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Abstract: We study the optimal control in a long time horizon of neural ordinary differential6

equations which are affine or whose activation function is homogeneous. When considering the7

classical regularized empirical risk minimization problem we show that, in long time and under8

suitable assumptions, the final state of the optimal trajectories has zero training error. We9

assume that the data can be interpolated and that the error can be taken to zero with a cost10

proportional to the error. These hypotheses are fulfilled in the classification and simultaneous11

controllability problems for some relevant activation and loss functions. Our proofs are mainly12

constructive combined with reductio ad absurdum: We find that in long time horizon if the13

final error is not zero, we can construct a less expensive control which takes the error to zero.14

Moreover, we prove that the norm of the optimal control is constant. Finally, we show the15

sharpness of our hypotheses by giving an example for which the error of the optimal state, even16

if it decays to 0, is strictly positive for any time.17
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1 Introduction1

In this paper we study the optimal control of neural ordinary differential equations for a2

long time horizon. Neural ODE have been used in machine learning in the last five years, a3

trend started with [Wei17, HR17]. However, they date back to the 90s, when they were already4

used for the construction of controls (see the survey [Son92]) and when their controllability5

properties were first studied (see, for example, [Zbi93] and [SS97]). The control systems ruled6

by neural ODE have considerably better controllability properties than linear control systems.7

In fact, as pointed out in [RBZ21], for a fixed d ∈ N, if chosen the right neural ODE we can8

control an arbitrarily large amount of data in Rd, whereas in linear systems we can at most9

control an amount of data equal to the dimension of the control.10

The problem under study is the following: Given a dataset x = (x1, . . . , xN) ∈ (Rd)N∗ , for11

(Rd)N∗ := {(x1, . . . , xN) ∈ (Rd)N : xi 6= xj ∀i, j ∈ {1, . . . , N} : i 6= j},

we seek to take simultaneously the data set to some target points or regions in Rd in a given12

time T > 0. The distance to those targets is measured with an error function (also known as13

loss function). The control is the minimizer of the risk minimization functional, which provides14

a balance between a small cost for the control and a small value for the loss function at the15

final state of the optimal trajectory.16

We study the controllability on affine neural networks, which are given by the following17

equations:18 {
ẏ(t) = w(t)σ(y(t)) + b(t),

y(0) = x,
(1.1)

for x ∈ Rd the initial value, and σ : Rd 7→ Rd a Lipschitz function, which is called the activation19

function. The functions (w, b) are the controls and they belong to L2(0, T ;U), for U defined20

by:21

U := L(Rd,Rd)× Rd.

If we want to emphasize the dependence of (1.1) to the initial value and the control, we write22

y(·;x,w, b). Similarly, we denote the sequence of solutions of (1.1) for some fixed control (w, b)23

and a data set x as:24

y(·; x, w, b) :=
(
y(·;x1, w, b), . . . , y(·;xN , w, b)

)
.

Since σ is Lipschitz, (1.1) is well-posed by Cauchy-Lipschitz Theorem.25
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In addition, we also study more complex neural networks, which are given by the equations:1 {
ẏ(t) = r(t)σ (w(t)y(t) + b(t)) ,

y(0) = x.
(1.2)

Here x is the initial value and (r, w, b) is the control, which belongs to L2(0, T ; Ũ), for:2

Ũ :=M×L(Rd,Rd)× Rd,

for:3

M := {L ∈ L(Rd,Rd) : Lei ∈ {1,−1}, ∀i = 1, . . . , d}. (1.3)

We remark that r models the direction of the flow, which is necessary if σ is positive. The4

intensity of the flow, on the other hand, is modelled by (w, b). We assume that the activation5

function σ is Lipschitz and homogeneous in the sense that:6

σ(λx) = λσ(x), ∀λ > 0, ∀x ∈ Rd. (1.4)

This includes important activation functions such as rectified linear units, which are given by:

σ(x) = (max{x1, 0}, . . . ,max{xd, 0}),

see [NH10]; parametric rectified units, given by:

σ(x) = (αx11x1<0 + x11x1>0, . . . , αxd1xd<0 + xd1xd>0),

see [HZRS15]; and, of course, the identity, σ(x) = x. As in the previous system, y(·;x, r, w, b)7

and y(·; x, r, w, b) denote the solutions of (1.2), and (1.2) is well-posed by Cauchy-Lipschitz8

Theorem.9

As stated in the first paragraph, we study the properties of the optimal control in a long10

time horizon. The main contribution of our paper is that, if the data can be interpolated11

and the error can be corrected with a cost proportional to the current error, we improve the12

asymptotic bound O(1/T ) for the error of the final state of the optimal trajectory obtained in13

[EGPZ20a] and prove that it is exactly 0 for a sufficiently large time. In fact, in the simulations14

presented in [EGPZ20a, Examples 4.2 and 4.4] the final errors seem to be 0, so we want to15

determine theoretically if, as their simulation suggests, the error is taken exactly to 0. We16

work in an abstract setting, though we give concrete examples of problems that satisfy our17

assumptions, notably the simultaneous controllability and classification problems. As the name18

suggests, in simultaneous controllability we aim to control two or more independent equations19

by applying the same control. The study of simultaneous controllability dates back to [Rus86]20

and [Lio88, Chapter 5], and relevant papers on this topic include [TW00, Mor14, LZ16, WZL17,21

AB19, RBZ21]. As for the classification problem, it is a simplified version of the simultaneous22
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controllability problem, where the objective is to split the data into two sets, for instance,1

{x1 ≤ 1} and {x1 ≥ 1}. An additional contribution of our paper is an example of neural ODE2

and loss functions where the error can be taken to 0, but for all time T > 0 the error at time3

T of the optimal trajectories is strictly positive. This illustrates that the results are far from4

trivial.5

This paper follows a well-established research line that studies the properties of the optimal6

control and trajectories in a long time horizon. This allows, for instance, that when doing7

numerical simulations one might discard local minimum that are not optimal control. The8

pioneer work is [PZ13], where the authors introduce the turnpike property, which means that9

when minimizing certain functionals all the optimal trajectories are most of the time near some10

specific state (the turnpike) independently of the initial value and the target. Interesting papers11

on this subject include [DGSW14, TZ15, GTZ16, GG18, TZZ18, Zam18, GH19, SPZ19, BP20,12

EKPZ20, EGPZ20b, GSZ21, MRB20, SN20, Tré20, FHS21, WZ21]. Finally, the optimal control13

for neural ODE is also studied in [EYG21], where the authors consider the cost of the L1-norm14

of the control instead of the L2-norm and obtain that for that norm the optimal control satisfies15

some sparsity properties and that the error of the final state belongs to O(1/T ).16

1.1 Optimal trajectories for affine neural ODE17

As stated in the first part of the introduction, we study the optimal control of a data set ruled18

by a neural ODE. To measure how far the data is from the objective we introduce the error19

function (also referred in the literature of Data Science as loss function) E : Rd×X 7→ R+, for20

X ⊂ Rd. We assume that X contains the data set x and that for all x ∈ X the function E(·, x)21

is continuous. This allows to define the empirical risk minimization functional :22

JT (w, b) := E(y(T ; x, w, b),x) +

∫ T

0

|(w(t), b(t))|2dt, (1.5)

for:

E(x̃,x) :=
1

N

N∑
i=1

E(x̃i, xi),

and y a solution of (1.1). In this paper we denote any minimizer of JT by (wT , bT ). Moreover, the23

trajectories induced by such minimizers, called optimal trajectories, are denoted by yT (t; x) :=24

y(t; x, wT , bT ).25

First of all, we recall that the functional JT has at least a minimizer:26

Proposition 1.1 (Existence of minimizers). The functional JT given in (1.5) has at least a27

minimizer in L2(0, T ;U).28
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Proposition 1.1 is classical, and the proof can be found, for instance, in [Tré05, Proposition1

6.2.3]. The main idea of the proof is that JT is a sum of a positive weakly continuous functional2

and a positive continuous convex functional. For this result the continuity of E(·, x) is essential.3

Example 1.2 (On the non-uniqueness of minimizers). We might have more than one minimizer.4

If d = 1, x = x1 = 0, E(x, 0) = min{|1−x|, |1+x|} and σ(s) = s, JT has at least two minimizers5

for any T > 0. Indeed, JT (0, 1/T ) = 1/T for T ≥ 1 and JT (0, 1/2) = 1 − T/4 for T ∈ (0, 1],6

so (0, 0) is not a minimizer. Moreover, if (w, b) is a minimizer, by symmetry (−w,−b) is also a7

minimizer.8

For having JT minimizers which take the error to 0 the first thing that we need, of course, is9

that the error can be taken to 0, a property known in Data Science as interpolation:10

Hypothesis 1 (Interpolation). For the data set x there are controls:

(w∗, b∗) ∈ L2(0, 1;U),

such that E(y(1; x, w∗, b∗),x) = 0.11

Hypothesis 1 is used to show that the error of the final state of the optimal trajectories decays12

as T →∞ (see Lemma 2.3 below).13

In addition, we assume that the error can be taken to 0 with a cost proportional to the error:14

Hypothesis 2 (Local controllability of the system). Let the data set be x ∈ (Rd)N∗ . Then, there

are C, ε̃ > 0 such that for all x = (x1, . . . , xN) ∈ (Rd)N∗ satisfying E(x,x) < ε̃, there are some

controls (w, b) satisfying:

‖(w, b)‖L∞(0,1;U) < CE(x,x),

such that:

E(y(1; x, w, b),x) = 0.

As shown in Appendix A, an additional assumption to Hypothesis 1 is necessary to take the15

error to 0. Without Hypothesis 2 the cost to take the error to 0 may be considerably higher16

than obtaining some small error, so it might not compensate to take the error exactly to 0 (see17

Proposition A.1).18

Now we have all the tools to state the first main result of this paper:19

Theorem 1.3 (Annihilation of the error in a long time horizon). Let x ∈ (Rd)N∗ , σ be a20

Lipschitz activation function and E be an error function such that Hypotheses 1 and 2 are21

satisfied. Then, for T > 0 large enough depending on σ, x and E, if ε > 0 there is δ > 0 such22

that JT (w, b) < inf JT + δ implies:23

E(y(T ; x, w, b),x) < ε. (1.6)
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Moreover, for T > 0 large enough the following equality holds for any optimal trajectory:1

E(yT (T ; x),x) = 0. (1.7)

Theorem 1.3 is proved by showing that if T is sufficiently large and if E(y(T ; x, w, b),x) is small

and strictly positive, we can construct with Hypothesis 2 a control (w̃, b̃) such that:

J(w̃, b̃) ≤ J(w, b)− 1

2
E(y(T ; x, w, b),x).

The construction of such control is far from trivial and, as illustrated in Appendix A, the2

hypotheses are rather sharp. As explained in the first part of the introduction, Theorem 1.33

improves the results presented in [EGPZ20a], where the authors prove that the error of the4

final state of the optimal trajectory is of size O(1/T ).5

Example 1.4 (Application of Theorem 1.3 to the classification problem). Let us consider:

x = (x1, . . . , xM , xM+1, . . . , xN) ∈ (Rd)N∗ ,

the error function E(x, xi) = (x1 + 1)1x1>−1(x1) for i = 1, . . . ,M , and E(x, xi) = (x1 −6

1)1x1>1(x1) for i = M+1, . . . , N ; and any neural function σ of the type σ(x) = (σ̃(x1), . . . , σ̃(xd))7

such that there is c > 0 such that cs ≤ σ̃(s) for all s ≥ 0 and σ̃(s) ≤ cs for all s ≤ 0.8

Hypothesis 2 is clearly satisfied, as it suffices to consider ε̃ = 1/(2N), b = 0 and w(t)x =9

(2Nc−1E(x,x)x1, 0, . . . , 0). Thus, Theorem 1.3 implies that if the data can be classified (i.e. if10

Hypothesis 1 is satisfied), then by computing the optimal control for a sufficiently large time,11

the data is sent to the sets {x1 ≤ −1} and {x1 ≥ 1}.12

1.2 Optimal trajectories for neural ODE with an homogeneous ac-13

tivation function14

In this section we present the analogous results to those in Section 1.1 for the neural ODE15

(1.2) with activation functions which satisfy (1.4). Let us reformulate Hypotheses 1 and 2 in16

the context of (1.2):17

Hypothesis 3 (Interpolation). For the data set x there are controls:

(r∗, w∗, b∗) ∈ L2(0, 1; Ũ),

such that E(y(1; x, r∗, w∗, b∗),x) = 0.18

Hypothesis 4 (Local controllability of the system). Let the data set be x ∈ (Rd)N∗ . Then, there

are C, ε̃ > 0 such that for all x = (x1, . . . , xN) satisfying E(x,x) < ε̃, there are some controls

(r, w, b) satisfying:

‖(w, b)‖L∞(0,1;U) < CE(x,x),

such that:

E(y(1; x, r, w, b),x) = 0.
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Again, we seek to get sufficient conditions so that the optimal trajectories induced by:1

J̃T (r, w, b) := E(y(T ; x, r, w, b),x) +

∫ T

0

|(w(t), b(t))|2dt, (1.8)

satisfy E(yT (T ; x),x) = 0. Since |r| is constant (see (1.3)), it makes no sense to include it in2

the definition of J̃T . For the functional J̃T the following result holds:3

Theorem 1.5 (Annihilation of the error for a sufficiently large time). Let σ be a Lipschitz4

activation function satisfying (1.4) and E an error function satisfying Hypothesis 3 and 4.5

Then, for T > 0 large enough depending on σ, x and E, and all ε > 0 there is δ > 0 such that6

if JT (r, w, b) < inf JT + δ, then:7

E(y(T ; x, r, w, b),x) < ε. (1.9)

Moreover, if T is large enough and if J̃T has an optimal trajectory:8

E(yT (T ; x),x) = 0. (1.10)

The proof of Theorem 1.5 is analogous to that of Theorem 1.3, so we just give some brief9

explanations in the first comment of Section 3. As with Theorem 1.3, Theorem 1.5 improves10

the results presented in [EGPZ20a], where the authors prove that the error of the optimal11

trajectory at a final time T is of size O(1/T ) also for the solutions of (1.2) with an activation12

functions satisfying (1.4).13

Remark 1.6 (Existence of minimizers of J̃T ). We have stated “if J̃T has an optimal trajectory” in14

Theorem 1.5 because, as far as we know, it is an open question to see if J̃T admits a minimizer.15

The main obstacle to adapt the proof of Proposition 1.1 is that nonlinear functions and weak16

limits may not commute. However, as we see in the first comment of Section 3, we can improve17

Theorem 1.5 and obtain that for T large enough and all ε > 0 there are controls (r, w, b) such18

that JT (r, w, b) < inf JT + ε and E(y(t; x, r, w, b),x) = 0.19

Example 1.7 (Application of Theorem 1.5 to simultaneous controllability). Theorem 1.5 can be20

applied to the simultaneous controllability problem. Let x ∈ (Rd)N∗ for d ≥ 2, the activation21

function:22

σ(x) = (max{x1, 0}, . . . ,max{xd, 0}), (1.11)

the targets z = (z1, . . . , zN) ∈ (Rd)N∗ , and the error function E(x, xi) = |x − zi|. Then, it is23

proved in [RBZ21, Theorem 2] that Hypothesis 3 is satisfied. Moreover, as we prove in Appendix24

C, Hypothesis 4 also holds. We present the proof because the bounds for the cost of the control25

is not a straight consequence of the computations in [RBZ21]. Consequently, Theorem 1.5 (and26

all the auxiliary results and corollaries) can be applied to this neural problem.27
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1.3 Outline of the paper1

The rest of the paper is organized as follows: in Section 2 we present the proof of Theorem2

1.3, in Section 3 we comment some additional facts about neural ODE and present some open3

problems, in Appendix A we present a pathological case that motivate Hypotheses 2 and 4,4

in Appendix B we present the proof of a technical result involving measure theory, and in5

Appendix C we show that the simultaneous controllability problem satisfies Hypothesis 4.6

2 Optimal control for affine neural ODE7

In this section we work in the control problem described by (1.1) and the risk minimization8

functional JT given by (1.5). In this section C > 0 denotes an arbitrary constant that may9

change from line to line and depends only on σ, E and x. Similarly, when we assume that T is10

large enough we mean with respect to σ, E and x. We first present some technical results in11

Section 2.1, then conclude the proof of Theorem 1.3 in Section 2.2 by reductio ad absurdum,12

and finally provide additional properties of the optimal controls in Section 2.3.13

2.1 Preliminaries14

We first remark that the trajectories of (1.1) are invariant with the time variable:15

Lemma 2.1 (Invariance of trajectories with the time variable). Let x ∈ (Rd)N and

φ ∈ L1
loc(0,∞;R+).

Then:16

y(Φ(t); x, w, b) = y(t; x, φ(Φ(s))w(Φ(s)), φ(Φ(s))b(Φ(s))), ∀t ∈ [0, T ∗], (2.1)

for T ∗ > 0 and Φ any solution of:17 {
Φ̇(s) = φ(Φ(s)), s ∈ [0, T ∗),

Φ(0) = 0.
(2.2)

Remark 2.2 (Invariance of trajectories when φ is constant). An important application of Lemma18

2.1 is the case φ(t) = λ ∈ R+; that is, when φ is constant. Then, (2.1) becomes:19

y(λt; x, w, b) = y(t; x, λw(λs), λb(λs)). (2.3)

Proof of Lemma 2.1. It suffices to see that for all i the function t 7→ y(Φ(t);xi, w, b) is a solution

of (1.1) with initial value xi and controls φ(Φ(t))w(Φ(t)) and φ(Φ(t))b(Φ(t)), since (1.1) has a

unique solution by Cauchy-Lipschitz Theorem. From (2.2)2 we obtain that:

y(Φ(0);xi, w, b) = y(0;xi, w, b) = xi.
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Moreover, from (2.2)1 and the chain rule:1

d

dt

(
y(Φ(t);xi, w, b)

)
= φ(Φ(t))ẏ(Φ(t);xi, w, b)

= φ(Φ(t))
(
w(Φ(t))σ(y(Φ(t);xi, w, b)) + b(Φ(t))

)
= (φ(Φ(t))w(Φ(t)))σ(y(Φ(t);xi, w, b)) + (φ(Φ(t))b(Φ(t))) .

(2.4)

2

Next, we recall that Hypothesis 1 implies that the error is at most of size O(1/T ):3

Lemma 2.3 (Boundedness of the error with respect to T ). Let T > 0, σ be an activation4

function and E an error function satisfying Hypothesis 1. Then:5

E(yT (T ; x),x) ≤ C

T
. (2.5)

Lemma 2.3 is proved in [EGPZ20a]. Briefly, it is a consequence of the definition of yT as the6

optimal trajectory and that, by Remark 2.2, 1
T
w∗(

·
T

) and 1
T
b∗(

·
T

) are controls that take the7

error to 0 (see Hypothesis 1 for the definition of (w∗, b∗)). In fact:8

E(yT (T ; x),x) ≤ JT (wT , bT ) ≤ JT

(
1

T
w∗

( ·
T

)
,

1

T
b∗

( ·
T

))
=

1

T

∫ 1

0

|(w∗(t), b∗(t))|2dt.
(2.6)

Finally, we prove that we may assume that the norm of the optimal control is constant if it9

does not get null or explode:10

Lemma 2.4 (More efficient controls). Let:

(w, b) ∈ C1([0, T ];U \ {(0, 0)}),

be such that t 7→ |(w(t), b(t))| is not constant. Then, there is a control (w̃, b̃) such that t 7→11

|(w̃(t), b̃(t))| is constant, such that:12

|(w̃(t), b̃(t))| ∈
(

min
[0,T ]
|(w, b)|,max

[0,T ]
|(w, b)|

)
in [0, T ], (2.7)

and such that:13

y(T ; x, w̃, b̃) = y(T ; x, w, b),

∫ T

0

|(w̃(t), b̃(t))|2dt <
∫ T

0

|(w(t), b(t))|2dt. (2.8)

9



Proof of Lemma 2.4. Let us consider the auxiliary function:1

φγ(t) =
γ

|(w(t), b(t))|
1[0,T ](t), (2.9)

for γ > 0 to be fixed later, and Φγ given by:2 {
Φ̇γ(s) = φγ(Φγ(s)), s ∈ [0, Tγ],

Φγ(0) = 0,
(2.10)

for:3

Tγ := sup{t : Φγ(t) < T}.
Note that from the definition of Tγ it follows that:4

Φγ(Tγ) = T. (2.11)

Since φγ is C1 (as (w, b) 6= 0, by compactness min[0,T ] |(w, b)| > 0), (2.10) has a unique solution5

by Cauchy-Lipschitz Theorem. Moreover, γ 7→ Tγ is continuous and decreasing, limγ→0 Tγ =∞,6

and limγ→∞ Tγ = 0, so there is γ∗ > 0 such that:7

Tγ∗ = T. (2.12)

For that value γ∗ it holds:8

γ∗ =
1

1
T

∫ T
0

dt
|(w(Φγ∗ (t)),b(Φγ∗ (t)))|

, (2.13)

because by (2.11) and (2.12):9 ∫ T

0

γ∗dt

|(w(Φγ∗(t)), b(Φγ∗(t)))|
=

∫ T

0

Φ̇γ∗(t)dt = Φγ∗(T ) = Φγ∗(Tγ∗) = T.

Considering (2.1) we obtain that:10

y(T ; x, φγ∗(Φγ∗(s))w(Φγ∗(s)), φγ∗(Φγ∗(s))b(Φγ∗(s))) = y(Φγ∗(T ); x, w, b)

= y(T ; x, w, b).
(2.14)

Moreover, considering the strict inequality between the harmonic and arithmetic means (see,11

for instance, [Kom11]), (2.10)-(2.13), and the Change of Variables Theorem we get that:12 ∫ T

0

φ2
γ∗(Φγ∗(t))|(w(Φγ∗(t)), b(Φγ∗(t)))|2dt =

∫ T

0

(γ∗)2dt = (γ∗)2T

=
γ∗T

1
T

∫ T
0

dt
|(w(Φγ∗ (t)),b(Φγ∗ (t)))|

<
1

T

∫ T

0

γ∗T |(w(Φγ∗(t)), b(Φγ∗(t))|dt

=

∫ T

0

φγ∗(Φγ∗(t))|(w(Φγ∗(t)), b(Φγ∗(t)))|2dt

=

∫ T

0

|(w(t), b(t))|2dt.

(2.15)

10



Therefore, combining (2.14) and (2.15) we obtain (2.8) for:

w̃(t) = φγ∗(Φγ∗(t))w(Φγ∗(t)), b̃(t) = φγ∗(Φγ∗(t))b(Φγ∗(t)).

Finally, since γ∗ is the harmonic mean of values in:[
min
[0,T ]
|(w, b)|,max

[0,T ]
|(w, b)|

]
,

we obtain (2.7).1

2.2 Construction of controls which take the error to zero2

Let us state the properties of the controls that we construct in this section:3

Proposition 2.5. Let σ be an activation function and E an error function that satisfy Hy-4

potheses 1 and 2. Let T > 0 be large enough and (w, b) be such that:5

JT (w, b) ≤ 2 inf JT . (2.16)

Then, there is a control (ŵ, b̂) such that:6

E(y(T ; x, ŵ, b̂),x) = 0, (2.17)

and:7

JT (ŵ, b̂) ≤ JT (w, b)− 1

2
E(y(T ; x, w, b),x). (2.18)

The first step is to remark that E(y(T ; x, w, b),x) is small for large T . The second step is to8

approximate (w, b) by some control (w̃, b̃) satisfying the hypothesis of Lemma 2.4. The third9

step is to show that if (1.7) is false, we may prolong for some τ > 0 the controls w̃ and b̃ in10

[T, T + τ ] so that:11

ỹ(T + τ ; x, w̃, b̃) = 0. (2.19)

The fourth step is to take those trajectories to [0, T ] with (2.3). The fifth and last step is to12

check that the new control satisfies (2.18).13

Proof of Proposition 2.5. Step 1: estimate of E(y(T ; x, w, b),x). If E(y(T ; x, w, b),x) = 0,14

then it suffices to consider (ŵ, b̂) = 0, so we suppose from now on that E(y(T ; x, w, b),x) > 0.15

Moreover, from (2.6) and (2.16) we obtain for T large enough that:16

E(y(T ; x, w, b),x) ∈ (0, ε̃/2), (2.20)

for ε̃ the value in Hypothesis 2.17

11



Step 2: approximating the control. Clearly, C1([0, T ];U \ {0}) is dense is L2(0, T ;U).

Moreover,

(w, b) 7→ E(y(T ; x, w, b),x),

is continuous from L2(0, T ;U) to R. Thus, there is (w̃, b̃) ∈ C1([0, T ];U \ {0}) such that:1

‖(w̃, b̃)‖L2(0,T ;U) ≤ ‖(w, b)‖L2(0,T ;U), (2.21)

and:2

E(y(T ; x, w̃, b̃),x) ≤ 2E(y(T ; x, w, b),x). (2.22)

Moreover, by Lemma 2.4 we can suppose that t 7→ |(w̃(t), b̃(t))| is constant. In addition, from3

(2.6), (2.16) and (2.21) it follows that:4

‖(w̃, b̃)‖L∞(0,T ;U) ≤
C√
T
. (2.23)

Step 3: taking the error to 0. From Hypothesis 2, (2.20) and (2.22) we obtain a control

(w, b) ∈ L∞(0, T ;U) that takes the solution from y(T ; x, w̃, b̃) to a state x̃ such that E(x̃,x) = 0.

Moreover,

‖(w, b)‖L∞(0,1;U) ≤ CE(y(T ; x, w̃, b̃),x) ≤ CE(y(T ; x, w, b),x).

Consequently, by Remark 2.2, for some:5

τ ≤ C
E(y(T ; x, w̃, b̃),x)

‖(w̃, b̃)‖L∞(0,T ;U)

, (2.24)

the control (w̃, b̃) can be prolonged to [0, T + τ ] so that both:6

‖(w̃, b̃)‖L∞(0,T+τ ;U) = ‖(w̃, b̃)‖L∞(0,T ;U), (2.25)

and (2.19) are satisfied.7

Step 4: taking the trajectory to [0, T ]. We consider:8

ŵ(t) :=
T + τ

T
w̃

(
T + τ

T
t

)
,

b̂(t) :=
T + τ

T
b̃

(
T + τ

T
t

)
.

(2.26)

Then, (2.17) is true. In fact, the equation (2.3) with λ = T+τ
T

implies:9

y(T ; x, ŵ, b̂) = y(T + τ ; x, w̃, b̃).

12



Step 5: efficiency of the new control. First, we realize that:

JT (w, b)− JT (ŵ, b̂) = E(y(T ; x, w, b),x) +

∫ T

0

|(w(t), b(t))|2dt

−
(
T + τ

T

)2 ∫ T

0

∣∣∣∣(w̃(T + τ

T
t

)
, b̃

(
T + τ

T
t

))∣∣∣∣2 dt. (2.27)

Considering that t 7→ (w̃(t), b̃(t)) is constant in [0, T ], and that (2.21) and (2.25) are satisfied1

we deduce that:2 ∫ T

0

|(w(t), b(t))|2dt−
∫ T

0

∣∣∣∣(w̃(T + τ

T
t

)
, b̃

(
T + τ

T
t

))∣∣∣∣2 dt ≥ 0. (2.28)

Consequently, we obtain from (2.20), (2.23)-(2.25) and (2.27)-(2.28) that:

JT (w, b)− JT (ŵ, b̂) ≥ E(yT (T ; x, w, b),x)−
(

2τ

T
+
τ 2

T 2

)∫ T

0

∣∣∣∣(w̃(T + τ

T
t

)
, b̃

(
T + τ

T
t

))∣∣∣∣2 dt
≥
(

1− C‖(w̃, b̃)‖L∞(0,T ;U) − Cε̃T−1
)
E(y(T ; x, w, b),x)

≥
(
1− CT−1/2

)
E(y(T ; x, w, b),x),

which implies (2.18) for T large enough.3

Now we may conclude the proof of Theorem 1.3 by reductio ad absurdum:4

Conclusion of the proof of Theorem 1.3. Let ε > 0. It suffices to consider δ = ε/3. If (w, b)

are such that JT (w, b) ≤ inf JT + ε/3, then E(y(T ; x, w, b)) < ε. Otherwise, by Proposition 2.5

there are (ŵ, b̂) such that:

JT (ŵ, b̂) ≤ JT (w, b)− ε

2
≤ inf JT −

ε

6
,

which is absurd. Similarly, if (wT , bT ) is a minimizer of JT and (1.7) is not satisfied, then the5

control (ŵ, b̂) of Proposition 2.5 satisfies JT (ŵ, b̂) < JT (wT , bT ), contradicting the definition of6

minimizer.7

2.3 Additional properties of the optimal control8

As a consequence of Remark 2.2, we can easily prove that, assuming Hypothesis 1 and 2, for

a sufficiently large time the optimal controls are of the form:(
1

T
w∗

(
t

T

)
,

1

T
b∗

(
t

T

))
,

13



for (w∗, b∗) the minimizers of the functional:1

t 7→
∫ T

0

|(w(t), b(t))|2dt,

considered in the domain:2

{(w, b) : E(y(1; x, w, b),x) = 0}.

In addition, we can prove that such minimizers belong to L∞(0, T ) and satisfy that t 7→3

|(w(t), b(t))| is constant, which follows from:4

Lemma 2.6 (A more efficient control). Let (w, b) a control in L2(0, 1) such that t 7→ |(w(t), b(t))|
is not constant. Then, there is a control (w̃, b̃) such that:

y(1; x, w̃, b̃) = y(1; x, w, b),
5

‖(w̃, b̃)‖L2(0,T ;U) < ‖(w, b)‖L2(0,T ;U),

and, if (w, b) ∈ L∞(0, T ;U),6

‖(w̃, b̃)‖L∞(0,T ;U) ≤ 2‖(w, b)‖L∞(0,T ;U). (2.29)

The proof of Lemma 2.6 is based on classical results from Measure Theory and is postponed to7

Appendix B. Lemma 2.6, compared to Lemma 2.4, has the advantage of having less restrictive8

hypothesis. However, it has the disadvantage that we do not obtain neither a contraction for9

the L∞ norm (see Remark B.2) nor a control with constant norm, which is needed for proving10

Proposition 2.5.11

3 Further comments and open problems12

� Analogous results for neural ODE whose dynamics are described by (1.2).

Clearly Lemmas 2.1, 2.3, 2.4, and 2.6 and Proposition 2.5 can be proved for system (1.2)

with σ satisfying (1.4) as in Section 2. The key lemma is Lemma 2.1, since the other

results use the homogeneity of the system via Lemma 2.1. The analogous of Lemma 2.1

can be proved by replacing (2.4) by:

d

dt
(y(Φ(t);xi, w, b, r)) = φ(Φ(t))r(Φ(t))ẏ(Φ(t);xi, w, b)

= φ(Φ(t))r(Φ(t))σ
(
w(Φ(t))y(Φ(t);xi, w, b) + b(Φ(t))

)
= r(Φ(t))σ

(
φ(Φ(t))w(Φ(t))y(Φ(t);xi, w, b) + φ(Φ(t))b(Φ(t))

)
.

The last equality follows from (1.4). Finally, Theorem 1.5 and the analogous of Proposi-13

tion 2.5 imply that for all δ > 0 there is a control (r, w, b) such that J̃T (r, w, b) < inf J̃T−δ14

and E(y(T ; x, r, w, b)) = 0.15
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� Direction of the flow in neural ODE described by (1.2). The same results are valid1

if we replace M (see (1.3)) by any closed subset of orthogonal matrices. In particular,2

this is true if M = {I}; that is, if r(t) = I, which is the case studied in [EGPZ20a].3

� Functionals allowing expensive controls. As in [EGPZ20a], we can consider the4

functional:5

JT,δ(w, b) := E(y(T ; x, w, b),x) + δ

∫ T

0

|(w(t), b(t))|2dt,

instead of JT for (1.1), and:6

JT,δ(r, w, b) := E(y(T ; x, r, w, b),x) + δ

∫ T

0

|(w(t), b(t))|2dt,

instead of JT for (1.2)-(1.4). By linearity (see Remark 2.2) it holds that:7

JT,δ(w, b) = JTδ−1,1(δw(tδ), δb(tδ)),

and:8

J̃T,δ(r, w, b) = J̃Tδ−1,1(r(tδ), δw(tδ), δb(tδ)),

respectively. A straight consequence is that (w, b) is a minimizer of JT,δ if and only9

if (δw(tδ), δb(tδ)) is a minimizer of JTδ−1,1. Similarly, (r, w, b) is a minimizer of J̃T,δ if10

and only if (r(tδ), δw(tδ), δb(tδ)) is a minimizer of JTδ−1,1. Thus, analogous results to11

Theorems 1.3 and 1.5 and all the auxiliary results hold true for JT,δ and J̃T,δ when T is12

fixed and δ > 0 is small enough depending on σ, E, x and T .13

� Optimal control for non-homogenous activation functions. It remains an open

problem to determine if similar results to Theorem 1.5 hold for non-homogeneous activa-

tion functions satisfying σ(0) = 0 such as the hyperbolic tangent,

σ(x) = (tanh(x1), . . . , tanh(xd)),

see [FS18]. We may wonder whether similar results hold with more general activation

functions if we replaceM (see (1.3)) by the unitary matrices or by L(Rd,Rd) (of course,

the cost of r must also be included in the risk minimization functional). This would

include, for instance, sigmoid,

σ(x) = ((1 + e−x1)−1, . . . , (1 + e−xd)−1),

see [MS95]; and softplus,

σ(x) = (log(1 + ex1), . . . , log(1 + exd)),

see [GBB11]. The main difficulty is that the analogue of Lemma 2.1 cease to be true, so14

another tool is needed to prove the main result, probably a local inverse theorem result.15
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� Optimal control with other norms. It is a relevant problem to determine if similar1

results to Theorems 1.3 and 1.5 hold for any other Lebesgue or Sobolev norms. In particu-2

lar, the most interesting scenario is to replace both in JT and J̃T the terms ‖(w, b)‖2
L2(0,T )3

by ‖(w, b)‖2
H1(0,T ) and adding the restriction that the component of r can only change4

signs if (w, b) = 0 or to measure the H1 norm of r if the space M is connected. The5

interest of this is double: thinking in potential applications it makes sense to also try6

to bound the variations in the time variable, which can be obtained by minimizing the7

time derivative. Moreover, if we consider the H1-norm we can prove as in Proposition 1.18

that J̃T admits a minimizer. The main difficulties when studying these norms are that9

Lemmas 2.4 and 2.6 may not be proved as easily (if they are true) because we need to10

keep track of the time derivative and because we cannot define the control on [T, T + τ ]11

independently to the controls on [0, T ] due to the time derivative.12

A A pathological case13

In this section we prove that without Hypothesis 2 the error may not be taken exactly to 0 if14

the ratio between the cost of correcting the error and the error explodes as the error vanishes.15

We present an example for the sake of simplicity, though the proof can be replicated whenever16

the gradient of the error is null on all the points where the error is null, which is the key17

impediment for taking the error exactly to zero.18

Proposition A.1 (Necessity of local controllability). Let us consider d = 1, x = x1 = 1,19

E(x, 1) = x2, σ(s) = s and JT given by (1.5). Then, yT (T ) > 0 for all T > 0.20

Proof of Proposition A.1. Let (wT , bT ) be a minimizer of JT . Clearly wT , bT ≤ 0. Let us prove21

by contradiction that yT (T ) > 0. For that, we suppose that yT (T ) = 0. By Lemma 2.6,22

t 7→ |(wT (t), bT (t))| is a constant function equal to some constant c. In particular, for δ > 023

small enough the following inequality is satisfied:24

(yT (T − δ))2 −
∫ T

T−δ
|(wT (t), bT (t))|2 = (yT (T − δ))2 − c2δ ≤ (Cδ)2 − c2δ < 0. (A.1)

The estimate |yT (T − δ)| ≤ Cδ follows from the formula:

yT (T − δ) = −
∫ T

T−δ
bT (s) exp

(
−
∫ s

T−δ
wT (z)dz

)
ds,

which follows from yT (T ) = 0. Consequently, we obtain from (A.1) that:25

JT (wT1(0,T−δ), bT1(0,T−δ))− JT (wT , bT ) < 0, (A.2)

which contradicts that (wT , bT ) is a minimizer of JT .26

Remark A.2 (On Hypothesis 1). It is trivial that Hypothesis 1 is satisfied by the activation and27

error function introduced in Propositions A.1.28
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B Proof of Lemma 2.61

In this section we prove Lemma 2.6. Here µ denotes the Lebesgue measure. In order to prove2

Lemma 2.6 we need the following classical result of measure theory, whose proof can be found3

in [Yeh06, Thm. 3.25]:4

Lemma B.1 (Comparison between sets of positive measure and open sets). Let S ⊂ [0, T ] be5

a measurable set such that µ(S) > 0. Then, for all ε > 0 there is an open set Oε =
⋃nε

i=1(aεi , b
ε
i )6

such that µ(Oε4S) < ε.7

Proof of Lemma 2.6. Since |(w, b)| is not constant, there are some sets S1 and S2 and some8

constants C1, C2 > 0 such that C1 < C2, |(w, b)| < C1 on S1, |(w, b)| > C2 on S2 and:9

inf{|x2 − x1| : x1 ∈ S1, x
2 ∈ S2} > 0. (B.1)

From Lemma B.1 we get that for ε > 0 small enough there are two sets Oε1 =
⋃nε1
i=1(aε1,i, b

ε
1,i)10

and Oε2 =
⋃nε2
i=1(aε2,i, b

ε
2,i) satisfying:11

µ(Oε1 \ S1) < ε, µ(Oε2 \ S2) < ε, (B.2)

and:12

µ(Oε1) = µ(Oε2) =
min{µ(S1), µ(S2)}

2
. (B.3)

If ε is small enough, because of (B.1) we may also assume that:13

Oε1 ∩ Oε2 = ∅. (B.4)

Let us consider the auxiliary function:14

φγ(t) =


1 t ∈ [0, T ] \ (Oε1 ∩ Oε2),

1 + γ t ∈ Oε1,
1+γ
1+2γ

t ∈ Oε2,
0 t ≥ T,

(B.5)

for γ > 0 to be fixed later, and Φγ given by:15 {
Φ̇γ(s) = φγ(Φγ(s)), ∀s ≥ 0,

Φγ(0) = 0.
(B.6)

We remark that:16

Φγ(T ) = T. (B.7)

Indeed, it can be proved that if Φγ(T∗) = a and φγ(t) = c on [a, b], then Φγ

(
T∗ + b−a

c

)
= b.

Hence:

Φγ

(
µ
(
[0, T ] \ (Oε1 ∩ Oε2)

)
+

1

1 + γ
µ(Oε1) +

1 + 2γ

1 + γ
µ(Oε2)

)
= T,

which considering (B.3), (B.4) and (B.5) implies (B.7).17
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Consequently, the following controls satisfy the conclusions of Lemma 2.6:1

(w̃, b̃) = φγ(Φγ(t))(w(Φγ(t)), b(Φγ(t))). (B.8)

Indeed, from (2.1) and (B.1) it holds that:

y(T ; x, φγ(s)w(Φγ(s)), φγ(s)b(Φγ(s))) = y(Φγ(T ); x, w, b)

= y(T ; x, w, b).

In addition, if γ and ε are small enough:∫ T

0

|(w(t), b(t))|2dt−
∫ T

0

|φγ(Φγ(t))(w(Φγ(t)), b(Φγ(t)))|2dt

=

∫
Oε1∪Oε2

|(w(t), b(t))|2dt

−
∫

Φ−1
γ (Oε1)∪Φ−1

γ (Oε2)

φ2
γ(Φγ(t))|(w(Φγ(t)), b(Φγ(t)))|2dt

= −γ
∫
Oε1
|(w(t), b(t))|2dt+

γ

1 + 2γ

∫
Oε2
|(w(t), b(t))|2dt

≥ γ

1 + 2γ
C2

(
min{µ(S1), µ(S2)}

2
− ε
)

− γC1
min{µ(S1), µ(S2)}

2
− ‖(w, b)‖2

L2(Oε1\S1) > 0.

The second equality follows from the change of variable s = Φγ(t), the first inequality from the2

definitions of S1, S2, Oε1, Oε2 and (B.3), and the last inequality from C2 > C1, (B.2), being γ3

and ε small enough, and the well known identity:4

lim
c→0

sup
µ(A)=c

‖g‖L2(A,dx) = 0, ∀g ∈ L2(0, T ).

Finally, if (w, b) ∈ L∞(0, T ;U) the estimate (2.29) follows from (B.5) and (B.8) by taking5

γ ≤ 1.6

Remark B.2 (Sharpness of the estimate (2.29)). The construction provided in the previous7

proof may not ensure us that:8

‖(w̃, b̃)‖L∞(0,T ;U) ≤ ‖(w, b)‖L∞(0,T ;U);

for instance if |(w, b)| = 1Ω, for Ω ⊂ [0, T ] a set such that µ(Ω) ∈ (0, T ) and which contains an9

open neighbourhood of every rational number in [0, T ]. However, we can replace in the estimate10

(2.29) the constant 2 by any constant strictly greater than 1.11
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C Local simultaneous controllability1

In this section we prove the following result:2

Lemma C.1 (Local simultaneous controllability result). Let σ be the activation function defined3

by (1.11) and E defined in Example 1.7. Then σ and E satisfy Hypothesis 4.4

The main contribution with respect to the result on [RBZ21] is that we keep track of the5

cost and continuity of the control. The controls that we construct are different to those in6

[RBZ21], in which w and b have a single non-zero component at any time, since we do not7

search for a sparse property, but to obtain the continuity of the controls with respect to the8

initial data. We recall that C is a positive constant sufficiently large changing from line to line9

which depends on the target set z. Moreover, for d = 2 we denote:10

r =

[
r1 0

0 r2

]
, w =

[
w1

w2

]
=

[
w11 w12

w21 w22

]
, b =

[
b1

b2

]
.

Proof of Lemma C.1. In order to simplify the notation we prove Lemma C.1 for the case d = 2,11

though the proof is analogous for any d ≥ 2. We prove Lemma C.1 by induction on N .12

Step 1: the base case. Let us begin with the case N = 1. We may take x = (x1, x2) to13

z = (z1, z2) with a force proportional to |z − x| by applying the controls w = 0, b1 = |z1 − x1|,14

b2 = |z2 − x2|, r1 = sign(z1 − x1) and r2 = sign(z2 − x2).15

Step 2: the inductive case. Step 2.1: rearranging the points. We may suppose by16

rearranging the indexes that |zN | = maxi=1,...,N |zi|. For the rest of the proof we define e := zN

|zN |17

and:18

δ := min{|zN | − max
i=1,...,N−1

zi · e, 1}. (C.1)

Then, δ > 0 since, for i = 1, . . . , N − 1, either |zi| < |zN | or |zi| = |zN | but zi 6= zN , so19

cos(zi, e) < 1.20

Step 2.2: controlling (x1, . . . , xN−1) in [0, 1/2]. By the induction hypothesis and linearity21

we know that for ε̂ small enough, if
∑N−1

i=1 |zi−xi| < ε̂ there are some controls (r, w, b) satisfying:22

‖(w, b)‖L∞(0,1/2) < C

N−1∑
i=1

|zi − xi|, (C.2)

and such that:23

y(1/2; (x1, . . . , xN−1), r, w, b) = (z1, . . . , zN−1). (C.3)
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We fix:

ε̃ = min

{
ε̂,

δ

C(|zN |+ 1)

}
.

If:1

N∑
i=1

|zi − xi| < ε̃, (C.4)

then:2

|y(t;xN , r, w, b)− zN | < δ

2
∀t ∈

[
0,

1

2

]
. (C.5)

Indeed, |zN − xN | < δ
4

by (C.4) and, if |y(·;xN , w, b)| < |zN |+ δ
2

on [0, t), for t ≤ 1/2, then:3 ∫ t

0

σ(w(s)y(s;xN , r, w, b) + b(s))ds ≤
‖w‖L∞(0,t)

(
|zN |+ δ

2

)
+ ‖b‖L∞(0,t)

2
<
δ

4
,

considering (C.2) and that ε̃ < δ
C(|zN |+1)

. In a similar way, we can prove that:4

|y(1/2;xN , r, w, b)− zN | ≤ C
N∑
i=1

|zi − xi|. (C.6)

Indeed, for t ∈ [0, 1/2] by (C.2):5

|σ(wy(1/2;xN , r, w, b) + b)| ≤ ‖w‖L∞(0,1/2)(|zN |+ δ) + ‖b‖L∞(0,1/2) ≤ C
N−1∑
i=1

|zi − xi|.

Step 2.3: controlling y(1/2;xN , r, w, b)1 in [1/2, 3/4]. We seek to obtain that:6

y(3/4;xN , r, w, b)1 = zN1 . (C.7)

If y(1/2;xN , w, b)1 = zN1 , it suffices to consider r1 = 1, r2 = 1, w = 0 and b = 0, so we7

may restrict to the case y(1/2;xN , w, b) 6= zN1 . To obtain (C.7) we consider the controls r1 =8

sign(z1 − x1), r2 = 1, w1 = c
∑N

i=1 |zi − xi|e, b1 = c
∑N

i=1 |zi − xi|(−|zN | + δ), w2 = 0, b2 = 09

in [1/2, 3/4], for c to be fixed later. These controls are constant in [1/2, 3/4]. First, we remark10

that σ(w1 · x + b) = 0 for all x such that x · e ≤ |zN | − δ. In particular, from (C.1) and (C.3)11

we derive:12

y(3/4; (x1, . . . , xN−1), r, w, b) = y(1/2; (x1, . . . , xN−1), r, w, b) = (z1, . . . , zN−1). (C.8)

Moreover, |y(t;xN , r, w, b)1 − zN1 | is decreasing on [1/2, T∗], for:

T∗ := inf{T∗ ≥ 1/2 : y(T∗;x
N , r, w, b)1 = zN1 }.

In addition, thanks to (C.5) in [1/2, T∗] the following inequality is satisfied:

∣∣ẏ(t;xN , r, w, b)1

∣∣ = |w1 · y(t;xN , r, w, b)− b1| ≥ c

N∑
i=1

|zi − xi|δ
2
.
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Combining this with (C.6) we obtain that T∗ < 3/4 if c ≥ C; i.e. if c is sufficiently large just

with respect to z (recall that δ is a fixed parameter depending only on z). Consequently, since

T∗ is continuous with c and limc→0 T∗ = ∞ there is some c ∈ (0, C] such that T∗ = 3/4. In

particular, there are some controls (r, w, b) such that (C.7), (C.8) hold, and such that:

‖(w, b)‖L∞(0,3/4) < C
N∑
i=1

|zi − xi|.

Finally, arguing as in the final part of Step 2.3 we obtain for C large enough that:

|y(3/4;xN , r, w, b)2 − zN2 | ≤ min

{
C

N∑
i=1

|zi − xi|, 3δ

4

}
.

Step 2.4: controlling y(·;xN , r, w, b) in [3/4, 1]. In a similar way, we can prolong the

controls in [3/4, 1] so that y(1; x, r, w, b) = z and:

‖(w, b)‖L∞(0,1) < C
N∑
i=1

|zi − xi|,

are satisfied. This can be done as in Step 2.3 by fixing r1 = 1, r2 = sign(z2 − x2), w1 = 0,1

b1 = 0, w2 = c
∑N

i=1 |zi − xi|e, b2 = c
∑N

i=1 |zi − xi|(−|zN | + δ) for some c > 0. Indeed, since2

w1 = 0 and b1 = 0, the function t 7→ y(t;xN , r, w, b)1 is constant in [3/4, 1].3
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[Lio88] J-L Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes dis-6
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