS AND THEIR MATRIX ELEMENTS

The model Hamiltonian used here is based on the ‘supermultiplet’ analysis of the 2∆ ∼ 2Σ+ ∼ 2Π interacting states
of nickel monohydride reported by Gray et al. in Ref. [1] about 30 years ago. The implication of the supermultiplet
treatment for NiH is that the formation of a covalent bond between H and Ni involves the H(1s) and Ni(4s) electrons,
and that the remaining valence electrons are essentially non-bonding electrons located on the nickel ion. The ground
state Ni+ ion has a 3d9 configuration [37]. The model assumes that the magnitude of spin-orbit interactions and L±
matrix elements in the associated molecular states match atomic parameters for 3d9 Ni+ ion 2D, with L = 2, S =
1/2 and ζ = 602.78 cm−1.

A. Model Hamiltonian

The total Hamiltonian of the system 2∆ ∼ 2Σ+ ∼ 2Π can be written as:

H = Te(r) + TN(R) + Hrot(R, θ, ϕ) + V(R, r) + HSO + Hsr .

Here Te(r) is the kinetic energy operator of the electrons, TN(R) and Hrot(R, θ, ϕ) are the vibrational and rotational
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TABLE I. Observed transitions (in cm−1) from the [16.6]0.5 state in 58NiH. Data for 60NiH can be found in the supplementary
materials [38]

[16.6]0.5 - 2Σ+ v′′=0
J′′ Re Rf Pe Pf Qef Qfe

0.5 14687.157
1.5 14739.755 14522.195 14607.396 14599.306
2.5 14792.702 14466.738 14607.181 14596.650
3.5 14842.406 14411.789 14607.841 14594.206
4.5 14890.095 14357.794 14605.993 14592.175
5.5 14936.416 14305.184 14603.076 14590.668
6.5 14981.224 14254.169 14599.936 14589.644
7.5 15025.095 14205.040 14596.630 14588.869
8.5 14157.722 14587.826
9.5 14112.067
10.5 14067.790
11.5 14024.525

[16.6]0.5 - 2Σ+ v′′=1
J′′ Re Rf Pe Pf Qef Qfe

0.5 12888.094
1.5 12940.121 12727.011 12812.204 12799.677
2.5 12992.835 12673.624 12814.073 12796.778
3.5 13042.564 12621.138 12817.188 12794.364
4.5 13090.509 12569.998 12818.204 12792.583
5.5 13137.127 12520.619 12818.538 12791.375
6.5 12473.290 12819.039
7.5 12428.171
8.5 12385.248
9.5 12344.338
10.5 12305.155

[16.6]0.5 - 2Π1/2 v′′=0
J′′ Re Rf Pe Pf Qef Qfe

0.5 13262.670 13200.349
1.5 13283.984 13203.962
2.5 13305.464 13207.561 13162.849
3.5 13323.633 13211.412 13136.294
4.5 13339.893 13215.696 13109.758
5.5 13355.068 13220.449 13151.580 13083.522
6.5 13369.293 13225.609 13138.662 13057.803
7.5 13230.911 13125.125 13032.667
8.5 13236.004 13111.360 13008.039
9.5 13240.530 12983.708
10.5 13244.071 12959.351

[16.6]0.5 - 2Π1/2 v′′=1
J′′ Re Rf Pe Pf Qef Qfe

0.5 11463.522 11398.875
1.5 11486.832 11402.082 11387.195
2.5 11510.912 11405.763 11385.185 11361.036
3.5 11532.371 11410.129 11379.891 11335.013
4.5 11552.726 11415.397 11375.728 11309.452
5.5 11572.975 11421.574 11369.486 11284.634
6.5 11593.502 11428.560 11362.902 11260.753
7.5 11615.185 11436.113 11237.866
8.5 11443.886 11215.915
9.5 11451.485 11194.656
10.5 11173.772
11.5 11152.908

[16.6]0.5 - 2Π3/2 v′′=0
J′′ Re Rf Pe Pf Qef Qfe

0.5
1.5 14185.299 14059.540 14129.862 14044.847
2.5 14216.982 14050.312 14091.251 14005.599 14146.035 14020.932
3.5 14244.935 14040.699 14092.482 13965.588 14161.621 13996.752
4.5 14270.549 14030.814 14093.562 14173.067 13972.631
5.5 14294.602 14020.665 14181.656 13948.852
6.5 14010.140 13925.533
7.5 13998.962 13902.623
8.5 13986.789
9.5 13973.249 13857.361
10.5 13857.985 13834.384
11.5 13810.756

part of the total nuclear kinetic energy operator. V(R, r) is the potential energy. HSO and Hsr represent the
relativistic spin-orbit and spin-rotation Hamiltonians.
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FIG. 1. Plot of rotationally-reduced energy terms (Tv,J − 7.5J(J + 1) cm−1) in 58NiH (relative to T = 0.0 cm−1 for J=2.5,
v=0 in 2∆5/2), with vibrational assignments. Open symbols indicate e parity labels, solid ones f . Levels v=2 in 2Π1/2 and

v=3 in 2Π3/2 above 6500 cm−1 remain unobserved.

We will treat the coupled channels problem with Hund’s case (a) basis set functions which are labeled with the
quantum numbers associated with the electronic-spin-rotational part of the full molecular wavefunction. Symmetrized
representations of the basis states are then applied [39], with well-defined e/f symmetry, taking the following general
form (excluding Σ− states):

|ΛSΣJΩM ; e/f〉 = 2−1/2 [|ΛSΣJΩM〉 ± | − ΛS − ΣJ − ΩM〉] . (1)

In this representation there are five electronic-spin-rotation basis functions, corresponding to the Hund’s case(a)
electronic states 2∆5/2, 2∆3/2, 2Σ+

1/2, 2Π1/2 and 2Π3/2. The total wavefunction can then be written as a superposition

of these basis functions (denoted for simplicity as |i〉):

Ψ(R, r) =

5∑
i=1

φi(R)|i〉 ,

where φi(R) are R-dependent mixing coefficients corresponding to solutions of the set of coupled equations:

5∑
j=1

Hijφj(R) = Eφi(R) ,

where Hij are the R-dependent matrix elements of the total Hamiltonian 〈i|H|j〉, calculated between the basis
functions.

Each term of the total Hamiltonian will be considered separately and its matrix elements will be evaluated in terms
of the basis set functions. The interactions involving the orbital angular momentum L should be considered as specific
to this case, because L2 is not usually a well-defined quantity in a diatomic molecule, where spherical symmetry is
broken. By accepting L as an approximately good quantum number for these states of NiH [1], with L = 2 due to the
2D ground state of the Ni+, we will assume that the basis functions (1) are approximate eigenstates of L2. Corrections
to this assumption will be introduced by multiplying its eigenvalue by an R-dependent function. The more valid the
assumption, the closer the function will be to unity.

The basis functions are chosen to be eigenfunctions of the electronic Hamiltonian and its diagonal elements 〈i|Te(r)+
V(R, r)|i〉 = Ui(R) are the electronic potential energy curves.
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B. Electronic-spin-rotational couplings

The term Hrot has both diagonal and off-diagonal matrix elements [39]:

Hrot =
1

2µR2

[
(J2 − J2

z) + (L2 − L2
z) + (S2 − S2

z) (2a)

− (J+S− + J−S+)− (J+L− + J−L+) + (L+S− + L−S+)
]

(2b)

where the operators J, J+ and J− satisfy the anomalous commutation relations ([40]) in the rotating molecular frame.
The first three terms (2a) constitute the diagonal part of the rotational Hamiltonian with matrix elements equal to
(h̄2/2µR2)[J(J+1)−Ω2−Λ2+S(S+1)−Σ2]. The contribution of the mean value of the electronic angular momentum
L2 will be treated as a correction to the potential energy curve.

The terms with non-zero off-diagonal matrix elements (2b) connect states or their multiplet components differing
by the values of two of the projection quantum numbers Λ, Σ or Ω.

a. Spin-uncoupling The Spin-uncoupling operator

HJS = − 1

2µR2
(J+S− + J−S+)

mixes the two Ω-components of the 2Π and 2∆ electronic states.

〈2Π3/2|HJS|2Π1/2〉= −B
√
J(J + 1)− ΩΩ′

√
S(S + 1)− ΣΣ′

= −B
√
Y 2 − 1 (3)

where Ω, Ω′, Σ and Σ′ are the corresponding quantum numbers of the states involved, Y = J+1/2 and B = h̄2/(2µR2).
Similarly for the 2∆ states :

〈2∆5/2|HJS|2∆3/2〉 = −B
√
Y 2 − 4 (4)

With B of the order of the rotational constant Be ≈ 7.5 cm−1, the spin-uncoupling matrix element exceeds 100 cm−1

for the highest observed rotational levels (J = 15.5).
The e- and f -symmetry components of an isolated 2Σ+ state in the symmetrized representation of case (a) are

always non-degenerate, due to the spin-uncoupling operator. Its matrix element is:

〈2Σ+; e/f |HJS|2Σ+; e/f〉 = ∓BY (5)

where the sign −/+ corresponds to e/f -symmetry levels respectively. Parity selection rules forbid mixing between
different symmetry levels. In contrast, the e and f levels of isolated 2Π or 2∆ states would be degenerate.
b. L-uncoupling The L-uncoupling operator

HJL = − 1

2µR2
(J+L− + J−L+)

connects states with ∆Λ = ∆Ω = ±1. Its non-vanishing matrix elements are:

〈2∆3/2|HJL|2Π1/2〉= −B
√
J(J + 1)− ΩΩ′

√
L(L+ 1)− ΛΛ′βΠ∆(R)

= −2BβΠ∆(R)
√
Y 2 − 1 (6)

〈2∆5/2|HJL|2Π3/2〉 = −2BβΠ∆(R)
√
Y 2 − 4 (7)

〈2Π3/2|HJL|2Σ+〉 = −
√

6BβΠΣ(R)
√
Y 2 − 1 (8)

The βΛΛ′ functions take into account the possible R-dependence of the matrix element including the L+ operator
between electronic states Λ and Λ′. If the assumption that L is a good quantum number is strictly valid, βΛΛ′

should be exactly equal to 1 and we began by imposing this constraint, following Gray et al [1]. βΛΛ′ functions were
introduced as the fit progressed, when it became clear that the experimental data require small deviations from the
L=2 approximation.
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In the particular case of interacting 2Σ+ and 2Π1/2 states, a special manifestation of the L-uncoupling operator
results in non-zero matrix element because of interference effects between ∆Ω = +1 and ∆Ω = −1 basis states in the
transformation from unsymmetrized to symmetrized basis set. This gives rise to a symmetry-dependent contribution:

〈2Π1/2; e/f |HJL|2Σ+; e/f〉 = ∓
√

6BβΠΣ(R)
√
Y 2 + 1 (9)

where the −/+ sign again corresponds to e/f levels.
c. Spin-electronic coupling In the context of our 2∆− 2Σ+ − 2Π system, the spin-electronic operator

HLS =
1

2µR2
(L+S− + L−S+)

couples the same fine-structure components as the spin-orbit operator (∆Ω = 0):

〈2∆3/2|HLS|2Π3/2〉= −B
√
S(S + 1)− ΣΣ′

√
L(L+ 1)− ΛΛ′βΠ∆(R)

= 2BβΠ∆(R) (10)

〈2Π1/2|HLS|2Σ+〉 =
√

6BβΠΣ(R) . (11)

where βΠ∆ and βΠΣ are the same β functions as in Eqs. (6)-(7) and Eqs. (8)-(9) respectively.

C. Spin-orbit coupling

The spin-orbit operator introduces both diagonal and off-diagonal matrix elements. Diagonal spin-orbit coupling
exists within the Ω-components of the 2Π state (2Π1/2, 2Π3/2) and the 2∆ state (2∆3/2, 2∆5/2). Its matrix elements
can be written as [39]:

〈2ΠΩ|HSO|2ΠΩ〉 = ±AΠΠ(R)

2
(12)

〈2∆Ω|HSO|2∆Ω〉 = ±A∆∆(R) (13)

where the plus sign corresponds to the matrix elements between components with positive Σ values. AΠΠ(R) and
A∆∆(R) represent the diagonal spin-orbit splitting functions for 2Π and 2∆ states which are to be determined. To
give an order of magnitude, the spin-orbit splitting between 2D5/2 and 2D3/2 in 3d9 Ni+ is 1506.94 cm−1, giving an

atomic spin-orbit parameter ζ = 602.78 cm−1. The functions describing AΠΠ and A∆∆ for the lowest 2Π and the 2∆
states of NiH are expected to be close to this value.

The states differing by ∆Λ = ±1 and ∆Σ = ∓1 so that ∆Ω = 0 are coupled by an off-diagonal spin-orbit term:

〈2Π1/2|HSO|2Σ+
1/2〉 =

√
6

2
αΠΣ(R) (14)

〈2∆3/2|HSO|2Π3/2〉 = αΠ∆(R) (15)

where αΛΛ′(R) is the spin-orbit R-dependent coupling function connecting the electronic states Λ and Λ′. Here, the

factors
√

6 and 2 come again from the assumption that L = 2. The αΛΛ′(R) values are expected to be close to ζ =
602.78 cm−1.

D. Spin-Rotation coupling

Spin-rotation is another relativistic effect to be considered but its contribution is expected to be much smaller
than that of the spin-orbit interaction. The contribution of the diagonal matrix elements β′(R)

[
Σ2 − S(S + 1)

]
can be effectively added to the diagonal part of the Hamiltonian. But off-diagonal spin-rotation matrix elements
β′(R)

√
J(J + 1)− Ω(Ω± 1)

√
S(S + 1)± Σ(Σ± 1) cannot be distinguished from the matrix elements of the spin-

uncoupling operator from Eq. (3), (4) and (5): the same states interact through these two operators with identical
dependence on the quantum numbers. We have therefore grouped them as γ(R) functions:

〈2Π3/2|HJS + Hsr|2Π1/2〉 = −BγΠ(R)
√
Y 2 − 1

〈2∆5/2|HJS + Hsr|2∆3/2〉 = −Bγ∆(R)
√
Y 2 − 4

〈2Σ+; e/f |HJS + Hsr|2Σ+; e/f〉 = ∓BγΣ(R)Y .

where γ(R) = 1− β′(R). The gamma functions should be close to unity, if spin-rotation effects are small.
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E. Born-Oppenheimer breakdown corrections to the Hamiltonian

It is well established that the Born-Oppenheimer approximation breaks down on isotopic substitution with simple
mass-dependent corrections: at the level of the adiabatic approximation, different effective potential energy curves are
predicted for each isotopologue. According to Bunker and Moss [41], the primary mass-dependent correction to the
Born-Oppenheimer potential energy curve UBO(R) comes from a first-order correction term ∆Ui(R) = 〈i|TN(R)|i〉.
This term is usually called the adiabatic or diagonal Born-Oppenheimer correction. When data for a single iso-
topologue are treated, the fitted potential curves may be called adiabatic, since they include this correction, i.e.
Ui(R) = UBO

i (R)+∆Ui(R). It may be necessary to account for the mass dependence of the adiabatic correction when
two or more isotopologues are treated simultaneously.

In addition, there are mass-dependent second-order corrections due to TN(R) and Hrot(R, θ, φ). The rotationally
dependent correction due to Hrot(R, θ, φ) can be written as:

fi(R) =
∑
k

〈i|Hrot(R, θ, φ)|k〉2
Ui(R)− Uk(R)

.

Adopting the form of Hrot presented in Section III B, and taking the summation over remote electronic states (other
than those included explicitly in the model), the correction becomes:

fi(R) =

(
h̄2

2µR2

)2 (
qi(R)J(J + 1) + gi(R)

)
.

The qi(R) function regroups all the R-dependent terms in J(J + 1). They arise from the L- and spin-uncoupling
part of Hrot. The gi(R) function comes from the summation over the contributions due to the spin-electron coupling,
which are J independent. Strictly speaking, the J(J + 1) dependence of the correction term is valid only for a 1Σ
state affected by a distant 1Π state through the L-uncoupling operator. When states other than 1Σ are considered,
a constant should be added to J(J + 1) (see the matrix elements of the L-uncoupling operator in section III B); its
contribution is folded into the gi(R) function. We were not able to determine the contribution of the gi(R) function;
its effects were presumably swamped in Ui(R). The J-dependent qi(R) contribution was significant, giving

fi,e/f (R) =

(
h̄2

2µR2

)2

qi,e/f (R)J(J + 1) ,

accounting for possible differences between the e− and f− symmetries. This form for the J-dependent Born-
Oppenheimer breakdown (BOB) correction differs from that used by Le Roy in [42], treating Born-Oppenheimer
breakdown in HF/DF (i.e. a case with only one isotope of the heavy atom). The apparent difference is in the mass
dependence. Here we have 1/µ2, whereas according to [42], there are two corrections with mass dependence 1/(µMH)
and 1/(µMNi). Due to the much lighter hydrogen, the main contribution is expected to come from the term with
1/(µMH) and its mass dependence is very close to 1/µ2, because µ ≈MH.

The rotational corrections fi(R), change the R-dependence of the centrifugal potential as J increases. The fi(R)
corrections can be different for e and f symmetry levels; this would be the case of a 1Π state showing Λ-doubling
through the influence of a remote 1Σ+state.

The Hamiltonian matrix for the present problem is shown schematically in Fig. 2, indicating the operators whose
explicit forms have been detailed in the text above. Hii denotes the sum of the diagonal Hund’s case (a) operators
TN(R) + Ui(R) +Hrot(R) + fi(R).

The various functions needed to model the experimental data are determined through non-linear least squares fits.
They are: three potential energy curves (PECs), two diagonal A(R) and two off-diagonal α(R) functions for the spin-
orbit interaction, the β(R) and γ(R) functions associated with the rotational interactions, the qe/f (R) second-order
correction functions.

IV. COMPUTATIONS, DEPERTURBATION PROCEDURE AND FITTING OF THE DATA

The fitting procedure was initiated on the measured data for 58NiH, for which we have the widest distribution of
vibrational and rotational quantum numbers among the set of electronic term values. The 60NiH and 62NiH data
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FIG. 2. Hamiltonian matrix for the present problem. Symbols of the relevant coupling operators are indicated; the explicit
form of the matrix elements are explained in the text. Hii = TN(R) + Ui(R) +Hrot(R) + fi(R).

2Σ+
1/2

2Π1/2
2Π3/2

2∆3/2
2∆5/2



H11 +HJS
11, ef H

SO
12 +HLJ

ΣΠ, ef +HLS
ΣΠ HLJ

ΣΠ 0 0 2Σ+
1/2

symm H22 +HSO
ΠΠ HJS

23 HLJ
∆Π 0 2Π1/2

symm symm H33 +HSO
ΠΠ HSO

34 +HLS
Π∆ HLJ

Π∆
2Π3/2

0 symm symm H44 +HSO
∆∆ HJS

45
2∆3/2

0 0 symm symm H55 +HSO
∆∆

2∆5/2

(natural abundances 26% and 4%) represent a subset of this distribution. They were used as a control as the fit
of 58NiH progressed; we monitored 60NiH and 62NiH energies computed from the optimized potentials and coupling
curves for 58NiH using appropriate reduced masses to be sure that the “obs-calc” differences are not unreasonable.
In the final stage of the fitting process, experimental data from all three isotopologues were treated simultaneously.

The calculated energies are obtained as eigenvalues of the Hamiltonian (Fig. 2) discussed in the previous section. The
numerical solution of the system of five coupled Schrödinger equations (III A) is based on the Fourier Grid Hamiltonian
method, developed as a computational method for time-dependent quantum-mechanical problems [43] and for the
calculation of bound states of time-independent problems [44] and extensively applied in molecular spectroscopy.
An equidistant grid with Ngrid = 170 points for internuclear distances 0.75 Å – 3.0 Å covers the available range of
experimental observations with the required accuracy.

In a matrix representation, the computed Hamiltonian has dimensions 5Ngrid×5Ngrid over the discretized R values.
A set of calculated energies and their corresponding eigenvectors defining the mixing coefficients φi(R) (from Eq.III A)
are obtained after diagonalization of this matrix. The calculated energies are first referenced to the calculated energy
of the level v = 0, J = 2.5 of the ground 2∆5/2 state for the corresponding symmetry and isotopologue and then are

introduced in a standard non-linear least-squares fitting procedure to minimize the χ2 merit function:

χ2 =

N∑
k=1

(
Eexp

k − Ecalc
k

)2
N

× ω2
k (16)

weighted either according to experimental uncertainty ω2
k = σ−2

k , or using the Robust Fit method proposed by Watson
[45] to reduce the effects of outliers:

ω2
k =

1

σ2
k + 0.3

(
Eexp

k − Ecalc
k

)2
The PECs and the matrix elements of the model Hamiltonian were defined as spline pointwise functions of the

internuclear distance, where the values of the spline points are themselves the parameters to be optimized in the fit.
This is a convenient option because of its simplicity. For most of the fitted functions, we have reasonable estimations
for their magnitude, so we have very good starting points for the fitting routine. Moreover, during the fit serious
deviations from a physically reasonable values show up easily, and may be controlled.

As a starting point for the potential energy curves we derived RKR potentials based on the available deperturbed
Dunham parameters [1, 5]. Initial diagonal and off-diagonal spin-orbit parameters were fixed at their atomic values
which are around 603 cm−1 [1]. The initial values of the rotational coupling parameters β(R) and γ(R) were fixed
at the expected constant value of 1.0. The second order q(R) parameters initially were fixed to some small value of
10−5 1/cm−1. The spin-orbit functions αΛΛ′(R) and AΛΛ(R) were constrained to approach the atomic values at large
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internuclear distances by fixing the outermost point for each of them. The remaining spin-orbit points were gradually
floated during the fit. The rotational functions were similarly released, constraining their asymptotic values to unity.

The main strategy to minimize χ2 in Eq. (16) was a nonlinear least-squares iterative fit based on the method of
Singular Value Decomposition (SVD) [46] using a wrapper procedure around a standard LAPACK routine provided
by SciPy module [47]. The SVD method offers a way to order the fitted parameters (or their linear combinations)
according to their impact on χ2. So it is possible to chose and to vary only the set of most significant parameters (or
their combinations), while leaving the values of the rest unchanged. This avoids having the fit return unreasonable
numbers with huge standard deviations for highly correlated parameters. This approach, by reducing the effective
number of free parameters, has proved already to be very efficient in single channel [48] and multichannel [24, 31]
fits. All computations were performed using the recently-developed open-source Python package for coupled-channels
calculations [49].

The fitting procedure began with 58NiH data only. It was not straightforward, but iterated through a sequence
of improvements of the model functions. Initially, when discrepancies between the calculated and experimental
energies were very large, only the model functions that were expected to have major impact on the level positions
and splittings were optimized, namely the three PECs Ui(R), the spin-orbit A(R) and α(R) and the rotational β(R)
coupling functions. A few transitions that led to serious outliers in the term-value data were re-assigned at this
point. To improve the unweighted rms deviation beyond about 0.5 cm−1 the weaker interactions had to be introduced
and optimized as well. A systematic trend in residuals between the e- and the f -symmetry levels was removed by
adding the second-order qi,e/f (R) correction. Introducing the γ(R) functions reduced the final root-mean-square (rms)
deviations of the fit still further.

The analysis and fitting procedure were particularly complicated on two accounts. On the one hand, we have five
channels, coupled by strong and numerous interactions, inevitably requiring a large number of free parameters in the
fit. On the other, the initial dataset was sparse. The 358 levels characterised for the most abundant 58NiH species
span a relatively large energy region due to the large vibrational constant - the highest levels are about 8000 cm−1

above the origin. The experimental dataset was also unevenly distributed over the states and the vibrational numbers,
with more than half the observations corresponding to the ground 2∆ state.

Hoping to retain physically reasonable shapes for the coupling spin-orbit functions, we compared them with Marian’s
ab intio results given in Ref [2]. These predict slow and small variation of AΠΠ(R), A∆∆(R) and αΠ∆(R) with
internuclear distance. But it quickly became clear that the theory-based R-dependence of the theoretical prediction
for the 2Σ+ - 2Π1/2 off-diagonal spin-orbit function αΣΠ(R) could not reproduce the experimental observations. This

coupling has significant impact on most eigenvalues. We therefore allowed the points defining αΣΠ(R) below 2.25 Å
to become free parameters, and accepted its fitted form (see Fig. 5).

In addition to the SVD strategy, parameter correlation issues can be dealt with to some extent by careful choice of the
number of fitted parameters. In order to find a “stable” pointwise representation of PECs for the three doublet states,
the number of potential parameters was varied between 16 and 24. The final 2Σ+ and 2Π potentials are represented
with 17 points, and the 2∆ potential with 18 points. The final coupling functions are defined by 3 – 5 points. Once
the unweighted rms deviation of the fit approached 0.01 cm−1, the shapes of the model functions were reviewed more
carefully. Correlations can sometimes introduce wavy, unphysical shapes that be corrected by constraining some
parameters to a reasonable form and refitting the remaining correlated parameters. The “reasonable” shape of a
function, however, is not always well defined, so in some cases we used regularization (implemented as described by
Eq.(7) in Ref [27]). The regularization procedure adds weighted squared deviations between selected model functions
and their “reasonable” values to the merit function χ2. In this way the fitted functions are coaxed to stay as close as
possible to these reasonable values without compromising the root mean square deviation of the final fit.

This fine-tuning of the model functions revealed that there was no need to specify separate qi(R) function for the
e and the f symmetry, and that a single second-order function per state sufficed. All attempts to reduce the strong
deviations of the β(R) and the γ(R) functions from the initially estimated value of unity were unsuccessful. The
final shapes of the model functions are illustrated in the next section, and corresponding parameters are given in the
supplementary material [38].

At this stage, we added the data for 60NiH and 62NiH to the fit. We expected that the mass dependence of the
adiabatic correction to be negligible for when the heavy-atom substitution and this turned out to be the case - the
data for all 3 isotopologues were reproduced within the estimated uncertainties without correction to the potential
curves.

V. RESULTS OF THE FIT

A total of 753 levels belonging to the three Ni isotopes (358 from 58NiH, 275 from 60NiH, 120 from 62NiH)
were reproduced with an unweighted rms deviation of 0.014 cm−1. Fig. 3 shows the ‘calculated - observed’ energy
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residuals for the three NiH isotopologues computed from the optimized model functions. The calculated levels for
each isotopologue and symmetry are referenced to the level v = 0 and J = 2.5 of the ground state (i.e. T[2∆, v=0,
J=2.5, e and f ] = 0.0 cm−1).
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FIG. 3. Deviations of the term energies calculated with the deperturbed model functions described in this paper from the
observed term energies for the three NiH isotopologues. The two dashed horizontal lines in the middle indicate the bounds of
the estimated 1σ experimental uncertainty. The rms for 58NiH data is 0.011 cm−1, for 60NiH data – 0.015 cm−1and for 62NiH
– 0.015 cm−1

The final PECs parameters are listed in Table V.
In Fig. 4 the theoretical potential energy curves calculated in Ref [35] (circles) and the optimized potentials obtained

in the present study (solid lines) for each electronic state are compared. Given the complexity of the system and the
difficulties accompanying the theoretical calculations, the consistency between the slope and position of the inner and
outer walls between both sets of curves is remarkable, even if at the potential minima the curves do not coincide. In
the inset of the same figure the optimized potentials from this study are compared with the RKR potentials from Ref.
[5]. One can see that the RKR curves (which were the starting potentials in our analysis) give more accurate results
around Re than the theoretical ones, but the slope of the outer wall differs significantly.

In Fig. 5 comparison between the diagonal and off-diagonal spin-orbit functions from our work with the theoretically
calculated in Ref. [2] is shown. The overall agreement is very good, however some deviations are quite marked. The
final results confirm the expectation that the diagonal SO functions are nearly independent of the internuclear distance.
Unlike the almost constant value of the nondiagonal αΠ∆ spin-orbit function, we have established that αΣΠ spin-orbit
function has somewhat stronger R-dependence towards smaller R values than predicted. The optimized αΣΠ function
resembles in general the behaviour of the theoretical curve, the absolute value of both functions decreases at smaller
R, although the functional forms and the magnitude are not the same - the main difference being the more rapid and
steep decrease of the theoretical curve.

On the left-hand side of Fig. 6 our final rotational β(R) functions are shown and compared with the available ab
initio functions from Ref. [2]. In the range where significant amount of experimental data is available their magnitudes
and the dependence of the internuclear distance are reasonably close.

In the previous section it was discussed that a model incorporating only PECs, SO, LJ and LS R-dependent model
functions and applied to the whole dataset is unable to give satisfactory results. To fit the data to experimental
accuracy, the model had to be expanded by introducing (expected) corrections for spin-rotation coupling and additional
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TABLE II. PECs parameters for the 2∆, 2Σ+ and 2Π states of 58NiH. In order to interpolate in arbitrary intermediate point
a natural cubic spline through all points in the interval from 0.75 Å to 3.0 Å should be applied.

R, Å U∆(R), cm−1 R, Å UΠ(R), cm−1 UΣ(R), cm−1

0.75000 57427.9282 0.75000 58327.9282 57827.9282
0.89062 35877.9282 0.89062 37027.9282 36327.9282
1.04347 18265.1273 0.99456 24743.8314 23867.2781
1.14130 9442.0370 1.11684 14759.6786 13829.2036
1.19021 6249.6905 1.21467 9173.8576 8151.8415
1.26358 2922.5813 1.28804 5767.9978 4928.7240
1.36141 602.4575 1.38586 3162.9113 2660.8467
1.45923 0.0000 1.50815 2227.0220 1928.2047
1.55706 519.5383 1.63043 2879.5323 2677.8026
1.66406 1885.1231 1.75271 4425.9655 4252.8068
1.77717 3838.0603 1.85054 6019.5544 5859.9990
1.87500 5733.7359 1.97282 8151.8841 7997.3996
1.97282 7682.6253 2.08593 10461.1010 10305.4060
2.07065 9617.2300 2.22656 13257.9981 13100.8780
2.22656 12752.1005 2.36718 15879.0454 15727.4369
2.41304 16190.9468 2.50781 17901.4169 17787.0570
2.65760 19318.7038 3.00000 22437.9282 22397.9282
3.00000 22342.9282 - - -
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0

5

10

15

20

25

30

P
o
te
n
ti
a
l
en

er
g
y
[1
0
3
cm

−
1
]

1.15 1.30 1.45 1.60 1.75 1.90

0.0

1.5

3.0

4.5

6.0

7.5

2Σ+ this work
2Π this work
2∆ this work
2Σ+ ab initio
2Π ab initio
2∆ ab initio
2Σ+ RKR
2Π RKR
2∆ RKR

FIG. 4. Comparison between the theoretical potential energy curves calculated in Ref. [35] (circles) and the optimized potentials
obtained in the present study (solid lines) for each electronic state. Inset: comparison between the constructed RKR potentials
from Ref. [5] (crosses) and the optimized potentials obtained in the present study (solid lines). The darkened region from the
bottom of the ground state up to 8000 cm−1 indicates the range of experimental energy terms.

Born-Oppenheimer breakdown effects. But improvement in the rms deviation came at the price of undesirable
parameter correlation issues. Therefore we tried to retain the most plausible contributions in our fits. We discuss
parameter correlation and give a correlation matrix in Appendix A, which is part of the Supplementary Material [38].

Pure spin-rotation effects are expected to be small, but we recall that second-order interactions which include both
the spin-orbit and L-uncoupling operators [39] lead to the same functional effect as the spin-rotation operator (see,
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FIG. 5. Comparison of the spin-orbit matrix elements obtained in the present work (solid lines) with the theoretically calculated
(dashed lines) ones by C. Marian in Ref. [2]. On the left-hand side the off-diagonal spin-orbit matrix elements are compared.
The matrix elements 〈2Π1/2|HSO|2Σ+

1/2〉 and 〈2∆3/2|HSO|2Π3/2〉 are determined through the functions αΣΠ(R) and αΠ∆(R)

respectively according to Eq. (14) and Eq. (15). On the right-hand side the diagonal spin-orbit matrix elements are com-
pared. The matrix elements 〈2ΠΩ|HSO|2ΠΩ〉 and 〈2∆Ω|HSO|2∆Ω〉 are determined through the functions AΠΠ(R) and A∆∆(R)
respectively according to Eq. (12) and Eq. (13).

for example, the discussion in [50]). The rotational γ(R) functions are shown on the right-hand side of Fig. 6. If this
effective spin-rotation interaction could be ignored, the γ functions would be constant and equal to unity. The model
has shown that this is nearly true for the γΣΣ function, but that γΠΠ and γ∆∆ change significantly with internuclear
distance.

We believe that within the system of the coupled lower states in NiH the model is complete, but we were forced to
introduce the second order fi(R) corrections. They are modeled through the qi(R) functions shown in Fig. 7. The
fit was clearly less successful without them. They allow to account for possible J-dependent interactions with remote
electronic states through the Hrot operator.

VI. DISCUSSION AND CONCLUSIONS

This description of the three lowest electronic states in NiH is the first to reach experimental uncertainties in the
residuals of a term energy fit for this radical by direct solution of system of coupled Schrödinger equations. The
model evolved to has effectively identified shortcomings in the atomic-parameter based - and instinctively meaningful
“supermultiplet” approach that has so far been envisaged to describe the three electronic states of NiH dissociating
to the lowest Ni + H atomic asymptote. The most important of these is a variation of spin-orbit state-mixing effects
as a function of internuclear distance. By optimising radial functions over the restricted range of R accessible from
spectroscopic data, and retaining ab initio predictions elsewhere, we believe that the current potential-curve and
coupling functions may be extrapolated to higher rotational states than are actually observed. The predictive power
of the model has already been assessed when assigning the reported new spectroscopic observations (Table 1) in 2Σ+

1/2

and 2Π1/2 states. The model is able to provide the current best predictions for infrared transitions (rovibrational
transitions within a given state, as well as rovibronic transitions between members of the supermultiplet states),
susceptible to be seen for example in stellar atmospheres. We supply this information as supplementary material, as
a step towards providing information for data bases such as MoLList [10] or ExoMol. The entry for NiH in the 2020
release of ExoMol [11] noted specifically the lack of input for NiH. This work can provide transition wavenumbers with
confidence, but not absorption cross-sections, for which transition dipole moment functions would also be required.



14

0.75 1.25 1.75 2.25 2.75

R [Å]
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FIG. 6. The rotational coupling functions calculated in the present work. On the left-hand side: the calculated rotational β(R)
coupling functions (solid lines, see section III B) are compared with the ab initio values from Ref. [2] (dashed lines). Note that

the theoretical matrix element between 2Σ+ and 2Π states is divided by a factor of
√
L(L+ 1)/

√
2. On the right-hand side:

the fitted rotational γ(R) functions (see section III D) due to the spin-rotation and second-order interactions.
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FIG. 7. Second-order correction functions. See section III E for details.

It can be however anticipated that the branch intensities will be affected by spin-oribt mixing, and relative intensities
could be predicted taking this into account. Lipus et al [8] likewise discussed this. They measured spin-changing
transitions within the 2∆ state, and claimed that although these are electric-dipole forbidden in Hund’s case (a), they
acquired some electric-dipole transition moment through rotational couplings, and that this electric dipole contribution
to intensities was greater than (allowed) magnetic dipole contributions.

The shapes of the model functions should be considered with caution. The complexity of the model, the number
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FIG. 8. Residuals of the energies for 58NiH calculated with the optimized potential functions but with the intial and expected
values for the coupling functions β(R) = 1, γ(R) = 1, q(R) = 0; A(R) and α(R) are the theoretical functions taken from [2].

of parameters and the sparse structure of the data set lead to strong correlations between the fitted parameters. We
observed that similar fit quality can be achieved with different model functions. Most of them could be rejected due
to their unphysical appearance, but since it is a question of subjective judgement, it is very difficult to appreciate
the true uncertainty of the fitted model functions and thus the predictive power of the model. The best we can do
was to try to keep the model functions as close to the theoretical predictions as possible. We are confident that
the deviations between the fitted functions and the theoretical expectation (see Fig. 5 and Fig. 6) are significant.
To demonstrate this in Fig. 8 we present the residuals for 58NiH computed with the fitted potentials, but with the
coupling functions fixed to the theoretical expectations (all β(R) = 1 and γ(R) = 1, all q(R) = 0 and A(R) and α(R)
as in [2]). Apparently the model is very sensitive to the shape of these functions and even though the calculated
functions are of the same order of magnitude as the fitted ones, they are not able to reproduce experimental data even
qualitatively. Nevertheless without theoretical predictions, it would be much more difficult to provide decent starting
values of the model functions and then to eliminate unsuitable solutions. Experimental spectroscopy and high quality
theoretical predictions clearly go hand in hand.

Having achieved a successful treatment of NiH data, one would expect the experimental data in 58NiD should
be reproduced correctly by the model. When the same coupled-channels model (Figure 2) is applied independently
to 58NiD, an rms deviation of residuals close to the experimental uncertainty can indeed be achieved. A combined
analysis of both NiH and NiD, however, would need an extension of the model with separate Born-Oppenheimer
breakdown functions for substitution of Ni and H isotopes (as e.g. in [42]). First attempts to do this showed us that
it is a problem which requires to start the fitting procedure nearly from the beginning and face again the problems
of ambiguity and strong correlations between the model functions. In addition, at present data are available for
58NiD only. Future work will aim to extend the dataset to include 60NiD and possibly 62NiD, before attempting the
multi-isotope coupled-channel treatment of NiH and NiD together.
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